xref: /netbsd-src/sys/dev/raidframe/rf_diskqueue.c (revision 27578b9aac214cc7796ead81dcc5427e79d5f2a0)
1 /*	$NetBSD: rf_diskqueue.c,v 1.13 2000/03/04 04:22:34 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /****************************************************************************
30  *
31  * rf_diskqueue.c -- higher-level disk queue code
32  *
33  * the routines here are a generic wrapper around the actual queueing
34  * routines.  The code here implements thread scheduling, synchronization,
35  * and locking ops (see below) on top of the lower-level queueing code.
36  *
37  * to support atomic RMW, we implement "locking operations".  When a
38  * locking op is dispatched to the lower levels of the driver, the
39  * queue is locked, and no further I/Os are dispatched until the queue
40  * receives & completes a corresponding "unlocking operation".  This
41  * code relies on the higher layers to guarantee that a locking op
42  * will always be eventually followed by an unlocking op.  The model
43  * is that the higher layers are structured so locking and unlocking
44  * ops occur in pairs, i.e.  an unlocking op cannot be generated until
45  * after a locking op reports completion.  There is no good way to
46  * check to see that an unlocking op "corresponds" to the op that
47  * currently has the queue locked, so we make no such attempt.  Since
48  * by definition there can be only one locking op outstanding on a
49  * disk, this should not be a problem.
50  *
51  * In the kernel, we allow multiple I/Os to be concurrently dispatched
52  * to the disk driver.  In order to support locking ops in this
53  * environment, when we decide to do a locking op, we stop dispatching
54  * new I/Os and wait until all dispatched I/Os have completed before
55  * dispatching the locking op.
56  *
57  * Unfortunately, the code is different in the 3 different operating
58  * states (user level, kernel, simulator).  In the kernel, I/O is
59  * non-blocking, and we have no disk threads to dispatch for us.
60  * Therefore, we have to dispatch new I/Os to the scsi driver at the
61  * time of enqueue, and also at the time of completion.  At user
62  * level, I/O is blocking, and so only the disk threads may dispatch
63  * I/Os.  Thus at user level, all we can do at enqueue time is enqueue
64  * and wake up the disk thread to do the dispatch.
65  *
66  ****************************************************************************/
67 
68 #include "rf_types.h"
69 #include "rf_threadstuff.h"
70 #include "rf_raid.h"
71 #include "rf_diskqueue.h"
72 #include "rf_alloclist.h"
73 #include "rf_acctrace.h"
74 #include "rf_etimer.h"
75 #include "rf_configure.h"
76 #include "rf_general.h"
77 #include "rf_freelist.h"
78 #include "rf_debugprint.h"
79 #include "rf_shutdown.h"
80 #include "rf_cvscan.h"
81 #include "rf_sstf.h"
82 #include "rf_fifo.h"
83 #include "rf_kintf.h"
84 
85 static int init_dqd(RF_DiskQueueData_t *);
86 static void clean_dqd(RF_DiskQueueData_t *);
87 static void rf_ShutdownDiskQueueSystem(void *);
88 
89 #define Dprintf1(s,a)         if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
90 #define Dprintf2(s,a,b)       if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
91 #define Dprintf3(s,a,b,c)     if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
92 
93 /*****************************************************************************
94  *
95  * the disk queue switch defines all the functions used in the
96  * different queueing disciplines queue ID, init routine, enqueue
97  * routine, dequeue routine
98  *
99  ****************************************************************************/
100 
101 static RF_DiskQueueSW_t diskqueuesw[] = {
102 	{"fifo",		/* FIFO */
103 		rf_FifoCreate,
104 		rf_FifoEnqueue,
105 		rf_FifoDequeue,
106 		rf_FifoPeek,
107 	rf_FifoPromote},
108 
109 	{"cvscan",		/* cvscan */
110 		rf_CvscanCreate,
111 		rf_CvscanEnqueue,
112 		rf_CvscanDequeue,
113 		rf_CvscanPeek,
114 	rf_CvscanPromote},
115 
116 	{"sstf",		/* shortest seek time first */
117 		rf_SstfCreate,
118 		rf_SstfEnqueue,
119 		rf_SstfDequeue,
120 		rf_SstfPeek,
121 	rf_SstfPromote},
122 
123 	{"scan",		/* SCAN (two-way elevator) */
124 		rf_ScanCreate,
125 		rf_SstfEnqueue,
126 		rf_ScanDequeue,
127 		rf_ScanPeek,
128 	rf_SstfPromote},
129 
130 	{"cscan",		/* CSCAN (one-way elevator) */
131 		rf_CscanCreate,
132 		rf_SstfEnqueue,
133 		rf_CscanDequeue,
134 		rf_CscanPeek,
135 	rf_SstfPromote},
136 
137 };
138 #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
139 
140 static RF_FreeList_t *rf_dqd_freelist;
141 
142 #define RF_MAX_FREE_DQD 256
143 #define RF_DQD_INC       16
144 #define RF_DQD_INITIAL   64
145 
146 #include <sys/buf.h>
147 
148 static int
149 init_dqd(dqd)
150 	RF_DiskQueueData_t *dqd;
151 {
152 
153 	dqd->bp = (struct buf *) malloc(sizeof(struct buf),
154 					M_RAIDFRAME, M_NOWAIT);
155 	if (dqd->bp == NULL) {
156 		return (ENOMEM);
157 	}
158 	memset(dqd->bp, 0, sizeof(struct buf));	/* if you don't do it, nobody
159 						 * else will.. */
160 	return (0);
161 }
162 
163 static void
164 clean_dqd(dqd)
165 	RF_DiskQueueData_t *dqd;
166 {
167 	free(dqd->bp, M_RAIDFRAME);
168 }
169 /* configures a single disk queue */
170 
171 int
172 rf_ConfigureDiskQueue(
173       RF_Raid_t * raidPtr,
174       RF_DiskQueue_t * diskqueue,
175       RF_RowCol_t r,		/* row & col -- debug only.  BZZT not any
176 				 * more... */
177       RF_RowCol_t c,
178       RF_DiskQueueSW_t * p,
179       RF_SectorCount_t sectPerDisk,
180       dev_t dev,
181       int maxOutstanding,
182       RF_ShutdownList_t ** listp,
183       RF_AllocListElem_t * clList)
184 {
185 	int     rc;
186 
187 	diskqueue->row = r;
188 	diskqueue->col = c;
189 	diskqueue->qPtr = p;
190 	diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
191 	diskqueue->dev = dev;
192 	diskqueue->numOutstanding = 0;
193 	diskqueue->queueLength = 0;
194 	diskqueue->maxOutstanding = maxOutstanding;
195 	diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
196 	diskqueue->nextLockingOp = NULL;
197 	diskqueue->unlockingOp = NULL;
198 	diskqueue->numWaiting = 0;
199 	diskqueue->flags = 0;
200 	diskqueue->raidPtr = raidPtr;
201 	diskqueue->rf_cinfo = &raidPtr->raid_cinfo[r][c];
202 	rc = rf_create_managed_mutex(listp, &diskqueue->mutex);
203 	if (rc) {
204 		RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
205 		    __LINE__, rc);
206 		return (rc);
207 	}
208 	rc = rf_create_managed_cond(listp, &diskqueue->cond);
209 	if (rc) {
210 		RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__,
211 		    __LINE__, rc);
212 		return (rc);
213 	}
214 	return (0);
215 }
216 
217 static void
218 rf_ShutdownDiskQueueSystem(ignored)
219 	void   *ignored;
220 {
221 	RF_FREELIST_DESTROY_CLEAN(rf_dqd_freelist, next, (RF_DiskQueueData_t *), clean_dqd);
222 }
223 
224 int
225 rf_ConfigureDiskQueueSystem(listp)
226 	RF_ShutdownList_t **listp;
227 {
228 	int     rc;
229 
230 	RF_FREELIST_CREATE(rf_dqd_freelist, RF_MAX_FREE_DQD,
231 	    RF_DQD_INC, sizeof(RF_DiskQueueData_t));
232 	if (rf_dqd_freelist == NULL)
233 		return (ENOMEM);
234 	rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
235 	if (rc) {
236 		RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
237 		    __FILE__, __LINE__, rc);
238 		rf_ShutdownDiskQueueSystem(NULL);
239 		return (rc);
240 	}
241 	RF_FREELIST_PRIME_INIT(rf_dqd_freelist, RF_DQD_INITIAL, next,
242 	    (RF_DiskQueueData_t *), init_dqd);
243 	return (0);
244 }
245 
246 int
247 rf_ConfigureDiskQueues(
248     RF_ShutdownList_t ** listp,
249     RF_Raid_t * raidPtr,
250     RF_Config_t * cfgPtr)
251 {
252 	RF_DiskQueue_t **diskQueues, *spareQueues;
253 	RF_DiskQueueSW_t *p;
254 	RF_RowCol_t r, c;
255 	int     rc, i;
256 
257 	raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
258 
259 	for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
260 		if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
261 			p = &diskqueuesw[i];
262 			break;
263 		}
264 	}
265 	if (p == NULL) {
266 		RF_ERRORMSG2("Unknown queue type \"%s\".  Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
267 		p = &diskqueuesw[0];
268 	}
269 	raidPtr->qType = p;
270 	RF_CallocAndAdd(diskQueues, raidPtr->numRow, sizeof(RF_DiskQueue_t *), (RF_DiskQueue_t **), raidPtr->cleanupList);
271 	if (diskQueues == NULL) {
272 		return (ENOMEM);
273 	}
274 	raidPtr->Queues = diskQueues;
275 	for (r = 0; r < raidPtr->numRow; r++) {
276 		RF_CallocAndAdd(diskQueues[r], raidPtr->numCol +
277 				 ((r == 0) ? RF_MAXSPARE : 0),
278 				sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
279 				raidPtr->cleanupList);
280 		if (diskQueues[r] == NULL)
281 			return (ENOMEM);
282 		for (c = 0; c < raidPtr->numCol; c++) {
283 			rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[r][c],
284 						   r, c, p,
285 						   raidPtr->sectorsPerDisk,
286 						   raidPtr->Disks[r][c].dev,
287 						   cfgPtr->maxOutstandingDiskReqs,
288 						   listp, raidPtr->cleanupList);
289 			if (rc)
290 				return (rc);
291 		}
292 	}
293 
294 	spareQueues = &raidPtr->Queues[0][raidPtr->numCol];
295 	for (r = 0; r < raidPtr->numSpare; r++) {
296 		rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
297 		    0, raidPtr->numCol + r, p,
298 		    raidPtr->sectorsPerDisk,
299 		    raidPtr->Disks[0][raidPtr->numCol + r].dev,
300 		    cfgPtr->maxOutstandingDiskReqs, listp,
301 		    raidPtr->cleanupList);
302 		if (rc)
303 			return (rc);
304 	}
305 	return (0);
306 }
307 /* Enqueue a disk I/O
308  *
309  * Unfortunately, we have to do things differently in the different
310  * environments (simulator, user-level, kernel).
311  * At user level, all I/O is blocking, so we have 1 or more threads/disk
312  * and the thread that enqueues is different from the thread that dequeues.
313  * In the kernel, I/O is non-blocking and so we'd like to have multiple
314  * I/Os outstanding on the physical disks when possible.
315  *
316  * when any request arrives at a queue, we have two choices:
317  *    dispatch it to the lower levels
318  *    queue it up
319  *
320  * kernel rules for when to do what:
321  *    locking request:  queue empty => dispatch and lock queue,
322  *                      else queue it
323  *    unlocking req  :  always dispatch it
324  *    normal req     :  queue empty => dispatch it & set priority
325  *                      queue not full & priority is ok => dispatch it
326  *                      else queue it
327  *
328  * user-level rules:
329  *    always enqueue.  In the special case of an unlocking op, enqueue
330  *    in a special way that will cause the unlocking op to be the next
331  *    thing dequeued.
332  *
333  * simulator rules:
334  *    Do the same as at user level, with the sleeps and wakeups suppressed.
335  */
336 void
337 rf_DiskIOEnqueue(queue, req, pri)
338 	RF_DiskQueue_t *queue;
339 	RF_DiskQueueData_t *req;
340 	int     pri;
341 {
342 	RF_ETIMER_START(req->qtime);
343 	RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
344 	req->priority = pri;
345 
346 	if (rf_queueDebug && (req->numSector == 0)) {
347 		printf("Warning: Enqueueing zero-sector access\n");
348 	}
349 	/*
350          * kernel
351          */
352 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
353 	/* locking request */
354 	if (RF_LOCKING_REQ(req)) {
355 		if (RF_QUEUE_EMPTY(queue)) {
356 			Dprintf3("Dispatching pri %d locking op to r %d c %d (queue empty)\n", pri, queue->row, queue->col);
357 			RF_LOCK_QUEUE(queue);
358 			rf_DispatchKernelIO(queue, req);
359 		} else {
360 			queue->queueLength++;	/* increment count of number
361 						 * of requests waiting in this
362 						 * queue */
363 			Dprintf3("Enqueueing pri %d locking op to r %d c %d (queue not empty)\n", pri, queue->row, queue->col);
364 			req->queue = (void *) queue;
365 			(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
366 		}
367 	}
368 	/* unlocking request */
369 	else
370 		if (RF_UNLOCKING_REQ(req)) {	/* we'll do the actual unlock
371 						 * when this I/O completes */
372 			Dprintf3("Dispatching pri %d unlocking op to r %d c %d\n", pri, queue->row, queue->col);
373 			RF_ASSERT(RF_QUEUE_LOCKED(queue));
374 			rf_DispatchKernelIO(queue, req);
375 		}
376 	/* normal request */
377 		else
378 			if (RF_OK_TO_DISPATCH(queue, req)) {
379 				Dprintf3("Dispatching pri %d regular op to r %d c %d (ok to dispatch)\n", pri, queue->row, queue->col);
380 				rf_DispatchKernelIO(queue, req);
381 			} else {
382 				queue->queueLength++;	/* increment count of
383 							 * number of requests
384 							 * waiting in this queue */
385 				Dprintf3("Enqueueing pri %d regular op to r %d c %d (not ok to dispatch)\n", pri, queue->row, queue->col);
386 				req->queue = (void *) queue;
387 				(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
388 			}
389 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
390 }
391 
392 
393 /* get the next set of I/Os started, kernel version only */
394 void
395 rf_DiskIOComplete(queue, req, status)
396 	RF_DiskQueue_t *queue;
397 	RF_DiskQueueData_t *req;
398 	int     status;
399 {
400 	int     done = 0;
401 
402 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
403 
404 	/* unlock the queue: (1) after an unlocking req completes (2) after a
405 	 * locking req fails */
406 	if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
407 		Dprintf2("DiskIOComplete: unlocking queue at r %d c %d\n", queue->row, queue->col);
408 		RF_ASSERT(RF_QUEUE_LOCKED(queue) && (queue->unlockingOp == NULL));
409 		RF_UNLOCK_QUEUE(queue);
410 	}
411 	queue->numOutstanding--;
412 	RF_ASSERT(queue->numOutstanding >= 0);
413 
414 	/* dispatch requests to the disk until we find one that we can't. */
415 	/* no reason to continue once we've filled up the queue */
416 	/* no reason to even start if the queue is locked */
417 
418 	while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
419 		if (queue->nextLockingOp) {
420 			req = queue->nextLockingOp;
421 			queue->nextLockingOp = NULL;
422 			Dprintf3("DiskIOComplete: a pri %d locking req was pending at r %d c %d\n", req->priority, queue->row, queue->col);
423 		} else {
424 			req = (queue->qPtr->Dequeue) (queue->qHdr);
425 			if (req != NULL) {
426 				Dprintf3("DiskIOComplete: extracting pri %d req from queue at r %d c %d\n", req->priority, queue->row, queue->col);
427 			} else {
428 				Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
429 			}
430 		}
431 		if (req) {
432 			queue->queueLength--;	/* decrement count of number
433 						 * of requests waiting in this
434 						 * queue */
435 			RF_ASSERT(queue->queueLength >= 0);
436 		}
437 		if (!req)
438 			done = 1;
439 		else
440 			if (RF_LOCKING_REQ(req)) {
441 				if (RF_QUEUE_EMPTY(queue)) {	/* dispatch it */
442 					Dprintf3("DiskIOComplete: dispatching pri %d locking req to r %d c %d (queue empty)\n", req->priority, queue->row, queue->col);
443 					RF_LOCK_QUEUE(queue);
444 					rf_DispatchKernelIO(queue, req);
445 					done = 1;
446 				} else {	/* put it aside to wait for
447 						 * the queue to drain */
448 					Dprintf3("DiskIOComplete: postponing pri %d locking req to r %d c %d\n", req->priority, queue->row, queue->col);
449 					RF_ASSERT(queue->nextLockingOp == NULL);
450 					queue->nextLockingOp = req;
451 					done = 1;
452 				}
453 			} else
454 				if (RF_UNLOCKING_REQ(req)) {	/* should not happen:
455 								 * unlocking ops should
456 								 * not get queued */
457 					RF_ASSERT(RF_QUEUE_LOCKED(queue));	/* support it anyway for
458 										 * the future */
459 					Dprintf3("DiskIOComplete: dispatching pri %d unl req to r %d c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->row, queue->col);
460 					rf_DispatchKernelIO(queue, req);
461 					done = 1;
462 				} else
463 					if (RF_OK_TO_DISPATCH(queue, req)) {
464 						Dprintf3("DiskIOComplete: dispatching pri %d regular req to r %d c %d (ok to dispatch)\n", req->priority, queue->row, queue->col);
465 						rf_DispatchKernelIO(queue, req);
466 					} else {	/* we can't dispatch it,
467 							 * so just re-enqueue
468 							 * it.  */
469 						/* potential trouble here if
470 						 * disk queues batch reqs */
471 						Dprintf3("DiskIOComplete: re-enqueueing pri %d regular req to r %d c %d\n", req->priority, queue->row, queue->col);
472 						queue->queueLength++;
473 						(queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
474 						done = 1;
475 					}
476 	}
477 
478 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
479 }
480 /* promotes accesses tagged with the given parityStripeID from low priority
481  * to normal priority.  This promotion is optional, meaning that a queue
482  * need not implement it.  If there is no promotion routine associated with
483  * a queue, this routine does nothing and returns -1.
484  */
485 int
486 rf_DiskIOPromote(queue, parityStripeID, which_ru)
487 	RF_DiskQueue_t *queue;
488 	RF_StripeNum_t parityStripeID;
489 	RF_ReconUnitNum_t which_ru;
490 {
491 	int     retval;
492 
493 	if (!queue->qPtr->Promote)
494 		return (-1);
495 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
496 	retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
497 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
498 	return (retval);
499 }
500 
501 RF_DiskQueueData_t *
502 rf_CreateDiskQueueData(
503     RF_IoType_t typ,
504     RF_SectorNum_t ssect,
505     RF_SectorCount_t nsect,
506     caddr_t buf,
507     RF_StripeNum_t parityStripeID,
508     RF_ReconUnitNum_t which_ru,
509     int (*wakeF) (void *, int),
510     void *arg,
511     RF_DiskQueueData_t * next,
512     RF_AccTraceEntry_t * tracerec,
513     void *raidPtr,
514     RF_DiskQueueDataFlags_t flags,
515     void *kb_proc)
516 {
517 	RF_DiskQueueData_t *p;
518 
519 	RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
520 
521 	p->sectorOffset = ssect + rf_protectedSectors;
522 	p->numSector = nsect;
523 	p->type = typ;
524 	p->buf = buf;
525 	p->parityStripeID = parityStripeID;
526 	p->which_ru = which_ru;
527 	p->CompleteFunc = wakeF;
528 	p->argument = arg;
529 	p->next = next;
530 	p->tracerec = tracerec;
531 	p->priority = RF_IO_NORMAL_PRIORITY;
532 	p->AuxFunc = NULL;
533 	p->buf2 = NULL;
534 	p->raidPtr = raidPtr;
535 	p->flags = flags;
536 	p->b_proc = kb_proc;
537 	return (p);
538 }
539 
540 RF_DiskQueueData_t *
541 rf_CreateDiskQueueDataFull(
542     RF_IoType_t typ,
543     RF_SectorNum_t ssect,
544     RF_SectorCount_t nsect,
545     caddr_t buf,
546     RF_StripeNum_t parityStripeID,
547     RF_ReconUnitNum_t which_ru,
548     int (*wakeF) (void *, int),
549     void *arg,
550     RF_DiskQueueData_t * next,
551     RF_AccTraceEntry_t * tracerec,
552     int priority,
553     int (*AuxFunc) (void *,...),
554     caddr_t buf2,
555     void *raidPtr,
556     RF_DiskQueueDataFlags_t flags,
557     void *kb_proc)
558 {
559 	RF_DiskQueueData_t *p;
560 
561 	RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
562 
563 	p->sectorOffset = ssect + rf_protectedSectors;
564 	p->numSector = nsect;
565 	p->type = typ;
566 	p->buf = buf;
567 	p->parityStripeID = parityStripeID;
568 	p->which_ru = which_ru;
569 	p->CompleteFunc = wakeF;
570 	p->argument = arg;
571 	p->next = next;
572 	p->tracerec = tracerec;
573 	p->priority = priority;
574 	p->AuxFunc = AuxFunc;
575 	p->buf2 = buf2;
576 	p->raidPtr = raidPtr;
577 	p->flags = flags;
578 	p->b_proc = kb_proc;
579 	return (p);
580 }
581 
582 void
583 rf_FreeDiskQueueData(p)
584 	RF_DiskQueueData_t *p;
585 {
586 	RF_FREELIST_FREE_CLEAN(rf_dqd_freelist, p, next, clean_dqd);
587 }
588