1 /* $NetBSD: rf_dagutils.c,v 1.58 2021/07/23 00:54:45 oster Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Authors: Mark Holland, William V. Courtright II, Jim Zelenka 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /****************************************************************************** 30 * 31 * rf_dagutils.c -- utility routines for manipulating dags 32 * 33 *****************************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.58 2021/07/23 00:54:45 oster Exp $"); 37 38 #include <dev/raidframe/raidframevar.h> 39 40 #include "rf_archs.h" 41 #include "rf_threadstuff.h" 42 #include "rf_raid.h" 43 #include "rf_dag.h" 44 #include "rf_dagutils.h" 45 #include "rf_dagfuncs.h" 46 #include "rf_general.h" 47 #include "rf_map.h" 48 #include "rf_shutdown.h" 49 50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_))) 51 52 const RF_RedFuncs_t rf_xorFuncs = { 53 rf_RegularXorFunc, "Reg Xr", 54 rf_SimpleXorFunc, "Simple Xr"}; 55 56 const RF_RedFuncs_t rf_xorRecoveryFuncs = { 57 rf_RecoveryXorFunc, "Recovery Xr", 58 rf_RecoveryXorFunc, "Recovery Xr"}; 59 60 #if RF_DEBUG_VALIDATE_DAG 61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int); 62 static void rf_PrintDAG(RF_DagHeader_t *); 63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *, 64 RF_DagNode_t **, int); 65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int); 66 static void rf_ValidateVisitedBits(RF_DagHeader_t *); 67 #endif /* RF_DEBUG_VALIDATE_DAG */ 68 69 /* The maximum number of nodes in a DAG is bounded by 70 71 (2 * raidPtr->Layout->numDataCol) + (1 * layoutPtr->numParityCol) + 72 (1 * 2 * layoutPtr->numParityCol) + 3 73 74 which is: 2*RF_MAXCOL+1*2+1*2*2+3 75 76 For RF_MAXCOL of 40, this works out to 89. We use this value to provide an estimate 77 on the maximum size needed for RF_DAGPCACHE_SIZE. For RF_MAXCOL of 40, this structure 78 would be 534 bytes. Too much to have on-hand in a RF_DagNode_t, but should be ok to 79 have a few kicking around. 80 */ 81 #define RF_DAGPCACHE_SIZE ((2*RF_MAXCOL+1*2+1*2*2+3) *(RF_MAX(sizeof(RF_DagParam_t), sizeof(RF_DagNode_t *)))) 82 83 84 /****************************************************************************** 85 * 86 * InitNode - initialize a dag node 87 * 88 * the size of the propList array is always the same as that of the 89 * successors array. 90 * 91 *****************************************************************************/ 92 void 93 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit, 94 void (*doFunc) (RF_DagNode_t *node), 95 void (*undoFunc) (RF_DagNode_t *node), 96 void (*wakeFunc) (void *node, int status), 97 int nSucc, int nAnte, int nParam, int nResult, 98 RF_DagHeader_t *hdr, const char *name, RF_AllocListElem_t *alist) 99 { 100 void **ptrs; 101 int nptrs; 102 RF_Raid_t *raidPtr; 103 104 if (nAnte > RF_MAX_ANTECEDENTS) 105 RF_PANIC(); 106 node->status = initstatus; 107 node->commitNode = commit; 108 node->doFunc = doFunc; 109 node->undoFunc = undoFunc; 110 node->wakeFunc = wakeFunc; 111 node->numParams = nParam; 112 node->numResults = nResult; 113 node->numAntecedents = nAnte; 114 node->numAntDone = 0; 115 node->next = NULL; 116 /* node->list_next = NULL */ /* Don't touch this here! 117 It may already be 118 in use by the caller! */ 119 node->numSuccedents = nSucc; 120 node->name = name; 121 node->dagHdr = hdr; 122 node->big_dag_ptrs = NULL; 123 node->big_dag_params = NULL; 124 node->visited = 0; 125 126 RF_ASSERT(hdr != NULL); 127 raidPtr = hdr->raidPtr; 128 129 /* allocate all the pointers with one call to malloc */ 130 nptrs = nSucc + nAnte + nResult + nSucc; 131 132 if (nptrs <= RF_DAG_PTRCACHESIZE) { 133 /* 134 * The dag_ptrs field of the node is basically some scribble 135 * space to be used here. We could get rid of it, and always 136 * allocate the range of pointers, but that's expensive. So, 137 * we pick a "common case" size for the pointer cache. Hopefully, 138 * we'll find that: 139 * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by 140 * only a little bit (least efficient case) 141 * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE 142 * (wasted memory) 143 */ 144 ptrs = (void **) node->dag_ptrs; 145 } else if (nptrs <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagNode_t *))) { 146 node->big_dag_ptrs = rf_AllocDAGPCache(raidPtr); 147 ptrs = (void **) node->big_dag_ptrs; 148 } else { 149 ptrs = RF_MallocAndAdd(nptrs * sizeof(*ptrs), alist); 150 } 151 node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL; 152 node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL; 153 node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL; 154 node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL; 155 156 if (nParam) { 157 if (nParam <= RF_DAG_PARAMCACHESIZE) { 158 node->params = (RF_DagParam_t *) node->dag_params; 159 } else if (nParam <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagParam_t))) { 160 node->big_dag_params = rf_AllocDAGPCache(raidPtr); 161 node->params = node->big_dag_params; 162 } else { 163 node->params = RF_MallocAndAdd( 164 nParam * sizeof(*node->params), alist); 165 } 166 } else { 167 node->params = NULL; 168 } 169 } 170 171 172 173 /****************************************************************************** 174 * 175 * allocation and deallocation routines 176 * 177 *****************************************************************************/ 178 179 void 180 rf_FreeDAG(RF_DagHeader_t *dag_h) 181 { 182 RF_AccessStripeMapHeader_t *asmap, *t_asmap; 183 RF_PhysDiskAddr_t *pda; 184 RF_DagNode_t *tmpnode; 185 RF_DagHeader_t *nextDag; 186 RF_Raid_t *raidPtr; 187 188 if (dag_h) 189 raidPtr = dag_h->raidPtr; 190 191 while (dag_h) { 192 nextDag = dag_h->next; 193 rf_FreeAllocList(dag_h->allocList); 194 for (asmap = dag_h->asmList; asmap;) { 195 t_asmap = asmap; 196 asmap = asmap->next; 197 rf_FreeAccessStripeMap(raidPtr, t_asmap); 198 } 199 while (dag_h->pda_cleanup_list) { 200 pda = dag_h->pda_cleanup_list; 201 dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next; 202 rf_FreePhysDiskAddr(raidPtr, pda); 203 } 204 while (dag_h->nodes) { 205 tmpnode = dag_h->nodes; 206 dag_h->nodes = dag_h->nodes->list_next; 207 rf_FreeDAGNode(raidPtr, tmpnode); 208 } 209 rf_FreeDAGHeader(raidPtr, dag_h); 210 dag_h = nextDag; 211 } 212 } 213 214 #define RF_MAX_FREE_DAGH 128 215 #define RF_MIN_FREE_DAGH 32 216 217 #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */ 218 #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */ 219 220 #define RF_MAX_FREE_DAGLIST 128 221 #define RF_MIN_FREE_DAGLIST 32 222 223 #define RF_MAX_FREE_DAGPCACHE 128 224 #define RF_MIN_FREE_DAGPCACHE 8 225 226 #define RF_MAX_FREE_FUNCLIST 128 227 #define RF_MIN_FREE_FUNCLIST 32 228 229 #define RF_MAX_FREE_BUFFERS 128 230 #define RF_MIN_FREE_BUFFERS 32 231 232 static void rf_ShutdownDAGs(void *); 233 static void 234 rf_ShutdownDAGs(void *arg) 235 { 236 RF_Raid_t *raidPtr; 237 238 raidPtr = (RF_Raid_t *) arg; 239 240 pool_destroy(&raidPtr->pools.dagh); 241 pool_destroy(&raidPtr->pools.dagnode); 242 pool_destroy(&raidPtr->pools.daglist); 243 pool_destroy(&raidPtr->pools.dagpcache); 244 pool_destroy(&raidPtr->pools.funclist); 245 } 246 247 int 248 rf_ConfigureDAGs(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr, 249 RF_Config_t *cfgPtr) 250 { 251 252 rf_pool_init(raidPtr, raidPtr->poolNames.dagnode, &raidPtr->pools.dagnode, sizeof(RF_DagNode_t), 253 "dagnode", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE); 254 rf_pool_init(raidPtr, raidPtr->poolNames.dagh, &raidPtr->pools.dagh, sizeof(RF_DagHeader_t), 255 "dagh", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH); 256 rf_pool_init(raidPtr, raidPtr->poolNames.daglist, &raidPtr->pools.daglist, sizeof(RF_DagList_t), 257 "daglist", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST); 258 rf_pool_init(raidPtr, raidPtr->poolNames.dagpcache, &raidPtr->pools.dagpcache, RF_DAGPCACHE_SIZE, 259 "dagpcache", RF_MIN_FREE_DAGPCACHE, RF_MAX_FREE_DAGPCACHE); 260 rf_pool_init(raidPtr, raidPtr->poolNames.funclist, &raidPtr->pools.funclist, sizeof(RF_FuncList_t), 261 "funclist", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST); 262 rf_ShutdownCreate(listp, rf_ShutdownDAGs, raidPtr); 263 264 return (0); 265 } 266 267 RF_DagHeader_t * 268 rf_AllocDAGHeader(RF_Raid_t *raidPtr) 269 { 270 return pool_get(&raidPtr->pools.dagh, PR_WAITOK | PR_ZERO); 271 } 272 273 void 274 rf_FreeDAGHeader(RF_Raid_t *raidPtr, RF_DagHeader_t * dh) 275 { 276 pool_put(&raidPtr->pools.dagh, dh); 277 } 278 279 RF_DagNode_t * 280 rf_AllocDAGNode(RF_Raid_t *raidPtr) 281 { 282 return pool_get(&raidPtr->pools.dagnode, PR_WAITOK | PR_ZERO); 283 } 284 285 void 286 rf_FreeDAGNode(RF_Raid_t *raidPtr, RF_DagNode_t *node) 287 { 288 if (node->big_dag_ptrs) { 289 rf_FreeDAGPCache(raidPtr, node->big_dag_ptrs); 290 } 291 if (node->big_dag_params) { 292 rf_FreeDAGPCache(raidPtr, node->big_dag_params); 293 } 294 pool_put(&raidPtr->pools.dagnode, node); 295 } 296 297 RF_DagList_t * 298 rf_AllocDAGList(RF_Raid_t *raidPtr) 299 { 300 return pool_get(&raidPtr->pools.daglist, PR_WAITOK | PR_ZERO); 301 } 302 303 void 304 rf_FreeDAGList(RF_Raid_t *raidPtr, RF_DagList_t *dagList) 305 { 306 pool_put(&raidPtr->pools.daglist, dagList); 307 } 308 309 void * 310 rf_AllocDAGPCache(RF_Raid_t *raidPtr) 311 { 312 return pool_get(&raidPtr->pools.dagpcache, PR_WAITOK | PR_ZERO); 313 } 314 315 void 316 rf_FreeDAGPCache(RF_Raid_t *raidPtr, void *p) 317 { 318 pool_put(&raidPtr->pools.dagpcache, p); 319 } 320 321 RF_FuncList_t * 322 rf_AllocFuncList(RF_Raid_t *raidPtr) 323 { 324 return pool_get(&raidPtr->pools.funclist, PR_WAITOK | PR_ZERO); 325 } 326 327 void 328 rf_FreeFuncList(RF_Raid_t *raidPtr, RF_FuncList_t *funcList) 329 { 330 pool_put(&raidPtr->pools.funclist, funcList); 331 } 332 333 /* allocates a stripe buffer -- a buffer large enough to hold all the data 334 in an entire stripe. 335 */ 336 337 void * 338 rf_AllocStripeBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, 339 int size) 340 { 341 RF_VoidPointerListElem_t *vple; 342 void *p; 343 344 RF_ASSERT((size <= (raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << 345 raidPtr->logBytesPerSector)))); 346 347 p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << 348 raidPtr->logBytesPerSector), 349 M_RAIDFRAME, M_NOWAIT); 350 if (!p) { 351 rf_lock_mutex2(raidPtr->mutex); 352 if (raidPtr->stripebuf_count > 0) { 353 vple = raidPtr->stripebuf; 354 raidPtr->stripebuf = vple->next; 355 p = vple->p; 356 rf_FreeVPListElem(raidPtr, vple); 357 raidPtr->stripebuf_count--; 358 } else { 359 #ifdef DIAGNOSTIC 360 printf("raid%d: Help! Out of emergency full-stripe buffers!\n", raidPtr->raidid); 361 #endif 362 } 363 rf_unlock_mutex2(raidPtr->mutex); 364 if (!p) { 365 /* We didn't get a buffer... not much we can do other than wait, 366 and hope that someone frees up memory for us.. */ 367 p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << 368 raidPtr->logBytesPerSector), M_RAIDFRAME, M_WAITOK); 369 } 370 } 371 memset(p, 0, raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector)); 372 373 vple = rf_AllocVPListElem(raidPtr); 374 vple->p = p; 375 vple->next = dag_h->desc->stripebufs; 376 dag_h->desc->stripebufs = vple; 377 378 return (p); 379 } 380 381 382 void 383 rf_FreeStripeBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple) 384 { 385 rf_lock_mutex2(raidPtr->mutex); 386 if (raidPtr->stripebuf_count < raidPtr->numEmergencyStripeBuffers) { 387 /* just tack it in */ 388 vple->next = raidPtr->stripebuf; 389 raidPtr->stripebuf = vple; 390 raidPtr->stripebuf_count++; 391 } else { 392 free(vple->p, M_RAIDFRAME); 393 rf_FreeVPListElem(raidPtr, vple); 394 } 395 rf_unlock_mutex2(raidPtr->mutex); 396 } 397 398 /* allocates a buffer big enough to hold the data described by the 399 caller (ie. the data of the associated PDA). Glue this buffer 400 into our dag_h cleanup structure. */ 401 402 void * 403 rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size) 404 { 405 RF_VoidPointerListElem_t *vple; 406 void *p; 407 408 p = rf_AllocIOBuffer(raidPtr, size); 409 vple = rf_AllocVPListElem(raidPtr); 410 vple->p = p; 411 vple->next = dag_h->desc->iobufs; 412 dag_h->desc->iobufs = vple; 413 414 return (p); 415 } 416 417 void * 418 rf_AllocIOBuffer(RF_Raid_t *raidPtr, int size) 419 { 420 RF_VoidPointerListElem_t *vple; 421 void *p; 422 423 RF_ASSERT((size <= (raidPtr->Layout.sectorsPerStripeUnit << 424 raidPtr->logBytesPerSector))); 425 426 p = malloc( raidPtr->Layout.sectorsPerStripeUnit << 427 raidPtr->logBytesPerSector, 428 M_RAIDFRAME, M_NOWAIT); 429 if (!p) { 430 rf_lock_mutex2(raidPtr->mutex); 431 if (raidPtr->iobuf_count > 0) { 432 vple = raidPtr->iobuf; 433 raidPtr->iobuf = vple->next; 434 p = vple->p; 435 rf_FreeVPListElem(raidPtr, vple); 436 raidPtr->iobuf_count--; 437 } else { 438 #ifdef DIAGNOSTIC 439 printf("raid%d: Help! Out of emergency buffers!\n", raidPtr->raidid); 440 #endif 441 } 442 rf_unlock_mutex2(raidPtr->mutex); 443 if (!p) { 444 /* We didn't get a buffer... not much we can do other than wait, 445 and hope that someone frees up memory for us.. */ 446 p = malloc( raidPtr->Layout.sectorsPerStripeUnit << 447 raidPtr->logBytesPerSector, 448 M_RAIDFRAME, M_WAITOK); 449 } 450 } 451 memset(p, 0, raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector); 452 return (p); 453 } 454 455 void 456 rf_FreeIOBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple) 457 { 458 rf_lock_mutex2(raidPtr->mutex); 459 if (raidPtr->iobuf_count < raidPtr->numEmergencyBuffers) { 460 /* just tack it in */ 461 vple->next = raidPtr->iobuf; 462 raidPtr->iobuf = vple; 463 raidPtr->iobuf_count++; 464 } else { 465 free(vple->p, M_RAIDFRAME); 466 rf_FreeVPListElem(raidPtr, vple); 467 } 468 rf_unlock_mutex2(raidPtr->mutex); 469 } 470 471 472 473 #if RF_DEBUG_VALIDATE_DAG 474 /****************************************************************************** 475 * 476 * debug routines 477 * 478 *****************************************************************************/ 479 480 char * 481 rf_NodeStatusString(RF_DagNode_t *node) 482 { 483 switch (node->status) { 484 case rf_wait: 485 return ("wait"); 486 case rf_fired: 487 return ("fired"); 488 case rf_good: 489 return ("good"); 490 case rf_bad: 491 return ("bad"); 492 default: 493 return ("?"); 494 } 495 } 496 497 void 498 rf_PrintNodeInfoString(RF_DagNode_t *node) 499 { 500 RF_PhysDiskAddr_t *pda; 501 int (*df) (RF_DagNode_t *) = node->doFunc; 502 int i, lk, unlk; 503 void *bufPtr; 504 505 if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc) 506 || (df == rf_DiskReadMirrorIdleFunc) 507 || (df == rf_DiskReadMirrorPartitionFunc)) { 508 pda = (RF_PhysDiskAddr_t *) node->params[0].p; 509 bufPtr = (void *) node->params[1].p; 510 lk = 0; 511 unlk = 0; 512 RF_ASSERT(!(lk && unlk)); 513 printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col, 514 (long) pda->startSector, (int) pda->numSector, (long) bufPtr, 515 (lk) ? "LOCK" : ((unlk) ? "UNLK" : " ")); 516 return; 517 } 518 if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc) 519 || (df == rf_RecoveryXorFunc)) { 520 printf("result buf 0x%lx\n", (long) node->results[0]); 521 for (i = 0; i < node->numParams - 1; i += 2) { 522 pda = (RF_PhysDiskAddr_t *) node->params[i].p; 523 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p; 524 printf(" buf 0x%lx c%d offs %ld nsect %d\n", 525 (long) bufPtr, pda->col, 526 (long) pda->startSector, (int) pda->numSector); 527 } 528 return; 529 } 530 #if RF_INCLUDE_PARITYLOGGING > 0 531 if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) { 532 for (i = 0; i < node->numParams - 1; i += 2) { 533 pda = (RF_PhysDiskAddr_t *) node->params[i].p; 534 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p; 535 printf(" c%d offs %ld nsect %d buf 0x%lx\n", 536 pda->col, (long) pda->startSector, 537 (int) pda->numSector, (long) bufPtr); 538 } 539 return; 540 } 541 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */ 542 543 if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) { 544 printf("\n"); 545 return; 546 } 547 printf("?\n"); 548 } 549 #ifdef DEBUG 550 static void 551 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited) 552 { 553 char *anttype; 554 int i; 555 556 node->visited = (unvisited) ? 0 : 1; 557 printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth, 558 node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node), 559 node->numSuccedents, node->numSuccFired, node->numSuccDone, 560 node->numAntecedents, node->numAntDone, node->numParams, node->numResults); 561 for (i = 0; i < node->numSuccedents; i++) { 562 printf("%d%s", node->succedents[i]->nodeNum, 563 ((i == node->numSuccedents - 1) ? "\0" : " ")); 564 } 565 printf("} A{"); 566 for (i = 0; i < node->numAntecedents; i++) { 567 switch (node->antType[i]) { 568 case rf_trueData: 569 anttype = "T"; 570 break; 571 case rf_antiData: 572 anttype = "A"; 573 break; 574 case rf_outputData: 575 anttype = "O"; 576 break; 577 case rf_control: 578 anttype = "C"; 579 break; 580 default: 581 anttype = "?"; 582 break; 583 } 584 printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " "); 585 } 586 printf("}; "); 587 rf_PrintNodeInfoString(node); 588 for (i = 0; i < node->numSuccedents; i++) { 589 if (node->succedents[i]->visited == unvisited) 590 rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited); 591 } 592 } 593 594 static void 595 rf_PrintDAG(RF_DagHeader_t *dag_h) 596 { 597 int unvisited, i; 598 char *status; 599 600 /* set dag status */ 601 switch (dag_h->status) { 602 case rf_enable: 603 status = "enable"; 604 break; 605 case rf_rollForward: 606 status = "rollForward"; 607 break; 608 case rf_rollBackward: 609 status = "rollBackward"; 610 break; 611 default: 612 status = "illegal!"; 613 break; 614 } 615 /* find out if visited bits are currently set or clear */ 616 unvisited = dag_h->succedents[0]->visited; 617 618 printf("DAG type: %s\n", dag_h->creator); 619 printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n"); 620 printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum, 621 status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits); 622 for (i = 0; i < dag_h->numSuccedents; i++) { 623 printf("%d%s", dag_h->succedents[i]->nodeNum, 624 ((i == dag_h->numSuccedents - 1) ? "\0" : " ")); 625 } 626 printf("};\n"); 627 for (i = 0; i < dag_h->numSuccedents; i++) { 628 if (dag_h->succedents[i]->visited == unvisited) 629 rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited); 630 } 631 } 632 #endif 633 /* assigns node numbers */ 634 int 635 rf_AssignNodeNums(RF_DagHeader_t * dag_h) 636 { 637 int unvisited, i, nnum; 638 RF_DagNode_t *node; 639 640 nnum = 0; 641 unvisited = dag_h->succedents[0]->visited; 642 643 dag_h->nodeNum = nnum++; 644 for (i = 0; i < dag_h->numSuccedents; i++) { 645 node = dag_h->succedents[i]; 646 if (node->visited == unvisited) { 647 nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited); 648 } 649 } 650 return (nnum); 651 } 652 653 int 654 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited) 655 { 656 int i; 657 658 node->visited = (unvisited) ? 0 : 1; 659 660 node->nodeNum = num++; 661 for (i = 0; i < node->numSuccedents; i++) { 662 if (node->succedents[i]->visited == unvisited) { 663 num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited); 664 } 665 } 666 return (num); 667 } 668 /* set the header pointers in each node to "newptr" */ 669 void 670 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr) 671 { 672 int i; 673 for (i = 0; i < dag_h->numSuccedents; i++) 674 if (dag_h->succedents[i]->dagHdr != newptr) 675 rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr); 676 } 677 678 void 679 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr) 680 { 681 int i; 682 node->dagHdr = newptr; 683 for (i = 0; i < node->numSuccedents; i++) 684 if (node->succedents[i]->dagHdr != newptr) 685 rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr); 686 } 687 688 689 void 690 rf_PrintDAGList(RF_DagHeader_t * dag_h) 691 { 692 int i = 0; 693 694 for (; dag_h; dag_h = dag_h->next) { 695 rf_AssignNodeNums(dag_h); 696 printf("\n\nDAG %d IN LIST:\n", i++); 697 rf_PrintDAG(dag_h); 698 } 699 } 700 701 static int 702 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount, 703 RF_DagNode_t **nodes, int unvisited) 704 { 705 int i, retcode = 0; 706 707 /* construct an array of node pointers indexed by node num */ 708 node->visited = (unvisited) ? 0 : 1; 709 nodes[node->nodeNum] = node; 710 711 if (node->next != NULL) { 712 printf("INVALID DAG: next pointer in node is not NULL\n"); 713 retcode = 1; 714 } 715 if (node->status != rf_wait) { 716 printf("INVALID DAG: Node status is not wait\n"); 717 retcode = 1; 718 } 719 if (node->numAntDone != 0) { 720 printf("INVALID DAG: numAntDone is not zero\n"); 721 retcode = 1; 722 } 723 if (node->doFunc == rf_TerminateFunc) { 724 if (node->numSuccedents != 0) { 725 printf("INVALID DAG: Terminator node has succedents\n"); 726 retcode = 1; 727 } 728 } else { 729 if (node->numSuccedents == 0) { 730 printf("INVALID DAG: Non-terminator node has no succedents\n"); 731 retcode = 1; 732 } 733 } 734 for (i = 0; i < node->numSuccedents; i++) { 735 if (!node->succedents[i]) { 736 printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name); 737 retcode = 1; 738 } 739 scount[node->succedents[i]->nodeNum]++; 740 } 741 for (i = 0; i < node->numAntecedents; i++) { 742 if (!node->antecedents[i]) { 743 printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name); 744 retcode = 1; 745 } 746 acount[node->antecedents[i]->nodeNum]++; 747 } 748 for (i = 0; i < node->numSuccedents; i++) { 749 if (node->succedents[i]->visited == unvisited) { 750 if (rf_ValidateBranch(node->succedents[i], scount, 751 acount, nodes, unvisited)) { 752 retcode = 1; 753 } 754 } 755 } 756 return (retcode); 757 } 758 759 static void 760 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl) 761 { 762 int i; 763 764 RF_ASSERT(node->visited == unvisited); 765 for (i = 0; i < node->numSuccedents; i++) { 766 if (node->succedents[i] == NULL) { 767 printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i); 768 RF_ASSERT(0); 769 } 770 rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1); 771 } 772 } 773 /* NOTE: never call this on a big dag, because it is exponential 774 * in execution time 775 */ 776 static void 777 rf_ValidateVisitedBits(RF_DagHeader_t *dag) 778 { 779 int i, unvisited; 780 781 unvisited = dag->succedents[0]->visited; 782 783 for (i = 0; i < dag->numSuccedents; i++) { 784 if (dag->succedents[i] == NULL) { 785 printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i); 786 RF_ASSERT(0); 787 } 788 rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0); 789 } 790 } 791 /* validate a DAG. _at entry_ verify that: 792 * -- numNodesCompleted is zero 793 * -- node queue is null 794 * -- dag status is rf_enable 795 * -- next pointer is null on every node 796 * -- all nodes have status wait 797 * -- numAntDone is zero in all nodes 798 * -- terminator node has zero successors 799 * -- no other node besides terminator has zero successors 800 * -- no successor or antecedent pointer in a node is NULL 801 * -- number of times that each node appears as a successor of another node 802 * is equal to the antecedent count on that node 803 * -- number of times that each node appears as an antecedent of another node 804 * is equal to the succedent count on that node 805 * -- what else? 806 */ 807 int 808 rf_ValidateDAG(RF_DagHeader_t *dag_h) 809 { 810 int i, nodecount; 811 int *scount, *acount;/* per-node successor and antecedent counts */ 812 RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */ 813 int retcode = 0; 814 int unvisited; 815 int commitNodeCount = 0; 816 817 if (rf_validateVisitedDebug) 818 rf_ValidateVisitedBits(dag_h); 819 820 if (dag_h->numNodesCompleted != 0) { 821 printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted); 822 retcode = 1; 823 goto validate_dag_bad; 824 } 825 if (dag_h->status != rf_enable) { 826 printf("INVALID DAG: not enabled\n"); 827 retcode = 1; 828 goto validate_dag_bad; 829 } 830 if (dag_h->numCommits != 0) { 831 printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits); 832 retcode = 1; 833 goto validate_dag_bad; 834 } 835 if (dag_h->numSuccedents != 1) { 836 /* currently, all dags must have only one succedent */ 837 printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents); 838 retcode = 1; 839 goto validate_dag_bad; 840 } 841 nodecount = rf_AssignNodeNums(dag_h); 842 843 unvisited = dag_h->succedents[0]->visited; 844 845 scount = RF_Malloc(nodecount * sizeof(*scount)); 846 acount = RF_Malloc(nodecount * sizeof(*acount)); 847 nodes = RF_Malloc(nodecount * sizeof(*nodes)); 848 for (i = 0; i < dag_h->numSuccedents; i++) { 849 if ((dag_h->succedents[i]->visited == unvisited) 850 && rf_ValidateBranch(dag_h->succedents[i], scount, 851 acount, nodes, unvisited)) { 852 retcode = 1; 853 } 854 } 855 /* start at 1 to skip the header node */ 856 for (i = 1; i < nodecount; i++) { 857 if (nodes[i]->commitNode) 858 commitNodeCount++; 859 if (nodes[i]->doFunc == NULL) { 860 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name); 861 retcode = 1; 862 goto validate_dag_out; 863 } 864 if (nodes[i]->undoFunc == NULL) { 865 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name); 866 retcode = 1; 867 goto validate_dag_out; 868 } 869 if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) { 870 printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n", 871 nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]); 872 retcode = 1; 873 goto validate_dag_out; 874 } 875 if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) { 876 printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n", 877 nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]); 878 retcode = 1; 879 goto validate_dag_out; 880 } 881 } 882 883 if (dag_h->numCommitNodes != commitNodeCount) { 884 printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n", 885 dag_h->numCommitNodes, commitNodeCount); 886 retcode = 1; 887 goto validate_dag_out; 888 } 889 validate_dag_out: 890 RF_Free(scount, nodecount * sizeof(int)); 891 RF_Free(acount, nodecount * sizeof(int)); 892 RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *)); 893 if (retcode) 894 rf_PrintDAGList(dag_h); 895 896 if (rf_validateVisitedDebug) 897 rf_ValidateVisitedBits(dag_h); 898 899 return (retcode); 900 901 validate_dag_bad: 902 rf_PrintDAGList(dag_h); 903 return (retcode); 904 } 905 906 #endif /* RF_DEBUG_VALIDATE_DAG */ 907 908 /****************************************************************************** 909 * 910 * misc construction routines 911 * 912 *****************************************************************************/ 913 914 void 915 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap) 916 { 917 int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0; 918 int fcol = raidPtr->reconControl->fcol; 919 int scol = raidPtr->reconControl->spareCol; 920 RF_PhysDiskAddr_t *pda; 921 922 RF_ASSERT(raidPtr->status == rf_rs_reconstructing); 923 for (pda = asmap->physInfo; pda; pda = pda->next) { 924 if (pda->col == fcol) { 925 #if RF_DEBUG_DAG 926 if (rf_dagDebug) { 927 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, 928 pda->startSector)) { 929 RF_PANIC(); 930 } 931 } 932 #endif 933 /* printf("Remapped data for large write\n"); */ 934 if (ds) { 935 raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress, 936 &pda->col, &pda->startSector, RF_REMAP); 937 } else { 938 pda->col = scol; 939 } 940 } 941 } 942 for (pda = asmap->parityInfo; pda; pda = pda->next) { 943 if (pda->col == fcol) { 944 #if RF_DEBUG_DAG 945 if (rf_dagDebug) { 946 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) { 947 RF_PANIC(); 948 } 949 } 950 #endif 951 } 952 if (ds) { 953 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP); 954 } else { 955 pda->col = scol; 956 } 957 } 958 } 959 960 961 /* this routine allocates read buffers and generates stripe maps for the 962 * regions of the array from the start of the stripe to the start of the 963 * access, and from the end of the access to the end of the stripe. It also 964 * computes and returns the number of DAG nodes needed to read all this data. 965 * Note that this routine does the wrong thing if the access is fully 966 * contained within one stripe unit, so we RF_ASSERT against this case at the 967 * start. 968 * 969 * layoutPtr - in: layout information 970 * asmap - in: access stripe map 971 * dag_h - in: header of the dag to create 972 * new_asm_h - in: ptr to array of 2 headers. to be filled in 973 * nRodNodes - out: num nodes to be generated to read unaccessed data 974 * sosBuffer, eosBuffer - out: pointers to newly allocated buffer 975 */ 976 void 977 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr, 978 RF_RaidLayout_t *layoutPtr, 979 RF_AccessStripeMap_t *asmap, 980 RF_DagHeader_t *dag_h, 981 RF_AccessStripeMapHeader_t **new_asm_h, 982 int *nRodNodes, 983 char **sosBuffer, char **eosBuffer, 984 RF_AllocListElem_t *allocList) 985 { 986 RF_RaidAddr_t sosRaidAddress, eosRaidAddress; 987 RF_SectorNum_t sosNumSector, eosNumSector; 988 989 RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2)); 990 /* generate an access map for the region of the array from start of 991 * stripe to start of access */ 992 new_asm_h[0] = new_asm_h[1] = NULL; 993 *nRodNodes = 0; 994 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) { 995 sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); 996 sosNumSector = asmap->raidAddress - sosRaidAddress; 997 *sosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, sosNumSector)); 998 new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP); 999 new_asm_h[0]->next = dag_h->asmList; 1000 dag_h->asmList = new_asm_h[0]; 1001 *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed; 1002 1003 RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL); 1004 /* we're totally within one stripe here */ 1005 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE) 1006 rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap); 1007 } 1008 /* generate an access map for the region of the array from end of 1009 * access to end of stripe */ 1010 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) { 1011 eosRaidAddress = asmap->endRaidAddress; 1012 eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress; 1013 *eosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, eosNumSector)); 1014 new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP); 1015 new_asm_h[1]->next = dag_h->asmList; 1016 dag_h->asmList = new_asm_h[1]; 1017 *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed; 1018 1019 RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL); 1020 /* we're totally within one stripe here */ 1021 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE) 1022 rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap); 1023 } 1024 } 1025 1026 1027 1028 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */ 1029 int 1030 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr, 1031 RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest) 1032 { 1033 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector); 1034 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector); 1035 /* use -1 to be sure we stay within SU */ 1036 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); 1037 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1); 1038 return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0); 1039 } 1040 1041 1042 /* GenerateFailedAccessASMs 1043 * 1044 * this routine figures out what portion of the stripe needs to be read 1045 * to effect the degraded read or write operation. It's primary function 1046 * is to identify everything required to recover the data, and then 1047 * eliminate anything that is already being accessed by the user. 1048 * 1049 * The main result is two new ASMs, one for the region from the start of the 1050 * stripe to the start of the access, and one for the region from the end of 1051 * the access to the end of the stripe. These ASMs describe everything that 1052 * needs to be read to effect the degraded access. Other results are: 1053 * nXorBufs -- the total number of buffers that need to be XORed together to 1054 * recover the lost data, 1055 * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL 1056 * at entry, not allocated. 1057 * overlappingPDAs -- 1058 * describes which of the non-failed PDAs in the user access 1059 * overlap data that needs to be read to effect recovery. 1060 * overlappingPDAs[i]==1 if and only if, neglecting the failed 1061 * PDA, the ith pda in the input asm overlaps data that needs 1062 * to be read for recovery. 1063 */ 1064 /* in: asm - ASM for the actual access, one stripe only */ 1065 /* in: failedPDA - which component of the access has failed */ 1066 /* in: dag_h - header of the DAG we're going to create */ 1067 /* out: new_asm_h - the two new ASMs */ 1068 /* out: nXorBufs - the total number of xor bufs required */ 1069 /* out: rpBufPtr - a buffer for the parity read */ 1070 void 1071 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, 1072 RF_PhysDiskAddr_t *failedPDA, 1073 RF_DagHeader_t *dag_h, 1074 RF_AccessStripeMapHeader_t **new_asm_h, 1075 int *nXorBufs, char **rpBufPtr, 1076 char *overlappingPDAs, 1077 RF_AllocListElem_t *allocList) 1078 { 1079 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); 1080 1081 /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */ 1082 RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr; 1083 RF_PhysDiskAddr_t *pda; 1084 int foundit, i; 1085 1086 foundit = 0; 1087 /* first compute the following raid addresses: start of stripe, 1088 * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr) 1089 * MAX(end of access, end of failed SU), (eosStartAddr) end of 1090 * stripe (i.e. start of next stripe) (eosAddr) */ 1091 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); 1092 sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress)); 1093 eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress)); 1094 eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress); 1095 1096 /* now generate access stripe maps for each of the above regions of 1097 * the stripe. Use a dummy (NULL) buf ptr for now */ 1098 1099 new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL; 1100 new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL; 1101 1102 /* walk through the PDAs and range-restrict each SU to the region of 1103 * the SU touched on the failed PDA. also compute total data buffer 1104 * space requirements in this step. Ignore the parity for now. */ 1105 /* Also count nodes to find out how many bufs need to be xored together */ 1106 (*nXorBufs) = 1; /* in read case, 1 is for parity. In write 1107 * case, 1 is for failed data */ 1108 1109 if (new_asm_h[0]) { 1110 new_asm_h[0]->next = dag_h->asmList; 1111 dag_h->asmList = new_asm_h[0]; 1112 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) { 1113 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0); 1114 pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector); 1115 } 1116 (*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed; 1117 } 1118 if (new_asm_h[1]) { 1119 new_asm_h[1]->next = dag_h->asmList; 1120 dag_h->asmList = new_asm_h[1]; 1121 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) { 1122 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0); 1123 pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector); 1124 } 1125 (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed; 1126 } 1127 1128 /* allocate a buffer for parity */ 1129 if (rpBufPtr) 1130 *rpBufPtr = rf_AllocBuffer(raidPtr, dag_h, failedPDA->numSector << raidPtr->logBytesPerSector); 1131 1132 /* the last step is to figure out how many more distinct buffers need 1133 * to get xor'd to produce the missing unit. there's one for each 1134 * user-data read node that overlaps the portion of the failed unit 1135 * being accessed */ 1136 1137 for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) { 1138 if (pda == failedPDA) { 1139 i--; 1140 foundit = 1; 1141 continue; 1142 } 1143 if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) { 1144 overlappingPDAs[i] = 1; 1145 (*nXorBufs)++; 1146 } 1147 } 1148 if (!foundit) { 1149 RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n"); 1150 RF_ASSERT(0); 1151 } 1152 #if RF_DEBUG_DAG 1153 if (rf_degDagDebug) { 1154 if (new_asm_h[0]) { 1155 printf("First asm:\n"); 1156 rf_PrintFullAccessStripeMap(new_asm_h[0], 1); 1157 } 1158 if (new_asm_h[1]) { 1159 printf("Second asm:\n"); 1160 rf_PrintFullAccessStripeMap(new_asm_h[1], 1); 1161 } 1162 } 1163 #endif 1164 } 1165 1166 1167 /* adjusts the offset and number of sectors in the destination pda so that 1168 * it covers at most the region of the SU covered by the source PDA. This 1169 * is exclusively a restriction: the number of sectors indicated by the 1170 * target PDA can only shrink. 1171 * 1172 * For example: s = sectors within SU indicated by source PDA 1173 * d = sectors within SU indicated by dest PDA 1174 * r = results, stored in dest PDA 1175 * 1176 * |--------------- one stripe unit ---------------------| 1177 * | sssssssssssssssssssssssssssssssss | 1178 * | ddddddddddddddddddddddddddddddddddddddddddddd | 1179 * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr | 1180 * 1181 * Another example: 1182 * 1183 * |--------------- one stripe unit ---------------------| 1184 * | sssssssssssssssssssssssssssssssss | 1185 * | ddddddddddddddddddddddd | 1186 * | rrrrrrrrrrrrrrrr | 1187 * 1188 */ 1189 void 1190 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src, 1191 RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr) 1192 { 1193 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1194 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector); 1195 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector); 1196 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we 1197 * stay within SU */ 1198 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1); 1199 RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */ 1200 1201 dest->startSector = subAddr + RF_MAX(soffs, doffs); 1202 dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector; 1203 1204 if (dobuffer) 1205 dest->bufPtr = (char *)(dest->bufPtr) + ((soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0); 1206 if (doraidaddr) { 1207 dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) + 1208 rf_StripeUnitOffset(layoutPtr, dest->startSector); 1209 } 1210 } 1211 1212 #if (RF_INCLUDE_CHAINDECLUSTER > 0) 1213 1214 /* 1215 * Want the highest of these primes to be the largest one 1216 * less than the max expected number of columns (won't hurt 1217 * to be too small or too large, but won't be optimal, either) 1218 * --jimz 1219 */ 1220 #define NLOWPRIMES 8 1221 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19}; 1222 /***************************************************************************** 1223 * compute the workload shift factor. (chained declustering) 1224 * 1225 * return nonzero if access should shift to secondary, otherwise, 1226 * access is to primary 1227 *****************************************************************************/ 1228 int 1229 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda) 1230 { 1231 /* 1232 * variables: 1233 * d = column of disk containing primary 1234 * f = column of failed disk 1235 * n = number of disks in array 1236 * sd = "shift distance" (number of columns that d is to the right of f) 1237 * v = numerator of redirection ratio 1238 * k = denominator of redirection ratio 1239 */ 1240 RF_RowCol_t d, f, sd, n; 1241 int k, v, ret, i; 1242 1243 n = raidPtr->numCol; 1244 1245 /* assign column of primary copy to d */ 1246 d = pda->col; 1247 1248 /* assign column of dead disk to f */ 1249 for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++) 1250 continue; 1251 1252 RF_ASSERT(f < n); 1253 RF_ASSERT(f != d); 1254 1255 sd = (f > d) ? (n + d - f) : (d - f); 1256 RF_ASSERT(sd < n); 1257 1258 /* 1259 * v of every k accesses should be redirected 1260 * 1261 * v/k := (n-1-sd)/(n-1) 1262 */ 1263 v = (n - 1 - sd); 1264 k = (n - 1); 1265 1266 #if 1 1267 /* 1268 * XXX 1269 * Is this worth it? 1270 * 1271 * Now reduce the fraction, by repeatedly factoring 1272 * out primes (just like they teach in elementary school!) 1273 */ 1274 for (i = 0; i < NLOWPRIMES; i++) { 1275 if (lowprimes[i] > v) 1276 break; 1277 while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) { 1278 v /= lowprimes[i]; 1279 k /= lowprimes[i]; 1280 } 1281 } 1282 #endif 1283 1284 raidPtr->hist_diskreq[d]++; 1285 if (raidPtr->hist_diskreq[d] > v) { 1286 ret = 0; /* do not redirect */ 1287 } else { 1288 ret = 1; /* redirect */ 1289 } 1290 1291 #if 0 1292 printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret, 1293 raidPtr->hist_diskreq[d]); 1294 #endif 1295 1296 if (raidPtr->hist_diskreq[d] >= k) { 1297 /* reset counter */ 1298 raidPtr->hist_diskreq[d] = 0; 1299 } 1300 return (ret); 1301 } 1302 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */ 1303 1304 /* 1305 * Disk selection routines 1306 */ 1307 1308 /* 1309 * Selects the disk with the shortest queue from a mirror pair. 1310 * Both the disk I/Os queued in RAIDframe as well as those at the physical 1311 * disk are counted as members of the "queue" 1312 */ 1313 void 1314 rf_SelectMirrorDiskIdle(RF_DagNode_t * node) 1315 { 1316 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr; 1317 RF_RowCol_t colData, colMirror; 1318 int dataQueueLength, mirrorQueueLength, usemirror; 1319 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p; 1320 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p; 1321 RF_PhysDiskAddr_t *tmp_pda; 1322 RF_RaidDisk_t *disks = raidPtr->Disks; 1323 RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue; 1324 1325 /* return the [row col] of the disk with the shortest queue */ 1326 colData = data_pda->col; 1327 colMirror = mirror_pda->col; 1328 dataQueue = &(dqs[colData]); 1329 mirrorQueue = &(dqs[colMirror]); 1330 1331 #ifdef RF_LOCK_QUEUES_TO_READ_LEN 1332 RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle"); 1333 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */ 1334 dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding; 1335 #ifdef RF_LOCK_QUEUES_TO_READ_LEN 1336 RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle"); 1337 RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle"); 1338 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */ 1339 mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding; 1340 #ifdef RF_LOCK_QUEUES_TO_READ_LEN 1341 RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle"); 1342 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */ 1343 1344 usemirror = 0; 1345 if (RF_DEAD_DISK(disks[colMirror].status)) { 1346 usemirror = 0; 1347 } else 1348 if (RF_DEAD_DISK(disks[colData].status)) { 1349 usemirror = 1; 1350 } else 1351 if (raidPtr->parity_good == RF_RAID_DIRTY) { 1352 /* Trust only the main disk */ 1353 usemirror = 0; 1354 } else 1355 if (dataQueueLength < mirrorQueueLength) { 1356 usemirror = 0; 1357 } else 1358 if (mirrorQueueLength < dataQueueLength) { 1359 usemirror = 1; 1360 } else { 1361 /* queues are equal length. attempt 1362 * cleverness. */ 1363 if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector) 1364 <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) { 1365 usemirror = 0; 1366 } else { 1367 usemirror = 1; 1368 } 1369 } 1370 1371 if (usemirror) { 1372 /* use mirror (parity) disk, swap params 0 & 4 */ 1373 tmp_pda = data_pda; 1374 node->params[0].p = mirror_pda; 1375 node->params[4].p = tmp_pda; 1376 } else { 1377 /* use data disk, leave param 0 unchanged */ 1378 } 1379 /* printf("dataQueueLength %d, mirrorQueueLength 1380 * %d\n",dataQueueLength, mirrorQueueLength); */ 1381 } 1382 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0) 1383 /* 1384 * Do simple partitioning. This assumes that 1385 * the data and parity disks are laid out identically. 1386 */ 1387 void 1388 rf_SelectMirrorDiskPartition(RF_DagNode_t * node) 1389 { 1390 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr; 1391 RF_RowCol_t colData, colMirror; 1392 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p; 1393 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p; 1394 RF_PhysDiskAddr_t *tmp_pda; 1395 RF_RaidDisk_t *disks = raidPtr->Disks; 1396 int usemirror; 1397 1398 /* return the [row col] of the disk with the shortest queue */ 1399 colData = data_pda->col; 1400 colMirror = mirror_pda->col; 1401 1402 usemirror = 0; 1403 if (RF_DEAD_DISK(disks[colMirror].status)) { 1404 usemirror = 0; 1405 } else 1406 if (RF_DEAD_DISK(disks[colData].status)) { 1407 usemirror = 1; 1408 } else 1409 if (raidPtr->parity_good == RF_RAID_DIRTY) { 1410 /* Trust only the main disk */ 1411 usemirror = 0; 1412 } else 1413 if (data_pda->startSector < 1414 (disks[colData].numBlocks / 2)) { 1415 usemirror = 0; 1416 } else { 1417 usemirror = 1; 1418 } 1419 1420 if (usemirror) { 1421 /* use mirror (parity) disk, swap params 0 & 4 */ 1422 tmp_pda = data_pda; 1423 node->params[0].p = mirror_pda; 1424 node->params[4].p = tmp_pda; 1425 } else { 1426 /* use data disk, leave param 0 unchanged */ 1427 } 1428 } 1429 #endif 1430