xref: /netbsd-src/sys/dev/raidframe/rf_dagutils.c (revision 404ee5b9334f618040b6cdef96a0ff35a6fc4636)
1 /*	$NetBSD: rf_dagutils.c,v 1.57 2019/10/10 03:43:59 christos Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /******************************************************************************
30  *
31  * rf_dagutils.c -- utility routines for manipulating dags
32  *
33  *****************************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.57 2019/10/10 03:43:59 christos Exp $");
37 
38 #include <dev/raidframe/raidframevar.h>
39 
40 #include "rf_archs.h"
41 #include "rf_threadstuff.h"
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_general.h"
47 #include "rf_map.h"
48 #include "rf_shutdown.h"
49 
50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
51 
52 const RF_RedFuncs_t rf_xorFuncs = {
53 	rf_RegularXorFunc, "Reg Xr",
54 	rf_SimpleXorFunc, "Simple Xr"};
55 
56 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
57 	rf_RecoveryXorFunc, "Recovery Xr",
58 	rf_RecoveryXorFunc, "Recovery Xr"};
59 
60 #if RF_DEBUG_VALIDATE_DAG
61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 static void rf_PrintDAG(RF_DagHeader_t *);
63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
64 			     RF_DagNode_t **, int);
65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
67 #endif /* RF_DEBUG_VALIDATE_DAG */
68 
69 /* The maximum number of nodes in a DAG is bounded by
70 
71 (2 * raidPtr->Layout->numDataCol) + (1 * layoutPtr->numParityCol) +
72 	(1 * 2 * layoutPtr->numParityCol) + 3
73 
74 which is:  2*RF_MAXCOL+1*2+1*2*2+3
75 
76 For RF_MAXCOL of 40, this works out to 89.  We use this value to provide an estimate
77 on the maximum size needed for RF_DAGPCACHE_SIZE.  For RF_MAXCOL of 40, this structure
78 would be 534 bytes.  Too much to have on-hand in a RF_DagNode_t, but should be ok to
79 have a few kicking around.
80 */
81 #define RF_DAGPCACHE_SIZE ((2*RF_MAXCOL+1*2+1*2*2+3) *(RF_MAX(sizeof(RF_DagParam_t), sizeof(RF_DagNode_t *))))
82 
83 
84 /******************************************************************************
85  *
86  * InitNode - initialize a dag node
87  *
88  * the size of the propList array is always the same as that of the
89  * successors array.
90  *
91  *****************************************************************************/
92 void
93 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
94     void (*doFunc) (RF_DagNode_t *node),
95     void (*undoFunc) (RF_DagNode_t *node),
96     void (*wakeFunc) (void *node, int status),
97     int nSucc, int nAnte, int nParam, int nResult,
98     RF_DagHeader_t *hdr, const char *name, RF_AllocListElem_t *alist)
99 {
100 	void  **ptrs;
101 	int     nptrs;
102 
103 	if (nAnte > RF_MAX_ANTECEDENTS)
104 		RF_PANIC();
105 	node->status = initstatus;
106 	node->commitNode = commit;
107 	node->doFunc = doFunc;
108 	node->undoFunc = undoFunc;
109 	node->wakeFunc = wakeFunc;
110 	node->numParams = nParam;
111 	node->numResults = nResult;
112 	node->numAntecedents = nAnte;
113 	node->numAntDone = 0;
114 	node->next = NULL;
115 	/* node->list_next = NULL */  /* Don't touch this here!
116 	                                 It may already be
117 					 in use by the caller! */
118 	node->numSuccedents = nSucc;
119 	node->name = name;
120 	node->dagHdr = hdr;
121 	node->big_dag_ptrs = NULL;
122 	node->big_dag_params = NULL;
123 	node->visited = 0;
124 
125 	/* allocate all the pointers with one call to malloc */
126 	nptrs = nSucc + nAnte + nResult + nSucc;
127 
128 	if (nptrs <= RF_DAG_PTRCACHESIZE) {
129 		/*
130 	         * The dag_ptrs field of the node is basically some scribble
131 	         * space to be used here. We could get rid of it, and always
132 	         * allocate the range of pointers, but that's expensive. So,
133 	         * we pick a "common case" size for the pointer cache. Hopefully,
134 	         * we'll find that:
135 	         * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
136 	         *     only a little bit (least efficient case)
137 	         * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
138 	         *     (wasted memory)
139 	         */
140 		ptrs = (void **) node->dag_ptrs;
141 	} else if (nptrs <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagNode_t *))) {
142 		node->big_dag_ptrs = rf_AllocDAGPCache();
143 		ptrs = (void **) node->big_dag_ptrs;
144 	} else {
145 		ptrs = RF_MallocAndAdd(nptrs * sizeof(*ptrs), alist);
146 	}
147 	node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
148 	node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
149 	node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
150 	node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
151 
152 	if (nParam) {
153 		if (nParam <= RF_DAG_PARAMCACHESIZE) {
154 			node->params = (RF_DagParam_t *) node->dag_params;
155 		} else if (nParam <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagParam_t))) {
156 			node->big_dag_params = rf_AllocDAGPCache();
157 			node->params = node->big_dag_params;
158 		} else {
159 			node->params = RF_MallocAndAdd(
160 			    nParam * sizeof(*node->params), alist);
161 		}
162 	} else {
163 		node->params = NULL;
164 	}
165 }
166 
167 
168 
169 /******************************************************************************
170  *
171  * allocation and deallocation routines
172  *
173  *****************************************************************************/
174 
175 void
176 rf_FreeDAG(RF_DagHeader_t *dag_h)
177 {
178 	RF_AccessStripeMapHeader_t *asmap, *t_asmap;
179 	RF_PhysDiskAddr_t *pda;
180 	RF_DagNode_t *tmpnode;
181 	RF_DagHeader_t *nextDag;
182 
183 	while (dag_h) {
184 		nextDag = dag_h->next;
185 		rf_FreeAllocList(dag_h->allocList);
186 		for (asmap = dag_h->asmList; asmap;) {
187 			t_asmap = asmap;
188 			asmap = asmap->next;
189 			rf_FreeAccessStripeMap(t_asmap);
190 		}
191 		while (dag_h->pda_cleanup_list) {
192 			pda = dag_h->pda_cleanup_list;
193 			dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next;
194 			rf_FreePhysDiskAddr(pda);
195 		}
196 		while (dag_h->nodes) {
197 			tmpnode = dag_h->nodes;
198 			dag_h->nodes = dag_h->nodes->list_next;
199 			rf_FreeDAGNode(tmpnode);
200 		}
201 		rf_FreeDAGHeader(dag_h);
202 		dag_h = nextDag;
203 	}
204 }
205 
206 #define RF_MAX_FREE_DAGH 128
207 #define RF_MIN_FREE_DAGH  32
208 
209 #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */
210 #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */
211 
212 #define RF_MAX_FREE_DAGLIST 128
213 #define RF_MIN_FREE_DAGLIST  32
214 
215 #define RF_MAX_FREE_DAGPCACHE 128
216 #define RF_MIN_FREE_DAGPCACHE   8
217 
218 #define RF_MAX_FREE_FUNCLIST 128
219 #define RF_MIN_FREE_FUNCLIST  32
220 
221 #define RF_MAX_FREE_BUFFERS 128
222 #define RF_MIN_FREE_BUFFERS  32
223 
224 static void rf_ShutdownDAGs(void *);
225 static void
226 rf_ShutdownDAGs(void *ignored)
227 {
228 	pool_destroy(&rf_pools.dagh);
229 	pool_destroy(&rf_pools.dagnode);
230 	pool_destroy(&rf_pools.daglist);
231 	pool_destroy(&rf_pools.dagpcache);
232 	pool_destroy(&rf_pools.funclist);
233 }
234 
235 int
236 rf_ConfigureDAGs(RF_ShutdownList_t **listp)
237 {
238 
239 	rf_pool_init(&rf_pools.dagnode, sizeof(RF_DagNode_t),
240 		     "rf_dagnode_pl", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE);
241 	rf_pool_init(&rf_pools.dagh, sizeof(RF_DagHeader_t),
242 		     "rf_dagh_pl", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH);
243 	rf_pool_init(&rf_pools.daglist, sizeof(RF_DagList_t),
244 		     "rf_daglist_pl", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST);
245 	rf_pool_init(&rf_pools.dagpcache, RF_DAGPCACHE_SIZE,
246 		     "rf_dagpcache_pl", RF_MIN_FREE_DAGPCACHE, RF_MAX_FREE_DAGPCACHE);
247 	rf_pool_init(&rf_pools.funclist, sizeof(RF_FuncList_t),
248 		     "rf_funclist_pl", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST);
249 	rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
250 
251 	return (0);
252 }
253 
254 RF_DagHeader_t *
255 rf_AllocDAGHeader(void)
256 {
257 	return pool_get(&rf_pools.dagh, PR_WAITOK | PR_ZERO);
258 }
259 
260 void
261 rf_FreeDAGHeader(RF_DagHeader_t * dh)
262 {
263 	pool_put(&rf_pools.dagh, dh);
264 }
265 
266 RF_DagNode_t *
267 rf_AllocDAGNode(void)
268 {
269 	return pool_get(&rf_pools.dagnode, PR_WAITOK | PR_ZERO);
270 }
271 
272 void
273 rf_FreeDAGNode(RF_DagNode_t *node)
274 {
275 	if (node->big_dag_ptrs) {
276 		rf_FreeDAGPCache(node->big_dag_ptrs);
277 	}
278 	if (node->big_dag_params) {
279 		rf_FreeDAGPCache(node->big_dag_params);
280 	}
281 	pool_put(&rf_pools.dagnode, node);
282 }
283 
284 RF_DagList_t *
285 rf_AllocDAGList(void)
286 {
287 	return pool_get(&rf_pools.daglist, PR_WAITOK | PR_ZERO);
288 }
289 
290 void
291 rf_FreeDAGList(RF_DagList_t *dagList)
292 {
293 	pool_put(&rf_pools.daglist, dagList);
294 }
295 
296 void *
297 rf_AllocDAGPCache(void)
298 {
299 	return pool_get(&rf_pools.dagpcache, PR_WAITOK | PR_ZERO);
300 }
301 
302 void
303 rf_FreeDAGPCache(void *p)
304 {
305 	pool_put(&rf_pools.dagpcache, p);
306 }
307 
308 RF_FuncList_t *
309 rf_AllocFuncList(void)
310 {
311 	return pool_get(&rf_pools.funclist, PR_WAITOK | PR_ZERO);
312 }
313 
314 void
315 rf_FreeFuncList(RF_FuncList_t *funcList)
316 {
317 	pool_put(&rf_pools.funclist, funcList);
318 }
319 
320 /* allocates a stripe buffer -- a buffer large enough to hold all the data
321    in an entire stripe.
322 */
323 
324 void *
325 rf_AllocStripeBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h,
326     int size)
327 {
328 	RF_VoidPointerListElem_t *vple;
329 	void *p;
330 
331 	RF_ASSERT((size <= (raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
332 					       raidPtr->logBytesPerSector))));
333 
334 	p =  malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
335 					raidPtr->logBytesPerSector),
336 		     M_RAIDFRAME, M_NOWAIT);
337 	if (!p) {
338 		rf_lock_mutex2(raidPtr->mutex);
339 		if (raidPtr->stripebuf_count > 0) {
340 			vple = raidPtr->stripebuf;
341 			raidPtr->stripebuf = vple->next;
342 			p = vple->p;
343 			rf_FreeVPListElem(vple);
344 			raidPtr->stripebuf_count--;
345 		} else {
346 #ifdef DIAGNOSTIC
347 			printf("raid%d: Help!  Out of emergency full-stripe buffers!\n", raidPtr->raidid);
348 #endif
349 		}
350 		rf_unlock_mutex2(raidPtr->mutex);
351 		if (!p) {
352 			/* We didn't get a buffer... not much we can do other than wait,
353 			   and hope that someone frees up memory for us.. */
354 			p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
355 						       raidPtr->logBytesPerSector), M_RAIDFRAME, M_WAITOK);
356 		}
357 	}
358 	memset(p, 0, raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector));
359 
360 	vple = rf_AllocVPListElem();
361 	vple->p = p;
362         vple->next = dag_h->desc->stripebufs;
363         dag_h->desc->stripebufs = vple;
364 
365 	return (p);
366 }
367 
368 
369 void
370 rf_FreeStripeBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
371 {
372 	rf_lock_mutex2(raidPtr->mutex);
373 	if (raidPtr->stripebuf_count < raidPtr->numEmergencyStripeBuffers) {
374 		/* just tack it in */
375 		vple->next = raidPtr->stripebuf;
376 		raidPtr->stripebuf = vple;
377 		raidPtr->stripebuf_count++;
378 	} else {
379 		free(vple->p, M_RAIDFRAME);
380 		rf_FreeVPListElem(vple);
381 	}
382 	rf_unlock_mutex2(raidPtr->mutex);
383 }
384 
385 /* allocates a buffer big enough to hold the data described by the
386 caller (ie. the data of the associated PDA).  Glue this buffer
387 into our dag_h cleanup structure. */
388 
389 void *
390 rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size)
391 {
392 	RF_VoidPointerListElem_t *vple;
393 	void *p;
394 
395 	p = rf_AllocIOBuffer(raidPtr, size);
396 	vple = rf_AllocVPListElem();
397 	vple->p = p;
398 	vple->next = dag_h->desc->iobufs;
399 	dag_h->desc->iobufs = vple;
400 
401 	return (p);
402 }
403 
404 void *
405 rf_AllocIOBuffer(RF_Raid_t *raidPtr, int size)
406 {
407 	RF_VoidPointerListElem_t *vple;
408 	void *p;
409 
410 	RF_ASSERT((size <= (raidPtr->Layout.sectorsPerStripeUnit <<
411 			   raidPtr->logBytesPerSector)));
412 
413 	p =  malloc( raidPtr->Layout.sectorsPerStripeUnit <<
414 				 raidPtr->logBytesPerSector,
415 				 M_RAIDFRAME, M_NOWAIT);
416 	if (!p) {
417 		rf_lock_mutex2(raidPtr->mutex);
418 		if (raidPtr->iobuf_count > 0) {
419 			vple = raidPtr->iobuf;
420 			raidPtr->iobuf = vple->next;
421 			p = vple->p;
422 			rf_FreeVPListElem(vple);
423 			raidPtr->iobuf_count--;
424 		} else {
425 #ifdef DIAGNOSTIC
426 			printf("raid%d: Help!  Out of emergency buffers!\n", raidPtr->raidid);
427 #endif
428 		}
429 		rf_unlock_mutex2(raidPtr->mutex);
430 		if (!p) {
431 			/* We didn't get a buffer... not much we can do other than wait,
432 			   and hope that someone frees up memory for us.. */
433 			p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
434 				    raidPtr->logBytesPerSector,
435 				    M_RAIDFRAME, M_WAITOK);
436 		}
437 	}
438 	memset(p, 0, raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector);
439 	return (p);
440 }
441 
442 void
443 rf_FreeIOBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
444 {
445 	rf_lock_mutex2(raidPtr->mutex);
446 	if (raidPtr->iobuf_count < raidPtr->numEmergencyBuffers) {
447 		/* just tack it in */
448 		vple->next = raidPtr->iobuf;
449 		raidPtr->iobuf = vple;
450 		raidPtr->iobuf_count++;
451 	} else {
452 		free(vple->p, M_RAIDFRAME);
453 		rf_FreeVPListElem(vple);
454 	}
455 	rf_unlock_mutex2(raidPtr->mutex);
456 }
457 
458 
459 
460 #if RF_DEBUG_VALIDATE_DAG
461 /******************************************************************************
462  *
463  * debug routines
464  *
465  *****************************************************************************/
466 
467 char   *
468 rf_NodeStatusString(RF_DagNode_t *node)
469 {
470 	switch (node->status) {
471 	case rf_wait:
472 		return ("wait");
473 	case rf_fired:
474 		return ("fired");
475 	case rf_good:
476 		return ("good");
477 	case rf_bad:
478 		return ("bad");
479 	default:
480 		return ("?");
481 	}
482 }
483 
484 void
485 rf_PrintNodeInfoString(RF_DagNode_t *node)
486 {
487 	RF_PhysDiskAddr_t *pda;
488 	int     (*df) (RF_DagNode_t *) = node->doFunc;
489 	int     i, lk, unlk;
490 	void   *bufPtr;
491 
492 	if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
493 	    || (df == rf_DiskReadMirrorIdleFunc)
494 	    || (df == rf_DiskReadMirrorPartitionFunc)) {
495 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
496 		bufPtr = (void *) node->params[1].p;
497 		lk = 0;
498 		unlk = 0;
499 		RF_ASSERT(!(lk && unlk));
500 		printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
501 		    (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
502 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
503 		return;
504 	}
505 	if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
506 	    || (df == rf_RecoveryXorFunc)) {
507 		printf("result buf 0x%lx\n", (long) node->results[0]);
508 		for (i = 0; i < node->numParams - 1; i += 2) {
509 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
510 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
511 			printf("    buf 0x%lx c%d offs %ld nsect %d\n",
512 			    (long) bufPtr, pda->col,
513 			    (long) pda->startSector, (int) pda->numSector);
514 		}
515 		return;
516 	}
517 #if RF_INCLUDE_PARITYLOGGING > 0
518 	if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
519 		for (i = 0; i < node->numParams - 1; i += 2) {
520 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
521 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
522 			printf(" c%d offs %ld nsect %d buf 0x%lx\n",
523 			    pda->col, (long) pda->startSector,
524 			    (int) pda->numSector, (long) bufPtr);
525 		}
526 		return;
527 	}
528 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
529 
530 	if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
531 		printf("\n");
532 		return;
533 	}
534 	printf("?\n");
535 }
536 #ifdef DEBUG
537 static void
538 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
539 {
540 	char   *anttype;
541 	int     i;
542 
543 	node->visited = (unvisited) ? 0 : 1;
544 	printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
545 	    node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
546 	    node->numSuccedents, node->numSuccFired, node->numSuccDone,
547 	    node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
548 	for (i = 0; i < node->numSuccedents; i++) {
549 		printf("%d%s", node->succedents[i]->nodeNum,
550 		    ((i == node->numSuccedents - 1) ? "\0" : " "));
551 	}
552 	printf("} A{");
553 	for (i = 0; i < node->numAntecedents; i++) {
554 		switch (node->antType[i]) {
555 		case rf_trueData:
556 			anttype = "T";
557 			break;
558 		case rf_antiData:
559 			anttype = "A";
560 			break;
561 		case rf_outputData:
562 			anttype = "O";
563 			break;
564 		case rf_control:
565 			anttype = "C";
566 			break;
567 		default:
568 			anttype = "?";
569 			break;
570 		}
571 		printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
572 	}
573 	printf("}; ");
574 	rf_PrintNodeInfoString(node);
575 	for (i = 0; i < node->numSuccedents; i++) {
576 		if (node->succedents[i]->visited == unvisited)
577 			rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
578 	}
579 }
580 
581 static void
582 rf_PrintDAG(RF_DagHeader_t *dag_h)
583 {
584 	int     unvisited, i;
585 	char   *status;
586 
587 	/* set dag status */
588 	switch (dag_h->status) {
589 	case rf_enable:
590 		status = "enable";
591 		break;
592 	case rf_rollForward:
593 		status = "rollForward";
594 		break;
595 	case rf_rollBackward:
596 		status = "rollBackward";
597 		break;
598 	default:
599 		status = "illegal!";
600 		break;
601 	}
602 	/* find out if visited bits are currently set or clear */
603 	unvisited = dag_h->succedents[0]->visited;
604 
605 	printf("DAG type:  %s\n", dag_h->creator);
606 	printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)};  info\n");
607 	printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
608 	    status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
609 	for (i = 0; i < dag_h->numSuccedents; i++) {
610 		printf("%d%s", dag_h->succedents[i]->nodeNum,
611 		    ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
612 	}
613 	printf("};\n");
614 	for (i = 0; i < dag_h->numSuccedents; i++) {
615 		if (dag_h->succedents[i]->visited == unvisited)
616 			rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
617 	}
618 }
619 #endif
620 /* assigns node numbers */
621 int
622 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
623 {
624 	int     unvisited, i, nnum;
625 	RF_DagNode_t *node;
626 
627 	nnum = 0;
628 	unvisited = dag_h->succedents[0]->visited;
629 
630 	dag_h->nodeNum = nnum++;
631 	for (i = 0; i < dag_h->numSuccedents; i++) {
632 		node = dag_h->succedents[i];
633 		if (node->visited == unvisited) {
634 			nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
635 		}
636 	}
637 	return (nnum);
638 }
639 
640 int
641 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
642 {
643 	int     i;
644 
645 	node->visited = (unvisited) ? 0 : 1;
646 
647 	node->nodeNum = num++;
648 	for (i = 0; i < node->numSuccedents; i++) {
649 		if (node->succedents[i]->visited == unvisited) {
650 			num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
651 		}
652 	}
653 	return (num);
654 }
655 /* set the header pointers in each node to "newptr" */
656 void
657 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
658 {
659 	int     i;
660 	for (i = 0; i < dag_h->numSuccedents; i++)
661 		if (dag_h->succedents[i]->dagHdr != newptr)
662 			rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
663 }
664 
665 void
666 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
667 {
668 	int     i;
669 	node->dagHdr = newptr;
670 	for (i = 0; i < node->numSuccedents; i++)
671 		if (node->succedents[i]->dagHdr != newptr)
672 			rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
673 }
674 
675 
676 void
677 rf_PrintDAGList(RF_DagHeader_t * dag_h)
678 {
679 	int     i = 0;
680 
681 	for (; dag_h; dag_h = dag_h->next) {
682 		rf_AssignNodeNums(dag_h);
683 		printf("\n\nDAG %d IN LIST:\n", i++);
684 		rf_PrintDAG(dag_h);
685 	}
686 }
687 
688 static int
689 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
690 		  RF_DagNode_t **nodes, int unvisited)
691 {
692 	int     i, retcode = 0;
693 
694 	/* construct an array of node pointers indexed by node num */
695 	node->visited = (unvisited) ? 0 : 1;
696 	nodes[node->nodeNum] = node;
697 
698 	if (node->next != NULL) {
699 		printf("INVALID DAG: next pointer in node is not NULL\n");
700 		retcode = 1;
701 	}
702 	if (node->status != rf_wait) {
703 		printf("INVALID DAG: Node status is not wait\n");
704 		retcode = 1;
705 	}
706 	if (node->numAntDone != 0) {
707 		printf("INVALID DAG: numAntDone is not zero\n");
708 		retcode = 1;
709 	}
710 	if (node->doFunc == rf_TerminateFunc) {
711 		if (node->numSuccedents != 0) {
712 			printf("INVALID DAG: Terminator node has succedents\n");
713 			retcode = 1;
714 		}
715 	} else {
716 		if (node->numSuccedents == 0) {
717 			printf("INVALID DAG: Non-terminator node has no succedents\n");
718 			retcode = 1;
719 		}
720 	}
721 	for (i = 0; i < node->numSuccedents; i++) {
722 		if (!node->succedents[i]) {
723 			printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
724 			retcode = 1;
725 		}
726 		scount[node->succedents[i]->nodeNum]++;
727 	}
728 	for (i = 0; i < node->numAntecedents; i++) {
729 		if (!node->antecedents[i]) {
730 			printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
731 			retcode = 1;
732 		}
733 		acount[node->antecedents[i]->nodeNum]++;
734 	}
735 	for (i = 0; i < node->numSuccedents; i++) {
736 		if (node->succedents[i]->visited == unvisited) {
737 			if (rf_ValidateBranch(node->succedents[i], scount,
738 				acount, nodes, unvisited)) {
739 				retcode = 1;
740 			}
741 		}
742 	}
743 	return (retcode);
744 }
745 
746 static void
747 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
748 {
749 	int     i;
750 
751 	RF_ASSERT(node->visited == unvisited);
752 	for (i = 0; i < node->numSuccedents; i++) {
753 		if (node->succedents[i] == NULL) {
754 			printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
755 			RF_ASSERT(0);
756 		}
757 		rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
758 	}
759 }
760 /* NOTE:  never call this on a big dag, because it is exponential
761  * in execution time
762  */
763 static void
764 rf_ValidateVisitedBits(RF_DagHeader_t *dag)
765 {
766 	int     i, unvisited;
767 
768 	unvisited = dag->succedents[0]->visited;
769 
770 	for (i = 0; i < dag->numSuccedents; i++) {
771 		if (dag->succedents[i] == NULL) {
772 			printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
773 			RF_ASSERT(0);
774 		}
775 		rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
776 	}
777 }
778 /* validate a DAG.  _at entry_ verify that:
779  *   -- numNodesCompleted is zero
780  *   -- node queue is null
781  *   -- dag status is rf_enable
782  *   -- next pointer is null on every node
783  *   -- all nodes have status wait
784  *   -- numAntDone is zero in all nodes
785  *   -- terminator node has zero successors
786  *   -- no other node besides terminator has zero successors
787  *   -- no successor or antecedent pointer in a node is NULL
788  *   -- number of times that each node appears as a successor of another node
789  *      is equal to the antecedent count on that node
790  *   -- number of times that each node appears as an antecedent of another node
791  *      is equal to the succedent count on that node
792  *   -- what else?
793  */
794 int
795 rf_ValidateDAG(RF_DagHeader_t *dag_h)
796 {
797 	int     i, nodecount;
798 	int    *scount, *acount;/* per-node successor and antecedent counts */
799 	RF_DagNode_t **nodes;	/* array of ptrs to nodes in dag */
800 	int     retcode = 0;
801 	int     unvisited;
802 	int     commitNodeCount = 0;
803 
804 	if (rf_validateVisitedDebug)
805 		rf_ValidateVisitedBits(dag_h);
806 
807 	if (dag_h->numNodesCompleted != 0) {
808 		printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
809 		retcode = 1;
810 		goto validate_dag_bad;
811 	}
812 	if (dag_h->status != rf_enable) {
813 		printf("INVALID DAG: not enabled\n");
814 		retcode = 1;
815 		goto validate_dag_bad;
816 	}
817 	if (dag_h->numCommits != 0) {
818 		printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
819 		retcode = 1;
820 		goto validate_dag_bad;
821 	}
822 	if (dag_h->numSuccedents != 1) {
823 		/* currently, all dags must have only one succedent */
824 		printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
825 		retcode = 1;
826 		goto validate_dag_bad;
827 	}
828 	nodecount = rf_AssignNodeNums(dag_h);
829 
830 	unvisited = dag_h->succedents[0]->visited;
831 
832 	scount = RF_Malloc(nodecount * sizeof(*scount));
833 	acount = RF_Malloc(nodecount * sizeof(*acount));
834 	nodes = RF_Malloc(nodecount * sizeof(*nodes));
835 	for (i = 0; i < dag_h->numSuccedents; i++) {
836 		if ((dag_h->succedents[i]->visited == unvisited)
837 		    && rf_ValidateBranch(dag_h->succedents[i], scount,
838 			acount, nodes, unvisited)) {
839 			retcode = 1;
840 		}
841 	}
842 	/* start at 1 to skip the header node */
843 	for (i = 1; i < nodecount; i++) {
844 		if (nodes[i]->commitNode)
845 			commitNodeCount++;
846 		if (nodes[i]->doFunc == NULL) {
847 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
848 			retcode = 1;
849 			goto validate_dag_out;
850 		}
851 		if (nodes[i]->undoFunc == NULL) {
852 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
853 			retcode = 1;
854 			goto validate_dag_out;
855 		}
856 		if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
857 			printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
858 			    nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
859 			retcode = 1;
860 			goto validate_dag_out;
861 		}
862 		if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
863 			printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
864 			    nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
865 			retcode = 1;
866 			goto validate_dag_out;
867 		}
868 	}
869 
870 	if (dag_h->numCommitNodes != commitNodeCount) {
871 		printf("INVALID DAG: incorrect commit node count.  hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
872 		    dag_h->numCommitNodes, commitNodeCount);
873 		retcode = 1;
874 		goto validate_dag_out;
875 	}
876 validate_dag_out:
877 	RF_Free(scount, nodecount * sizeof(int));
878 	RF_Free(acount, nodecount * sizeof(int));
879 	RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
880 	if (retcode)
881 		rf_PrintDAGList(dag_h);
882 
883 	if (rf_validateVisitedDebug)
884 		rf_ValidateVisitedBits(dag_h);
885 
886 	return (retcode);
887 
888 validate_dag_bad:
889 	rf_PrintDAGList(dag_h);
890 	return (retcode);
891 }
892 
893 #endif /* RF_DEBUG_VALIDATE_DAG */
894 
895 /******************************************************************************
896  *
897  * misc construction routines
898  *
899  *****************************************************************************/
900 
901 void
902 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
903 {
904 	int     ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
905 	int     fcol = raidPtr->reconControl->fcol;
906 	int     scol = raidPtr->reconControl->spareCol;
907 	RF_PhysDiskAddr_t *pda;
908 
909 	RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
910 	for (pda = asmap->physInfo; pda; pda = pda->next) {
911 		if (pda->col == fcol) {
912 #if RF_DEBUG_DAG
913 			if (rf_dagDebug) {
914 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
915 					pda->startSector)) {
916 					RF_PANIC();
917 				}
918 			}
919 #endif
920 			/* printf("Remapped data for large write\n"); */
921 			if (ds) {
922 				raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
923 				    &pda->col, &pda->startSector, RF_REMAP);
924 			} else {
925 				pda->col = scol;
926 			}
927 		}
928 	}
929 	for (pda = asmap->parityInfo; pda; pda = pda->next) {
930 		if (pda->col == fcol) {
931 #if RF_DEBUG_DAG
932 			if (rf_dagDebug) {
933 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
934 					RF_PANIC();
935 				}
936 			}
937 #endif
938 		}
939 		if (ds) {
940 			(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
941 		} else {
942 			pda->col = scol;
943 		}
944 	}
945 }
946 
947 
948 /* this routine allocates read buffers and generates stripe maps for the
949  * regions of the array from the start of the stripe to the start of the
950  * access, and from the end of the access to the end of the stripe.  It also
951  * computes and returns the number of DAG nodes needed to read all this data.
952  * Note that this routine does the wrong thing if the access is fully
953  * contained within one stripe unit, so we RF_ASSERT against this case at the
954  * start.
955  *
956  * layoutPtr - in: layout information
957  * asmap     - in: access stripe map
958  * dag_h     - in: header of the dag to create
959  * new_asm_h - in: ptr to array of 2 headers.  to be filled in
960  * nRodNodes - out: num nodes to be generated to read unaccessed data
961  * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
962  */
963 void
964 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
965 				RF_RaidLayout_t *layoutPtr,
966 				RF_AccessStripeMap_t *asmap,
967 				RF_DagHeader_t *dag_h,
968 				RF_AccessStripeMapHeader_t **new_asm_h,
969 				int *nRodNodes,
970 				char **sosBuffer, char **eosBuffer,
971 				RF_AllocListElem_t *allocList)
972 {
973 	RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
974 	RF_SectorNum_t sosNumSector, eosNumSector;
975 
976 	RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
977 	/* generate an access map for the region of the array from start of
978 	 * stripe to start of access */
979 	new_asm_h[0] = new_asm_h[1] = NULL;
980 	*nRodNodes = 0;
981 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
982 		sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
983 		sosNumSector = asmap->raidAddress - sosRaidAddress;
984 		*sosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, sosNumSector));
985 		new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
986 		new_asm_h[0]->next = dag_h->asmList;
987 		dag_h->asmList = new_asm_h[0];
988 		*nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
989 
990 		RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
991 		/* we're totally within one stripe here */
992 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
993 			rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
994 	}
995 	/* generate an access map for the region of the array from end of
996 	 * access to end of stripe */
997 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
998 		eosRaidAddress = asmap->endRaidAddress;
999 		eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
1000 		*eosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, eosNumSector));
1001 		new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
1002 		new_asm_h[1]->next = dag_h->asmList;
1003 		dag_h->asmList = new_asm_h[1];
1004 		*nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
1005 
1006 		RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
1007 		/* we're totally within one stripe here */
1008 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
1009 			rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
1010 	}
1011 }
1012 
1013 
1014 
1015 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
1016 int
1017 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
1018 	      RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
1019 {
1020 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1021 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1022 	/* use -1 to be sure we stay within SU */
1023 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
1024 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1025 	return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
1026 }
1027 
1028 
1029 /* GenerateFailedAccessASMs
1030  *
1031  * this routine figures out what portion of the stripe needs to be read
1032  * to effect the degraded read or write operation.  It's primary function
1033  * is to identify everything required to recover the data, and then
1034  * eliminate anything that is already being accessed by the user.
1035  *
1036  * The main result is two new ASMs, one for the region from the start of the
1037  * stripe to the start of the access, and one for the region from the end of
1038  * the access to the end of the stripe.  These ASMs describe everything that
1039  * needs to be read to effect the degraded access.  Other results are:
1040  *    nXorBufs -- the total number of buffers that need to be XORed together to
1041  *                recover the lost data,
1042  *    rpBufPtr -- ptr to a newly-allocated buffer to hold the parity.  If NULL
1043  *                at entry, not allocated.
1044  *    overlappingPDAs --
1045  *                describes which of the non-failed PDAs in the user access
1046  *                overlap data that needs to be read to effect recovery.
1047  *                overlappingPDAs[i]==1 if and only if, neglecting the failed
1048  *                PDA, the ith pda in the input asm overlaps data that needs
1049  *                to be read for recovery.
1050  */
1051  /* in: asm - ASM for the actual access, one stripe only */
1052  /* in: failedPDA - which component of the access has failed */
1053  /* in: dag_h - header of the DAG we're going to create */
1054  /* out: new_asm_h - the two new ASMs */
1055  /* out: nXorBufs - the total number of xor bufs required */
1056  /* out: rpBufPtr - a buffer for the parity read */
1057 void
1058 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1059 			    RF_PhysDiskAddr_t *failedPDA,
1060 			    RF_DagHeader_t *dag_h,
1061 			    RF_AccessStripeMapHeader_t **new_asm_h,
1062 			    int *nXorBufs, char **rpBufPtr,
1063 			    char *overlappingPDAs,
1064 			    RF_AllocListElem_t *allocList)
1065 {
1066 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
1067 
1068 	/* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
1069 	RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
1070 	RF_PhysDiskAddr_t *pda;
1071 	int     foundit, i;
1072 
1073 	foundit = 0;
1074 	/* first compute the following raid addresses: start of stripe,
1075 	 * (sosAddr) MIN(start of access, start of failed SU),   (sosEndAddr)
1076 	 * MAX(end of access, end of failed SU),       (eosStartAddr) end of
1077 	 * stripe (i.e. start of next stripe)   (eosAddr) */
1078 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
1079 	sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
1080 	eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
1081 	eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
1082 
1083 	/* now generate access stripe maps for each of the above regions of
1084 	 * the stripe.  Use a dummy (NULL) buf ptr for now */
1085 
1086 	new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
1087 	new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
1088 
1089 	/* walk through the PDAs and range-restrict each SU to the region of
1090 	 * the SU touched on the failed PDA.  also compute total data buffer
1091 	 * space requirements in this step.  Ignore the parity for now. */
1092 	/* Also count nodes to find out how many bufs need to be xored together */
1093 	(*nXorBufs) = 1;	/* in read case, 1 is for parity.  In write
1094 				 * case, 1 is for failed data */
1095 
1096 	if (new_asm_h[0]) {
1097 		new_asm_h[0]->next = dag_h->asmList;
1098 		dag_h->asmList = new_asm_h[0];
1099 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
1100 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1101 			pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
1102 		}
1103 		(*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
1104 	}
1105 	if (new_asm_h[1]) {
1106 		new_asm_h[1]->next = dag_h->asmList;
1107 		dag_h->asmList = new_asm_h[1];
1108 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
1109 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1110 			pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
1111 		}
1112 		(*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
1113 	}
1114 
1115 	/* allocate a buffer for parity */
1116 	if (rpBufPtr)
1117 		*rpBufPtr = rf_AllocBuffer(raidPtr, dag_h, failedPDA->numSector << raidPtr->logBytesPerSector);
1118 
1119 	/* the last step is to figure out how many more distinct buffers need
1120 	 * to get xor'd to produce the missing unit.  there's one for each
1121 	 * user-data read node that overlaps the portion of the failed unit
1122 	 * being accessed */
1123 
1124 	for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
1125 		if (pda == failedPDA) {
1126 			i--;
1127 			foundit = 1;
1128 			continue;
1129 		}
1130 		if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
1131 			overlappingPDAs[i] = 1;
1132 			(*nXorBufs)++;
1133 		}
1134 	}
1135 	if (!foundit) {
1136 		RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
1137 		RF_ASSERT(0);
1138 	}
1139 #if RF_DEBUG_DAG
1140 	if (rf_degDagDebug) {
1141 		if (new_asm_h[0]) {
1142 			printf("First asm:\n");
1143 			rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
1144 		}
1145 		if (new_asm_h[1]) {
1146 			printf("Second asm:\n");
1147 			rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
1148 		}
1149 	}
1150 #endif
1151 }
1152 
1153 
1154 /* adjusts the offset and number of sectors in the destination pda so that
1155  * it covers at most the region of the SU covered by the source PDA.  This
1156  * is exclusively a restriction:  the number of sectors indicated by the
1157  * target PDA can only shrink.
1158  *
1159  * For example:  s = sectors within SU indicated by source PDA
1160  *               d = sectors within SU indicated by dest PDA
1161  *               r = results, stored in dest PDA
1162  *
1163  * |--------------- one stripe unit ---------------------|
1164  * |           sssssssssssssssssssssssssssssssss         |
1165  * |    ddddddddddddddddddddddddddddddddddddddddddddd    |
1166  * |           rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr         |
1167  *
1168  * Another example:
1169  *
1170  * |--------------- one stripe unit ---------------------|
1171  * |           sssssssssssssssssssssssssssssssss         |
1172  * |    ddddddddddddddddddddddd                          |
1173  * |           rrrrrrrrrrrrrrrr                          |
1174  *
1175  */
1176 void
1177 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
1178 		    RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
1179 {
1180 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1181 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1182 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1183 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);	/* use -1 to be sure we
1184 													 * stay within SU */
1185 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1186 	RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector);	/* stripe unit boundary */
1187 
1188 	dest->startSector = subAddr + RF_MAX(soffs, doffs);
1189 	dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1190 
1191 	if (dobuffer)
1192 		dest->bufPtr = (char *)(dest->bufPtr) + ((soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0);
1193 	if (doraidaddr) {
1194 		dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1195 		    rf_StripeUnitOffset(layoutPtr, dest->startSector);
1196 	}
1197 }
1198 
1199 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1200 
1201 /*
1202  * Want the highest of these primes to be the largest one
1203  * less than the max expected number of columns (won't hurt
1204  * to be too small or too large, but won't be optimal, either)
1205  * --jimz
1206  */
1207 #define NLOWPRIMES 8
1208 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1209 /*****************************************************************************
1210  * compute the workload shift factor.  (chained declustering)
1211  *
1212  * return nonzero if access should shift to secondary, otherwise,
1213  * access is to primary
1214  *****************************************************************************/
1215 int
1216 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
1217 {
1218 	/*
1219          * variables:
1220          *  d   = column of disk containing primary
1221          *  f   = column of failed disk
1222          *  n   = number of disks in array
1223          *  sd  = "shift distance" (number of columns that d is to the right of f)
1224          *  v   = numerator of redirection ratio
1225          *  k   = denominator of redirection ratio
1226          */
1227 	RF_RowCol_t d, f, sd, n;
1228 	int     k, v, ret, i;
1229 
1230 	n = raidPtr->numCol;
1231 
1232 	/* assign column of primary copy to d */
1233 	d = pda->col;
1234 
1235 	/* assign column of dead disk to f */
1236 	for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++)
1237 		continue;
1238 
1239 	RF_ASSERT(f < n);
1240 	RF_ASSERT(f != d);
1241 
1242 	sd = (f > d) ? (n + d - f) : (d - f);
1243 	RF_ASSERT(sd < n);
1244 
1245 	/*
1246          * v of every k accesses should be redirected
1247          *
1248          * v/k := (n-1-sd)/(n-1)
1249          */
1250 	v = (n - 1 - sd);
1251 	k = (n - 1);
1252 
1253 #if 1
1254 	/*
1255          * XXX
1256          * Is this worth it?
1257          *
1258          * Now reduce the fraction, by repeatedly factoring
1259          * out primes (just like they teach in elementary school!)
1260          */
1261 	for (i = 0; i < NLOWPRIMES; i++) {
1262 		if (lowprimes[i] > v)
1263 			break;
1264 		while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1265 			v /= lowprimes[i];
1266 			k /= lowprimes[i];
1267 		}
1268 	}
1269 #endif
1270 
1271 	raidPtr->hist_diskreq[d]++;
1272 	if (raidPtr->hist_diskreq[d] > v) {
1273 		ret = 0;	/* do not redirect */
1274 	} else {
1275 		ret = 1;	/* redirect */
1276 	}
1277 
1278 #if 0
1279 	printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1280 	    raidPtr->hist_diskreq[d]);
1281 #endif
1282 
1283 	if (raidPtr->hist_diskreq[d] >= k) {
1284 		/* reset counter */
1285 		raidPtr->hist_diskreq[d] = 0;
1286 	}
1287 	return (ret);
1288 }
1289 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1290 
1291 /*
1292  * Disk selection routines
1293  */
1294 
1295 /*
1296  * Selects the disk with the shortest queue from a mirror pair.
1297  * Both the disk I/Os queued in RAIDframe as well as those at the physical
1298  * disk are counted as members of the "queue"
1299  */
1300 void
1301 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1302 {
1303 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1304 	RF_RowCol_t colData, colMirror;
1305 	int     dataQueueLength, mirrorQueueLength, usemirror;
1306 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1307 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1308 	RF_PhysDiskAddr_t *tmp_pda;
1309 	RF_RaidDisk_t *disks = raidPtr->Disks;
1310 	RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1311 
1312 	/* return the [row col] of the disk with the shortest queue */
1313 	colData = data_pda->col;
1314 	colMirror = mirror_pda->col;
1315 	dataQueue = &(dqs[colData]);
1316 	mirrorQueue = &(dqs[colMirror]);
1317 
1318 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1319 	RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1320 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
1321 	dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1322 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1323 	RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1324 	RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1325 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
1326 	mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1327 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1328 	RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1329 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
1330 
1331 	usemirror = 0;
1332 	if (RF_DEAD_DISK(disks[colMirror].status)) {
1333 		usemirror = 0;
1334 	} else
1335 		if (RF_DEAD_DISK(disks[colData].status)) {
1336 			usemirror = 1;
1337 		} else
1338 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
1339 				/* Trust only the main disk */
1340 				usemirror = 0;
1341 			} else
1342 				if (dataQueueLength < mirrorQueueLength) {
1343 					usemirror = 0;
1344 				} else
1345 					if (mirrorQueueLength < dataQueueLength) {
1346 						usemirror = 1;
1347 					} else {
1348 						/* queues are equal length. attempt
1349 						 * cleverness. */
1350 						if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1351 						    <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1352 							usemirror = 0;
1353 						} else {
1354 							usemirror = 1;
1355 						}
1356 					}
1357 
1358 	if (usemirror) {
1359 		/* use mirror (parity) disk, swap params 0 & 4 */
1360 		tmp_pda = data_pda;
1361 		node->params[0].p = mirror_pda;
1362 		node->params[4].p = tmp_pda;
1363 	} else {
1364 		/* use data disk, leave param 0 unchanged */
1365 	}
1366 	/* printf("dataQueueLength %d, mirrorQueueLength
1367 	 * %d\n",dataQueueLength, mirrorQueueLength); */
1368 }
1369 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1370 /*
1371  * Do simple partitioning. This assumes that
1372  * the data and parity disks are laid out identically.
1373  */
1374 void
1375 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1376 {
1377 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1378 	RF_RowCol_t colData, colMirror;
1379 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1380 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1381 	RF_PhysDiskAddr_t *tmp_pda;
1382 	RF_RaidDisk_t *disks = raidPtr->Disks;
1383 	int     usemirror;
1384 
1385 	/* return the [row col] of the disk with the shortest queue */
1386 	colData = data_pda->col;
1387 	colMirror = mirror_pda->col;
1388 
1389 	usemirror = 0;
1390 	if (RF_DEAD_DISK(disks[colMirror].status)) {
1391 		usemirror = 0;
1392 	} else
1393 		if (RF_DEAD_DISK(disks[colData].status)) {
1394 			usemirror = 1;
1395 		} else
1396 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
1397 				/* Trust only the main disk */
1398 				usemirror = 0;
1399 			} else
1400 				if (data_pda->startSector <
1401 				    (disks[colData].numBlocks / 2)) {
1402 					usemirror = 0;
1403 				} else {
1404 					usemirror = 1;
1405 				}
1406 
1407 	if (usemirror) {
1408 		/* use mirror (parity) disk, swap params 0 & 4 */
1409 		tmp_pda = data_pda;
1410 		node->params[0].p = mirror_pda;
1411 		node->params[4].p = tmp_pda;
1412 	} else {
1413 		/* use data disk, leave param 0 unchanged */
1414 	}
1415 }
1416 #endif
1417