1 /* $NetBSD: rf_dagutils.c,v 1.44 2004/04/09 23:10:16 oster Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Authors: Mark Holland, William V. Courtright II, Jim Zelenka 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /****************************************************************************** 30 * 31 * rf_dagutils.c -- utility routines for manipulating dags 32 * 33 *****************************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.44 2004/04/09 23:10:16 oster Exp $"); 37 38 #include <dev/raidframe/raidframevar.h> 39 40 #include "rf_archs.h" 41 #include "rf_threadstuff.h" 42 #include "rf_raid.h" 43 #include "rf_dag.h" 44 #include "rf_dagutils.h" 45 #include "rf_dagfuncs.h" 46 #include "rf_general.h" 47 #include "rf_map.h" 48 #include "rf_shutdown.h" 49 50 #define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_))) 51 52 const RF_RedFuncs_t rf_xorFuncs = { 53 rf_RegularXorFunc, "Reg Xr", 54 rf_SimpleXorFunc, "Simple Xr"}; 55 56 const RF_RedFuncs_t rf_xorRecoveryFuncs = { 57 rf_RecoveryXorFunc, "Recovery Xr", 58 rf_RecoveryXorFunc, "Recovery Xr"}; 59 60 #if RF_DEBUG_VALIDATE_DAG 61 static void rf_RecurPrintDAG(RF_DagNode_t *, int, int); 62 static void rf_PrintDAG(RF_DagHeader_t *); 63 static int rf_ValidateBranch(RF_DagNode_t *, int *, int *, 64 RF_DagNode_t **, int); 65 static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int); 66 static void rf_ValidateVisitedBits(RF_DagHeader_t *); 67 #endif /* RF_DEBUG_VALIDATE_DAG */ 68 69 /* The maximum number of nodes in a DAG is bounded by 70 71 (2 * raidPtr->Layout->numDataCol) + (1 * layoutPtr->numParityCol) + 72 (1 * 2 * layoutPtr->numParityCol) + 3 73 74 which is: 2*RF_MAXCOL+1*2+1*2*2+3 75 76 For RF_MAXCOL of 40, this works out to 89. We use this value to provide an estimate 77 on the maximum size needed for RF_DAGPCACHE_SIZE. For RF_MAXCOL of 40, this structure 78 would be 534 bytes. Too much to have on-hand in a RF_DagNode_t, but should be ok to 79 have a few kicking around. 80 */ 81 #define RF_DAGPCACHE_SIZE ((2*RF_MAXCOL+1*2+1*2*2+3) *(RF_MAX(sizeof(RF_DagParam_t), sizeof(RF_DagNode_t *)))) 82 83 84 /****************************************************************************** 85 * 86 * InitNode - initialize a dag node 87 * 88 * the size of the propList array is always the same as that of the 89 * successors array. 90 * 91 *****************************************************************************/ 92 void 93 rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit, 94 int (*doFunc) (RF_DagNode_t *node), 95 int (*undoFunc) (RF_DagNode_t *node), 96 int (*wakeFunc) (RF_DagNode_t *node, int status), 97 int nSucc, int nAnte, int nParam, int nResult, 98 RF_DagHeader_t *hdr, char *name, RF_AllocListElem_t *alist) 99 { 100 void **ptrs; 101 int nptrs; 102 103 if (nAnte > RF_MAX_ANTECEDENTS) 104 RF_PANIC(); 105 node->status = initstatus; 106 node->commitNode = commit; 107 node->doFunc = doFunc; 108 node->undoFunc = undoFunc; 109 node->wakeFunc = wakeFunc; 110 node->numParams = nParam; 111 node->numResults = nResult; 112 node->numAntecedents = nAnte; 113 node->numAntDone = 0; 114 node->next = NULL; 115 /* node->list_next = NULL */ /* Don't touch this here! 116 It may already be 117 in use by the caller! */ 118 node->numSuccedents = nSucc; 119 node->name = name; 120 node->dagHdr = hdr; 121 node->big_dag_ptrs = NULL; 122 node->big_dag_params = NULL; 123 node->visited = 0; 124 125 /* allocate all the pointers with one call to malloc */ 126 nptrs = nSucc + nAnte + nResult + nSucc; 127 128 if (nptrs <= RF_DAG_PTRCACHESIZE) { 129 /* 130 * The dag_ptrs field of the node is basically some scribble 131 * space to be used here. We could get rid of it, and always 132 * allocate the range of pointers, but that's expensive. So, 133 * we pick a "common case" size for the pointer cache. Hopefully, 134 * we'll find that: 135 * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by 136 * only a little bit (least efficient case) 137 * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE 138 * (wasted memory) 139 */ 140 ptrs = (void **) node->dag_ptrs; 141 } else if (nptrs <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagNode_t *))) { 142 node->big_dag_ptrs = rf_AllocDAGPCache(); 143 ptrs = (void **) node->big_dag_ptrs; 144 } else { 145 RF_MallocAndAdd(ptrs, nptrs * sizeof(void *), 146 (void **), alist); 147 } 148 node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL; 149 node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL; 150 node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL; 151 node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL; 152 153 if (nParam) { 154 if (nParam <= RF_DAG_PARAMCACHESIZE) { 155 node->params = (RF_DagParam_t *) node->dag_params; 156 } else if (nParam <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagParam_t))) { 157 node->big_dag_params = rf_AllocDAGPCache(); 158 node->params = node->big_dag_params; 159 } else { 160 RF_MallocAndAdd(node->params, 161 nParam * sizeof(RF_DagParam_t), 162 (RF_DagParam_t *), alist); 163 } 164 } else { 165 node->params = NULL; 166 } 167 } 168 169 170 171 /****************************************************************************** 172 * 173 * allocation and deallocation routines 174 * 175 *****************************************************************************/ 176 177 void 178 rf_FreeDAG(RF_DagHeader_t *dag_h) 179 { 180 RF_AccessStripeMapHeader_t *asmap, *t_asmap; 181 RF_PhysDiskAddr_t *pda; 182 RF_DagNode_t *tmpnode; 183 RF_DagHeader_t *nextDag; 184 185 while (dag_h) { 186 nextDag = dag_h->next; 187 rf_FreeAllocList(dag_h->allocList); 188 for (asmap = dag_h->asmList; asmap;) { 189 t_asmap = asmap; 190 asmap = asmap->next; 191 rf_FreeAccessStripeMap(t_asmap); 192 } 193 while (dag_h->pda_cleanup_list) { 194 pda = dag_h->pda_cleanup_list; 195 dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next; 196 rf_FreePhysDiskAddr(pda); 197 } 198 while (dag_h->nodes) { 199 tmpnode = dag_h->nodes; 200 dag_h->nodes = dag_h->nodes->list_next; 201 rf_FreeDAGNode(tmpnode); 202 } 203 rf_FreeDAGHeader(dag_h); 204 dag_h = nextDag; 205 } 206 } 207 208 #define RF_MAX_FREE_DAGH 128 209 #define RF_MIN_FREE_DAGH 32 210 211 #define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */ 212 #define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */ 213 214 #define RF_MAX_FREE_DAGLIST 128 215 #define RF_MIN_FREE_DAGLIST 32 216 217 #define RF_MAX_FREE_DAGPCACHE 128 218 #define RF_MIN_FREE_DAGPCACHE 8 219 220 #define RF_MAX_FREE_FUNCLIST 128 221 #define RF_MIN_FREE_FUNCLIST 32 222 223 #define RF_MAX_FREE_BUFFERS 128 224 #define RF_MIN_FREE_BUFFERS 32 225 226 static void rf_ShutdownDAGs(void *); 227 static void 228 rf_ShutdownDAGs(void *ignored) 229 { 230 pool_destroy(&rf_pools.dagh); 231 pool_destroy(&rf_pools.dagnode); 232 pool_destroy(&rf_pools.daglist); 233 pool_destroy(&rf_pools.dagpcache); 234 pool_destroy(&rf_pools.funclist); 235 } 236 237 int 238 rf_ConfigureDAGs(RF_ShutdownList_t **listp) 239 { 240 241 rf_pool_init(&rf_pools.dagnode, sizeof(RF_DagNode_t), 242 "rf_dagnode_pl", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE); 243 rf_pool_init(&rf_pools.dagh, sizeof(RF_DagHeader_t), 244 "rf_dagh_pl", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH); 245 rf_pool_init(&rf_pools.daglist, sizeof(RF_DagList_t), 246 "rf_daglist_pl", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST); 247 rf_pool_init(&rf_pools.dagpcache, RF_DAGPCACHE_SIZE, 248 "rf_dagpcache_pl", RF_MIN_FREE_DAGPCACHE, RF_MAX_FREE_DAGPCACHE); 249 rf_pool_init(&rf_pools.funclist, sizeof(RF_FuncList_t), 250 "rf_funclist_pl", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST); 251 rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL); 252 253 return (0); 254 } 255 256 RF_DagHeader_t * 257 rf_AllocDAGHeader() 258 { 259 RF_DagHeader_t *dh; 260 261 dh = pool_get(&rf_pools.dagh, PR_WAITOK); 262 memset((char *) dh, 0, sizeof(RF_DagHeader_t)); 263 return (dh); 264 } 265 266 void 267 rf_FreeDAGHeader(RF_DagHeader_t * dh) 268 { 269 pool_put(&rf_pools.dagh, dh); 270 } 271 272 RF_DagNode_t * 273 rf_AllocDAGNode() 274 { 275 RF_DagNode_t *node; 276 277 node = pool_get(&rf_pools.dagnode, PR_WAITOK); 278 memset(node, 0, sizeof(RF_DagNode_t)); 279 return (node); 280 } 281 282 void 283 rf_FreeDAGNode(RF_DagNode_t *node) 284 { 285 if (node->big_dag_ptrs) { 286 rf_FreeDAGPCache(node->big_dag_ptrs); 287 } 288 if (node->big_dag_params) { 289 rf_FreeDAGPCache(node->big_dag_params); 290 } 291 pool_put(&rf_pools.dagnode, node); 292 } 293 294 RF_DagList_t * 295 rf_AllocDAGList() 296 { 297 RF_DagList_t *dagList; 298 299 dagList = pool_get(&rf_pools.daglist, PR_WAITOK); 300 memset(dagList, 0, sizeof(RF_DagList_t)); 301 302 return (dagList); 303 } 304 305 void 306 rf_FreeDAGList(RF_DagList_t *dagList) 307 { 308 pool_put(&rf_pools.daglist, dagList); 309 } 310 311 void * 312 rf_AllocDAGPCache() 313 { 314 void *p; 315 p = pool_get(&rf_pools.dagpcache, PR_WAITOK); 316 memset(p, 0, RF_DAGPCACHE_SIZE); 317 318 return (p); 319 } 320 321 void 322 rf_FreeDAGPCache(void *p) 323 { 324 pool_put(&rf_pools.dagpcache, p); 325 } 326 327 RF_FuncList_t * 328 rf_AllocFuncList() 329 { 330 RF_FuncList_t *funcList; 331 332 funcList = pool_get(&rf_pools.funclist, PR_WAITOK); 333 memset(funcList, 0, sizeof(RF_FuncList_t)); 334 335 return (funcList); 336 } 337 338 void 339 rf_FreeFuncList(RF_FuncList_t *funcList) 340 { 341 pool_put(&rf_pools.funclist, funcList); 342 } 343 344 /* allocates a stripe buffer -- a buffer large enough to hold all the data 345 in an entire stripe. 346 */ 347 348 void * 349 rf_AllocStripeBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size) 350 { 351 RF_VoidPointerListElem_t *vple; 352 void *p; 353 354 RF_ASSERT((size <= (raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << 355 raidPtr->logBytesPerSector)))); 356 357 p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << 358 raidPtr->logBytesPerSector), 359 M_RAIDFRAME, M_NOWAIT); 360 if (!p) { 361 RF_LOCK_MUTEX(raidPtr->mutex); 362 if (raidPtr->stripebuf_count > 0) { 363 vple = raidPtr->stripebuf; 364 raidPtr->stripebuf = vple->next; 365 p = vple->p; 366 rf_FreeVPListElem(vple); 367 raidPtr->stripebuf_count--; 368 } else { 369 #ifdef DIAGNOSTIC 370 printf("raid%d: Help! Out of emergency full-stripe buffers!\n", raidPtr->raidid); 371 #endif 372 } 373 RF_UNLOCK_MUTEX(raidPtr->mutex); 374 if (!p) { 375 /* We didn't get a buffer... not much we can do other than wait, 376 and hope that someone frees up memory for us.. */ 377 p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << 378 raidPtr->logBytesPerSector), M_RAIDFRAME, M_WAITOK); 379 } 380 } 381 memset(p, 0, raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector)); 382 383 vple = rf_AllocVPListElem(); 384 vple->p = p; 385 vple->next = dag_h->desc->stripebufs; 386 dag_h->desc->stripebufs = vple; 387 388 return (p); 389 } 390 391 392 void 393 rf_FreeStripeBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple) 394 { 395 RF_LOCK_MUTEX(raidPtr->mutex); 396 if (raidPtr->stripebuf_count < raidPtr->numEmergencyStripeBuffers) { 397 /* just tack it in */ 398 vple->next = raidPtr->stripebuf; 399 raidPtr->stripebuf = vple; 400 raidPtr->stripebuf_count++; 401 } else { 402 free(vple->p, M_RAIDFRAME); 403 rf_FreeVPListElem(vple); 404 } 405 RF_UNLOCK_MUTEX(raidPtr->mutex); 406 } 407 408 /* allocates a buffer big enough to hold the data described by the 409 caller (ie. the data of the associated PDA). Glue this buffer 410 into our dag_h cleanup structure. */ 411 412 void * 413 rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size) 414 { 415 RF_VoidPointerListElem_t *vple; 416 void *p; 417 418 p = rf_AllocIOBuffer(raidPtr, size); 419 vple = rf_AllocVPListElem(); 420 vple->p = p; 421 vple->next = dag_h->desc->iobufs; 422 dag_h->desc->iobufs = vple; 423 424 return (p); 425 } 426 427 void * 428 rf_AllocIOBuffer(RF_Raid_t *raidPtr, int size) 429 { 430 RF_VoidPointerListElem_t *vple; 431 void *p; 432 433 RF_ASSERT((size <= (raidPtr->Layout.sectorsPerStripeUnit << 434 raidPtr->logBytesPerSector))); 435 436 p = malloc( raidPtr->Layout.sectorsPerStripeUnit << 437 raidPtr->logBytesPerSector, 438 M_RAIDFRAME, M_NOWAIT); 439 if (!p) { 440 RF_LOCK_MUTEX(raidPtr->mutex); 441 if (raidPtr->iobuf_count > 0) { 442 vple = raidPtr->iobuf; 443 raidPtr->iobuf = vple->next; 444 p = vple->p; 445 rf_FreeVPListElem(vple); 446 raidPtr->iobuf_count--; 447 } else { 448 #ifdef DIAGNOSTIC 449 printf("raid%d: Help! Out of emergency buffers!\n", raidPtr->raidid); 450 #endif 451 } 452 RF_UNLOCK_MUTEX(raidPtr->mutex); 453 if (!p) { 454 /* We didn't get a buffer... not much we can do other than wait, 455 and hope that someone frees up memory for us.. */ 456 p = malloc( raidPtr->Layout.sectorsPerStripeUnit << 457 raidPtr->logBytesPerSector, 458 M_RAIDFRAME, M_WAITOK); 459 } 460 } 461 memset(p, 0, raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector); 462 return (p); 463 } 464 465 void 466 rf_FreeIOBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple) 467 { 468 RF_LOCK_MUTEX(raidPtr->mutex); 469 if (raidPtr->iobuf_count < raidPtr->numEmergencyBuffers) { 470 /* just tack it in */ 471 vple->next = raidPtr->iobuf; 472 raidPtr->iobuf = vple; 473 raidPtr->iobuf_count++; 474 } else { 475 free(vple->p, M_RAIDFRAME); 476 rf_FreeVPListElem(vple); 477 } 478 RF_UNLOCK_MUTEX(raidPtr->mutex); 479 } 480 481 482 483 #if RF_DEBUG_VALIDATE_DAG 484 /****************************************************************************** 485 * 486 * debug routines 487 * 488 *****************************************************************************/ 489 490 char * 491 rf_NodeStatusString(RF_DagNode_t *node) 492 { 493 switch (node->status) { 494 case rf_wait: 495 return ("wait"); 496 case rf_fired: 497 return ("fired"); 498 case rf_good: 499 return ("good"); 500 case rf_bad: 501 return ("bad"); 502 default: 503 return ("?"); 504 } 505 } 506 507 void 508 rf_PrintNodeInfoString(RF_DagNode_t *node) 509 { 510 RF_PhysDiskAddr_t *pda; 511 int (*df) (RF_DagNode_t *) = node->doFunc; 512 int i, lk, unlk; 513 void *bufPtr; 514 515 if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc) 516 || (df == rf_DiskReadMirrorIdleFunc) 517 || (df == rf_DiskReadMirrorPartitionFunc)) { 518 pda = (RF_PhysDiskAddr_t *) node->params[0].p; 519 bufPtr = (void *) node->params[1].p; 520 lk = 0; 521 unlk = 0; 522 RF_ASSERT(!(lk && unlk)); 523 printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col, 524 (long) pda->startSector, (int) pda->numSector, (long) bufPtr, 525 (lk) ? "LOCK" : ((unlk) ? "UNLK" : " ")); 526 return; 527 } 528 if (df == rf_DiskUnlockFunc) { 529 pda = (RF_PhysDiskAddr_t *) node->params[0].p; 530 lk = 0; 531 unlk = 0; 532 RF_ASSERT(!(lk && unlk)); 533 printf("c %d %s\n", pda->col, 534 (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop")); 535 return; 536 } 537 if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc) 538 || (df == rf_RecoveryXorFunc)) { 539 printf("result buf 0x%lx\n", (long) node->results[0]); 540 for (i = 0; i < node->numParams - 1; i += 2) { 541 pda = (RF_PhysDiskAddr_t *) node->params[i].p; 542 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p; 543 printf(" buf 0x%lx c%d offs %ld nsect %d\n", 544 (long) bufPtr, pda->col, 545 (long) pda->startSector, (int) pda->numSector); 546 } 547 return; 548 } 549 #if RF_INCLUDE_PARITYLOGGING > 0 550 if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) { 551 for (i = 0; i < node->numParams - 1; i += 2) { 552 pda = (RF_PhysDiskAddr_t *) node->params[i].p; 553 bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p; 554 printf(" c%d offs %ld nsect %d buf 0x%lx\n", 555 pda->col, (long) pda->startSector, 556 (int) pda->numSector, (long) bufPtr); 557 } 558 return; 559 } 560 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */ 561 562 if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) { 563 printf("\n"); 564 return; 565 } 566 printf("?\n"); 567 } 568 #ifdef DEBUG 569 static void 570 rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited) 571 { 572 char *anttype; 573 int i; 574 575 node->visited = (unvisited) ? 0 : 1; 576 printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth, 577 node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node), 578 node->numSuccedents, node->numSuccFired, node->numSuccDone, 579 node->numAntecedents, node->numAntDone, node->numParams, node->numResults); 580 for (i = 0; i < node->numSuccedents; i++) { 581 printf("%d%s", node->succedents[i]->nodeNum, 582 ((i == node->numSuccedents - 1) ? "\0" : " ")); 583 } 584 printf("} A{"); 585 for (i = 0; i < node->numAntecedents; i++) { 586 switch (node->antType[i]) { 587 case rf_trueData: 588 anttype = "T"; 589 break; 590 case rf_antiData: 591 anttype = "A"; 592 break; 593 case rf_outputData: 594 anttype = "O"; 595 break; 596 case rf_control: 597 anttype = "C"; 598 break; 599 default: 600 anttype = "?"; 601 break; 602 } 603 printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " "); 604 } 605 printf("}; "); 606 rf_PrintNodeInfoString(node); 607 for (i = 0; i < node->numSuccedents; i++) { 608 if (node->succedents[i]->visited == unvisited) 609 rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited); 610 } 611 } 612 613 static void 614 rf_PrintDAG(RF_DagHeader_t *dag_h) 615 { 616 int unvisited, i; 617 char *status; 618 619 /* set dag status */ 620 switch (dag_h->status) { 621 case rf_enable: 622 status = "enable"; 623 break; 624 case rf_rollForward: 625 status = "rollForward"; 626 break; 627 case rf_rollBackward: 628 status = "rollBackward"; 629 break; 630 default: 631 status = "illegal!"; 632 break; 633 } 634 /* find out if visited bits are currently set or clear */ 635 unvisited = dag_h->succedents[0]->visited; 636 637 printf("DAG type: %s\n", dag_h->creator); 638 printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n"); 639 printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum, 640 status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits); 641 for (i = 0; i < dag_h->numSuccedents; i++) { 642 printf("%d%s", dag_h->succedents[i]->nodeNum, 643 ((i == dag_h->numSuccedents - 1) ? "\0" : " ")); 644 } 645 printf("};\n"); 646 for (i = 0; i < dag_h->numSuccedents; i++) { 647 if (dag_h->succedents[i]->visited == unvisited) 648 rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited); 649 } 650 } 651 #endif 652 /* assigns node numbers */ 653 int 654 rf_AssignNodeNums(RF_DagHeader_t * dag_h) 655 { 656 int unvisited, i, nnum; 657 RF_DagNode_t *node; 658 659 nnum = 0; 660 unvisited = dag_h->succedents[0]->visited; 661 662 dag_h->nodeNum = nnum++; 663 for (i = 0; i < dag_h->numSuccedents; i++) { 664 node = dag_h->succedents[i]; 665 if (node->visited == unvisited) { 666 nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited); 667 } 668 } 669 return (nnum); 670 } 671 672 int 673 rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited) 674 { 675 int i; 676 677 node->visited = (unvisited) ? 0 : 1; 678 679 node->nodeNum = num++; 680 for (i = 0; i < node->numSuccedents; i++) { 681 if (node->succedents[i]->visited == unvisited) { 682 num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited); 683 } 684 } 685 return (num); 686 } 687 /* set the header pointers in each node to "newptr" */ 688 void 689 rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr) 690 { 691 int i; 692 for (i = 0; i < dag_h->numSuccedents; i++) 693 if (dag_h->succedents[i]->dagHdr != newptr) 694 rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr); 695 } 696 697 void 698 rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr) 699 { 700 int i; 701 node->dagHdr = newptr; 702 for (i = 0; i < node->numSuccedents; i++) 703 if (node->succedents[i]->dagHdr != newptr) 704 rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr); 705 } 706 707 708 void 709 rf_PrintDAGList(RF_DagHeader_t * dag_h) 710 { 711 int i = 0; 712 713 for (; dag_h; dag_h = dag_h->next) { 714 rf_AssignNodeNums(dag_h); 715 printf("\n\nDAG %d IN LIST:\n", i++); 716 rf_PrintDAG(dag_h); 717 } 718 } 719 720 static int 721 rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount, 722 RF_DagNode_t **nodes, int unvisited) 723 { 724 int i, retcode = 0; 725 726 /* construct an array of node pointers indexed by node num */ 727 node->visited = (unvisited) ? 0 : 1; 728 nodes[node->nodeNum] = node; 729 730 if (node->next != NULL) { 731 printf("INVALID DAG: next pointer in node is not NULL\n"); 732 retcode = 1; 733 } 734 if (node->status != rf_wait) { 735 printf("INVALID DAG: Node status is not wait\n"); 736 retcode = 1; 737 } 738 if (node->numAntDone != 0) { 739 printf("INVALID DAG: numAntDone is not zero\n"); 740 retcode = 1; 741 } 742 if (node->doFunc == rf_TerminateFunc) { 743 if (node->numSuccedents != 0) { 744 printf("INVALID DAG: Terminator node has succedents\n"); 745 retcode = 1; 746 } 747 } else { 748 if (node->numSuccedents == 0) { 749 printf("INVALID DAG: Non-terminator node has no succedents\n"); 750 retcode = 1; 751 } 752 } 753 for (i = 0; i < node->numSuccedents; i++) { 754 if (!node->succedents[i]) { 755 printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name); 756 retcode = 1; 757 } 758 scount[node->succedents[i]->nodeNum]++; 759 } 760 for (i = 0; i < node->numAntecedents; i++) { 761 if (!node->antecedents[i]) { 762 printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name); 763 retcode = 1; 764 } 765 acount[node->antecedents[i]->nodeNum]++; 766 } 767 for (i = 0; i < node->numSuccedents; i++) { 768 if (node->succedents[i]->visited == unvisited) { 769 if (rf_ValidateBranch(node->succedents[i], scount, 770 acount, nodes, unvisited)) { 771 retcode = 1; 772 } 773 } 774 } 775 return (retcode); 776 } 777 778 static void 779 rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl) 780 { 781 int i; 782 783 RF_ASSERT(node->visited == unvisited); 784 for (i = 0; i < node->numSuccedents; i++) { 785 if (node->succedents[i] == NULL) { 786 printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i); 787 RF_ASSERT(0); 788 } 789 rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1); 790 } 791 } 792 /* NOTE: never call this on a big dag, because it is exponential 793 * in execution time 794 */ 795 static void 796 rf_ValidateVisitedBits(RF_DagHeader_t *dag) 797 { 798 int i, unvisited; 799 800 unvisited = dag->succedents[0]->visited; 801 802 for (i = 0; i < dag->numSuccedents; i++) { 803 if (dag->succedents[i] == NULL) { 804 printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i); 805 RF_ASSERT(0); 806 } 807 rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0); 808 } 809 } 810 /* validate a DAG. _at entry_ verify that: 811 * -- numNodesCompleted is zero 812 * -- node queue is null 813 * -- dag status is rf_enable 814 * -- next pointer is null on every node 815 * -- all nodes have status wait 816 * -- numAntDone is zero in all nodes 817 * -- terminator node has zero successors 818 * -- no other node besides terminator has zero successors 819 * -- no successor or antecedent pointer in a node is NULL 820 * -- number of times that each node appears as a successor of another node 821 * is equal to the antecedent count on that node 822 * -- number of times that each node appears as an antecedent of another node 823 * is equal to the succedent count on that node 824 * -- what else? 825 */ 826 int 827 rf_ValidateDAG(RF_DagHeader_t *dag_h) 828 { 829 int i, nodecount; 830 int *scount, *acount;/* per-node successor and antecedent counts */ 831 RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */ 832 int retcode = 0; 833 int unvisited; 834 int commitNodeCount = 0; 835 836 if (rf_validateVisitedDebug) 837 rf_ValidateVisitedBits(dag_h); 838 839 if (dag_h->numNodesCompleted != 0) { 840 printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted); 841 retcode = 1; 842 goto validate_dag_bad; 843 } 844 if (dag_h->status != rf_enable) { 845 printf("INVALID DAG: not enabled\n"); 846 retcode = 1; 847 goto validate_dag_bad; 848 } 849 if (dag_h->numCommits != 0) { 850 printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits); 851 retcode = 1; 852 goto validate_dag_bad; 853 } 854 if (dag_h->numSuccedents != 1) { 855 /* currently, all dags must have only one succedent */ 856 printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents); 857 retcode = 1; 858 goto validate_dag_bad; 859 } 860 nodecount = rf_AssignNodeNums(dag_h); 861 862 unvisited = dag_h->succedents[0]->visited; 863 864 RF_Malloc(scount, nodecount * sizeof(int), (int *)); 865 RF_Malloc(acount, nodecount * sizeof(int), (int *)); 866 RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *), 867 (RF_DagNode_t **)); 868 for (i = 0; i < dag_h->numSuccedents; i++) { 869 if ((dag_h->succedents[i]->visited == unvisited) 870 && rf_ValidateBranch(dag_h->succedents[i], scount, 871 acount, nodes, unvisited)) { 872 retcode = 1; 873 } 874 } 875 /* start at 1 to skip the header node */ 876 for (i = 1; i < nodecount; i++) { 877 if (nodes[i]->commitNode) 878 commitNodeCount++; 879 if (nodes[i]->doFunc == NULL) { 880 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name); 881 retcode = 1; 882 goto validate_dag_out; 883 } 884 if (nodes[i]->undoFunc == NULL) { 885 printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name); 886 retcode = 1; 887 goto validate_dag_out; 888 } 889 if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) { 890 printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n", 891 nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]); 892 retcode = 1; 893 goto validate_dag_out; 894 } 895 if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) { 896 printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n", 897 nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]); 898 retcode = 1; 899 goto validate_dag_out; 900 } 901 } 902 903 if (dag_h->numCommitNodes != commitNodeCount) { 904 printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n", 905 dag_h->numCommitNodes, commitNodeCount); 906 retcode = 1; 907 goto validate_dag_out; 908 } 909 validate_dag_out: 910 RF_Free(scount, nodecount * sizeof(int)); 911 RF_Free(acount, nodecount * sizeof(int)); 912 RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *)); 913 if (retcode) 914 rf_PrintDAGList(dag_h); 915 916 if (rf_validateVisitedDebug) 917 rf_ValidateVisitedBits(dag_h); 918 919 return (retcode); 920 921 validate_dag_bad: 922 rf_PrintDAGList(dag_h); 923 return (retcode); 924 } 925 926 #endif /* RF_DEBUG_VALIDATE_DAG */ 927 928 /****************************************************************************** 929 * 930 * misc construction routines 931 * 932 *****************************************************************************/ 933 934 void 935 rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap) 936 { 937 int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0; 938 int fcol = raidPtr->reconControl->fcol; 939 int scol = raidPtr->reconControl->spareCol; 940 RF_PhysDiskAddr_t *pda; 941 942 RF_ASSERT(raidPtr->status == rf_rs_reconstructing); 943 for (pda = asmap->physInfo; pda; pda = pda->next) { 944 if (pda->col == fcol) { 945 #if RF_DEBUG_DAG 946 if (rf_dagDebug) { 947 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, 948 pda->startSector)) { 949 RF_PANIC(); 950 } 951 } 952 #endif 953 /* printf("Remapped data for large write\n"); */ 954 if (ds) { 955 raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress, 956 &pda->col, &pda->startSector, RF_REMAP); 957 } else { 958 pda->col = scol; 959 } 960 } 961 } 962 for (pda = asmap->parityInfo; pda; pda = pda->next) { 963 if (pda->col == fcol) { 964 #if RF_DEBUG_DAG 965 if (rf_dagDebug) { 966 if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) { 967 RF_PANIC(); 968 } 969 } 970 #endif 971 } 972 if (ds) { 973 (raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP); 974 } else { 975 pda->col = scol; 976 } 977 } 978 } 979 980 981 /* this routine allocates read buffers and generates stripe maps for the 982 * regions of the array from the start of the stripe to the start of the 983 * access, and from the end of the access to the end of the stripe. It also 984 * computes and returns the number of DAG nodes needed to read all this data. 985 * Note that this routine does the wrong thing if the access is fully 986 * contained within one stripe unit, so we RF_ASSERT against this case at the 987 * start. 988 * 989 * layoutPtr - in: layout information 990 * asmap - in: access stripe map 991 * dag_h - in: header of the dag to create 992 * new_asm_h - in: ptr to array of 2 headers. to be filled in 993 * nRodNodes - out: num nodes to be generated to read unaccessed data 994 * sosBuffer, eosBuffer - out: pointers to newly allocated buffer 995 */ 996 void 997 rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr, 998 RF_RaidLayout_t *layoutPtr, 999 RF_AccessStripeMap_t *asmap, 1000 RF_DagHeader_t *dag_h, 1001 RF_AccessStripeMapHeader_t **new_asm_h, 1002 int *nRodNodes, 1003 char **sosBuffer, char **eosBuffer, 1004 RF_AllocListElem_t *allocList) 1005 { 1006 RF_RaidAddr_t sosRaidAddress, eosRaidAddress; 1007 RF_SectorNum_t sosNumSector, eosNumSector; 1008 1009 RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2)); 1010 /* generate an access map for the region of the array from start of 1011 * stripe to start of access */ 1012 new_asm_h[0] = new_asm_h[1] = NULL; 1013 *nRodNodes = 0; 1014 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) { 1015 sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); 1016 sosNumSector = asmap->raidAddress - sosRaidAddress; 1017 *sosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, sosNumSector)); 1018 new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP); 1019 new_asm_h[0]->next = dag_h->asmList; 1020 dag_h->asmList = new_asm_h[0]; 1021 *nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed; 1022 1023 RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL); 1024 /* we're totally within one stripe here */ 1025 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE) 1026 rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap); 1027 } 1028 /* generate an access map for the region of the array from end of 1029 * access to end of stripe */ 1030 if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) { 1031 eosRaidAddress = asmap->endRaidAddress; 1032 eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress; 1033 *eosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, eosNumSector)); 1034 new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP); 1035 new_asm_h[1]->next = dag_h->asmList; 1036 dag_h->asmList = new_asm_h[1]; 1037 *nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed; 1038 1039 RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL); 1040 /* we're totally within one stripe here */ 1041 if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE) 1042 rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap); 1043 } 1044 } 1045 1046 1047 1048 /* returns non-zero if the indicated ranges of stripe unit offsets overlap */ 1049 int 1050 rf_PDAOverlap(RF_RaidLayout_t *layoutPtr, 1051 RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest) 1052 { 1053 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector); 1054 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector); 1055 /* use -1 to be sure we stay within SU */ 1056 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); 1057 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1); 1058 return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0); 1059 } 1060 1061 1062 /* GenerateFailedAccessASMs 1063 * 1064 * this routine figures out what portion of the stripe needs to be read 1065 * to effect the degraded read or write operation. It's primary function 1066 * is to identify everything required to recover the data, and then 1067 * eliminate anything that is already being accessed by the user. 1068 * 1069 * The main result is two new ASMs, one for the region from the start of the 1070 * stripe to the start of the access, and one for the region from the end of 1071 * the access to the end of the stripe. These ASMs describe everything that 1072 * needs to be read to effect the degraded access. Other results are: 1073 * nXorBufs -- the total number of buffers that need to be XORed together to 1074 * recover the lost data, 1075 * rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL 1076 * at entry, not allocated. 1077 * overlappingPDAs -- 1078 * describes which of the non-failed PDAs in the user access 1079 * overlap data that needs to be read to effect recovery. 1080 * overlappingPDAs[i]==1 if and only if, neglecting the failed 1081 * PDA, the ith pda in the input asm overlaps data that needs 1082 * to be read for recovery. 1083 */ 1084 /* in: asm - ASM for the actual access, one stripe only */ 1085 /* in: failedPDA - which component of the access has failed */ 1086 /* in: dag_h - header of the DAG we're going to create */ 1087 /* out: new_asm_h - the two new ASMs */ 1088 /* out: nXorBufs - the total number of xor bufs required */ 1089 /* out: rpBufPtr - a buffer for the parity read */ 1090 void 1091 rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, 1092 RF_PhysDiskAddr_t *failedPDA, 1093 RF_DagHeader_t *dag_h, 1094 RF_AccessStripeMapHeader_t **new_asm_h, 1095 int *nXorBufs, char **rpBufPtr, 1096 char *overlappingPDAs, 1097 RF_AllocListElem_t *allocList) 1098 { 1099 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); 1100 1101 /* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */ 1102 RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr; 1103 RF_PhysDiskAddr_t *pda; 1104 int foundit, i; 1105 1106 foundit = 0; 1107 /* first compute the following raid addresses: start of stripe, 1108 * (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr) 1109 * MAX(end of access, end of failed SU), (eosStartAddr) end of 1110 * stripe (i.e. start of next stripe) (eosAddr) */ 1111 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); 1112 sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress)); 1113 eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress)); 1114 eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress); 1115 1116 /* now generate access stripe maps for each of the above regions of 1117 * the stripe. Use a dummy (NULL) buf ptr for now */ 1118 1119 new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL; 1120 new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL; 1121 1122 /* walk through the PDAs and range-restrict each SU to the region of 1123 * the SU touched on the failed PDA. also compute total data buffer 1124 * space requirements in this step. Ignore the parity for now. */ 1125 /* Also count nodes to find out how many bufs need to be xored together */ 1126 (*nXorBufs) = 1; /* in read case, 1 is for parity. In write 1127 * case, 1 is for failed data */ 1128 1129 if (new_asm_h[0]) { 1130 new_asm_h[0]->next = dag_h->asmList; 1131 dag_h->asmList = new_asm_h[0]; 1132 for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) { 1133 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0); 1134 pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector); 1135 } 1136 (*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed; 1137 } 1138 if (new_asm_h[1]) { 1139 new_asm_h[1]->next = dag_h->asmList; 1140 dag_h->asmList = new_asm_h[1]; 1141 for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) { 1142 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0); 1143 pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector); 1144 } 1145 (*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed; 1146 } 1147 1148 /* allocate a buffer for parity */ 1149 if (rpBufPtr) 1150 *rpBufPtr = rf_AllocBuffer(raidPtr, dag_h, failedPDA->numSector << raidPtr->logBytesPerSector); 1151 1152 /* the last step is to figure out how many more distinct buffers need 1153 * to get xor'd to produce the missing unit. there's one for each 1154 * user-data read node that overlaps the portion of the failed unit 1155 * being accessed */ 1156 1157 for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) { 1158 if (pda == failedPDA) { 1159 i--; 1160 foundit = 1; 1161 continue; 1162 } 1163 if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) { 1164 overlappingPDAs[i] = 1; 1165 (*nXorBufs)++; 1166 } 1167 } 1168 if (!foundit) { 1169 RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n"); 1170 RF_ASSERT(0); 1171 } 1172 #if RF_DEBUG_DAG 1173 if (rf_degDagDebug) { 1174 if (new_asm_h[0]) { 1175 printf("First asm:\n"); 1176 rf_PrintFullAccessStripeMap(new_asm_h[0], 1); 1177 } 1178 if (new_asm_h[1]) { 1179 printf("Second asm:\n"); 1180 rf_PrintFullAccessStripeMap(new_asm_h[1], 1); 1181 } 1182 } 1183 #endif 1184 } 1185 1186 1187 /* adjusts the offset and number of sectors in the destination pda so that 1188 * it covers at most the region of the SU covered by the source PDA. This 1189 * is exclusively a restriction: the number of sectors indicated by the 1190 * target PDA can only shrink. 1191 * 1192 * For example: s = sectors within SU indicated by source PDA 1193 * d = sectors within SU indicated by dest PDA 1194 * r = results, stored in dest PDA 1195 * 1196 * |--------------- one stripe unit ---------------------| 1197 * | sssssssssssssssssssssssssssssssss | 1198 * | ddddddddddddddddddddddddddddddddddddddddddddd | 1199 * | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr | 1200 * 1201 * Another example: 1202 * 1203 * |--------------- one stripe unit ---------------------| 1204 * | sssssssssssssssssssssssssssssssss | 1205 * | ddddddddddddddddddddddd | 1206 * | rrrrrrrrrrrrrrrr | 1207 * 1208 */ 1209 void 1210 rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src, 1211 RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr) 1212 { 1213 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1214 RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector); 1215 RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector); 1216 RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we 1217 * stay within SU */ 1218 RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1); 1219 RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */ 1220 1221 dest->startSector = subAddr + RF_MAX(soffs, doffs); 1222 dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector; 1223 1224 if (dobuffer) 1225 dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0; 1226 if (doraidaddr) { 1227 dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) + 1228 rf_StripeUnitOffset(layoutPtr, dest->startSector); 1229 } 1230 } 1231 1232 #if (RF_INCLUDE_CHAINDECLUSTER > 0) 1233 1234 /* 1235 * Want the highest of these primes to be the largest one 1236 * less than the max expected number of columns (won't hurt 1237 * to be too small or too large, but won't be optimal, either) 1238 * --jimz 1239 */ 1240 #define NLOWPRIMES 8 1241 static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19}; 1242 /***************************************************************************** 1243 * compute the workload shift factor. (chained declustering) 1244 * 1245 * return nonzero if access should shift to secondary, otherwise, 1246 * access is to primary 1247 *****************************************************************************/ 1248 int 1249 rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda) 1250 { 1251 /* 1252 * variables: 1253 * d = column of disk containing primary 1254 * f = column of failed disk 1255 * n = number of disks in array 1256 * sd = "shift distance" (number of columns that d is to the right of f) 1257 * v = numerator of redirection ratio 1258 * k = denominator of redirection ratio 1259 */ 1260 RF_RowCol_t d, f, sd, n; 1261 int k, v, ret, i; 1262 1263 n = raidPtr->numCol; 1264 1265 /* assign column of primary copy to d */ 1266 d = pda->col; 1267 1268 /* assign column of dead disk to f */ 1269 for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++); 1270 1271 RF_ASSERT(f < n); 1272 RF_ASSERT(f != d); 1273 1274 sd = (f > d) ? (n + d - f) : (d - f); 1275 RF_ASSERT(sd < n); 1276 1277 /* 1278 * v of every k accesses should be redirected 1279 * 1280 * v/k := (n-1-sd)/(n-1) 1281 */ 1282 v = (n - 1 - sd); 1283 k = (n - 1); 1284 1285 #if 1 1286 /* 1287 * XXX 1288 * Is this worth it? 1289 * 1290 * Now reduce the fraction, by repeatedly factoring 1291 * out primes (just like they teach in elementary school!) 1292 */ 1293 for (i = 0; i < NLOWPRIMES; i++) { 1294 if (lowprimes[i] > v) 1295 break; 1296 while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) { 1297 v /= lowprimes[i]; 1298 k /= lowprimes[i]; 1299 } 1300 } 1301 #endif 1302 1303 raidPtr->hist_diskreq[d]++; 1304 if (raidPtr->hist_diskreq[d] > v) { 1305 ret = 0; /* do not redirect */ 1306 } else { 1307 ret = 1; /* redirect */ 1308 } 1309 1310 #if 0 1311 printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret, 1312 raidPtr->hist_diskreq[d]); 1313 #endif 1314 1315 if (raidPtr->hist_diskreq[d] >= k) { 1316 /* reset counter */ 1317 raidPtr->hist_diskreq[d] = 0; 1318 } 1319 return (ret); 1320 } 1321 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */ 1322 1323 /* 1324 * Disk selection routines 1325 */ 1326 1327 /* 1328 * Selects the disk with the shortest queue from a mirror pair. 1329 * Both the disk I/Os queued in RAIDframe as well as those at the physical 1330 * disk are counted as members of the "queue" 1331 */ 1332 void 1333 rf_SelectMirrorDiskIdle(RF_DagNode_t * node) 1334 { 1335 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr; 1336 RF_RowCol_t colData, colMirror; 1337 int dataQueueLength, mirrorQueueLength, usemirror; 1338 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p; 1339 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p; 1340 RF_PhysDiskAddr_t *tmp_pda; 1341 RF_RaidDisk_t *disks = raidPtr->Disks; 1342 RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue; 1343 1344 /* return the [row col] of the disk with the shortest queue */ 1345 colData = data_pda->col; 1346 colMirror = mirror_pda->col; 1347 dataQueue = &(dqs[colData]); 1348 mirrorQueue = &(dqs[colMirror]); 1349 1350 #ifdef RF_LOCK_QUEUES_TO_READ_LEN 1351 RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle"); 1352 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */ 1353 dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding; 1354 #ifdef RF_LOCK_QUEUES_TO_READ_LEN 1355 RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle"); 1356 RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle"); 1357 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */ 1358 mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding; 1359 #ifdef RF_LOCK_QUEUES_TO_READ_LEN 1360 RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle"); 1361 #endif /* RF_LOCK_QUEUES_TO_READ_LEN */ 1362 1363 usemirror = 0; 1364 if (RF_DEAD_DISK(disks[colMirror].status)) { 1365 usemirror = 0; 1366 } else 1367 if (RF_DEAD_DISK(disks[colData].status)) { 1368 usemirror = 1; 1369 } else 1370 if (raidPtr->parity_good == RF_RAID_DIRTY) { 1371 /* Trust only the main disk */ 1372 usemirror = 0; 1373 } else 1374 if (dataQueueLength < mirrorQueueLength) { 1375 usemirror = 0; 1376 } else 1377 if (mirrorQueueLength < dataQueueLength) { 1378 usemirror = 1; 1379 } else { 1380 /* queues are equal length. attempt 1381 * cleverness. */ 1382 if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector) 1383 <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) { 1384 usemirror = 0; 1385 } else { 1386 usemirror = 1; 1387 } 1388 } 1389 1390 if (usemirror) { 1391 /* use mirror (parity) disk, swap params 0 & 4 */ 1392 tmp_pda = data_pda; 1393 node->params[0].p = mirror_pda; 1394 node->params[4].p = tmp_pda; 1395 } else { 1396 /* use data disk, leave param 0 unchanged */ 1397 } 1398 /* printf("dataQueueLength %d, mirrorQueueLength 1399 * %d\n",dataQueueLength, mirrorQueueLength); */ 1400 } 1401 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0) 1402 /* 1403 * Do simple partitioning. This assumes that 1404 * the data and parity disks are laid out identically. 1405 */ 1406 void 1407 rf_SelectMirrorDiskPartition(RF_DagNode_t * node) 1408 { 1409 RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr; 1410 RF_RowCol_t colData, colMirror; 1411 RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p; 1412 RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p; 1413 RF_PhysDiskAddr_t *tmp_pda; 1414 RF_RaidDisk_t *disks = raidPtr->Disks; 1415 int usemirror; 1416 1417 /* return the [row col] of the disk with the shortest queue */ 1418 colData = data_pda->col; 1419 colMirror = mirror_pda->col; 1420 1421 usemirror = 0; 1422 if (RF_DEAD_DISK(disks[colMirror].status)) { 1423 usemirror = 0; 1424 } else 1425 if (RF_DEAD_DISK(disks[colData].status)) { 1426 usemirror = 1; 1427 } else 1428 if (raidPtr->parity_good == RF_RAID_DIRTY) { 1429 /* Trust only the main disk */ 1430 usemirror = 0; 1431 } else 1432 if (data_pda->startSector < 1433 (disks[colData].numBlocks / 2)) { 1434 usemirror = 0; 1435 } else { 1436 usemirror = 1; 1437 } 1438 1439 if (usemirror) { 1440 /* use mirror (parity) disk, swap params 0 & 4 */ 1441 tmp_pda = data_pda; 1442 node->params[0].p = mirror_pda; 1443 node->params[4].p = tmp_pda; 1444 } else { 1445 /* use data disk, leave param 0 unchanged */ 1446 } 1447 } 1448 #endif 1449