xref: /netbsd-src/sys/dev/raidframe/rf_dagutils.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: rf_dagutils.c,v 1.44 2004/04/09 23:10:16 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /******************************************************************************
30  *
31  * rf_dagutils.c -- utility routines for manipulating dags
32  *
33  *****************************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.44 2004/04/09 23:10:16 oster Exp $");
37 
38 #include <dev/raidframe/raidframevar.h>
39 
40 #include "rf_archs.h"
41 #include "rf_threadstuff.h"
42 #include "rf_raid.h"
43 #include "rf_dag.h"
44 #include "rf_dagutils.h"
45 #include "rf_dagfuncs.h"
46 #include "rf_general.h"
47 #include "rf_map.h"
48 #include "rf_shutdown.h"
49 
50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
51 
52 const RF_RedFuncs_t rf_xorFuncs = {
53 	rf_RegularXorFunc, "Reg Xr",
54 	rf_SimpleXorFunc, "Simple Xr"};
55 
56 const RF_RedFuncs_t rf_xorRecoveryFuncs = {
57 	rf_RecoveryXorFunc, "Recovery Xr",
58 	rf_RecoveryXorFunc, "Recovery Xr"};
59 
60 #if RF_DEBUG_VALIDATE_DAG
61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
62 static void rf_PrintDAG(RF_DagHeader_t *);
63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
64 			     RF_DagNode_t **, int);
65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
66 static void rf_ValidateVisitedBits(RF_DagHeader_t *);
67 #endif /* RF_DEBUG_VALIDATE_DAG */
68 
69 /* The maximum number of nodes in a DAG is bounded by
70 
71 (2 * raidPtr->Layout->numDataCol) + (1 * layoutPtr->numParityCol) +
72 	(1 * 2 * layoutPtr->numParityCol) + 3
73 
74 which is:  2*RF_MAXCOL+1*2+1*2*2+3
75 
76 For RF_MAXCOL of 40, this works out to 89.  We use this value to provide an estimate
77 on the maximum size needed for RF_DAGPCACHE_SIZE.  For RF_MAXCOL of 40, this structure
78 would be 534 bytes.  Too much to have on-hand in a RF_DagNode_t, but should be ok to
79 have a few kicking around.
80 */
81 #define RF_DAGPCACHE_SIZE ((2*RF_MAXCOL+1*2+1*2*2+3) *(RF_MAX(sizeof(RF_DagParam_t), sizeof(RF_DagNode_t *))))
82 
83 
84 /******************************************************************************
85  *
86  * InitNode - initialize a dag node
87  *
88  * the size of the propList array is always the same as that of the
89  * successors array.
90  *
91  *****************************************************************************/
92 void
93 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
94     int (*doFunc) (RF_DagNode_t *node),
95     int (*undoFunc) (RF_DagNode_t *node),
96     int (*wakeFunc) (RF_DagNode_t *node, int status),
97     int nSucc, int nAnte, int nParam, int nResult,
98     RF_DagHeader_t *hdr, char *name, RF_AllocListElem_t *alist)
99 {
100 	void  **ptrs;
101 	int     nptrs;
102 
103 	if (nAnte > RF_MAX_ANTECEDENTS)
104 		RF_PANIC();
105 	node->status = initstatus;
106 	node->commitNode = commit;
107 	node->doFunc = doFunc;
108 	node->undoFunc = undoFunc;
109 	node->wakeFunc = wakeFunc;
110 	node->numParams = nParam;
111 	node->numResults = nResult;
112 	node->numAntecedents = nAnte;
113 	node->numAntDone = 0;
114 	node->next = NULL;
115 	/* node->list_next = NULL */  /* Don't touch this here!
116 	                                 It may already be
117 					 in use by the caller! */
118 	node->numSuccedents = nSucc;
119 	node->name = name;
120 	node->dagHdr = hdr;
121 	node->big_dag_ptrs = NULL;
122 	node->big_dag_params = NULL;
123 	node->visited = 0;
124 
125 	/* allocate all the pointers with one call to malloc */
126 	nptrs = nSucc + nAnte + nResult + nSucc;
127 
128 	if (nptrs <= RF_DAG_PTRCACHESIZE) {
129 		/*
130 	         * The dag_ptrs field of the node is basically some scribble
131 	         * space to be used here. We could get rid of it, and always
132 	         * allocate the range of pointers, but that's expensive. So,
133 	         * we pick a "common case" size for the pointer cache. Hopefully,
134 	         * we'll find that:
135 	         * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
136 	         *     only a little bit (least efficient case)
137 	         * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
138 	         *     (wasted memory)
139 	         */
140 		ptrs = (void **) node->dag_ptrs;
141 	} else if (nptrs <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagNode_t *))) {
142 		node->big_dag_ptrs = rf_AllocDAGPCache();
143 		ptrs = (void **) node->big_dag_ptrs;
144 	} else {
145 		RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
146 				(void **), alist);
147 	}
148 	node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
149 	node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
150 	node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
151 	node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
152 
153 	if (nParam) {
154 		if (nParam <= RF_DAG_PARAMCACHESIZE) {
155 			node->params = (RF_DagParam_t *) node->dag_params;
156 		} else if (nParam <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagParam_t))) {
157 			node->big_dag_params = rf_AllocDAGPCache();
158 			node->params = node->big_dag_params;
159 		} else {
160 			RF_MallocAndAdd(node->params,
161 					nParam * sizeof(RF_DagParam_t),
162 					(RF_DagParam_t *), alist);
163 		}
164 	} else {
165 		node->params = NULL;
166 	}
167 }
168 
169 
170 
171 /******************************************************************************
172  *
173  * allocation and deallocation routines
174  *
175  *****************************************************************************/
176 
177 void
178 rf_FreeDAG(RF_DagHeader_t *dag_h)
179 {
180 	RF_AccessStripeMapHeader_t *asmap, *t_asmap;
181 	RF_PhysDiskAddr_t *pda;
182 	RF_DagNode_t *tmpnode;
183 	RF_DagHeader_t *nextDag;
184 
185 	while (dag_h) {
186 		nextDag = dag_h->next;
187 		rf_FreeAllocList(dag_h->allocList);
188 		for (asmap = dag_h->asmList; asmap;) {
189 			t_asmap = asmap;
190 			asmap = asmap->next;
191 			rf_FreeAccessStripeMap(t_asmap);
192 		}
193 		while (dag_h->pda_cleanup_list) {
194 			pda = dag_h->pda_cleanup_list;
195 			dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next;
196 			rf_FreePhysDiskAddr(pda);
197 		}
198 		while (dag_h->nodes) {
199 			tmpnode = dag_h->nodes;
200 			dag_h->nodes = dag_h->nodes->list_next;
201 			rf_FreeDAGNode(tmpnode);
202 		}
203 		rf_FreeDAGHeader(dag_h);
204 		dag_h = nextDag;
205 	}
206 }
207 
208 #define RF_MAX_FREE_DAGH 128
209 #define RF_MIN_FREE_DAGH  32
210 
211 #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */
212 #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */
213 
214 #define RF_MAX_FREE_DAGLIST 128
215 #define RF_MIN_FREE_DAGLIST  32
216 
217 #define RF_MAX_FREE_DAGPCACHE 128
218 #define RF_MIN_FREE_DAGPCACHE   8
219 
220 #define RF_MAX_FREE_FUNCLIST 128
221 #define RF_MIN_FREE_FUNCLIST  32
222 
223 #define RF_MAX_FREE_BUFFERS 128
224 #define RF_MIN_FREE_BUFFERS  32
225 
226 static void rf_ShutdownDAGs(void *);
227 static void
228 rf_ShutdownDAGs(void *ignored)
229 {
230 	pool_destroy(&rf_pools.dagh);
231 	pool_destroy(&rf_pools.dagnode);
232 	pool_destroy(&rf_pools.daglist);
233 	pool_destroy(&rf_pools.dagpcache);
234 	pool_destroy(&rf_pools.funclist);
235 }
236 
237 int
238 rf_ConfigureDAGs(RF_ShutdownList_t **listp)
239 {
240 
241 	rf_pool_init(&rf_pools.dagnode, sizeof(RF_DagNode_t),
242 		     "rf_dagnode_pl", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE);
243 	rf_pool_init(&rf_pools.dagh, sizeof(RF_DagHeader_t),
244 		     "rf_dagh_pl", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH);
245 	rf_pool_init(&rf_pools.daglist, sizeof(RF_DagList_t),
246 		     "rf_daglist_pl", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST);
247 	rf_pool_init(&rf_pools.dagpcache, RF_DAGPCACHE_SIZE,
248 		     "rf_dagpcache_pl", RF_MIN_FREE_DAGPCACHE, RF_MAX_FREE_DAGPCACHE);
249 	rf_pool_init(&rf_pools.funclist, sizeof(RF_FuncList_t),
250 		     "rf_funclist_pl", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST);
251 	rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
252 
253 	return (0);
254 }
255 
256 RF_DagHeader_t *
257 rf_AllocDAGHeader()
258 {
259 	RF_DagHeader_t *dh;
260 
261 	dh = pool_get(&rf_pools.dagh, PR_WAITOK);
262 	memset((char *) dh, 0, sizeof(RF_DagHeader_t));
263 	return (dh);
264 }
265 
266 void
267 rf_FreeDAGHeader(RF_DagHeader_t * dh)
268 {
269 	pool_put(&rf_pools.dagh, dh);
270 }
271 
272 RF_DagNode_t *
273 rf_AllocDAGNode()
274 {
275 	RF_DagNode_t *node;
276 
277 	node = pool_get(&rf_pools.dagnode, PR_WAITOK);
278 	memset(node, 0, sizeof(RF_DagNode_t));
279 	return (node);
280 }
281 
282 void
283 rf_FreeDAGNode(RF_DagNode_t *node)
284 {
285 	if (node->big_dag_ptrs) {
286 		rf_FreeDAGPCache(node->big_dag_ptrs);
287 	}
288 	if (node->big_dag_params) {
289 		rf_FreeDAGPCache(node->big_dag_params);
290 	}
291 	pool_put(&rf_pools.dagnode, node);
292 }
293 
294 RF_DagList_t *
295 rf_AllocDAGList()
296 {
297 	RF_DagList_t *dagList;
298 
299 	dagList = pool_get(&rf_pools.daglist, PR_WAITOK);
300 	memset(dagList, 0, sizeof(RF_DagList_t));
301 
302 	return (dagList);
303 }
304 
305 void
306 rf_FreeDAGList(RF_DagList_t *dagList)
307 {
308 	pool_put(&rf_pools.daglist, dagList);
309 }
310 
311 void *
312 rf_AllocDAGPCache()
313 {
314 	void *p;
315 	p = pool_get(&rf_pools.dagpcache, PR_WAITOK);
316 	memset(p, 0, RF_DAGPCACHE_SIZE);
317 
318 	return (p);
319 }
320 
321 void
322 rf_FreeDAGPCache(void *p)
323 {
324 	pool_put(&rf_pools.dagpcache, p);
325 }
326 
327 RF_FuncList_t *
328 rf_AllocFuncList()
329 {
330 	RF_FuncList_t *funcList;
331 
332 	funcList = pool_get(&rf_pools.funclist, PR_WAITOK);
333 	memset(funcList, 0, sizeof(RF_FuncList_t));
334 
335 	return (funcList);
336 }
337 
338 void
339 rf_FreeFuncList(RF_FuncList_t *funcList)
340 {
341 	pool_put(&rf_pools.funclist, funcList);
342 }
343 
344 /* allocates a stripe buffer -- a buffer large enough to hold all the data
345    in an entire stripe.
346 */
347 
348 void *
349 rf_AllocStripeBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size)
350 {
351 	RF_VoidPointerListElem_t *vple;
352 	void *p;
353 
354 	RF_ASSERT((size <= (raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
355 					       raidPtr->logBytesPerSector))));
356 
357 	p =  malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
358 					raidPtr->logBytesPerSector),
359 		     M_RAIDFRAME, M_NOWAIT);
360 	if (!p) {
361 		RF_LOCK_MUTEX(raidPtr->mutex);
362 		if (raidPtr->stripebuf_count > 0) {
363 			vple = raidPtr->stripebuf;
364 			raidPtr->stripebuf = vple->next;
365 			p = vple->p;
366 			rf_FreeVPListElem(vple);
367 			raidPtr->stripebuf_count--;
368 		} else {
369 #ifdef DIAGNOSTIC
370 			printf("raid%d: Help!  Out of emergency full-stripe buffers!\n", raidPtr->raidid);
371 #endif
372 		}
373 		RF_UNLOCK_MUTEX(raidPtr->mutex);
374 		if (!p) {
375 			/* We didn't get a buffer... not much we can do other than wait,
376 			   and hope that someone frees up memory for us.. */
377 			p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
378 						       raidPtr->logBytesPerSector), M_RAIDFRAME, M_WAITOK);
379 		}
380 	}
381 	memset(p, 0, raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector));
382 
383 	vple = rf_AllocVPListElem();
384 	vple->p = p;
385         vple->next = dag_h->desc->stripebufs;
386         dag_h->desc->stripebufs = vple;
387 
388 	return (p);
389 }
390 
391 
392 void
393 rf_FreeStripeBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
394 {
395 	RF_LOCK_MUTEX(raidPtr->mutex);
396 	if (raidPtr->stripebuf_count < raidPtr->numEmergencyStripeBuffers) {
397 		/* just tack it in */
398 		vple->next = raidPtr->stripebuf;
399 		raidPtr->stripebuf = vple;
400 		raidPtr->stripebuf_count++;
401 	} else {
402 		free(vple->p, M_RAIDFRAME);
403 		rf_FreeVPListElem(vple);
404 	}
405 	RF_UNLOCK_MUTEX(raidPtr->mutex);
406 }
407 
408 /* allocates a buffer big enough to hold the data described by the
409 caller (ie. the data of the associated PDA).  Glue this buffer
410 into our dag_h cleanup structure. */
411 
412 void *
413 rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size)
414 {
415 	RF_VoidPointerListElem_t *vple;
416 	void *p;
417 
418 	p = rf_AllocIOBuffer(raidPtr, size);
419 	vple = rf_AllocVPListElem();
420 	vple->p = p;
421 	vple->next = dag_h->desc->iobufs;
422 	dag_h->desc->iobufs = vple;
423 
424 	return (p);
425 }
426 
427 void *
428 rf_AllocIOBuffer(RF_Raid_t *raidPtr, int size)
429 {
430 	RF_VoidPointerListElem_t *vple;
431 	void *p;
432 
433 	RF_ASSERT((size <= (raidPtr->Layout.sectorsPerStripeUnit <<
434 			   raidPtr->logBytesPerSector)));
435 
436 	p =  malloc( raidPtr->Layout.sectorsPerStripeUnit <<
437 				 raidPtr->logBytesPerSector,
438 				 M_RAIDFRAME, M_NOWAIT);
439 	if (!p) {
440 		RF_LOCK_MUTEX(raidPtr->mutex);
441 		if (raidPtr->iobuf_count > 0) {
442 			vple = raidPtr->iobuf;
443 			raidPtr->iobuf = vple->next;
444 			p = vple->p;
445 			rf_FreeVPListElem(vple);
446 			raidPtr->iobuf_count--;
447 		} else {
448 #ifdef DIAGNOSTIC
449 			printf("raid%d: Help!  Out of emergency buffers!\n", raidPtr->raidid);
450 #endif
451 		}
452 		RF_UNLOCK_MUTEX(raidPtr->mutex);
453 		if (!p) {
454 			/* We didn't get a buffer... not much we can do other than wait,
455 			   and hope that someone frees up memory for us.. */
456 			p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
457 				    raidPtr->logBytesPerSector,
458 				    M_RAIDFRAME, M_WAITOK);
459 		}
460 	}
461 	memset(p, 0, raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector);
462 	return (p);
463 }
464 
465 void
466 rf_FreeIOBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
467 {
468 	RF_LOCK_MUTEX(raidPtr->mutex);
469 	if (raidPtr->iobuf_count < raidPtr->numEmergencyBuffers) {
470 		/* just tack it in */
471 		vple->next = raidPtr->iobuf;
472 		raidPtr->iobuf = vple;
473 		raidPtr->iobuf_count++;
474 	} else {
475 		free(vple->p, M_RAIDFRAME);
476 		rf_FreeVPListElem(vple);
477 	}
478 	RF_UNLOCK_MUTEX(raidPtr->mutex);
479 }
480 
481 
482 
483 #if RF_DEBUG_VALIDATE_DAG
484 /******************************************************************************
485  *
486  * debug routines
487  *
488  *****************************************************************************/
489 
490 char   *
491 rf_NodeStatusString(RF_DagNode_t *node)
492 {
493 	switch (node->status) {
494 	case rf_wait:
495 		return ("wait");
496 	case rf_fired:
497 		return ("fired");
498 	case rf_good:
499 		return ("good");
500 	case rf_bad:
501 		return ("bad");
502 	default:
503 		return ("?");
504 	}
505 }
506 
507 void
508 rf_PrintNodeInfoString(RF_DagNode_t *node)
509 {
510 	RF_PhysDiskAddr_t *pda;
511 	int     (*df) (RF_DagNode_t *) = node->doFunc;
512 	int     i, lk, unlk;
513 	void   *bufPtr;
514 
515 	if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
516 	    || (df == rf_DiskReadMirrorIdleFunc)
517 	    || (df == rf_DiskReadMirrorPartitionFunc)) {
518 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
519 		bufPtr = (void *) node->params[1].p;
520 		lk = 0;
521 		unlk = 0;
522 		RF_ASSERT(!(lk && unlk));
523 		printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
524 		    (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
525 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
526 		return;
527 	}
528 	if (df == rf_DiskUnlockFunc) {
529 		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
530 		lk = 0;
531 		unlk = 0;
532 		RF_ASSERT(!(lk && unlk));
533 		printf("c %d %s\n", pda->col,
534 		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
535 		return;
536 	}
537 	if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
538 	    || (df == rf_RecoveryXorFunc)) {
539 		printf("result buf 0x%lx\n", (long) node->results[0]);
540 		for (i = 0; i < node->numParams - 1; i += 2) {
541 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
542 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
543 			printf("    buf 0x%lx c%d offs %ld nsect %d\n",
544 			    (long) bufPtr, pda->col,
545 			    (long) pda->startSector, (int) pda->numSector);
546 		}
547 		return;
548 	}
549 #if RF_INCLUDE_PARITYLOGGING > 0
550 	if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
551 		for (i = 0; i < node->numParams - 1; i += 2) {
552 			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
553 			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
554 			printf(" c%d offs %ld nsect %d buf 0x%lx\n",
555 			    pda->col, (long) pda->startSector,
556 			    (int) pda->numSector, (long) bufPtr);
557 		}
558 		return;
559 	}
560 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
561 
562 	if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
563 		printf("\n");
564 		return;
565 	}
566 	printf("?\n");
567 }
568 #ifdef DEBUG
569 static void
570 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
571 {
572 	char   *anttype;
573 	int     i;
574 
575 	node->visited = (unvisited) ? 0 : 1;
576 	printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
577 	    node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
578 	    node->numSuccedents, node->numSuccFired, node->numSuccDone,
579 	    node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
580 	for (i = 0; i < node->numSuccedents; i++) {
581 		printf("%d%s", node->succedents[i]->nodeNum,
582 		    ((i == node->numSuccedents - 1) ? "\0" : " "));
583 	}
584 	printf("} A{");
585 	for (i = 0; i < node->numAntecedents; i++) {
586 		switch (node->antType[i]) {
587 		case rf_trueData:
588 			anttype = "T";
589 			break;
590 		case rf_antiData:
591 			anttype = "A";
592 			break;
593 		case rf_outputData:
594 			anttype = "O";
595 			break;
596 		case rf_control:
597 			anttype = "C";
598 			break;
599 		default:
600 			anttype = "?";
601 			break;
602 		}
603 		printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
604 	}
605 	printf("}; ");
606 	rf_PrintNodeInfoString(node);
607 	for (i = 0; i < node->numSuccedents; i++) {
608 		if (node->succedents[i]->visited == unvisited)
609 			rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
610 	}
611 }
612 
613 static void
614 rf_PrintDAG(RF_DagHeader_t *dag_h)
615 {
616 	int     unvisited, i;
617 	char   *status;
618 
619 	/* set dag status */
620 	switch (dag_h->status) {
621 	case rf_enable:
622 		status = "enable";
623 		break;
624 	case rf_rollForward:
625 		status = "rollForward";
626 		break;
627 	case rf_rollBackward:
628 		status = "rollBackward";
629 		break;
630 	default:
631 		status = "illegal!";
632 		break;
633 	}
634 	/* find out if visited bits are currently set or clear */
635 	unvisited = dag_h->succedents[0]->visited;
636 
637 	printf("DAG type:  %s\n", dag_h->creator);
638 	printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)};  info\n");
639 	printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
640 	    status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
641 	for (i = 0; i < dag_h->numSuccedents; i++) {
642 		printf("%d%s", dag_h->succedents[i]->nodeNum,
643 		    ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
644 	}
645 	printf("};\n");
646 	for (i = 0; i < dag_h->numSuccedents; i++) {
647 		if (dag_h->succedents[i]->visited == unvisited)
648 			rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
649 	}
650 }
651 #endif
652 /* assigns node numbers */
653 int
654 rf_AssignNodeNums(RF_DagHeader_t * dag_h)
655 {
656 	int     unvisited, i, nnum;
657 	RF_DagNode_t *node;
658 
659 	nnum = 0;
660 	unvisited = dag_h->succedents[0]->visited;
661 
662 	dag_h->nodeNum = nnum++;
663 	for (i = 0; i < dag_h->numSuccedents; i++) {
664 		node = dag_h->succedents[i];
665 		if (node->visited == unvisited) {
666 			nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
667 		}
668 	}
669 	return (nnum);
670 }
671 
672 int
673 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
674 {
675 	int     i;
676 
677 	node->visited = (unvisited) ? 0 : 1;
678 
679 	node->nodeNum = num++;
680 	for (i = 0; i < node->numSuccedents; i++) {
681 		if (node->succedents[i]->visited == unvisited) {
682 			num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
683 		}
684 	}
685 	return (num);
686 }
687 /* set the header pointers in each node to "newptr" */
688 void
689 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
690 {
691 	int     i;
692 	for (i = 0; i < dag_h->numSuccedents; i++)
693 		if (dag_h->succedents[i]->dagHdr != newptr)
694 			rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
695 }
696 
697 void
698 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
699 {
700 	int     i;
701 	node->dagHdr = newptr;
702 	for (i = 0; i < node->numSuccedents; i++)
703 		if (node->succedents[i]->dagHdr != newptr)
704 			rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
705 }
706 
707 
708 void
709 rf_PrintDAGList(RF_DagHeader_t * dag_h)
710 {
711 	int     i = 0;
712 
713 	for (; dag_h; dag_h = dag_h->next) {
714 		rf_AssignNodeNums(dag_h);
715 		printf("\n\nDAG %d IN LIST:\n", i++);
716 		rf_PrintDAG(dag_h);
717 	}
718 }
719 
720 static int
721 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
722 		  RF_DagNode_t **nodes, int unvisited)
723 {
724 	int     i, retcode = 0;
725 
726 	/* construct an array of node pointers indexed by node num */
727 	node->visited = (unvisited) ? 0 : 1;
728 	nodes[node->nodeNum] = node;
729 
730 	if (node->next != NULL) {
731 		printf("INVALID DAG: next pointer in node is not NULL\n");
732 		retcode = 1;
733 	}
734 	if (node->status != rf_wait) {
735 		printf("INVALID DAG: Node status is not wait\n");
736 		retcode = 1;
737 	}
738 	if (node->numAntDone != 0) {
739 		printf("INVALID DAG: numAntDone is not zero\n");
740 		retcode = 1;
741 	}
742 	if (node->doFunc == rf_TerminateFunc) {
743 		if (node->numSuccedents != 0) {
744 			printf("INVALID DAG: Terminator node has succedents\n");
745 			retcode = 1;
746 		}
747 	} else {
748 		if (node->numSuccedents == 0) {
749 			printf("INVALID DAG: Non-terminator node has no succedents\n");
750 			retcode = 1;
751 		}
752 	}
753 	for (i = 0; i < node->numSuccedents; i++) {
754 		if (!node->succedents[i]) {
755 			printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
756 			retcode = 1;
757 		}
758 		scount[node->succedents[i]->nodeNum]++;
759 	}
760 	for (i = 0; i < node->numAntecedents; i++) {
761 		if (!node->antecedents[i]) {
762 			printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
763 			retcode = 1;
764 		}
765 		acount[node->antecedents[i]->nodeNum]++;
766 	}
767 	for (i = 0; i < node->numSuccedents; i++) {
768 		if (node->succedents[i]->visited == unvisited) {
769 			if (rf_ValidateBranch(node->succedents[i], scount,
770 				acount, nodes, unvisited)) {
771 				retcode = 1;
772 			}
773 		}
774 	}
775 	return (retcode);
776 }
777 
778 static void
779 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
780 {
781 	int     i;
782 
783 	RF_ASSERT(node->visited == unvisited);
784 	for (i = 0; i < node->numSuccedents; i++) {
785 		if (node->succedents[i] == NULL) {
786 			printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
787 			RF_ASSERT(0);
788 		}
789 		rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
790 	}
791 }
792 /* NOTE:  never call this on a big dag, because it is exponential
793  * in execution time
794  */
795 static void
796 rf_ValidateVisitedBits(RF_DagHeader_t *dag)
797 {
798 	int     i, unvisited;
799 
800 	unvisited = dag->succedents[0]->visited;
801 
802 	for (i = 0; i < dag->numSuccedents; i++) {
803 		if (dag->succedents[i] == NULL) {
804 			printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
805 			RF_ASSERT(0);
806 		}
807 		rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
808 	}
809 }
810 /* validate a DAG.  _at entry_ verify that:
811  *   -- numNodesCompleted is zero
812  *   -- node queue is null
813  *   -- dag status is rf_enable
814  *   -- next pointer is null on every node
815  *   -- all nodes have status wait
816  *   -- numAntDone is zero in all nodes
817  *   -- terminator node has zero successors
818  *   -- no other node besides terminator has zero successors
819  *   -- no successor or antecedent pointer in a node is NULL
820  *   -- number of times that each node appears as a successor of another node
821  *      is equal to the antecedent count on that node
822  *   -- number of times that each node appears as an antecedent of another node
823  *      is equal to the succedent count on that node
824  *   -- what else?
825  */
826 int
827 rf_ValidateDAG(RF_DagHeader_t *dag_h)
828 {
829 	int     i, nodecount;
830 	int    *scount, *acount;/* per-node successor and antecedent counts */
831 	RF_DagNode_t **nodes;	/* array of ptrs to nodes in dag */
832 	int     retcode = 0;
833 	int     unvisited;
834 	int     commitNodeCount = 0;
835 
836 	if (rf_validateVisitedDebug)
837 		rf_ValidateVisitedBits(dag_h);
838 
839 	if (dag_h->numNodesCompleted != 0) {
840 		printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
841 		retcode = 1;
842 		goto validate_dag_bad;
843 	}
844 	if (dag_h->status != rf_enable) {
845 		printf("INVALID DAG: not enabled\n");
846 		retcode = 1;
847 		goto validate_dag_bad;
848 	}
849 	if (dag_h->numCommits != 0) {
850 		printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
851 		retcode = 1;
852 		goto validate_dag_bad;
853 	}
854 	if (dag_h->numSuccedents != 1) {
855 		/* currently, all dags must have only one succedent */
856 		printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
857 		retcode = 1;
858 		goto validate_dag_bad;
859 	}
860 	nodecount = rf_AssignNodeNums(dag_h);
861 
862 	unvisited = dag_h->succedents[0]->visited;
863 
864 	RF_Malloc(scount, nodecount * sizeof(int), (int *));
865 	RF_Malloc(acount, nodecount * sizeof(int), (int *));
866 	RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
867 		  (RF_DagNode_t **));
868 	for (i = 0; i < dag_h->numSuccedents; i++) {
869 		if ((dag_h->succedents[i]->visited == unvisited)
870 		    && rf_ValidateBranch(dag_h->succedents[i], scount,
871 			acount, nodes, unvisited)) {
872 			retcode = 1;
873 		}
874 	}
875 	/* start at 1 to skip the header node */
876 	for (i = 1; i < nodecount; i++) {
877 		if (nodes[i]->commitNode)
878 			commitNodeCount++;
879 		if (nodes[i]->doFunc == NULL) {
880 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
881 			retcode = 1;
882 			goto validate_dag_out;
883 		}
884 		if (nodes[i]->undoFunc == NULL) {
885 			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
886 			retcode = 1;
887 			goto validate_dag_out;
888 		}
889 		if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
890 			printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
891 			    nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
892 			retcode = 1;
893 			goto validate_dag_out;
894 		}
895 		if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
896 			printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
897 			    nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
898 			retcode = 1;
899 			goto validate_dag_out;
900 		}
901 	}
902 
903 	if (dag_h->numCommitNodes != commitNodeCount) {
904 		printf("INVALID DAG: incorrect commit node count.  hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
905 		    dag_h->numCommitNodes, commitNodeCount);
906 		retcode = 1;
907 		goto validate_dag_out;
908 	}
909 validate_dag_out:
910 	RF_Free(scount, nodecount * sizeof(int));
911 	RF_Free(acount, nodecount * sizeof(int));
912 	RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
913 	if (retcode)
914 		rf_PrintDAGList(dag_h);
915 
916 	if (rf_validateVisitedDebug)
917 		rf_ValidateVisitedBits(dag_h);
918 
919 	return (retcode);
920 
921 validate_dag_bad:
922 	rf_PrintDAGList(dag_h);
923 	return (retcode);
924 }
925 
926 #endif /* RF_DEBUG_VALIDATE_DAG */
927 
928 /******************************************************************************
929  *
930  * misc construction routines
931  *
932  *****************************************************************************/
933 
934 void
935 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
936 {
937 	int     ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
938 	int     fcol = raidPtr->reconControl->fcol;
939 	int     scol = raidPtr->reconControl->spareCol;
940 	RF_PhysDiskAddr_t *pda;
941 
942 	RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
943 	for (pda = asmap->physInfo; pda; pda = pda->next) {
944 		if (pda->col == fcol) {
945 #if RF_DEBUG_DAG
946 			if (rf_dagDebug) {
947 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
948 					pda->startSector)) {
949 					RF_PANIC();
950 				}
951 			}
952 #endif
953 			/* printf("Remapped data for large write\n"); */
954 			if (ds) {
955 				raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
956 				    &pda->col, &pda->startSector, RF_REMAP);
957 			} else {
958 				pda->col = scol;
959 			}
960 		}
961 	}
962 	for (pda = asmap->parityInfo; pda; pda = pda->next) {
963 		if (pda->col == fcol) {
964 #if RF_DEBUG_DAG
965 			if (rf_dagDebug) {
966 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
967 					RF_PANIC();
968 				}
969 			}
970 #endif
971 		}
972 		if (ds) {
973 			(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
974 		} else {
975 			pda->col = scol;
976 		}
977 	}
978 }
979 
980 
981 /* this routine allocates read buffers and generates stripe maps for the
982  * regions of the array from the start of the stripe to the start of the
983  * access, and from the end of the access to the end of the stripe.  It also
984  * computes and returns the number of DAG nodes needed to read all this data.
985  * Note that this routine does the wrong thing if the access is fully
986  * contained within one stripe unit, so we RF_ASSERT against this case at the
987  * start.
988  *
989  * layoutPtr - in: layout information
990  * asmap     - in: access stripe map
991  * dag_h     - in: header of the dag to create
992  * new_asm_h - in: ptr to array of 2 headers.  to be filled in
993  * nRodNodes - out: num nodes to be generated to read unaccessed data
994  * sosBuffer, eosBuffer - out: pointers to newly allocated buffer
995  */
996 void
997 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
998 				RF_RaidLayout_t *layoutPtr,
999 				RF_AccessStripeMap_t *asmap,
1000 				RF_DagHeader_t *dag_h,
1001 				RF_AccessStripeMapHeader_t **new_asm_h,
1002 				int *nRodNodes,
1003 				char **sosBuffer, char **eosBuffer,
1004 				RF_AllocListElem_t *allocList)
1005 {
1006 	RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
1007 	RF_SectorNum_t sosNumSector, eosNumSector;
1008 
1009 	RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
1010 	/* generate an access map for the region of the array from start of
1011 	 * stripe to start of access */
1012 	new_asm_h[0] = new_asm_h[1] = NULL;
1013 	*nRodNodes = 0;
1014 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
1015 		sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
1016 		sosNumSector = asmap->raidAddress - sosRaidAddress;
1017 		*sosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, sosNumSector));
1018 		new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
1019 		new_asm_h[0]->next = dag_h->asmList;
1020 		dag_h->asmList = new_asm_h[0];
1021 		*nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
1022 
1023 		RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
1024 		/* we're totally within one stripe here */
1025 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
1026 			rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
1027 	}
1028 	/* generate an access map for the region of the array from end of
1029 	 * access to end of stripe */
1030 	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
1031 		eosRaidAddress = asmap->endRaidAddress;
1032 		eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
1033 		*eosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, eosNumSector));
1034 		new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
1035 		new_asm_h[1]->next = dag_h->asmList;
1036 		dag_h->asmList = new_asm_h[1];
1037 		*nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
1038 
1039 		RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
1040 		/* we're totally within one stripe here */
1041 		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
1042 			rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
1043 	}
1044 }
1045 
1046 
1047 
1048 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */
1049 int
1050 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
1051 	      RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
1052 {
1053 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1054 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1055 	/* use -1 to be sure we stay within SU */
1056 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
1057 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1058 	return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
1059 }
1060 
1061 
1062 /* GenerateFailedAccessASMs
1063  *
1064  * this routine figures out what portion of the stripe needs to be read
1065  * to effect the degraded read or write operation.  It's primary function
1066  * is to identify everything required to recover the data, and then
1067  * eliminate anything that is already being accessed by the user.
1068  *
1069  * The main result is two new ASMs, one for the region from the start of the
1070  * stripe to the start of the access, and one for the region from the end of
1071  * the access to the end of the stripe.  These ASMs describe everything that
1072  * needs to be read to effect the degraded access.  Other results are:
1073  *    nXorBufs -- the total number of buffers that need to be XORed together to
1074  *                recover the lost data,
1075  *    rpBufPtr -- ptr to a newly-allocated buffer to hold the parity.  If NULL
1076  *                at entry, not allocated.
1077  *    overlappingPDAs --
1078  *                describes which of the non-failed PDAs in the user access
1079  *                overlap data that needs to be read to effect recovery.
1080  *                overlappingPDAs[i]==1 if and only if, neglecting the failed
1081  *                PDA, the ith pda in the input asm overlaps data that needs
1082  *                to be read for recovery.
1083  */
1084  /* in: asm - ASM for the actual access, one stripe only */
1085  /* in: failedPDA - which component of the access has failed */
1086  /* in: dag_h - header of the DAG we're going to create */
1087  /* out: new_asm_h - the two new ASMs */
1088  /* out: nXorBufs - the total number of xor bufs required */
1089  /* out: rpBufPtr - a buffer for the parity read */
1090 void
1091 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1092 			    RF_PhysDiskAddr_t *failedPDA,
1093 			    RF_DagHeader_t *dag_h,
1094 			    RF_AccessStripeMapHeader_t **new_asm_h,
1095 			    int *nXorBufs, char **rpBufPtr,
1096 			    char *overlappingPDAs,
1097 			    RF_AllocListElem_t *allocList)
1098 {
1099 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
1100 
1101 	/* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
1102 	RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
1103 	RF_PhysDiskAddr_t *pda;
1104 	int     foundit, i;
1105 
1106 	foundit = 0;
1107 	/* first compute the following raid addresses: start of stripe,
1108 	 * (sosAddr) MIN(start of access, start of failed SU),   (sosEndAddr)
1109 	 * MAX(end of access, end of failed SU),       (eosStartAddr) end of
1110 	 * stripe (i.e. start of next stripe)   (eosAddr) */
1111 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
1112 	sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
1113 	eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
1114 	eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
1115 
1116 	/* now generate access stripe maps for each of the above regions of
1117 	 * the stripe.  Use a dummy (NULL) buf ptr for now */
1118 
1119 	new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
1120 	new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
1121 
1122 	/* walk through the PDAs and range-restrict each SU to the region of
1123 	 * the SU touched on the failed PDA.  also compute total data buffer
1124 	 * space requirements in this step.  Ignore the parity for now. */
1125 	/* Also count nodes to find out how many bufs need to be xored together */
1126 	(*nXorBufs) = 1;	/* in read case, 1 is for parity.  In write
1127 				 * case, 1 is for failed data */
1128 
1129 	if (new_asm_h[0]) {
1130 		new_asm_h[0]->next = dag_h->asmList;
1131 		dag_h->asmList = new_asm_h[0];
1132 		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
1133 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1134 			pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
1135 		}
1136 		(*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
1137 	}
1138 	if (new_asm_h[1]) {
1139 		new_asm_h[1]->next = dag_h->asmList;
1140 		dag_h->asmList = new_asm_h[1];
1141 		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
1142 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
1143 			pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
1144 		}
1145 		(*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
1146 	}
1147 
1148 	/* allocate a buffer for parity */
1149 	if (rpBufPtr)
1150 		*rpBufPtr = rf_AllocBuffer(raidPtr, dag_h, failedPDA->numSector << raidPtr->logBytesPerSector);
1151 
1152 	/* the last step is to figure out how many more distinct buffers need
1153 	 * to get xor'd to produce the missing unit.  there's one for each
1154 	 * user-data read node that overlaps the portion of the failed unit
1155 	 * being accessed */
1156 
1157 	for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
1158 		if (pda == failedPDA) {
1159 			i--;
1160 			foundit = 1;
1161 			continue;
1162 		}
1163 		if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
1164 			overlappingPDAs[i] = 1;
1165 			(*nXorBufs)++;
1166 		}
1167 	}
1168 	if (!foundit) {
1169 		RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
1170 		RF_ASSERT(0);
1171 	}
1172 #if RF_DEBUG_DAG
1173 	if (rf_degDagDebug) {
1174 		if (new_asm_h[0]) {
1175 			printf("First asm:\n");
1176 			rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
1177 		}
1178 		if (new_asm_h[1]) {
1179 			printf("Second asm:\n");
1180 			rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
1181 		}
1182 	}
1183 #endif
1184 }
1185 
1186 
1187 /* adjusts the offset and number of sectors in the destination pda so that
1188  * it covers at most the region of the SU covered by the source PDA.  This
1189  * is exclusively a restriction:  the number of sectors indicated by the
1190  * target PDA can only shrink.
1191  *
1192  * For example:  s = sectors within SU indicated by source PDA
1193  *               d = sectors within SU indicated by dest PDA
1194  *               r = results, stored in dest PDA
1195  *
1196  * |--------------- one stripe unit ---------------------|
1197  * |           sssssssssssssssssssssssssssssssss         |
1198  * |    ddddddddddddddddddddddddddddddddddddddddddddd    |
1199  * |           rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr         |
1200  *
1201  * Another example:
1202  *
1203  * |--------------- one stripe unit ---------------------|
1204  * |           sssssssssssssssssssssssssssssssss         |
1205  * |    ddddddddddddddddddddddd                          |
1206  * |           rrrrrrrrrrrrrrrr                          |
1207  *
1208  */
1209 void
1210 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
1211 		    RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
1212 {
1213 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1214 	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
1215 	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
1216 	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);	/* use -1 to be sure we
1217 													 * stay within SU */
1218 	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
1219 	RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector);	/* stripe unit boundary */
1220 
1221 	dest->startSector = subAddr + RF_MAX(soffs, doffs);
1222 	dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
1223 
1224 	if (dobuffer)
1225 		dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
1226 	if (doraidaddr) {
1227 		dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
1228 		    rf_StripeUnitOffset(layoutPtr, dest->startSector);
1229 	}
1230 }
1231 
1232 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
1233 
1234 /*
1235  * Want the highest of these primes to be the largest one
1236  * less than the max expected number of columns (won't hurt
1237  * to be too small or too large, but won't be optimal, either)
1238  * --jimz
1239  */
1240 #define NLOWPRIMES 8
1241 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
1242 /*****************************************************************************
1243  * compute the workload shift factor.  (chained declustering)
1244  *
1245  * return nonzero if access should shift to secondary, otherwise,
1246  * access is to primary
1247  *****************************************************************************/
1248 int
1249 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
1250 {
1251 	/*
1252          * variables:
1253          *  d   = column of disk containing primary
1254          *  f   = column of failed disk
1255          *  n   = number of disks in array
1256          *  sd  = "shift distance" (number of columns that d is to the right of f)
1257          *  v   = numerator of redirection ratio
1258          *  k   = denominator of redirection ratio
1259          */
1260 	RF_RowCol_t d, f, sd, n;
1261 	int     k, v, ret, i;
1262 
1263 	n = raidPtr->numCol;
1264 
1265 	/* assign column of primary copy to d */
1266 	d = pda->col;
1267 
1268 	/* assign column of dead disk to f */
1269 	for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
1270 
1271 	RF_ASSERT(f < n);
1272 	RF_ASSERT(f != d);
1273 
1274 	sd = (f > d) ? (n + d - f) : (d - f);
1275 	RF_ASSERT(sd < n);
1276 
1277 	/*
1278          * v of every k accesses should be redirected
1279          *
1280          * v/k := (n-1-sd)/(n-1)
1281          */
1282 	v = (n - 1 - sd);
1283 	k = (n - 1);
1284 
1285 #if 1
1286 	/*
1287          * XXX
1288          * Is this worth it?
1289          *
1290          * Now reduce the fraction, by repeatedly factoring
1291          * out primes (just like they teach in elementary school!)
1292          */
1293 	for (i = 0; i < NLOWPRIMES; i++) {
1294 		if (lowprimes[i] > v)
1295 			break;
1296 		while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
1297 			v /= lowprimes[i];
1298 			k /= lowprimes[i];
1299 		}
1300 	}
1301 #endif
1302 
1303 	raidPtr->hist_diskreq[d]++;
1304 	if (raidPtr->hist_diskreq[d] > v) {
1305 		ret = 0;	/* do not redirect */
1306 	} else {
1307 		ret = 1;	/* redirect */
1308 	}
1309 
1310 #if 0
1311 	printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
1312 	    raidPtr->hist_diskreq[d]);
1313 #endif
1314 
1315 	if (raidPtr->hist_diskreq[d] >= k) {
1316 		/* reset counter */
1317 		raidPtr->hist_diskreq[d] = 0;
1318 	}
1319 	return (ret);
1320 }
1321 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
1322 
1323 /*
1324  * Disk selection routines
1325  */
1326 
1327 /*
1328  * Selects the disk with the shortest queue from a mirror pair.
1329  * Both the disk I/Os queued in RAIDframe as well as those at the physical
1330  * disk are counted as members of the "queue"
1331  */
1332 void
1333 rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
1334 {
1335 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1336 	RF_RowCol_t colData, colMirror;
1337 	int     dataQueueLength, mirrorQueueLength, usemirror;
1338 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1339 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1340 	RF_PhysDiskAddr_t *tmp_pda;
1341 	RF_RaidDisk_t *disks = raidPtr->Disks;
1342 	RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
1343 
1344 	/* return the [row col] of the disk with the shortest queue */
1345 	colData = data_pda->col;
1346 	colMirror = mirror_pda->col;
1347 	dataQueue = &(dqs[colData]);
1348 	mirrorQueue = &(dqs[colMirror]);
1349 
1350 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1351 	RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1352 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
1353 	dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
1354 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1355 	RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
1356 	RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1357 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
1358 	mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
1359 #ifdef RF_LOCK_QUEUES_TO_READ_LEN
1360 	RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
1361 #endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
1362 
1363 	usemirror = 0;
1364 	if (RF_DEAD_DISK(disks[colMirror].status)) {
1365 		usemirror = 0;
1366 	} else
1367 		if (RF_DEAD_DISK(disks[colData].status)) {
1368 			usemirror = 1;
1369 		} else
1370 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
1371 				/* Trust only the main disk */
1372 				usemirror = 0;
1373 			} else
1374 				if (dataQueueLength < mirrorQueueLength) {
1375 					usemirror = 0;
1376 				} else
1377 					if (mirrorQueueLength < dataQueueLength) {
1378 						usemirror = 1;
1379 					} else {
1380 						/* queues are equal length. attempt
1381 						 * cleverness. */
1382 						if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
1383 						    <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
1384 							usemirror = 0;
1385 						} else {
1386 							usemirror = 1;
1387 						}
1388 					}
1389 
1390 	if (usemirror) {
1391 		/* use mirror (parity) disk, swap params 0 & 4 */
1392 		tmp_pda = data_pda;
1393 		node->params[0].p = mirror_pda;
1394 		node->params[4].p = tmp_pda;
1395 	} else {
1396 		/* use data disk, leave param 0 unchanged */
1397 	}
1398 	/* printf("dataQueueLength %d, mirrorQueueLength
1399 	 * %d\n",dataQueueLength, mirrorQueueLength); */
1400 }
1401 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
1402 /*
1403  * Do simple partitioning. This assumes that
1404  * the data and parity disks are laid out identically.
1405  */
1406 void
1407 rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
1408 {
1409 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
1410 	RF_RowCol_t colData, colMirror;
1411 	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
1412 	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
1413 	RF_PhysDiskAddr_t *tmp_pda;
1414 	RF_RaidDisk_t *disks = raidPtr->Disks;
1415 	int     usemirror;
1416 
1417 	/* return the [row col] of the disk with the shortest queue */
1418 	colData = data_pda->col;
1419 	colMirror = mirror_pda->col;
1420 
1421 	usemirror = 0;
1422 	if (RF_DEAD_DISK(disks[colMirror].status)) {
1423 		usemirror = 0;
1424 	} else
1425 		if (RF_DEAD_DISK(disks[colData].status)) {
1426 			usemirror = 1;
1427 		} else
1428 			if (raidPtr->parity_good == RF_RAID_DIRTY) {
1429 				/* Trust only the main disk */
1430 				usemirror = 0;
1431 			} else
1432 				if (data_pda->startSector <
1433 				    (disks[colData].numBlocks / 2)) {
1434 					usemirror = 0;
1435 				} else {
1436 					usemirror = 1;
1437 				}
1438 
1439 	if (usemirror) {
1440 		/* use mirror (parity) disk, swap params 0 & 4 */
1441 		tmp_pda = data_pda;
1442 		node->params[0].p = mirror_pda;
1443 		node->params[4].p = tmp_pda;
1444 	} else {
1445 		/* use data disk, leave param 0 unchanged */
1446 	}
1447 }
1448 #endif
1449