xref: /netbsd-src/sys/dev/raidframe/rf_dagfuncs.c (revision 7330f729ccf0bd976a06f95fad452fe774fc7fd1)
1 /*	$NetBSD: rf_dagfuncs.c,v 1.31 2019/10/10 03:43:59 christos Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland, William V. Courtright II
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /*
30  * dagfuncs.c -- DAG node execution routines
31  *
32  * Rules:
33  * 1. Every DAG execution function must eventually cause node->status to
34  *    get set to "good" or "bad", and "FinishNode" to be called. In the
35  *    case of nodes that complete immediately (xor, NullNodeFunc, etc),
36  *    the node execution function can do these two things directly. In
37  *    the case of nodes that have to wait for some event (a disk read to
38  *    complete, a lock to be released, etc) to occur before they can
39  *    complete, this is typically achieved by having whatever module
40  *    is doing the operation call GenericWakeupFunc upon completion.
41  * 2. DAG execution functions should check the status in the DAG header
42  *    and NOP out their operations if the status is not "enable". However,
43  *    execution functions that release resources must be sure to release
44  *    them even when they NOP out the function that would use them.
45  *    Functions that acquire resources should go ahead and acquire them
46  *    even when they NOP, so that a downstream release node will not have
47  *    to check to find out whether or not the acquire was suppressed.
48  */
49 
50 #include <sys/cdefs.h>
51 __KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.31 2019/10/10 03:43:59 christos Exp $");
52 
53 #include <sys/param.h>
54 #include <sys/ioctl.h>
55 
56 #include "rf_archs.h"
57 #include "rf_raid.h"
58 #include "rf_dag.h"
59 #include "rf_layout.h"
60 #include "rf_etimer.h"
61 #include "rf_acctrace.h"
62 #include "rf_diskqueue.h"
63 #include "rf_dagfuncs.h"
64 #include "rf_general.h"
65 #include "rf_engine.h"
66 #include "rf_dagutils.h"
67 
68 #include "rf_kintf.h"
69 
70 #if RF_INCLUDE_PARITYLOGGING > 0
71 #include "rf_paritylog.h"
72 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
73 
74 void     (*rf_DiskReadFunc) (RF_DagNode_t *);
75 void     (*rf_DiskWriteFunc) (RF_DagNode_t *);
76 void     (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
77 void     (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
78 void     (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
79 void     (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
80 void     (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
81 
82 /*****************************************************************************
83  * main (only) configuration routine for this module
84  ****************************************************************************/
85 int
86 rf_ConfigureDAGFuncs(RF_ShutdownList_t **listp)
87 {
88 	RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) ||
89 		  ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
90 	rf_DiskReadFunc = rf_DiskReadFuncForThreads;
91 	rf_DiskReadUndoFunc = rf_DiskUndoFunc;
92 	rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
93 	rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
94 	rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
95 	rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
96 	rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
97 	return (0);
98 }
99 
100 
101 
102 /*****************************************************************************
103  * the execution function associated with a terminate node
104  ****************************************************************************/
105 void
106 rf_TerminateFunc(RF_DagNode_t *node)
107 {
108 	RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
109 	node->status = rf_good;
110 	rf_FinishNode(node, RF_THREAD_CONTEXT);
111 }
112 
113 void
114 rf_TerminateUndoFunc(RF_DagNode_t *node)
115 {
116 }
117 
118 
119 /*****************************************************************************
120  * execution functions associated with a mirror node
121  *
122  * parameters:
123  *
124  * 0 - physical disk addres of data
125  * 1 - buffer for holding read data
126  * 2 - parity stripe ID
127  * 3 - flags
128  * 4 - physical disk address of mirror (parity)
129  *
130  ****************************************************************************/
131 
132 void
133 rf_DiskReadMirrorIdleFunc(RF_DagNode_t *node)
134 {
135 	/* select the mirror copy with the shortest queue and fill in node
136 	 * parameters with physical disk address */
137 
138 	rf_SelectMirrorDiskIdle(node);
139 	rf_DiskReadFunc(node);
140 }
141 
142 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
143 void
144 rf_DiskReadMirrorPartitionFunc(RF_DagNode_t *node)
145 {
146 	/* select the mirror copy with the shortest queue and fill in node
147 	 * parameters with physical disk address */
148 
149 	rf_SelectMirrorDiskPartition(node);
150 	rf_DiskReadFunc(node);
151 }
152 #endif
153 
154 void
155 rf_DiskReadMirrorUndoFunc(RF_DagNode_t *node)
156 {
157 }
158 
159 
160 
161 #if RF_INCLUDE_PARITYLOGGING > 0
162 /*****************************************************************************
163  * the execution function associated with a parity log update node
164  ****************************************************************************/
165 void
166 rf_ParityLogUpdateFunc(RF_DagNode_t *node)
167 {
168 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
169 	void *bf = (void *) node->params[1].p;
170 	RF_ParityLogData_t *logData;
171 #if RF_ACC_TRACE > 0
172 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
173 	RF_Etimer_t timer;
174 #endif
175 
176 	if (node->dagHdr->status == rf_enable) {
177 #if RF_ACC_TRACE > 0
178 		RF_ETIMER_START(timer);
179 #endif
180 		logData = rf_CreateParityLogData(RF_UPDATE, pda, bf,
181 		    (RF_Raid_t *) (node->dagHdr->raidPtr),
182 		    node->wakeFunc, node,
183 		    node->dagHdr->tracerec, timer);
184 		if (logData)
185 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
186 		else {
187 #if RF_ACC_TRACE > 0
188 			RF_ETIMER_STOP(timer);
189 			RF_ETIMER_EVAL(timer);
190 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
191 #endif
192 			(node->wakeFunc) (node, ENOMEM);
193 		}
194 	}
195 }
196 
197 
198 /*****************************************************************************
199  * the execution function associated with a parity log overwrite node
200  ****************************************************************************/
201 void
202 rf_ParityLogOverwriteFunc(RF_DagNode_t *node)
203 {
204 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
205 	void *bf = (void *) node->params[1].p;
206 	RF_ParityLogData_t *logData;
207 #if RF_ACC_TRACE > 0
208 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
209 	RF_Etimer_t timer;
210 #endif
211 
212 	if (node->dagHdr->status == rf_enable) {
213 #if RF_ACC_TRACE > 0
214 		RF_ETIMER_START(timer);
215 #endif
216 		logData = rf_CreateParityLogData(RF_OVERWRITE, pda, bf,
217 (RF_Raid_t *) (node->dagHdr->raidPtr),
218 		    node->wakeFunc, node, node->dagHdr->tracerec, timer);
219 		if (logData)
220 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
221 		else {
222 #if RF_ACC_TRACE > 0
223 			RF_ETIMER_STOP(timer);
224 			RF_ETIMER_EVAL(timer);
225 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
226 #endif
227 			(node->wakeFunc) (node, ENOMEM);
228 		}
229 	}
230 }
231 
232 void
233 rf_ParityLogUpdateUndoFunc(RF_DagNode_t *node)
234 {
235 }
236 
237 void
238 rf_ParityLogOverwriteUndoFunc(RF_DagNode_t *node)
239 {
240 }
241 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
242 
243 /*****************************************************************************
244  * the execution function associated with a NOP node
245  ****************************************************************************/
246 void
247 rf_NullNodeFunc(RF_DagNode_t *node)
248 {
249 	node->status = rf_good;
250 	rf_FinishNode(node, RF_THREAD_CONTEXT);
251 }
252 
253 void
254 rf_NullNodeUndoFunc(RF_DagNode_t *node)
255 {
256 	node->status = rf_undone;
257 	rf_FinishNode(node, RF_THREAD_CONTEXT);
258 }
259 
260 
261 /*****************************************************************************
262  * the execution function associated with a disk-read node
263  ****************************************************************************/
264 void
265 rf_DiskReadFuncForThreads(RF_DagNode_t *node)
266 {
267 	RF_DiskQueueData_t *req;
268 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
269 	void *bf = (void *) node->params[1].p;
270 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
271 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
272 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
273 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
274 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
275 	void   *b_proc = NULL;
276 
277 	if (node->dagHdr->bp)
278 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
279 
280 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
281 	    bf, parityStripeID, which_ru, node->wakeFunc, node,
282 #if RF_ACC_TRACE > 0
283 	     node->dagHdr->tracerec,
284 #else
285              NULL,
286 #endif
287 	    (void *) (node->dagHdr->raidPtr), 0, b_proc, PR_NOWAIT);
288 	if (!req) {
289 		(node->wakeFunc) (node, ENOMEM);
290 	} else {
291 		node->dagFuncData = (void *) req;
292 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
293 	}
294 }
295 
296 
297 /*****************************************************************************
298  * the execution function associated with a disk-write node
299  ****************************************************************************/
300 void
301 rf_DiskWriteFuncForThreads(RF_DagNode_t *node)
302 {
303 	RF_DiskQueueData_t *req;
304 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
305 	void *bf = (void *) node->params[1].p;
306 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
307 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
308 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
309 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
310 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
311 	void   *b_proc = NULL;
312 
313 	if (node->dagHdr->bp)
314 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
315 
316 	/* normal processing (rollaway or forward recovery) begins here */
317 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
318 	    bf, parityStripeID, which_ru, node->wakeFunc, node,
319 #if RF_ACC_TRACE > 0
320 	    node->dagHdr->tracerec,
321 #else
322 	    NULL,
323 #endif
324 	    (void *) (node->dagHdr->raidPtr),
325 	    0, b_proc, PR_NOWAIT);
326 
327 	if (!req) {
328 		(node->wakeFunc) (node, ENOMEM);
329 	} else {
330 		node->dagFuncData = (void *) req;
331 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
332 	}
333 }
334 /*****************************************************************************
335  * the undo function for disk nodes
336  * Note:  this is not a proper undo of a write node, only locks are released.
337  *        old data is not restored to disk!
338  ****************************************************************************/
339 void
340 rf_DiskUndoFunc(RF_DagNode_t *node)
341 {
342 	RF_DiskQueueData_t *req;
343 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
344 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
345 
346 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
347 	    0L, 0, NULL, 0L, 0, node->wakeFunc, node,
348 #if RF_ACC_TRACE > 0
349 	     node->dagHdr->tracerec,
350 #else
351 	     NULL,
352 #endif
353 	    (void *) (node->dagHdr->raidPtr),
354 	    0, NULL, PR_NOWAIT);
355 	if (!req)
356 		(node->wakeFunc) (node, ENOMEM);
357 	else {
358 		node->dagFuncData = (void *) req;
359 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
360 	}
361 }
362 
363 /*****************************************************************************
364  * Callback routine for DiskRead and DiskWrite nodes.  When the disk
365  * op completes, the routine is called to set the node status and
366  * inform the execution engine that the node has fired.
367  ****************************************************************************/
368 void
369 rf_GenericWakeupFunc(void *v, int status)
370 {
371 	RF_DagNode_t *node = v;
372 
373 	switch (node->status) {
374 	case rf_fired:
375 		if (status)
376 			node->status = rf_bad;
377 		else
378 			node->status = rf_good;
379 		break;
380 	case rf_recover:
381 		/* probably should never reach this case */
382 		if (status)
383 			node->status = rf_panic;
384 		else
385 			node->status = rf_undone;
386 		break;
387 	default:
388 		printf("rf_GenericWakeupFunc:");
389 		printf("node->status is %d,", node->status);
390 		printf("status is %d \n", status);
391 		RF_PANIC();
392 		break;
393 	}
394 	if (node->dagFuncData)
395 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
396 	rf_FinishNode(node, RF_INTR_CONTEXT);
397 }
398 
399 
400 /*****************************************************************************
401  * there are three distinct types of xor nodes:
402 
403  * A "regular xor" is used in the fault-free case where the access
404  * spans a complete stripe unit.  It assumes that the result buffer is
405  * one full stripe unit in size, and uses the stripe-unit-offset
406  * values that it computes from the PDAs to determine where within the
407  * stripe unit to XOR each argument buffer.
408  *
409  * A "simple xor" is used in the fault-free case where the access
410  * touches only a portion of one (or two, in some cases) stripe
411  * unit(s).  It assumes that all the argument buffers are of the same
412  * size and have the same stripe unit offset.
413  *
414  * A "recovery xor" is used in the degraded-mode case.  It's similar
415  * to the regular xor function except that it takes the failed PDA as
416  * an additional parameter, and uses it to determine what portions of
417  * the argument buffers need to be xor'd into the result buffer, and
418  * where in the result buffer they should go.
419  ****************************************************************************/
420 
421 /* xor the params together and store the result in the result field.
422  * assume the result field points to a buffer that is the size of one
423  * SU, and use the pda params to determine where within the buffer to
424  * XOR the input buffers.  */
425 void
426 rf_RegularXorFunc(RF_DagNode_t *node)
427 {
428 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
429 #if RF_ACC_TRACE > 0
430 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
431 	RF_Etimer_t timer;
432 #endif
433 	int     i, retcode;
434 
435 	retcode = 0;
436 	if (node->dagHdr->status == rf_enable) {
437 		/* don't do the XOR if the input is the same as the output */
438 #if RF_ACC_TRACE > 0
439 		RF_ETIMER_START(timer);
440 #endif
441 		for (i = 0; i < node->numParams - 1; i += 2)
442 			if (node->params[i + 1].p != node->results[0]) {
443 				retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
444 							   (char *) node->params[i + 1].p, (char *) node->results[0]);
445 			}
446 #if RF_ACC_TRACE > 0
447 		RF_ETIMER_STOP(timer);
448 		RF_ETIMER_EVAL(timer);
449 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
450 #endif
451 	}
452 	rf_GenericWakeupFunc(node, retcode);	/* call wake func
453 						 * explicitly since no
454 						 * I/O in this node */
455 }
456 /* xor the inputs into the result buffer, ignoring placement issues */
457 void
458 rf_SimpleXorFunc(RF_DagNode_t *node)
459 {
460 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
461 	int     i, retcode = 0;
462 #if RF_ACC_TRACE > 0
463 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
464 	RF_Etimer_t timer;
465 #endif
466 
467 	if (node->dagHdr->status == rf_enable) {
468 #if RF_ACC_TRACE > 0
469 		RF_ETIMER_START(timer);
470 #endif
471 		/* don't do the XOR if the input is the same as the output */
472 		for (i = 0; i < node->numParams - 1; i += 2)
473 			if (node->params[i + 1].p != node->results[0]) {
474 				retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
475 				    rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector));
476 			}
477 #if RF_ACC_TRACE > 0
478 		RF_ETIMER_STOP(timer);
479 		RF_ETIMER_EVAL(timer);
480 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
481 #endif
482 	}
483 	rf_GenericWakeupFunc(node, retcode);	/* call wake func
484 						 * explicitly since no
485 						 * I/O in this node */
486 }
487 /* this xor is used by the degraded-mode dag functions to recover lost
488  * data.  the second-to-last parameter is the PDA for the failed
489  * portion of the access.  the code here looks at this PDA and assumes
490  * that the xor target buffer is equal in size to the number of
491  * sectors in the failed PDA.  It then uses the other PDAs in the
492  * parameter list to determine where within the target buffer the
493  * corresponding data should be xored.  */
494 void
495 rf_RecoveryXorFunc(RF_DagNode_t *node)
496 {
497 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
498 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
499 	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
500 	int     i, retcode = 0;
501 	RF_PhysDiskAddr_t *pda;
502 	int     suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
503 	char   *srcbuf, *destbuf;
504 #if RF_ACC_TRACE > 0
505 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
506 	RF_Etimer_t timer;
507 #endif
508 
509 	if (node->dagHdr->status == rf_enable) {
510 #if RF_ACC_TRACE > 0
511 		RF_ETIMER_START(timer);
512 #endif
513 		for (i = 0; i < node->numParams - 2; i += 2)
514 			if (node->params[i + 1].p != node->results[0]) {
515 				pda = (RF_PhysDiskAddr_t *) node->params[i].p;
516 				srcbuf = (char *) node->params[i + 1].p;
517 				suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
518 				destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
519 				retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector));
520 			}
521 #if RF_ACC_TRACE > 0
522 		RF_ETIMER_STOP(timer);
523 		RF_ETIMER_EVAL(timer);
524 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
525 #endif
526 	}
527 	rf_GenericWakeupFunc(node, retcode);
528 }
529 /*****************************************************************************
530  * The next three functions are utilities used by the above
531  * xor-execution functions.
532  ****************************************************************************/
533 
534 
535 /*
536  * this is just a glorified buffer xor.  targbuf points to a buffer
537  * that is one full stripe unit in size.  srcbuf points to a buffer
538  * that may be less than 1 SU, but never more.  When the access
539  * described by pda is one SU in size (which by implication means it's
540  * SU-aligned), all that happens is (targbuf) <- (srcbuf ^ targbuf).
541  * When the access is less than one SU in size the XOR occurs on only
542  * the portion of targbuf identified in the pda.  */
543 
544 int
545 rf_XorIntoBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
546 		 char *srcbuf, char *targbuf)
547 {
548 	char   *targptr;
549 	int     sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
550 	int     SUOffset = pda->startSector % sectPerSU;
551 	int     length, retcode = 0;
552 
553 	RF_ASSERT(pda->numSector <= sectPerSU);
554 
555 	targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
556 	length = rf_RaidAddressToByte(raidPtr, pda->numSector);
557 	retcode = rf_bxor(srcbuf, targptr, length);
558 	return (retcode);
559 }
560 /* it really should be the case that the buffer pointers (returned by
561  * malloc) are aligned to the natural word size of the machine, so
562  * this is the only case we optimize for.  The length should always be
563  * a multiple of the sector size, so there should be no problem with
564  * leftover bytes at the end.  */
565 int
566 rf_bxor(char *src, char *dest, int len)
567 {
568 	unsigned mask = sizeof(long) - 1, retcode = 0;
569 
570 	if (!(((unsigned long) src) & mask) &&
571 	    !(((unsigned long) dest) & mask) && !(len & mask)) {
572 		retcode = rf_longword_bxor((unsigned long *) src,
573 					   (unsigned long *) dest,
574 					   len >> RF_LONGSHIFT);
575 	} else {
576 		RF_ASSERT(0);
577 	}
578 	return (retcode);
579 }
580 
581 /* When XORing in kernel mode, we need to map each user page to kernel
582  * space before we can access it.  We don't want to assume anything
583  * about which input buffers are in kernel/user space, nor about their
584  * alignment, so in each loop we compute the maximum number of bytes
585  * that we can xor without crossing any page boundaries, and do only
586  * this many bytes before the next remap.
587  *
588  * len - is in longwords
589  */
590 int
591 rf_longword_bxor(unsigned long *src, unsigned long *dest, int len)
592 {
593 	unsigned long *end = src + len;
594 	unsigned long d0, d1, d2, d3, s0, s1, s2, s3;	/* temps */
595 	unsigned long *pg_src, *pg_dest;   /* per-page source/dest pointers */
596 	int     longs_this_time;/* # longwords to xor in the current iteration */
597 
598 	pg_src = src;
599 	pg_dest = dest;
600 	if (!pg_src || !pg_dest)
601 		return (EFAULT);
602 
603 	while (len >= 4) {
604 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT);	/* note len in longwords */
605 		src += longs_this_time;
606 		dest += longs_this_time;
607 		len -= longs_this_time;
608 		while (longs_this_time >= 4) {
609 			d0 = pg_dest[0];
610 			d1 = pg_dest[1];
611 			d2 = pg_dest[2];
612 			d3 = pg_dest[3];
613 			s0 = pg_src[0];
614 			s1 = pg_src[1];
615 			s2 = pg_src[2];
616 			s3 = pg_src[3];
617 			pg_dest[0] = d0 ^ s0;
618 			pg_dest[1] = d1 ^ s1;
619 			pg_dest[2] = d2 ^ s2;
620 			pg_dest[3] = d3 ^ s3;
621 			pg_src += 4;
622 			pg_dest += 4;
623 			longs_this_time -= 4;
624 		}
625 		while (longs_this_time > 0) {	/* cannot cross any page
626 						 * boundaries here */
627 			*pg_dest++ ^= *pg_src++;
628 			longs_this_time--;
629 		}
630 
631 		/* either we're done, or we've reached a page boundary on one
632 		 * (or possibly both) of the pointers */
633 		if (len) {
634 			if (RF_PAGE_ALIGNED(src))
635 				pg_src = src;
636 			if (RF_PAGE_ALIGNED(dest))
637 				pg_dest = dest;
638 			if (!pg_src || !pg_dest)
639 				return (EFAULT);
640 		}
641 	}
642 	while (src < end) {
643 		*pg_dest++ ^= *pg_src++;
644 		src++;
645 		dest++;
646 		len--;
647 		if (RF_PAGE_ALIGNED(src))
648 			pg_src = src;
649 		if (RF_PAGE_ALIGNED(dest))
650 			pg_dest = dest;
651 	}
652 	RF_ASSERT(len == 0);
653 	return (0);
654 }
655 
656 #if 0
657 /*
658    dst = a ^ b ^ c;
659    a may equal dst
660    see comment above longword_bxor
661    len is length in longwords
662 */
663 int
664 rf_longword_bxor3(unsigned long *dst, unsigned long *a, unsigned long *b,
665 		  unsigned long *c, int len, void *bp)
666 {
667 	unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
668 	unsigned long *pg_a, *pg_b, *pg_c, *pg_dst;	/* per-page source/dest
669 								 * pointers */
670 	int     longs_this_time;/* # longs to xor in the current iteration */
671 	char    dst_is_a = 0;
672 
673 	pg_a = a;
674 	pg_b = b;
675 	pg_c = c;
676 	if (a == dst) {
677 		pg_dst = pg_a;
678 		dst_is_a = 1;
679 	} else {
680 		pg_dst = dst;
681 	}
682 
683 	/* align dest to cache line.  Can't cross a pg boundary on dst here. */
684 	while ((((unsigned long) pg_dst) & 0x1f)) {
685 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
686 		dst++;
687 		a++;
688 		b++;
689 		c++;
690 		if (RF_PAGE_ALIGNED(a)) {
691 			pg_a = a;
692 			if (!pg_a)
693 				return (EFAULT);
694 		}
695 		if (RF_PAGE_ALIGNED(b)) {
696 			pg_b = a;
697 			if (!pg_b)
698 				return (EFAULT);
699 		}
700 		if (RF_PAGE_ALIGNED(c)) {
701 			pg_c = a;
702 			if (!pg_c)
703 				return (EFAULT);
704 		}
705 		len--;
706 	}
707 
708 	while (len > 4) {
709 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
710 		a += longs_this_time;
711 		b += longs_this_time;
712 		c += longs_this_time;
713 		dst += longs_this_time;
714 		len -= longs_this_time;
715 		while (longs_this_time >= 4) {
716 			a0 = pg_a[0];
717 			longs_this_time -= 4;
718 
719 			a1 = pg_a[1];
720 			a2 = pg_a[2];
721 
722 			a3 = pg_a[3];
723 			pg_a += 4;
724 
725 			b0 = pg_b[0];
726 			b1 = pg_b[1];
727 
728 			b2 = pg_b[2];
729 			b3 = pg_b[3];
730 			/* start dual issue */
731 			a0 ^= b0;
732 			b0 = pg_c[0];
733 
734 			pg_b += 4;
735 			a1 ^= b1;
736 
737 			a2 ^= b2;
738 			a3 ^= b3;
739 
740 			b1 = pg_c[1];
741 			a0 ^= b0;
742 
743 			b2 = pg_c[2];
744 			a1 ^= b1;
745 
746 			b3 = pg_c[3];
747 			a2 ^= b2;
748 
749 			pg_dst[0] = a0;
750 			a3 ^= b3;
751 			pg_dst[1] = a1;
752 			pg_c += 4;
753 			pg_dst[2] = a2;
754 			pg_dst[3] = a3;
755 			pg_dst += 4;
756 		}
757 		while (longs_this_time > 0) {	/* cannot cross any page
758 						 * boundaries here */
759 			*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
760 			longs_this_time--;
761 		}
762 
763 		if (len) {
764 			if (RF_PAGE_ALIGNED(a)) {
765 				pg_a = a;
766 				if (!pg_a)
767 					return (EFAULT);
768 				if (dst_is_a)
769 					pg_dst = pg_a;
770 			}
771 			if (RF_PAGE_ALIGNED(b)) {
772 				pg_b = b;
773 				if (!pg_b)
774 					return (EFAULT);
775 			}
776 			if (RF_PAGE_ALIGNED(c)) {
777 				pg_c = c;
778 				if (!pg_c)
779 					return (EFAULT);
780 			}
781 			if (!dst_is_a)
782 				if (RF_PAGE_ALIGNED(dst)) {
783 					pg_dst = dst;
784 					if (!pg_dst)
785 						return (EFAULT);
786 				}
787 		}
788 	}
789 	while (len) {
790 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
791 		dst++;
792 		a++;
793 		b++;
794 		c++;
795 		if (RF_PAGE_ALIGNED(a)) {
796 			pg_a = a;
797 			if (!pg_a)
798 				return (EFAULT);
799 			if (dst_is_a)
800 				pg_dst = pg_a;
801 		}
802 		if (RF_PAGE_ALIGNED(b)) {
803 			pg_b = b;
804 			if (!pg_b)
805 				return (EFAULT);
806 		}
807 		if (RF_PAGE_ALIGNED(c)) {
808 			pg_c = c;
809 			if (!pg_c)
810 				return (EFAULT);
811 		}
812 		if (!dst_is_a)
813 			if (RF_PAGE_ALIGNED(dst)) {
814 				pg_dst = dst;
815 				if (!pg_dst)
816 					return (EFAULT);
817 			}
818 		len--;
819 	}
820 	return (0);
821 }
822 
823 int
824 rf_bxor3(unsigned char *dst, unsigned char *a, unsigned char *b,
825 	 unsigned char *c, unsigned long len, void *bp)
826 {
827 	RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
828 
829 	return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
830 		(unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
831 }
832 #endif
833