xref: /netbsd-src/sys/dev/raidframe/rf_dagutils.c (revision aaf4ece63a859a04e37cf3a7229b5fab0157cc06)
1 /*	$NetBSD: rf_dagutils.c,v 1.48 2006/01/09 01:33:27 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /******************************************************************************
30  *
31  * rf_dagutils.c -- utility routines for manipulating dags
32  *
33  *****************************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.48 2006/01/09 01:33:27 oster Exp $");
37 
38 #include <dev/raidframe/raidframevar.h>
39 
40 #include "rf_archs.h"
41 #include "rf_threadstuff.h"
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_general.h"
47 #include "rf_map.h"
48 #include "rf_shutdown.h"
49 
50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
51 
52 const RF_RedFuncs_t rf_xorFuncs = {
53 	rf_RegularXorFunc, "Reg Xr",
54 	rf_SimpleXorFunc, "Simple Xr"};
55 
56 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
57 	rf_RecoveryXorFunc, "Recovery Xr",
58 	rf_RecoveryXorFunc, "Recovery Xr"};
59 
60 #if RF_DEBUG_VALIDATE_DAG
61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 static void rf_PrintDAG(RF_DagHeader_t *);
63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
64 			     RF_DagNode_t **, int);
65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
67 #endif /* RF_DEBUG_VALIDATE_DAG */
68 
69 /* The maximum number of nodes in a DAG is bounded by
70 
71 (2 * raidPtr->Layout->numDataCol) + (1 * layoutPtr->numParityCol) +
72 	(1 * 2 * layoutPtr->numParityCol) + 3
73 
74 which is:  2*RF_MAXCOL+1*2+1*2*2+3
75 
76 For RF_MAXCOL of 40, this works out to 89.  We use this value to provide an estimate
77 on the maximum size needed for RF_DAGPCACHE_SIZE.  For RF_MAXCOL of 40, this structure
78 would be 534 bytes.  Too much to have on-hand in a RF_DagNode_t, but should be ok to
79 have a few kicking around.
80 */
81 #define RF_DAGPCACHE_SIZE ((2*RF_MAXCOL+1*2+1*2*2+3) *(RF_MAX(sizeof(RF_DagParam_t), sizeof(RF_DagNode_t *))))
82 
83 
84 /******************************************************************************
85  *
86  * InitNode - initialize a dag node
87  *
88  * the size of the propList array is always the same as that of the
89  * successors array.
90  *
91  *****************************************************************************/
92 void
93 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
94     int (*doFunc) (RF_DagNode_t *node),
95     int (*undoFunc) (RF_DagNode_t *node),
96     int (*wakeFunc) (RF_DagNode_t *node, int status),
97     int nSucc, int nAnte, int nParam, int nResult,
98     RF_DagHeader_t *hdr, const char *name, RF_AllocListElem_t *alist)
99 {
100 	void  **ptrs;
101 	int     nptrs;
102 
103 	if (nAnte > RF_MAX_ANTECEDENTS)
104 		RF_PANIC();
105 	node->status = initstatus;
106 	node->commitNode = commit;
107 	node->doFunc = doFunc;
108 	node->undoFunc = undoFunc;
109 	node->wakeFunc = wakeFunc;
110 	node->numParams = nParam;
111 	node->numResults = nResult;
112 	node->numAntecedents = nAnte;
113 	node->numAntDone = 0;
114 	node->next = NULL;
115 	/* node->list_next = NULL */  /* Don't touch this here!
116 	                                 It may already be
117 					 in use by the caller! */
118 	node->numSuccedents = nSucc;
119 	node->name = name;
120 	node->dagHdr = hdr;
121 	node->big_dag_ptrs = NULL;
122 	node->big_dag_params = NULL;
123 	node->visited = 0;
124 
125 	/* allocate all the pointers with one call to malloc */
126 	nptrs = nSucc + nAnte + nResult + nSucc;
127 
128 	if (nptrs <= RF_DAG_PTRCACHESIZE) {
129 		/*
130 	         * The dag_ptrs field of the node is basically some scribble
131 	         * space to be used here. We could get rid of it, and always
132 	         * allocate the range of pointers, but that's expensive. So,
133 	         * we pick a "common case" size for the pointer cache. Hopefully,
134 	         * we'll find that:
135 	         * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
136 	         *     only a little bit (least efficient case)
137 	         * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
138 	         *     (wasted memory)
139 	         */
140 		ptrs = (void **) node->dag_ptrs;
141 	} else if (nptrs <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagNode_t *))) {
142 		node->big_dag_ptrs = rf_AllocDAGPCache();
143 		ptrs = (void **) node->big_dag_ptrs;
144 	} else {
145 		RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
146 				(void **), alist);
147 	}
148 	node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
149 	node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
150 	node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
151 	node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
152 
153 	if (nParam) {
154 		if (nParam <= RF_DAG_PARAMCACHESIZE) {
155 			node->params = (RF_DagParam_t *) node->dag_params;
156 		} else if (nParam <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagParam_t))) {
157 			node->big_dag_params = rf_AllocDAGPCache();
158 			node->params = node->big_dag_params;
159 		} else {
160 			RF_MallocAndAdd(node->params,
161 					nParam * sizeof(RF_DagParam_t),
162 					(RF_DagParam_t *), alist);
163 		}
164 	} else {
165 		node->params = NULL;
166 	}
167 }
168 
169 
170 
171 /******************************************************************************
172  *
173  * allocation and deallocation routines
174  *
175  *****************************************************************************/
176 
177 void
178 rf_FreeDAG(RF_DagHeader_t *dag_h)
179 {
180 	RF_AccessStripeMapHeader_t *asmap, *t_asmap;
181 	RF_PhysDiskAddr_t *pda;
182 	RF_DagNode_t *tmpnode;
183 	RF_DagHeader_t *nextDag;
184 
185 	while (dag_h) {
186 		nextDag = dag_h->next;
187 		rf_FreeAllocList(dag_h->allocList);
188 		for (asmap = dag_h->asmList; asmap;) {
189 			t_asmap = asmap;
190 			asmap = asmap->next;
191 			rf_FreeAccessStripeMap(t_asmap);
192 		}
193 		while (dag_h->pda_cleanup_list) {
194 			pda = dag_h->pda_cleanup_list;
195 			dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next;
196 			rf_FreePhysDiskAddr(pda);
197 		}
198 		while (dag_h->nodes) {
199 			tmpnode = dag_h->nodes;
200 			dag_h->nodes = dag_h->nodes->list_next;
201 			rf_FreeDAGNode(tmpnode);
202 		}
203 		rf_FreeDAGHeader(dag_h);
204 		dag_h = nextDag;
205 	}
206 }
207 
208 #define RF_MAX_FREE_DAGH 128
209 #define RF_MIN_FREE_DAGH  32
210 
211 #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */
212 #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */
213 
214 #define RF_MAX_FREE_DAGLIST 128
215 #define RF_MIN_FREE_DAGLIST  32
216 
217 #define RF_MAX_FREE_DAGPCACHE 128
218 #define RF_MIN_FREE_DAGPCACHE   8
219 
220 #define RF_MAX_FREE_FUNCLIST 128
221 #define RF_MIN_FREE_FUNCLIST  32
222 
223 #define RF_MAX_FREE_BUFFERS 128
224 #define RF_MIN_FREE_BUFFERS  32
225 
226 static void rf_ShutdownDAGs(void *);
227 static void
228 rf_ShutdownDAGs(void *ignored)
229 {
230 	pool_destroy(&rf_pools.dagh);
231 	pool_destroy(&rf_pools.dagnode);
232 	pool_destroy(&rf_pools.daglist);
233 	pool_destroy(&rf_pools.dagpcache);
234 	pool_destroy(&rf_pools.funclist);
235 }
236 
237 int
238 rf_ConfigureDAGs(RF_ShutdownList_t **listp)
239 {
240 
241 	rf_pool_init(&rf_pools.dagnode, sizeof(RF_DagNode_t),
242 		     "rf_dagnode_pl", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE);
243 	rf_pool_init(&rf_pools.dagh, sizeof(RF_DagHeader_t),
244 		     "rf_dagh_pl", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH);
245 	rf_pool_init(&rf_pools.daglist, sizeof(RF_DagList_t),
246 		     "rf_daglist_pl", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST);
247 	rf_pool_init(&rf_pools.dagpcache, RF_DAGPCACHE_SIZE,
248 		     "rf_dagpcache_pl", RF_MIN_FREE_DAGPCACHE, RF_MAX_FREE_DAGPCACHE);
249 	rf_pool_init(&rf_pools.funclist, sizeof(RF_FuncList_t),
250 		     "rf_funclist_pl", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST);
251 	rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
252 
253 	return (0);
254 }
255 
256 RF_DagHeader_t *
257 rf_AllocDAGHeader()
258 {
259 	RF_DagHeader_t *dh;
260 
261 	dh = pool_get(&rf_pools.dagh, PR_WAITOK);
262 	memset((char *) dh, 0, sizeof(RF_DagHeader_t));
263 	return (dh);
264 }
265 
266 void
267 rf_FreeDAGHeader(RF_DagHeader_t * dh)
268 {
269 	pool_put(&rf_pools.dagh, dh);
270 }
271 
272 RF_DagNode_t *
273 rf_AllocDAGNode()
274 {
275 	RF_DagNode_t *node;
276 
277 	node = pool_get(&rf_pools.dagnode, PR_WAITOK);
278 	memset(node, 0, sizeof(RF_DagNode_t));
279 	return (node);
280 }
281 
282 void
283 rf_FreeDAGNode(RF_DagNode_t *node)
284 {
285 	if (node->big_dag_ptrs) {
286 		rf_FreeDAGPCache(node->big_dag_ptrs);
287 	}
288 	if (node->big_dag_params) {
289 		rf_FreeDAGPCache(node->big_dag_params);
290 	}
291 	pool_put(&rf_pools.dagnode, node);
292 }
293 
294 RF_DagList_t *
295 rf_AllocDAGList()
296 {
297 	RF_DagList_t *dagList;
298 
299 	dagList = pool_get(&rf_pools.daglist, PR_WAITOK);
300 	memset(dagList, 0, sizeof(RF_DagList_t));
301 
302 	return (dagList);
303 }
304 
305 void
306 rf_FreeDAGList(RF_DagList_t *dagList)
307 {
308 	pool_put(&rf_pools.daglist, dagList);
309 }
310 
311 void *
312 rf_AllocDAGPCache()
313 {
314 	void *p;
315 	p = pool_get(&rf_pools.dagpcache, PR_WAITOK);
316 	memset(p, 0, RF_DAGPCACHE_SIZE);
317 
318 	return (p);
319 }
320 
321 void
322 rf_FreeDAGPCache(void *p)
323 {
324 	pool_put(&rf_pools.dagpcache, p);
325 }
326 
327 RF_FuncList_t *
328 rf_AllocFuncList()
329 {
330 	RF_FuncList_t *funcList;
331 
332 	funcList = pool_get(&rf_pools.funclist, PR_WAITOK);
333 	memset(funcList, 0, sizeof(RF_FuncList_t));
334 
335 	return (funcList);
336 }
337 
338 void
339 rf_FreeFuncList(RF_FuncList_t *funcList)
340 {
341 	pool_put(&rf_pools.funclist, funcList);
342 }
343 
344 /* allocates a stripe buffer -- a buffer large enough to hold all the data
345    in an entire stripe.
346 */
347 
348 void *
349 rf_AllocStripeBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size)
350 {
351 	RF_VoidPointerListElem_t *vple;
352 	void *p;
353 
354 	RF_ASSERT((size <= (raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
355 					       raidPtr->logBytesPerSector))));
356 
357 	p =  malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
358 					raidPtr->logBytesPerSector),
359 		     M_RAIDFRAME, M_NOWAIT);
360 	if (!p) {
361 		RF_LOCK_MUTEX(raidPtr->mutex);
362 		if (raidPtr->stripebuf_count > 0) {
363 			vple = raidPtr->stripebuf;
364 			raidPtr->stripebuf = vple->next;
365 			p = vple->p;
366 			rf_FreeVPListElem(vple);
367 			raidPtr->stripebuf_count--;
368 		} else {
369 #ifdef DIAGNOSTIC
370 			printf("raid%d: Help!  Out of emergency full-stripe buffers!\n", raidPtr->raidid);
371 #endif
372 		}
373 		RF_UNLOCK_MUTEX(raidPtr->mutex);
374 		if (!p) {
375 			/* We didn't get a buffer... not much we can do other than wait,
376 			   and hope that someone frees up memory for us.. */
377 			p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
378 						       raidPtr->logBytesPerSector), M_RAIDFRAME, M_WAITOK);
379 		}
380 	}
381 	memset(p, 0, raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector));
382 
383 	vple = rf_AllocVPListElem();
384 	vple->p = p;
385         vple->next = dag_h->desc->stripebufs;
386         dag_h->desc->stripebufs = vple;
387 
388 	return (p);
389 }
390 
391 
392 void
393 rf_FreeStripeBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
394 {
395 	RF_LOCK_MUTEX(raidPtr->mutex);
396 	if (raidPtr->stripebuf_count < raidPtr->numEmergencyStripeBuffers) {
397 		/* just tack it in */
398 		vple->next = raidPtr->stripebuf;
399 		raidPtr->stripebuf = vple;
400 		raidPtr->stripebuf_count++;
401 	} else {
402 		free(vple->p, M_RAIDFRAME);
403 		rf_FreeVPListElem(vple);
404 	}
405 	RF_UNLOCK_MUTEX(raidPtr->mutex);
406 }
407 
408 /* allocates a buffer big enough to hold the data described by the
409 caller (ie. the data of the associated PDA).  Glue this buffer
410 into our dag_h cleanup structure. */
411 
412 void *
413 rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size)
414 {
415 	RF_VoidPointerListElem_t *vple;
416 	void *p;
417 
418 	p = rf_AllocIOBuffer(raidPtr, size);
419 	vple = rf_AllocVPListElem();
420 	vple->p = p;
421 	vple->next = dag_h->desc->iobufs;
422 	dag_h->desc->iobufs = vple;
423 
424 	return (p);
425 }
426 
427 void *
428 rf_AllocIOBuffer(RF_Raid_t *raidPtr, int size)
429 {
430 	RF_VoidPointerListElem_t *vple;
431 	void *p;
432 
433 	RF_ASSERT((size <= (raidPtr->Layout.sectorsPerStripeUnit <<
434 			   raidPtr->logBytesPerSector)));
435 
436 	p =  malloc( raidPtr->Layout.sectorsPerStripeUnit <<
437 				 raidPtr->logBytesPerSector,
438 				 M_RAIDFRAME, M_NOWAIT);
439 	if (!p) {
440 		RF_LOCK_MUTEX(raidPtr->mutex);
441 		if (raidPtr->iobuf_count > 0) {
442 			vple = raidPtr->iobuf;
443 			raidPtr->iobuf = vple->next;
444 			p = vple->p;
445 			rf_FreeVPListElem(vple);
446 			raidPtr->iobuf_count--;
447 		} else {
448 #ifdef DIAGNOSTIC
449 			printf("raid%d: Help!  Out of emergency buffers!\n", raidPtr->raidid);
450 #endif
451 		}
452 		RF_UNLOCK_MUTEX(raidPtr->mutex);
453 		if (!p) {
454 			/* We didn't get a buffer... not much we can do other than wait,
455 			   and hope that someone frees up memory for us.. */
456 			p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
457 				    raidPtr->logBytesPerSector,
458 				    M_RAIDFRAME, M_WAITOK);
459 		}
460 	}
461 	memset(p, 0, raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector);
462 	return (p);
463 }
464 
465 void
466 rf_FreeIOBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
467 {
468 	RF_LOCK_MUTEX(raidPtr->mutex);
469 	if (raidPtr->iobuf_count < raidPtr->numEmergencyBuffers) {
470 		/* just tack it in */
471 		vple->next = raidPtr->iobuf;
472 		raidPtr->iobuf = vple;
473 		raidPtr->iobuf_count++;
474 	} else {
475 		free(vple->p, M_RAIDFRAME);
476 		rf_FreeVPListElem(vple);
477 	}
478 	RF_UNLOCK_MUTEX(raidPtr->mutex);
479 }
480 
481 
482 
483 #if RF_DEBUG_VALIDATE_DAG
484 /******************************************************************************
485  *
486  * debug routines
487  *
488  *****************************************************************************/
489 
490 char   *
491 rf_NodeStatusString(RF_DagNode_t *node)
492 {
493 	switch (node->status) {
494 	case rf_wait:
495 		return ("wait");
496 	case rf_fired:
497 		return ("fired");
498 	case rf_good:
499 		return ("good");
500 	case rf_bad:
501 		return ("bad");
502 	default:
503 		return ("?");
504 	}
505 }
506 
507 void
508 rf_PrintNodeInfoString(RF_DagNode_t *node)
509 {
510 	RF_PhysDiskAddr_t *pda;
511 	int     (*df) (RF_DagNode_t *) = node->doFunc;
512 	int     i, lk, unlk;
513 	void   *bufPtr;
514 
515 	if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
516 	    || (df == rf_DiskReadMirrorIdleFunc)
517 	    || (df == rf_DiskReadMirrorPartitionFunc)) {
518 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
519 		bufPtr = (void *) node->params[1].p;
520 		lk = 0;
521 		unlk = 0;
522 		RF_ASSERT(!(lk && unlk));
523 		printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
524 		    (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
525 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
526 		return;
527 	}
528 	if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
529 	    || (df == rf_RecoveryXorFunc)) {
530 		printf("result buf 0x%lx\n", (long) node->results[0]);
531 		for (i = 0; i < node->numParams - 1; i += 2) {
532 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
533 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
534 			printf("    buf 0x%lx c%d offs %ld nsect %d\n",
535 			    (long) bufPtr, pda->col,
536 			    (long) pda->startSector, (int) pda->numSector);
537 		}
538 		return;
539 	}
540 #if RF_INCLUDE_PARITYLOGGING > 0
541 	if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
542 		for (i = 0; i < node->numParams - 1; i += 2) {
543 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
544 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
545 			printf(" c%d offs %ld nsect %d buf 0x%lx\n",
546 			    pda->col, (long) pda->startSector,
547 			    (int) pda->numSector, (long) bufPtr);
548 		}
549 		return;
550 	}
551 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
552 
553 	if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
554 		printf("\n");
555 		return;
556 	}
557 	printf("?\n");
558 }
559 #ifdef DEBUG
560 static void
561 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
562 {
563 	char   *anttype;
564 	int     i;
565 
566 	node->visited = (unvisited) ? 0 : 1;
567 	printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
568 	    node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
569 	    node->numSuccedents, node->numSuccFired, node->numSuccDone,
570 	    node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
571 	for (i = 0; i < node->numSuccedents; i++) {
572 		printf("%d%s", node->succedents[i]->nodeNum,
573 		    ((i == node->numSuccedents - 1) ? "\0" : " "));
574 	}
575 	printf("} A{");
576 	for (i = 0; i < node->numAntecedents; i++) {
577 		switch (node->antType[i]) {
578 		case rf_trueData:
579 			anttype = "T";
580 			break;
581 		case rf_antiData:
582 			anttype = "A";
583 			break;
584 		case rf_outputData:
585 			anttype = "O";
586 			break;
587 		case rf_control:
588 			anttype = "C";
589 			break;
590 		default:
591 			anttype = "?";
592 			break;
593 		}
594 		printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
595 	}
596 	printf("}; ");
597 	rf_PrintNodeInfoString(node);
598 	for (i = 0; i < node->numSuccedents; i++) {
599 		if (node->succedents[i]->visited == unvisited)
600 			rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
601 	}
602 }
603 
604 static void
605 rf_PrintDAG(RF_DagHeader_t *dag_h)
606 {
607 	int     unvisited, i;
608 	char   *status;
609 
610 	/* set dag status */
611 	switch (dag_h->status) {
612 	case rf_enable:
613 		status = "enable";
614 		break;
615 	case rf_rollForward:
616 		status = "rollForward";
617 		break;
618 	case rf_rollBackward:
619 		status = "rollBackward";
620 		break;
621 	default:
622 		status = "illegal!";
623 		break;
624 	}
625 	/* find out if visited bits are currently set or clear */
626 	unvisited = dag_h->succedents[0]->visited;
627 
628 	printf("DAG type:  %s\n", dag_h->creator);
629 	printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)};  info\n");
630 	printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
631 	    status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
632 	for (i = 0; i < dag_h->numSuccedents; i++) {
633 		printf("%d%s", dag_h->succedents[i]->nodeNum,
634 		    ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
635 	}
636 	printf("};\n");
637 	for (i = 0; i < dag_h->numSuccedents; i++) {
638 		if (dag_h->succedents[i]->visited == unvisited)
639 			rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
640 	}
641 }
642 #endif
643 /* assigns node numbers */
644 int
645 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
646 {
647 	int     unvisited, i, nnum;
648 	RF_DagNode_t *node;
649 
650 	nnum = 0;
651 	unvisited = dag_h->succedents[0]->visited;
652 
653 	dag_h->nodeNum = nnum++;
654 	for (i = 0; i < dag_h->numSuccedents; i++) {
655 		node = dag_h->succedents[i];
656 		if (node->visited == unvisited) {
657 			nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
658 		}
659 	}
660 	return (nnum);
661 }
662 
663 int
664 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
665 {
666 	int     i;
667 
668 	node->visited = (unvisited) ? 0 : 1;
669 
670 	node->nodeNum = num++;
671 	for (i = 0; i < node->numSuccedents; i++) {
672 		if (node->succedents[i]->visited == unvisited) {
673 			num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
674 		}
675 	}
676 	return (num);
677 }
678 /* set the header pointers in each node to "newptr" */
679 void
680 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
681 {
682 	int     i;
683 	for (i = 0; i < dag_h->numSuccedents; i++)
684 		if (dag_h->succedents[i]->dagHdr != newptr)
685 			rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
686 }
687 
688 void
689 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
690 {
691 	int     i;
692 	node->dagHdr = newptr;
693 	for (i = 0; i < node->numSuccedents; i++)
694 		if (node->succedents[i]->dagHdr != newptr)
695 			rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
696 }
697 
698 
699 void
700 rf_PrintDAGList(RF_DagHeader_t * dag_h)
701 {
702 	int     i = 0;
703 
704 	for (; dag_h; dag_h = dag_h->next) {
705 		rf_AssignNodeNums(dag_h);
706 		printf("\n\nDAG %d IN LIST:\n", i++);
707 		rf_PrintDAG(dag_h);
708 	}
709 }
710 
711 static int
712 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
713 		  RF_DagNode_t **nodes, int unvisited)
714 {
715 	int     i, retcode = 0;
716 
717 	/* construct an array of node pointers indexed by node num */
718 	node->visited = (unvisited) ? 0 : 1;
719 	nodes[node->nodeNum] = node;
720 
721 	if (node->next != NULL) {
722 		printf("INVALID DAG: next pointer in node is not NULL\n");
723 		retcode = 1;
724 	}
725 	if (node->status != rf_wait) {
726 		printf("INVALID DAG: Node status is not wait\n");
727 		retcode = 1;
728 	}
729 	if (node->numAntDone != 0) {
730 		printf("INVALID DAG: numAntDone is not zero\n");
731 		retcode = 1;
732 	}
733 	if (node->doFunc == rf_TerminateFunc) {
734 		if (node->numSuccedents != 0) {
735 			printf("INVALID DAG: Terminator node has succedents\n");
736 			retcode = 1;
737 		}
738 	} else {
739 		if (node->numSuccedents == 0) {
740 			printf("INVALID DAG: Non-terminator node has no succedents\n");
741 			retcode = 1;
742 		}
743 	}
744 	for (i = 0; i < node->numSuccedents; i++) {
745 		if (!node->succedents[i]) {
746 			printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
747 			retcode = 1;
748 		}
749 		scount[node->succedents[i]->nodeNum]++;
750 	}
751 	for (i = 0; i < node->numAntecedents; i++) {
752 		if (!node->antecedents[i]) {
753 			printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
754 			retcode = 1;
755 		}
756 		acount[node->antecedents[i]->nodeNum]++;
757 	}
758 	for (i = 0; i < node->numSuccedents; i++) {
759 		if (node->succedents[i]->visited == unvisited) {
760 			if (rf_ValidateBranch(node->succedents[i], scount,
761 				acount, nodes, unvisited)) {
762 				retcode = 1;
763 			}
764 		}
765 	}
766 	return (retcode);
767 }
768 
769 static void
770 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
771 {
772 	int     i;
773 
774 	RF_ASSERT(node->visited == unvisited);
775 	for (i = 0; i < node->numSuccedents; i++) {
776 		if (node->succedents[i] == NULL) {
777 			printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
778 			RF_ASSERT(0);
779 		}
780 		rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
781 	}
782 }
783 /* NOTE:  never call this on a big dag, because it is exponential
784  * in execution time
785  */
786 static void
787 rf_ValidateVisitedBits(RF_DagHeader_t *dag)
788 {
789 	int     i, unvisited;
790 
791 	unvisited = dag->succedents[0]->visited;
792 
793 	for (i = 0; i < dag->numSuccedents; i++) {
794 		if (dag->succedents[i] == NULL) {
795 			printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
796 			RF_ASSERT(0);
797 		}
798 		rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
799 	}
800 }
801 /* validate a DAG.  _at entry_ verify that:
802  *   -- numNodesCompleted is zero
803  *   -- node queue is null
804  *   -- dag status is rf_enable
805  *   -- next pointer is null on every node
806  *   -- all nodes have status wait
807  *   -- numAntDone is zero in all nodes
808  *   -- terminator node has zero successors
809  *   -- no other node besides terminator has zero successors
810  *   -- no successor or antecedent pointer in a node is NULL
811  *   -- number of times that each node appears as a successor of another node
812  *      is equal to the antecedent count on that node
813  *   -- number of times that each node appears as an antecedent of another node
814  *      is equal to the succedent count on that node
815  *   -- what else?
816  */
817 int
818 rf_ValidateDAG(RF_DagHeader_t *dag_h)
819 {
820 	int     i, nodecount;
821 	int    *scount, *acount;/* per-node successor and antecedent counts */
822 	RF_DagNode_t **nodes;	/* array of ptrs to nodes in dag */
823 	int     retcode = 0;
824 	int     unvisited;
825 	int     commitNodeCount = 0;
826 
827 	if (rf_validateVisitedDebug)
828 		rf_ValidateVisitedBits(dag_h);
829 
830 	if (dag_h->numNodesCompleted != 0) {
831 		printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
832 		retcode = 1;
833 		goto validate_dag_bad;
834 	}
835 	if (dag_h->status != rf_enable) {
836 		printf("INVALID DAG: not enabled\n");
837 		retcode = 1;
838 		goto validate_dag_bad;
839 	}
840 	if (dag_h->numCommits != 0) {
841 		printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
842 		retcode = 1;
843 		goto validate_dag_bad;
844 	}
845 	if (dag_h->numSuccedents != 1) {
846 		/* currently, all dags must have only one succedent */
847 		printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
848 		retcode = 1;
849 		goto validate_dag_bad;
850 	}
851 	nodecount = rf_AssignNodeNums(dag_h);
852 
853 	unvisited = dag_h->succedents[0]->visited;
854 
855 	RF_Malloc(scount, nodecount * sizeof(int), (int *));
856 	RF_Malloc(acount, nodecount * sizeof(int), (int *));
857 	RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
858 		  (RF_DagNode_t **));
859 	for (i = 0; i < dag_h->numSuccedents; i++) {
860 		if ((dag_h->succedents[i]->visited == unvisited)
861 		    && rf_ValidateBranch(dag_h->succedents[i], scount,
862 			acount, nodes, unvisited)) {
863 			retcode = 1;
864 		}
865 	}
866 	/* start at 1 to skip the header node */
867 	for (i = 1; i < nodecount; i++) {
868 		if (nodes[i]->commitNode)
869 			commitNodeCount++;
870 		if (nodes[i]->doFunc == NULL) {
871 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
872 			retcode = 1;
873 			goto validate_dag_out;
874 		}
875 		if (nodes[i]->undoFunc == NULL) {
876 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
877 			retcode = 1;
878 			goto validate_dag_out;
879 		}
880 		if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
881 			printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
882 			    nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
883 			retcode = 1;
884 			goto validate_dag_out;
885 		}
886 		if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
887 			printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
888 			    nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
889 			retcode = 1;
890 			goto validate_dag_out;
891 		}
892 	}
893 
894 	if (dag_h->numCommitNodes != commitNodeCount) {
895 		printf("INVALID DAG: incorrect commit node count.  hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
896 		    dag_h->numCommitNodes, commitNodeCount);
897 		retcode = 1;
898 		goto validate_dag_out;
899 	}
900 validate_dag_out:
901 	RF_Free(scount, nodecount * sizeof(int));
902 	RF_Free(acount, nodecount * sizeof(int));
903 	RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
904 	if (retcode)
905 		rf_PrintDAGList(dag_h);
906 
907 	if (rf_validateVisitedDebug)
908 		rf_ValidateVisitedBits(dag_h);
909 
910 	return (retcode);
911 
912 validate_dag_bad:
913 	rf_PrintDAGList(dag_h);
914 	return (retcode);
915 }
916 
917 #endif /* RF_DEBUG_VALIDATE_DAG */
918 
919 /******************************************************************************
920  *
921  * misc construction routines
922  *
923  *****************************************************************************/
924 
925 void
926 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
927 {
928 	int     ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
929 	int     fcol = raidPtr->reconControl->fcol;
930 	int     scol = raidPtr->reconControl->spareCol;
931 	RF_PhysDiskAddr_t *pda;
932 
933 	RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
934 	for (pda = asmap->physInfo; pda; pda = pda->next) {
935 		if (pda->col == fcol) {
936 #if RF_DEBUG_DAG
937 			if (rf_dagDebug) {
938 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
939 					pda->startSector)) {
940 					RF_PANIC();
941 				}
942 			}
943 #endif
944 			/* printf("Remapped data for large write\n"); */
945 			if (ds) {
946 				raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
947 				    &pda->col, &pda->startSector, RF_REMAP);
948 			} else {
949 				pda->col = scol;
950 			}
951 		}
952 	}
953 	for (pda = asmap->parityInfo; pda; pda = pda->next) {
954 		if (pda->col == fcol) {
955 #if RF_DEBUG_DAG
956 			if (rf_dagDebug) {
957 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
958 					RF_PANIC();
959 				}
960 			}
961 #endif
962 		}
963 		if (ds) {
964 			(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
965 		} else {
966 			pda->col = scol;
967 		}
968 	}
969 }
970 
971 
972 /* this routine allocates read buffers and generates stripe maps for the
973  * regions of the array from the start of the stripe to the start of the
974  * access, and from the end of the access to the end of the stripe.  It also
975  * computes and returns the number of DAG nodes needed to read all this data.
976  * Note that this routine does the wrong thing if the access is fully
977  * contained within one stripe unit, so we RF_ASSERT against this case at the
978  * start.
979  *
980  * layoutPtr - in: layout information
981  * asmap     - in: access stripe map
982  * dag_h     - in: header of the dag to create
983  * new_asm_h - in: ptr to array of 2 headers.  to be filled in
984  * nRodNodes - out: num nodes to be generated to read unaccessed data
985  * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
986  */
987 void
988 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
989 				RF_RaidLayout_t *layoutPtr,
990 				RF_AccessStripeMap_t *asmap,
991 				RF_DagHeader_t *dag_h,
992 				RF_AccessStripeMapHeader_t **new_asm_h,
993 				int *nRodNodes,
994 				char **sosBuffer, char **eosBuffer,
995 				RF_AllocListElem_t *allocList)
996 {
997 	RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
998 	RF_SectorNum_t sosNumSector, eosNumSector;
999 
1000 	RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
1001 	/* generate an access map for the region of the array from start of
1002 	 * stripe to start of access */
1003 	new_asm_h[0] = new_asm_h[1] = NULL;
1004 	*nRodNodes = 0;
1005 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
1006 		sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
1007 		sosNumSector = asmap->raidAddress - sosRaidAddress;
1008 		*sosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, sosNumSector));
1009 		new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
1010 		new_asm_h[0]->next = dag_h->asmList;
1011 		dag_h->asmList = new_asm_h[0];
1012 		*nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
1013 
1014 		RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
1015 		/* we're totally within one stripe here */
1016 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
1017 			rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
1018 	}
1019 	/* generate an access map for the region of the array from end of
1020 	 * access to end of stripe */
1021 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
1022 		eosRaidAddress = asmap->endRaidAddress;
1023 		eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
1024 		*eosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, eosNumSector));
1025 		new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
1026 		new_asm_h[1]->next = dag_h->asmList;
1027 		dag_h->asmList = new_asm_h[1];
1028 		*nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
1029 
1030 		RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
1031 		/* we're totally within one stripe here */
1032 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
1033 			rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
1034 	}
1035 }
1036 
1037 
1038 
1039 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
1040 int
1041 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
1042 	      RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
1043 {
1044 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1045 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1046 	/* use -1 to be sure we stay within SU */
1047 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
1048 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1049 	return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
1050 }
1051 
1052 
1053 /* GenerateFailedAccessASMs
1054  *
1055  * this routine figures out what portion of the stripe needs to be read
1056  * to effect the degraded read or write operation.  It's primary function
1057  * is to identify everything required to recover the data, and then
1058  * eliminate anything that is already being accessed by the user.
1059  *
1060  * The main result is two new ASMs, one for the region from the start of the
1061  * stripe to the start of the access, and one for the region from the end of
1062  * the access to the end of the stripe.  These ASMs describe everything that
1063  * needs to be read to effect the degraded access.  Other results are:
1064  *    nXorBufs -- the total number of buffers that need to be XORed together to
1065  *                recover the lost data,
1066  *    rpBufPtr -- ptr to a newly-allocated buffer to hold the parity.  If NULL
1067  *                at entry, not allocated.
1068  *    overlappingPDAs --
1069  *                describes which of the non-failed PDAs in the user access
1070  *                overlap data that needs to be read to effect recovery.
1071  *                overlappingPDAs[i]==1 if and only if, neglecting the failed
1072  *                PDA, the ith pda in the input asm overlaps data that needs
1073  *                to be read for recovery.
1074  */
1075  /* in: asm - ASM for the actual access, one stripe only */
1076  /* in: failedPDA - which component of the access has failed */
1077  /* in: dag_h - header of the DAG we're going to create */
1078  /* out: new_asm_h - the two new ASMs */
1079  /* out: nXorBufs - the total number of xor bufs required */
1080  /* out: rpBufPtr - a buffer for the parity read */
1081 void
1082 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1083 			    RF_PhysDiskAddr_t *failedPDA,
1084 			    RF_DagHeader_t *dag_h,
1085 			    RF_AccessStripeMapHeader_t **new_asm_h,
1086 			    int *nXorBufs, char **rpBufPtr,
1087 			    char *overlappingPDAs,
1088 			    RF_AllocListElem_t *allocList)
1089 {
1090 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
1091 
1092 	/* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
1093 	RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
1094 	RF_PhysDiskAddr_t *pda;
1095 	int     foundit, i;
1096 
1097 	foundit = 0;
1098 	/* first compute the following raid addresses: start of stripe,
1099 	 * (sosAddr) MIN(start of access, start of failed SU),   (sosEndAddr)
1100 	 * MAX(end of access, end of failed SU),       (eosStartAddr) end of
1101 	 * stripe (i.e. start of next stripe)   (eosAddr) */
1102 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
1103 	sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
1104 	eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
1105 	eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
1106 
1107 	/* now generate access stripe maps for each of the above regions of
1108 	 * the stripe.  Use a dummy (NULL) buf ptr for now */
1109 
1110 	new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
1111 	new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
1112 
1113 	/* walk through the PDAs and range-restrict each SU to the region of
1114 	 * the SU touched on the failed PDA.  also compute total data buffer
1115 	 * space requirements in this step.  Ignore the parity for now. */
1116 	/* Also count nodes to find out how many bufs need to be xored together */
1117 	(*nXorBufs) = 1;	/* in read case, 1 is for parity.  In write
1118 				 * case, 1 is for failed data */
1119 
1120 	if (new_asm_h[0]) {
1121 		new_asm_h[0]->next = dag_h->asmList;
1122 		dag_h->asmList = new_asm_h[0];
1123 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
1124 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1125 			pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
1126 		}
1127 		(*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
1128 	}
1129 	if (new_asm_h[1]) {
1130 		new_asm_h[1]->next = dag_h->asmList;
1131 		dag_h->asmList = new_asm_h[1];
1132 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
1133 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1134 			pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
1135 		}
1136 		(*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
1137 	}
1138 
1139 	/* allocate a buffer for parity */
1140 	if (rpBufPtr)
1141 		*rpBufPtr = rf_AllocBuffer(raidPtr, dag_h, failedPDA->numSector << raidPtr->logBytesPerSector);
1142 
1143 	/* the last step is to figure out how many more distinct buffers need
1144 	 * to get xor'd to produce the missing unit.  there's one for each
1145 	 * user-data read node that overlaps the portion of the failed unit
1146 	 * being accessed */
1147 
1148 	for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
1149 		if (pda == failedPDA) {
1150 			i--;
1151 			foundit = 1;
1152 			continue;
1153 		}
1154 		if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
1155 			overlappingPDAs[i] = 1;
1156 			(*nXorBufs)++;
1157 		}
1158 	}
1159 	if (!foundit) {
1160 		RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
1161 		RF_ASSERT(0);
1162 	}
1163 #if RF_DEBUG_DAG
1164 	if (rf_degDagDebug) {
1165 		if (new_asm_h[0]) {
1166 			printf("First asm:\n");
1167 			rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
1168 		}
1169 		if (new_asm_h[1]) {
1170 			printf("Second asm:\n");
1171 			rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
1172 		}
1173 	}
1174 #endif
1175 }
1176 
1177 
1178 /* adjusts the offset and number of sectors in the destination pda so that
1179  * it covers at most the region of the SU covered by the source PDA.  This
1180  * is exclusively a restriction:  the number of sectors indicated by the
1181  * target PDA can only shrink.
1182  *
1183  * For example:  s = sectors within SU indicated by source PDA
1184  *               d = sectors within SU indicated by dest PDA
1185  *               r = results, stored in dest PDA
1186  *
1187  * |--------------- one stripe unit ---------------------|
1188  * |           sssssssssssssssssssssssssssssssss         |
1189  * |    ddddddddddddddddddddddddddddddddddddddddddddd    |
1190  * |           rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr         |
1191  *
1192  * Another example:
1193  *
1194  * |--------------- one stripe unit ---------------------|
1195  * |           sssssssssssssssssssssssssssssssss         |
1196  * |    ddddddddddddddddddddddd                          |
1197  * |           rrrrrrrrrrrrrrrr                          |
1198  *
1199  */
1200 void
1201 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
1202 		    RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
1203 {
1204 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1205 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1206 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1207 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);	/* use -1 to be sure we
1208 													 * stay within SU */
1209 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1210 	RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector);	/* stripe unit boundary */
1211 
1212 	dest->startSector = subAddr + RF_MAX(soffs, doffs);
1213 	dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1214 
1215 	if (dobuffer)
1216 		dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
1217 	if (doraidaddr) {
1218 		dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1219 		    rf_StripeUnitOffset(layoutPtr, dest->startSector);
1220 	}
1221 }
1222 
1223 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1224 
1225 /*
1226  * Want the highest of these primes to be the largest one
1227  * less than the max expected number of columns (won't hurt
1228  * to be too small or too large, but won't be optimal, either)
1229  * --jimz
1230  */
1231 #define NLOWPRIMES 8
1232 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1233 /*****************************************************************************
1234  * compute the workload shift factor.  (chained declustering)
1235  *
1236  * return nonzero if access should shift to secondary, otherwise,
1237  * access is to primary
1238  *****************************************************************************/
1239 int
1240 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
1241 {
1242 	/*
1243          * variables:
1244          *  d   = column of disk containing primary
1245          *  f   = column of failed disk
1246          *  n   = number of disks in array
1247          *  sd  = "shift distance" (number of columns that d is to the right of f)
1248          *  v   = numerator of redirection ratio
1249          *  k   = denominator of redirection ratio
1250          */
1251 	RF_RowCol_t d, f, sd, n;
1252 	int     k, v, ret, i;
1253 
1254 	n = raidPtr->numCol;
1255 
1256 	/* assign column of primary copy to d */
1257 	d = pda->col;
1258 
1259 	/* assign column of dead disk to f */
1260 	for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
1261 
1262 	RF_ASSERT(f < n);
1263 	RF_ASSERT(f != d);
1264 
1265 	sd = (f > d) ? (n + d - f) : (d - f);
1266 	RF_ASSERT(sd < n);
1267 
1268 	/*
1269          * v of every k accesses should be redirected
1270          *
1271          * v/k := (n-1-sd)/(n-1)
1272          */
1273 	v = (n - 1 - sd);
1274 	k = (n - 1);
1275 
1276 #if 1
1277 	/*
1278          * XXX
1279          * Is this worth it?
1280          *
1281          * Now reduce the fraction, by repeatedly factoring
1282          * out primes (just like they teach in elementary school!)
1283          */
1284 	for (i = 0; i < NLOWPRIMES; i++) {
1285 		if (lowprimes[i] > v)
1286 			break;
1287 		while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1288 			v /= lowprimes[i];
1289 			k /= lowprimes[i];
1290 		}
1291 	}
1292 #endif
1293 
1294 	raidPtr->hist_diskreq[d]++;
1295 	if (raidPtr->hist_diskreq[d] > v) {
1296 		ret = 0;	/* do not redirect */
1297 	} else {
1298 		ret = 1;	/* redirect */
1299 	}
1300 
1301 #if 0
1302 	printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1303 	    raidPtr->hist_diskreq[d]);
1304 #endif
1305 
1306 	if (raidPtr->hist_diskreq[d] >= k) {
1307 		/* reset counter */
1308 		raidPtr->hist_diskreq[d] = 0;
1309 	}
1310 	return (ret);
1311 }
1312 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1313 
1314 /*
1315  * Disk selection routines
1316  */
1317 
1318 /*
1319  * Selects the disk with the shortest queue from a mirror pair.
1320  * Both the disk I/Os queued in RAIDframe as well as those at the physical
1321  * disk are counted as members of the "queue"
1322  */
1323 void
1324 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1325 {
1326 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1327 	RF_RowCol_t colData, colMirror;
1328 	int     dataQueueLength, mirrorQueueLength, usemirror;
1329 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1330 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1331 	RF_PhysDiskAddr_t *tmp_pda;
1332 	RF_RaidDisk_t *disks = raidPtr->Disks;
1333 	RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1334 
1335 	/* return the [row col] of the disk with the shortest queue */
1336 	colData = data_pda->col;
1337 	colMirror = mirror_pda->col;
1338 	dataQueue = &(dqs[colData]);
1339 	mirrorQueue = &(dqs[colMirror]);
1340 
1341 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1342 	RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1343 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
1344 	dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1345 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1346 	RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1347 	RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1348 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
1349 	mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1350 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1351 	RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1352 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
1353 
1354 	usemirror = 0;
1355 	if (RF_DEAD_DISK(disks[colMirror].status)) {
1356 		usemirror = 0;
1357 	} else
1358 		if (RF_DEAD_DISK(disks[colData].status)) {
1359 			usemirror = 1;
1360 		} else
1361 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
1362 				/* Trust only the main disk */
1363 				usemirror = 0;
1364 			} else
1365 				if (dataQueueLength < mirrorQueueLength) {
1366 					usemirror = 0;
1367 				} else
1368 					if (mirrorQueueLength < dataQueueLength) {
1369 						usemirror = 1;
1370 					} else {
1371 						/* queues are equal length. attempt
1372 						 * cleverness. */
1373 						if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1374 						    <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1375 							usemirror = 0;
1376 						} else {
1377 							usemirror = 1;
1378 						}
1379 					}
1380 
1381 	if (usemirror) {
1382 		/* use mirror (parity) disk, swap params 0 & 4 */
1383 		tmp_pda = data_pda;
1384 		node->params[0].p = mirror_pda;
1385 		node->params[4].p = tmp_pda;
1386 	} else {
1387 		/* use data disk, leave param 0 unchanged */
1388 	}
1389 	/* printf("dataQueueLength %d, mirrorQueueLength
1390 	 * %d\n",dataQueueLength, mirrorQueueLength); */
1391 }
1392 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1393 /*
1394  * Do simple partitioning. This assumes that
1395  * the data and parity disks are laid out identically.
1396  */
1397 void
1398 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1399 {
1400 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1401 	RF_RowCol_t colData, colMirror;
1402 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1403 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1404 	RF_PhysDiskAddr_t *tmp_pda;
1405 	RF_RaidDisk_t *disks = raidPtr->Disks;
1406 	int     usemirror;
1407 
1408 	/* return the [row col] of the disk with the shortest queue */
1409 	colData = data_pda->col;
1410 	colMirror = mirror_pda->col;
1411 
1412 	usemirror = 0;
1413 	if (RF_DEAD_DISK(disks[colMirror].status)) {
1414 		usemirror = 0;
1415 	} else
1416 		if (RF_DEAD_DISK(disks[colData].status)) {
1417 			usemirror = 1;
1418 		} else
1419 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
1420 				/* Trust only the main disk */
1421 				usemirror = 0;
1422 			} else
1423 				if (data_pda->startSector <
1424 				    (disks[colData].numBlocks / 2)) {
1425 					usemirror = 0;
1426 				} else {
1427 					usemirror = 1;
1428 				}
1429 
1430 	if (usemirror) {
1431 		/* use mirror (parity) disk, swap params 0 & 4 */
1432 		tmp_pda = data_pda;
1433 		node->params[0].p = mirror_pda;
1434 		node->params[4].p = tmp_pda;
1435 	} else {
1436 		/* use data disk, leave param 0 unchanged */
1437 	}
1438 }
1439 #endif
1440