xref: /netbsd-src/sys/dev/raidframe/rf_dagutils.c (revision 3b01aba77a7a698587faaae455bbfe740923c1f5)
1 /*	$NetBSD: rf_dagutils.c,v 1.7 2001/07/18 06:45:33 thorpej Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /******************************************************************************
30  *
31  * rf_dagutils.c -- utility routines for manipulating dags
32  *
33  *****************************************************************************/
34 
35 #include "rf_archs.h"
36 #include "rf_types.h"
37 #include "rf_threadstuff.h"
38 #include "rf_raid.h"
39 #include "rf_dag.h"
40 #include "rf_dagutils.h"
41 #include "rf_dagfuncs.h"
42 #include "rf_general.h"
43 #include "rf_freelist.h"
44 #include "rf_map.h"
45 #include "rf_shutdown.h"
46 
47 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
48 
49 RF_RedFuncs_t rf_xorFuncs = {
50 	rf_RegularXorFunc, "Reg Xr",
51 rf_SimpleXorFunc, "Simple Xr"};
52 
53 RF_RedFuncs_t rf_xorRecoveryFuncs = {
54 	rf_RecoveryXorFunc, "Recovery Xr",
55 rf_RecoveryXorFunc, "Recovery Xr"};
56 
57 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
58 static void rf_PrintDAG(RF_DagHeader_t *);
59 static int
60 rf_ValidateBranch(RF_DagNode_t *, int *, int *,
61     RF_DagNode_t **, int);
62 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
63 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
64 
65 /******************************************************************************
66  *
67  * InitNode - initialize a dag node
68  *
69  * the size of the propList array is always the same as that of the
70  * successors array.
71  *
72  *****************************************************************************/
73 void
74 rf_InitNode(
75     RF_DagNode_t * node,
76     RF_NodeStatus_t initstatus,
77     int commit,
78     int (*doFunc) (RF_DagNode_t * node),
79     int (*undoFunc) (RF_DagNode_t * node),
80     int (*wakeFunc) (RF_DagNode_t * node, int status),
81     int nSucc,
82     int nAnte,
83     int nParam,
84     int nResult,
85     RF_DagHeader_t * hdr,
86     char *name,
87     RF_AllocListElem_t * alist)
88 {
89 	void  **ptrs;
90 	int     nptrs;
91 
92 	if (nAnte > RF_MAX_ANTECEDENTS)
93 		RF_PANIC();
94 	node->status = initstatus;
95 	node->commitNode = commit;
96 	node->doFunc = doFunc;
97 	node->undoFunc = undoFunc;
98 	node->wakeFunc = wakeFunc;
99 	node->numParams = nParam;
100 	node->numResults = nResult;
101 	node->numAntecedents = nAnte;
102 	node->numAntDone = 0;
103 	node->next = NULL;
104 	node->numSuccedents = nSucc;
105 	node->name = name;
106 	node->dagHdr = hdr;
107 	node->visited = 0;
108 
109 	/* allocate all the pointers with one call to malloc */
110 	nptrs = nSucc + nAnte + nResult + nSucc;
111 
112 	if (nptrs <= RF_DAG_PTRCACHESIZE) {
113 		/*
114 	         * The dag_ptrs field of the node is basically some scribble
115 	         * space to be used here. We could get rid of it, and always
116 	         * allocate the range of pointers, but that's expensive. So,
117 	         * we pick a "common case" size for the pointer cache. Hopefully,
118 	         * we'll find that:
119 	         * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
120 	         *     only a little bit (least efficient case)
121 	         * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
122 	         *     (wasted memory)
123 	         */
124 		ptrs = (void **) node->dag_ptrs;
125 	} else {
126 		RF_CallocAndAdd(ptrs, nptrs, sizeof(void *), (void **), alist);
127 	}
128 	node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
129 	node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
130 	node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
131 	node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
132 
133 	if (nParam) {
134 		if (nParam <= RF_DAG_PARAMCACHESIZE) {
135 			node->params = (RF_DagParam_t *) node->dag_params;
136 		} else {
137 			RF_CallocAndAdd(node->params, nParam, sizeof(RF_DagParam_t), (RF_DagParam_t *), alist);
138 		}
139 	} else {
140 		node->params = NULL;
141 	}
142 }
143 
144 
145 
146 /******************************************************************************
147  *
148  * allocation and deallocation routines
149  *
150  *****************************************************************************/
151 
152 void
153 rf_FreeDAG(dag_h)
154 	RF_DagHeader_t *dag_h;
155 {
156 	RF_AccessStripeMapHeader_t *asmap, *t_asmap;
157 	RF_DagHeader_t *nextDag;
158 	int     i;
159 
160 	while (dag_h) {
161 		nextDag = dag_h->next;
162 		for (i = 0; dag_h->memChunk[i] && i < RF_MAXCHUNKS; i++) {
163 			/* release mem chunks */
164 			rf_ReleaseMemChunk(dag_h->memChunk[i]);
165 			dag_h->memChunk[i] = NULL;
166 		}
167 
168 		RF_ASSERT(i == dag_h->chunkIndex);
169 		if (dag_h->xtraChunkCnt > 0) {
170 			/* free xtraMemChunks */
171 			for (i = 0; dag_h->xtraMemChunk[i] && i < dag_h->xtraChunkIndex; i++) {
172 				rf_ReleaseMemChunk(dag_h->xtraMemChunk[i]);
173 				dag_h->xtraMemChunk[i] = NULL;
174 			}
175 			RF_ASSERT(i == dag_h->xtraChunkIndex);
176 			/* free ptrs to xtraMemChunks */
177 			RF_Free(dag_h->xtraMemChunk, dag_h->xtraChunkCnt * sizeof(RF_ChunkDesc_t *));
178 		}
179 		rf_FreeAllocList(dag_h->allocList);
180 		for (asmap = dag_h->asmList; asmap;) {
181 			t_asmap = asmap;
182 			asmap = asmap->next;
183 			rf_FreeAccessStripeMap(t_asmap);
184 		}
185 		rf_FreeDAGHeader(dag_h);
186 		dag_h = nextDag;
187 	}
188 }
189 
190 RF_PropHeader_t *
191 rf_MakePropListEntry(
192     RF_DagHeader_t * dag_h,
193     int resultNum,
194     int paramNum,
195     RF_PropHeader_t * next,
196     RF_AllocListElem_t * allocList)
197 {
198 	RF_PropHeader_t *p;
199 
200 	RF_CallocAndAdd(p, 1, sizeof(RF_PropHeader_t),
201 	    (RF_PropHeader_t *), allocList);
202 	p->resultNum = resultNum;
203 	p->paramNum = paramNum;
204 	p->next = next;
205 	return (p);
206 }
207 
208 static RF_FreeList_t *rf_dagh_freelist;
209 
210 #define RF_MAX_FREE_DAGH 128
211 #define RF_DAGH_INC       16
212 #define RF_DAGH_INITIAL   32
213 
214 static void rf_ShutdownDAGs(void *);
215 static void
216 rf_ShutdownDAGs(ignored)
217 	void   *ignored;
218 {
219 	RF_FREELIST_DESTROY(rf_dagh_freelist, next, (RF_DagHeader_t *));
220 }
221 
222 int
223 rf_ConfigureDAGs(listp)
224 	RF_ShutdownList_t **listp;
225 {
226 	int     rc;
227 
228 	RF_FREELIST_CREATE(rf_dagh_freelist, RF_MAX_FREE_DAGH,
229 	    RF_DAGH_INC, sizeof(RF_DagHeader_t));
230 	if (rf_dagh_freelist == NULL)
231 		return (ENOMEM);
232 	rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
233 	if (rc) {
234 		RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
235 		    __FILE__, __LINE__, rc);
236 		rf_ShutdownDAGs(NULL);
237 		return (rc);
238 	}
239 	RF_FREELIST_PRIME(rf_dagh_freelist, RF_DAGH_INITIAL, next,
240 	    (RF_DagHeader_t *));
241 	return (0);
242 }
243 
244 RF_DagHeader_t *
245 rf_AllocDAGHeader()
246 {
247 	RF_DagHeader_t *dh;
248 
249 	RF_FREELIST_GET(rf_dagh_freelist, dh, next, (RF_DagHeader_t *));
250 	if (dh) {
251 		memset((char *) dh, 0, sizeof(RF_DagHeader_t));
252 	}
253 	return (dh);
254 }
255 
256 void
257 rf_FreeDAGHeader(RF_DagHeader_t * dh)
258 {
259 	RF_FREELIST_FREE(rf_dagh_freelist, dh, next);
260 }
261 /* allocates a buffer big enough to hold the data described by pda */
262 void   *
263 rf_AllocBuffer(
264     RF_Raid_t * raidPtr,
265     RF_DagHeader_t * dag_h,
266     RF_PhysDiskAddr_t * pda,
267     RF_AllocListElem_t * allocList)
268 {
269 	char   *p;
270 
271 	RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
272 	    (char *), allocList);
273 	return ((void *) p);
274 }
275 /******************************************************************************
276  *
277  * debug routines
278  *
279  *****************************************************************************/
280 
281 char   *
282 rf_NodeStatusString(RF_DagNode_t * node)
283 {
284 	switch (node->status) {
285 		case rf_wait:return ("wait");
286 	case rf_fired:
287 		return ("fired");
288 	case rf_good:
289 		return ("good");
290 	case rf_bad:
291 		return ("bad");
292 	default:
293 		return ("?");
294 	}
295 }
296 
297 void
298 rf_PrintNodeInfoString(RF_DagNode_t * node)
299 {
300 	RF_PhysDiskAddr_t *pda;
301 	int     (*df) (RF_DagNode_t *) = node->doFunc;
302 	int     i, lk, unlk;
303 	void   *bufPtr;
304 
305 	if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
306 	    || (df == rf_DiskReadMirrorIdleFunc)
307 	    || (df == rf_DiskReadMirrorPartitionFunc)) {
308 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
309 		bufPtr = (void *) node->params[1].p;
310 		lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
311 		unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
312 		RF_ASSERT(!(lk && unlk));
313 		printf("r %d c %d offs %ld nsect %d buf 0x%lx %s\n", pda->row, pda->col,
314 		    (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
315 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
316 		return;
317 	}
318 	if (df == rf_DiskUnlockFunc) {
319 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
320 		lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
321 		unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
322 		RF_ASSERT(!(lk && unlk));
323 		printf("r %d c %d %s\n", pda->row, pda->col,
324 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
325 		return;
326 	}
327 	if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
328 	    || (df == rf_RecoveryXorFunc)) {
329 		printf("result buf 0x%lx\n", (long) node->results[0]);
330 		for (i = 0; i < node->numParams - 1; i += 2) {
331 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
332 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
333 			printf("    buf 0x%lx r%d c%d offs %ld nsect %d\n",
334 			    (long) bufPtr, pda->row, pda->col,
335 			    (long) pda->startSector, (int) pda->numSector);
336 		}
337 		return;
338 	}
339 #if RF_INCLUDE_PARITYLOGGING > 0
340 	if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
341 		for (i = 0; i < node->numParams - 1; i += 2) {
342 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
343 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
344 			printf(" r%d c%d offs %ld nsect %d buf 0x%lx\n",
345 			    pda->row, pda->col, (long) pda->startSector,
346 			    (int) pda->numSector, (long) bufPtr);
347 		}
348 		return;
349 	}
350 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
351 
352 	if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
353 		printf("\n");
354 		return;
355 	}
356 	printf("?\n");
357 }
358 
359 static void
360 rf_RecurPrintDAG(node, depth, unvisited)
361 	RF_DagNode_t *node;
362 	int     depth;
363 	int     unvisited;
364 {
365 	char   *anttype;
366 	int     i;
367 
368 	node->visited = (unvisited) ? 0 : 1;
369 	printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
370 	    node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
371 	    node->numSuccedents, node->numSuccFired, node->numSuccDone,
372 	    node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
373 	for (i = 0; i < node->numSuccedents; i++) {
374 		printf("%d%s", node->succedents[i]->nodeNum,
375 		    ((i == node->numSuccedents - 1) ? "\0" : " "));
376 	}
377 	printf("} A{");
378 	for (i = 0; i < node->numAntecedents; i++) {
379 		switch (node->antType[i]) {
380 		case rf_trueData:
381 			anttype = "T";
382 			break;
383 		case rf_antiData:
384 			anttype = "A";
385 			break;
386 		case rf_outputData:
387 			anttype = "O";
388 			break;
389 		case rf_control:
390 			anttype = "C";
391 			break;
392 		default:
393 			anttype = "?";
394 			break;
395 		}
396 		printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
397 	}
398 	printf("}; ");
399 	rf_PrintNodeInfoString(node);
400 	for (i = 0; i < node->numSuccedents; i++) {
401 		if (node->succedents[i]->visited == unvisited)
402 			rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
403 	}
404 }
405 
406 static void
407 rf_PrintDAG(dag_h)
408 	RF_DagHeader_t *dag_h;
409 {
410 	int     unvisited, i;
411 	char   *status;
412 
413 	/* set dag status */
414 	switch (dag_h->status) {
415 	case rf_enable:
416 		status = "enable";
417 		break;
418 	case rf_rollForward:
419 		status = "rollForward";
420 		break;
421 	case rf_rollBackward:
422 		status = "rollBackward";
423 		break;
424 	default:
425 		status = "illegal!";
426 		break;
427 	}
428 	/* find out if visited bits are currently set or clear */
429 	unvisited = dag_h->succedents[0]->visited;
430 
431 	printf("DAG type:  %s\n", dag_h->creator);
432 	printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)};  info\n");
433 	printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
434 	    status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
435 	for (i = 0; i < dag_h->numSuccedents; i++) {
436 		printf("%d%s", dag_h->succedents[i]->nodeNum,
437 		    ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
438 	}
439 	printf("};\n");
440 	for (i = 0; i < dag_h->numSuccedents; i++) {
441 		if (dag_h->succedents[i]->visited == unvisited)
442 			rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
443 	}
444 }
445 /* assigns node numbers */
446 int
447 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
448 {
449 	int     unvisited, i, nnum;
450 	RF_DagNode_t *node;
451 
452 	nnum = 0;
453 	unvisited = dag_h->succedents[0]->visited;
454 
455 	dag_h->nodeNum = nnum++;
456 	for (i = 0; i < dag_h->numSuccedents; i++) {
457 		node = dag_h->succedents[i];
458 		if (node->visited == unvisited) {
459 			nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
460 		}
461 	}
462 	return (nnum);
463 }
464 
465 int
466 rf_RecurAssignNodeNums(node, num, unvisited)
467 	RF_DagNode_t *node;
468 	int     num;
469 	int     unvisited;
470 {
471 	int     i;
472 
473 	node->visited = (unvisited) ? 0 : 1;
474 
475 	node->nodeNum = num++;
476 	for (i = 0; i < node->numSuccedents; i++) {
477 		if (node->succedents[i]->visited == unvisited) {
478 			num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
479 		}
480 	}
481 	return (num);
482 }
483 /* set the header pointers in each node to "newptr" */
484 void
485 rf_ResetDAGHeaderPointers(dag_h, newptr)
486 	RF_DagHeader_t *dag_h;
487 	RF_DagHeader_t *newptr;
488 {
489 	int     i;
490 	for (i = 0; i < dag_h->numSuccedents; i++)
491 		if (dag_h->succedents[i]->dagHdr != newptr)
492 			rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
493 }
494 
495 void
496 rf_RecurResetDAGHeaderPointers(node, newptr)
497 	RF_DagNode_t *node;
498 	RF_DagHeader_t *newptr;
499 {
500 	int     i;
501 	node->dagHdr = newptr;
502 	for (i = 0; i < node->numSuccedents; i++)
503 		if (node->succedents[i]->dagHdr != newptr)
504 			rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
505 }
506 
507 
508 void
509 rf_PrintDAGList(RF_DagHeader_t * dag_h)
510 {
511 	int     i = 0;
512 
513 	for (; dag_h; dag_h = dag_h->next) {
514 		rf_AssignNodeNums(dag_h);
515 		printf("\n\nDAG %d IN LIST:\n", i++);
516 		rf_PrintDAG(dag_h);
517 	}
518 }
519 
520 static int
521 rf_ValidateBranch(node, scount, acount, nodes, unvisited)
522 	RF_DagNode_t *node;
523 	int    *scount;
524 	int    *acount;
525 	RF_DagNode_t **nodes;
526 	int     unvisited;
527 {
528 	int     i, retcode = 0;
529 
530 	/* construct an array of node pointers indexed by node num */
531 	node->visited = (unvisited) ? 0 : 1;
532 	nodes[node->nodeNum] = node;
533 
534 	if (node->next != NULL) {
535 		printf("INVALID DAG: next pointer in node is not NULL\n");
536 		retcode = 1;
537 	}
538 	if (node->status != rf_wait) {
539 		printf("INVALID DAG: Node status is not wait\n");
540 		retcode = 1;
541 	}
542 	if (node->numAntDone != 0) {
543 		printf("INVALID DAG: numAntDone is not zero\n");
544 		retcode = 1;
545 	}
546 	if (node->doFunc == rf_TerminateFunc) {
547 		if (node->numSuccedents != 0) {
548 			printf("INVALID DAG: Terminator node has succedents\n");
549 			retcode = 1;
550 		}
551 	} else {
552 		if (node->numSuccedents == 0) {
553 			printf("INVALID DAG: Non-terminator node has no succedents\n");
554 			retcode = 1;
555 		}
556 	}
557 	for (i = 0; i < node->numSuccedents; i++) {
558 		if (!node->succedents[i]) {
559 			printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
560 			retcode = 1;
561 		}
562 		scount[node->succedents[i]->nodeNum]++;
563 	}
564 	for (i = 0; i < node->numAntecedents; i++) {
565 		if (!node->antecedents[i]) {
566 			printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
567 			retcode = 1;
568 		}
569 		acount[node->antecedents[i]->nodeNum]++;
570 	}
571 	for (i = 0; i < node->numSuccedents; i++) {
572 		if (node->succedents[i]->visited == unvisited) {
573 			if (rf_ValidateBranch(node->succedents[i], scount,
574 				acount, nodes, unvisited)) {
575 				retcode = 1;
576 			}
577 		}
578 	}
579 	return (retcode);
580 }
581 
582 static void
583 rf_ValidateBranchVisitedBits(node, unvisited, rl)
584 	RF_DagNode_t *node;
585 	int     unvisited;
586 	int     rl;
587 {
588 	int     i;
589 
590 	RF_ASSERT(node->visited == unvisited);
591 	for (i = 0; i < node->numSuccedents; i++) {
592 		if (node->succedents[i] == NULL) {
593 			printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
594 			RF_ASSERT(0);
595 		}
596 		rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
597 	}
598 }
599 /* NOTE:  never call this on a big dag, because it is exponential
600  * in execution time
601  */
602 static void
603 rf_ValidateVisitedBits(dag)
604 	RF_DagHeader_t *dag;
605 {
606 	int     i, unvisited;
607 
608 	unvisited = dag->succedents[0]->visited;
609 
610 	for (i = 0; i < dag->numSuccedents; i++) {
611 		if (dag->succedents[i] == NULL) {
612 			printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
613 			RF_ASSERT(0);
614 		}
615 		rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
616 	}
617 }
618 /* validate a DAG.  _at entry_ verify that:
619  *   -- numNodesCompleted is zero
620  *   -- node queue is null
621  *   -- dag status is rf_enable
622  *   -- next pointer is null on every node
623  *   -- all nodes have status wait
624  *   -- numAntDone is zero in all nodes
625  *   -- terminator node has zero successors
626  *   -- no other node besides terminator has zero successors
627  *   -- no successor or antecedent pointer in a node is NULL
628  *   -- number of times that each node appears as a successor of another node
629  *      is equal to the antecedent count on that node
630  *   -- number of times that each node appears as an antecedent of another node
631  *      is equal to the succedent count on that node
632  *   -- what else?
633  */
634 int
635 rf_ValidateDAG(dag_h)
636 	RF_DagHeader_t *dag_h;
637 {
638 	int     i, nodecount;
639 	int    *scount, *acount;/* per-node successor and antecedent counts */
640 	RF_DagNode_t **nodes;	/* array of ptrs to nodes in dag */
641 	int     retcode = 0;
642 	int     unvisited;
643 	int     commitNodeCount = 0;
644 
645 	if (rf_validateVisitedDebug)
646 		rf_ValidateVisitedBits(dag_h);
647 
648 	if (dag_h->numNodesCompleted != 0) {
649 		printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
650 		retcode = 1;
651 		goto validate_dag_bad;
652 	}
653 	if (dag_h->status != rf_enable) {
654 		printf("INVALID DAG: not enabled\n");
655 		retcode = 1;
656 		goto validate_dag_bad;
657 	}
658 	if (dag_h->numCommits != 0) {
659 		printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
660 		retcode = 1;
661 		goto validate_dag_bad;
662 	}
663 	if (dag_h->numSuccedents != 1) {
664 		/* currently, all dags must have only one succedent */
665 		printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
666 		retcode = 1;
667 		goto validate_dag_bad;
668 	}
669 	nodecount = rf_AssignNodeNums(dag_h);
670 
671 	unvisited = dag_h->succedents[0]->visited;
672 
673 	RF_Calloc(scount, nodecount, sizeof(int), (int *));
674 	RF_Calloc(acount, nodecount, sizeof(int), (int *));
675 	RF_Calloc(nodes, nodecount, sizeof(RF_DagNode_t *), (RF_DagNode_t **));
676 	for (i = 0; i < dag_h->numSuccedents; i++) {
677 		if ((dag_h->succedents[i]->visited == unvisited)
678 		    && rf_ValidateBranch(dag_h->succedents[i], scount,
679 			acount, nodes, unvisited)) {
680 			retcode = 1;
681 		}
682 	}
683 	/* start at 1 to skip the header node */
684 	for (i = 1; i < nodecount; i++) {
685 		if (nodes[i]->commitNode)
686 			commitNodeCount++;
687 		if (nodes[i]->doFunc == NULL) {
688 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
689 			retcode = 1;
690 			goto validate_dag_out;
691 		}
692 		if (nodes[i]->undoFunc == NULL) {
693 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
694 			retcode = 1;
695 			goto validate_dag_out;
696 		}
697 		if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
698 			printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
699 			    nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
700 			retcode = 1;
701 			goto validate_dag_out;
702 		}
703 		if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
704 			printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
705 			    nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
706 			retcode = 1;
707 			goto validate_dag_out;
708 		}
709 	}
710 
711 	if (dag_h->numCommitNodes != commitNodeCount) {
712 		printf("INVALID DAG: incorrect commit node count.  hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
713 		    dag_h->numCommitNodes, commitNodeCount);
714 		retcode = 1;
715 		goto validate_dag_out;
716 	}
717 validate_dag_out:
718 	RF_Free(scount, nodecount * sizeof(int));
719 	RF_Free(acount, nodecount * sizeof(int));
720 	RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
721 	if (retcode)
722 		rf_PrintDAGList(dag_h);
723 
724 	if (rf_validateVisitedDebug)
725 		rf_ValidateVisitedBits(dag_h);
726 
727 	return (retcode);
728 
729 validate_dag_bad:
730 	rf_PrintDAGList(dag_h);
731 	return (retcode);
732 }
733 
734 
735 /******************************************************************************
736  *
737  * misc construction routines
738  *
739  *****************************************************************************/
740 
741 void
742 rf_redirect_asm(
743     RF_Raid_t * raidPtr,
744     RF_AccessStripeMap_t * asmap)
745 {
746 	int     ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
747 	int     row = asmap->physInfo->row;
748 	int     fcol = raidPtr->reconControl[row]->fcol;
749 	int     srow = raidPtr->reconControl[row]->spareRow;
750 	int     scol = raidPtr->reconControl[row]->spareCol;
751 	RF_PhysDiskAddr_t *pda;
752 
753 	RF_ASSERT(raidPtr->status[row] == rf_rs_reconstructing);
754 	for (pda = asmap->physInfo; pda; pda = pda->next) {
755 		if (pda->col == fcol) {
756 			if (rf_dagDebug) {
757 				if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap,
758 					pda->startSector)) {
759 					RF_PANIC();
760 				}
761 			}
762 			/* printf("Remapped data for large write\n"); */
763 			if (ds) {
764 				raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
765 				    &pda->row, &pda->col, &pda->startSector, RF_REMAP);
766 			} else {
767 				pda->row = srow;
768 				pda->col = scol;
769 			}
770 		}
771 	}
772 	for (pda = asmap->parityInfo; pda; pda = pda->next) {
773 		if (pda->col == fcol) {
774 			if (rf_dagDebug) {
775 				if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, pda->startSector)) {
776 					RF_PANIC();
777 				}
778 			}
779 		}
780 		if (ds) {
781 			(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
782 		} else {
783 			pda->row = srow;
784 			pda->col = scol;
785 		}
786 	}
787 }
788 
789 
790 /* this routine allocates read buffers and generates stripe maps for the
791  * regions of the array from the start of the stripe to the start of the
792  * access, and from the end of the access to the end of the stripe.  It also
793  * computes and returns the number of DAG nodes needed to read all this data.
794  * Note that this routine does the wrong thing if the access is fully
795  * contained within one stripe unit, so we RF_ASSERT against this case at the
796  * start.
797  */
798 void
799 rf_MapUnaccessedPortionOfStripe(
800     RF_Raid_t * raidPtr,
801     RF_RaidLayout_t * layoutPtr,/* in: layout information */
802     RF_AccessStripeMap_t * asmap,	/* in: access stripe map */
803     RF_DagHeader_t * dag_h,	/* in: header of the dag to create */
804     RF_AccessStripeMapHeader_t ** new_asm_h,	/* in: ptr to array of 2
805 						 * headers, to be filled in */
806     int *nRodNodes,		/* out: num nodes to be generated to read
807 				 * unaccessed data */
808     char **sosBuffer,		/* out: pointers to newly allocated buffer */
809     char **eosBuffer,
810     RF_AllocListElem_t * allocList)
811 {
812 	RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
813 	RF_SectorNum_t sosNumSector, eosNumSector;
814 
815 	RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
816 	/* generate an access map for the region of the array from start of
817 	 * stripe to start of access */
818 	new_asm_h[0] = new_asm_h[1] = NULL;
819 	*nRodNodes = 0;
820 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
821 		sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
822 		sosNumSector = asmap->raidAddress - sosRaidAddress;
823 		RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
824 		new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
825 		new_asm_h[0]->next = dag_h->asmList;
826 		dag_h->asmList = new_asm_h[0];
827 		*nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
828 
829 		RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
830 		/* we're totally within one stripe here */
831 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
832 			rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
833 	}
834 	/* generate an access map for the region of the array from end of
835 	 * access to end of stripe */
836 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
837 		eosRaidAddress = asmap->endRaidAddress;
838 		eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
839 		RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
840 		new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
841 		new_asm_h[1]->next = dag_h->asmList;
842 		dag_h->asmList = new_asm_h[1];
843 		*nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
844 
845 		RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
846 		/* we're totally within one stripe here */
847 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
848 			rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
849 	}
850 }
851 
852 
853 
854 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
855 int
856 rf_PDAOverlap(
857     RF_RaidLayout_t * layoutPtr,
858     RF_PhysDiskAddr_t * src,
859     RF_PhysDiskAddr_t * dest)
860 {
861 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
862 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
863 	/* use -1 to be sure we stay within SU */
864 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
865 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
866 	return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
867 }
868 
869 
870 /* GenerateFailedAccessASMs
871  *
872  * this routine figures out what portion of the stripe needs to be read
873  * to effect the degraded read or write operation.  It's primary function
874  * is to identify everything required to recover the data, and then
875  * eliminate anything that is already being accessed by the user.
876  *
877  * The main result is two new ASMs, one for the region from the start of the
878  * stripe to the start of the access, and one for the region from the end of
879  * the access to the end of the stripe.  These ASMs describe everything that
880  * needs to be read to effect the degraded access.  Other results are:
881  *    nXorBufs -- the total number of buffers that need to be XORed together to
882  *                recover the lost data,
883  *    rpBufPtr -- ptr to a newly-allocated buffer to hold the parity.  If NULL
884  *                at entry, not allocated.
885  *    overlappingPDAs --
886  *                describes which of the non-failed PDAs in the user access
887  *                overlap data that needs to be read to effect recovery.
888  *                overlappingPDAs[i]==1 if and only if, neglecting the failed
889  *                PDA, the ith pda in the input asm overlaps data that needs
890  *                to be read for recovery.
891  */
892  /* in: asm - ASM for the actual access, one stripe only */
893  /* in: faildPDA - which component of the access has failed */
894  /* in: dag_h - header of the DAG we're going to create */
895  /* out: new_asm_h - the two new ASMs */
896  /* out: nXorBufs - the total number of xor bufs required */
897  /* out: rpBufPtr - a buffer for the parity read */
898 void
899 rf_GenerateFailedAccessASMs(
900     RF_Raid_t * raidPtr,
901     RF_AccessStripeMap_t * asmap,
902     RF_PhysDiskAddr_t * failedPDA,
903     RF_DagHeader_t * dag_h,
904     RF_AccessStripeMapHeader_t ** new_asm_h,
905     int *nXorBufs,
906     char **rpBufPtr,
907     char *overlappingPDAs,
908     RF_AllocListElem_t * allocList)
909 {
910 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
911 
912 	/* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
913 	RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
914 
915 	RF_SectorCount_t numSect[2], numParitySect;
916 	RF_PhysDiskAddr_t *pda;
917 	char   *rdBuf, *bufP;
918 	int     foundit, i;
919 
920 	bufP = NULL;
921 	foundit = 0;
922 	/* first compute the following raid addresses: start of stripe,
923 	 * (sosAddr) MIN(start of access, start of failed SU),   (sosEndAddr)
924 	 * MAX(end of access, end of failed SU),       (eosStartAddr) end of
925 	 * stripe (i.e. start of next stripe)   (eosAddr) */
926 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
927 	sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
928 	eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
929 	eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
930 
931 	/* now generate access stripe maps for each of the above regions of
932 	 * the stripe.  Use a dummy (NULL) buf ptr for now */
933 
934 	new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
935 	new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
936 
937 	/* walk through the PDAs and range-restrict each SU to the region of
938 	 * the SU touched on the failed PDA.  also compute total data buffer
939 	 * space requirements in this step.  Ignore the parity for now. */
940 
941 	numSect[0] = numSect[1] = 0;
942 	if (new_asm_h[0]) {
943 		new_asm_h[0]->next = dag_h->asmList;
944 		dag_h->asmList = new_asm_h[0];
945 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
946 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
947 			numSect[0] += pda->numSector;
948 		}
949 	}
950 	if (new_asm_h[1]) {
951 		new_asm_h[1]->next = dag_h->asmList;
952 		dag_h->asmList = new_asm_h[1];
953 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
954 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
955 			numSect[1] += pda->numSector;
956 		}
957 	}
958 	numParitySect = failedPDA->numSector;
959 
960 	/* allocate buffer space for the data & parity we have to read to
961 	 * recover from the failure */
962 
963 	if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) {	/* don't allocate parity
964 										 * buf if not needed */
965 		RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
966 		bufP = rdBuf;
967 		if (rf_degDagDebug)
968 			printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
969 			    (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
970 	}
971 	/* now walk through the pdas one last time and assign buffer pointers
972 	 * (ugh!).  Again, ignore the parity.  also, count nodes to find out
973 	 * how many bufs need to be xored together */
974 	(*nXorBufs) = 1;	/* in read case, 1 is for parity.  In write
975 				 * case, 1 is for failed data */
976 	if (new_asm_h[0]) {
977 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
978 			pda->bufPtr = bufP;
979 			bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
980 		}
981 		*nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
982 	}
983 	if (new_asm_h[1]) {
984 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
985 			pda->bufPtr = bufP;
986 			bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
987 		}
988 		(*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
989 	}
990 	if (rpBufPtr)
991 		*rpBufPtr = bufP;	/* the rest of the buffer is for
992 					 * parity */
993 
994 	/* the last step is to figure out how many more distinct buffers need
995 	 * to get xor'd to produce the missing unit.  there's one for each
996 	 * user-data read node that overlaps the portion of the failed unit
997 	 * being accessed */
998 
999 	for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
1000 		if (pda == failedPDA) {
1001 			i--;
1002 			foundit = 1;
1003 			continue;
1004 		}
1005 		if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
1006 			overlappingPDAs[i] = 1;
1007 			(*nXorBufs)++;
1008 		}
1009 	}
1010 	if (!foundit) {
1011 		RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
1012 		RF_ASSERT(0);
1013 	}
1014 	if (rf_degDagDebug) {
1015 		if (new_asm_h[0]) {
1016 			printf("First asm:\n");
1017 			rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
1018 		}
1019 		if (new_asm_h[1]) {
1020 			printf("Second asm:\n");
1021 			rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
1022 		}
1023 	}
1024 }
1025 
1026 
1027 /* adjusts the offset and number of sectors in the destination pda so that
1028  * it covers at most the region of the SU covered by the source PDA.  This
1029  * is exclusively a restriction:  the number of sectors indicated by the
1030  * target PDA can only shrink.
1031  *
1032  * For example:  s = sectors within SU indicated by source PDA
1033  *               d = sectors within SU indicated by dest PDA
1034  *               r = results, stored in dest PDA
1035  *
1036  * |--------------- one stripe unit ---------------------|
1037  * |           sssssssssssssssssssssssssssssssss         |
1038  * |    ddddddddddddddddddddddddddddddddddddddddddddd    |
1039  * |           rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr         |
1040  *
1041  * Another example:
1042  *
1043  * |--------------- one stripe unit ---------------------|
1044  * |           sssssssssssssssssssssssssssssssss         |
1045  * |    ddddddddddddddddddddddd                          |
1046  * |           rrrrrrrrrrrrrrrr                          |
1047  *
1048  */
1049 void
1050 rf_RangeRestrictPDA(
1051     RF_Raid_t * raidPtr,
1052     RF_PhysDiskAddr_t * src,
1053     RF_PhysDiskAddr_t * dest,
1054     int dobuffer,
1055     int doraidaddr)
1056 {
1057 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1058 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1059 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1060 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);	/* use -1 to be sure we
1061 													 * stay within SU */
1062 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1063 	RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector);	/* stripe unit boundary */
1064 
1065 	dest->startSector = subAddr + RF_MAX(soffs, doffs);
1066 	dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1067 
1068 	if (dobuffer)
1069 		dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
1070 	if (doraidaddr) {
1071 		dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1072 		    rf_StripeUnitOffset(layoutPtr, dest->startSector);
1073 	}
1074 }
1075 /*
1076  * Want the highest of these primes to be the largest one
1077  * less than the max expected number of columns (won't hurt
1078  * to be too small or too large, but won't be optimal, either)
1079  * --jimz
1080  */
1081 #define NLOWPRIMES 8
1082 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1083 /*****************************************************************************
1084  * compute the workload shift factor.  (chained declustering)
1085  *
1086  * return nonzero if access should shift to secondary, otherwise,
1087  * access is to primary
1088  *****************************************************************************/
1089 int
1090 rf_compute_workload_shift(
1091     RF_Raid_t * raidPtr,
1092     RF_PhysDiskAddr_t * pda)
1093 {
1094 	/*
1095          * variables:
1096          *  d   = column of disk containing primary
1097          *  f   = column of failed disk
1098          *  n   = number of disks in array
1099          *  sd  = "shift distance" (number of columns that d is to the right of f)
1100          *  row = row of array the access is in
1101          *  v   = numerator of redirection ratio
1102          *  k   = denominator of redirection ratio
1103          */
1104 	RF_RowCol_t d, f, sd, row, n;
1105 	int     k, v, ret, i;
1106 
1107 	row = pda->row;
1108 	n = raidPtr->numCol;
1109 
1110 	/* assign column of primary copy to d */
1111 	d = pda->col;
1112 
1113 	/* assign column of dead disk to f */
1114 	for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[row][f].status)) && (f < n)); f++);
1115 
1116 	RF_ASSERT(f < n);
1117 	RF_ASSERT(f != d);
1118 
1119 	sd = (f > d) ? (n + d - f) : (d - f);
1120 	RF_ASSERT(sd < n);
1121 
1122 	/*
1123          * v of every k accesses should be redirected
1124          *
1125          * v/k := (n-1-sd)/(n-1)
1126          */
1127 	v = (n - 1 - sd);
1128 	k = (n - 1);
1129 
1130 #if 1
1131 	/*
1132          * XXX
1133          * Is this worth it?
1134          *
1135          * Now reduce the fraction, by repeatedly factoring
1136          * out primes (just like they teach in elementary school!)
1137          */
1138 	for (i = 0; i < NLOWPRIMES; i++) {
1139 		if (lowprimes[i] > v)
1140 			break;
1141 		while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1142 			v /= lowprimes[i];
1143 			k /= lowprimes[i];
1144 		}
1145 	}
1146 #endif
1147 
1148 	raidPtr->hist_diskreq[row][d]++;
1149 	if (raidPtr->hist_diskreq[row][d] > v) {
1150 		ret = 0;	/* do not redirect */
1151 	} else {
1152 		ret = 1;	/* redirect */
1153 	}
1154 
1155 #if 0
1156 	printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1157 	    raidPtr->hist_diskreq[row][d]);
1158 #endif
1159 
1160 	if (raidPtr->hist_diskreq[row][d] >= k) {
1161 		/* reset counter */
1162 		raidPtr->hist_diskreq[row][d] = 0;
1163 	}
1164 	return (ret);
1165 }
1166 /*
1167  * Disk selection routines
1168  */
1169 
1170 /*
1171  * Selects the disk with the shortest queue from a mirror pair.
1172  * Both the disk I/Os queued in RAIDframe as well as those at the physical
1173  * disk are counted as members of the "queue"
1174  */
1175 void
1176 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1177 {
1178 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1179 	RF_RowCol_t rowData, colData, rowMirror, colMirror;
1180 	int     dataQueueLength, mirrorQueueLength, usemirror;
1181 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1182 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1183 	RF_PhysDiskAddr_t *tmp_pda;
1184 	RF_RaidDisk_t **disks = raidPtr->Disks;
1185 	RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1186 
1187 	/* return the [row col] of the disk with the shortest queue */
1188 	rowData = data_pda->row;
1189 	colData = data_pda->col;
1190 	rowMirror = mirror_pda->row;
1191 	colMirror = mirror_pda->col;
1192 	dataQueue = &(dqs[rowData][colData]);
1193 	mirrorQueue = &(dqs[rowMirror][colMirror]);
1194 
1195 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1196 	RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1197 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
1198 	dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1199 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1200 	RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1201 	RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1202 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
1203 	mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1204 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1205 	RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1206 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
1207 
1208 	usemirror = 0;
1209 	if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
1210 		usemirror = 0;
1211 	} else
1212 		if (RF_DEAD_DISK(disks[rowData][colData].status)) {
1213 			usemirror = 1;
1214 		} else
1215 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
1216 				/* Trust only the main disk */
1217 				usemirror = 0;
1218 			} else
1219 				if (dataQueueLength < mirrorQueueLength) {
1220 					usemirror = 0;
1221 				} else
1222 					if (mirrorQueueLength < dataQueueLength) {
1223 						usemirror = 1;
1224 					} else {
1225 						/* queues are equal length. attempt
1226 						 * cleverness. */
1227 						if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1228 						    <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1229 							usemirror = 0;
1230 						} else {
1231 							usemirror = 1;
1232 						}
1233 					}
1234 
1235 	if (usemirror) {
1236 		/* use mirror (parity) disk, swap params 0 & 4 */
1237 		tmp_pda = data_pda;
1238 		node->params[0].p = mirror_pda;
1239 		node->params[4].p = tmp_pda;
1240 	} else {
1241 		/* use data disk, leave param 0 unchanged */
1242 	}
1243 	/* printf("dataQueueLength %d, mirrorQueueLength
1244 	 * %d\n",dataQueueLength, mirrorQueueLength); */
1245 }
1246 /*
1247  * Do simple partitioning. This assumes that
1248  * the data and parity disks are laid out identically.
1249  */
1250 void
1251 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1252 {
1253 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1254 	RF_RowCol_t rowData, colData, rowMirror, colMirror;
1255 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1256 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1257 	RF_PhysDiskAddr_t *tmp_pda;
1258 	RF_RaidDisk_t **disks = raidPtr->Disks;
1259 	RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1260 	int     usemirror;
1261 
1262 	/* return the [row col] of the disk with the shortest queue */
1263 	rowData = data_pda->row;
1264 	colData = data_pda->col;
1265 	rowMirror = mirror_pda->row;
1266 	colMirror = mirror_pda->col;
1267 	dataQueue = &(dqs[rowData][colData]);
1268 	mirrorQueue = &(dqs[rowMirror][colMirror]);
1269 
1270 	usemirror = 0;
1271 	if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
1272 		usemirror = 0;
1273 	} else
1274 		if (RF_DEAD_DISK(disks[rowData][colData].status)) {
1275 			usemirror = 1;
1276 		} else
1277 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
1278 				/* Trust only the main disk */
1279 				usemirror = 0;
1280 			} else
1281 				if (data_pda->startSector <
1282 				    (disks[rowData][colData].numBlocks / 2)) {
1283 					usemirror = 0;
1284 				} else {
1285 					usemirror = 1;
1286 				}
1287 
1288 	if (usemirror) {
1289 		/* use mirror (parity) disk, swap params 0 & 4 */
1290 		tmp_pda = data_pda;
1291 		node->params[0].p = mirror_pda;
1292 		node->params[4].p = tmp_pda;
1293 	} else {
1294 		/* use data disk, leave param 0 unchanged */
1295 	}
1296 }
1297