1 /* $NetBSD: rf_dagfuncs.c,v 1.31 2019/10/10 03:43:59 christos Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland, William V. Courtright II 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /* 30 * dagfuncs.c -- DAG node execution routines 31 * 32 * Rules: 33 * 1. Every DAG execution function must eventually cause node->status to 34 * get set to "good" or "bad", and "FinishNode" to be called. In the 35 * case of nodes that complete immediately (xor, NullNodeFunc, etc), 36 * the node execution function can do these two things directly. In 37 * the case of nodes that have to wait for some event (a disk read to 38 * complete, a lock to be released, etc) to occur before they can 39 * complete, this is typically achieved by having whatever module 40 * is doing the operation call GenericWakeupFunc upon completion. 41 * 2. DAG execution functions should check the status in the DAG header 42 * and NOP out their operations if the status is not "enable". However, 43 * execution functions that release resources must be sure to release 44 * them even when they NOP out the function that would use them. 45 * Functions that acquire resources should go ahead and acquire them 46 * even when they NOP, so that a downstream release node will not have 47 * to check to find out whether or not the acquire was suppressed. 48 */ 49 50 #include <sys/cdefs.h> 51 __KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.31 2019/10/10 03:43:59 christos Exp $"); 52 53 #include <sys/param.h> 54 #include <sys/ioctl.h> 55 56 #include "rf_archs.h" 57 #include "rf_raid.h" 58 #include "rf_dag.h" 59 #include "rf_layout.h" 60 #include "rf_etimer.h" 61 #include "rf_acctrace.h" 62 #include "rf_diskqueue.h" 63 #include "rf_dagfuncs.h" 64 #include "rf_general.h" 65 #include "rf_engine.h" 66 #include "rf_dagutils.h" 67 68 #include "rf_kintf.h" 69 70 #if RF_INCLUDE_PARITYLOGGING > 0 71 #include "rf_paritylog.h" 72 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */ 73 74 void (*rf_DiskReadFunc) (RF_DagNode_t *); 75 void (*rf_DiskWriteFunc) (RF_DagNode_t *); 76 void (*rf_DiskReadUndoFunc) (RF_DagNode_t *); 77 void (*rf_DiskWriteUndoFunc) (RF_DagNode_t *); 78 void (*rf_RegularXorUndoFunc) (RF_DagNode_t *); 79 void (*rf_SimpleXorUndoFunc) (RF_DagNode_t *); 80 void (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *); 81 82 /***************************************************************************** 83 * main (only) configuration routine for this module 84 ****************************************************************************/ 85 int 86 rf_ConfigureDAGFuncs(RF_ShutdownList_t **listp) 87 { 88 RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) || 89 ((sizeof(long) == 4) && RF_LONGSHIFT == 2)); 90 rf_DiskReadFunc = rf_DiskReadFuncForThreads; 91 rf_DiskReadUndoFunc = rf_DiskUndoFunc; 92 rf_DiskWriteFunc = rf_DiskWriteFuncForThreads; 93 rf_DiskWriteUndoFunc = rf_DiskUndoFunc; 94 rf_RegularXorUndoFunc = rf_NullNodeUndoFunc; 95 rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc; 96 rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc; 97 return (0); 98 } 99 100 101 102 /***************************************************************************** 103 * the execution function associated with a terminate node 104 ****************************************************************************/ 105 void 106 rf_TerminateFunc(RF_DagNode_t *node) 107 { 108 RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes); 109 node->status = rf_good; 110 rf_FinishNode(node, RF_THREAD_CONTEXT); 111 } 112 113 void 114 rf_TerminateUndoFunc(RF_DagNode_t *node) 115 { 116 } 117 118 119 /***************************************************************************** 120 * execution functions associated with a mirror node 121 * 122 * parameters: 123 * 124 * 0 - physical disk addres of data 125 * 1 - buffer for holding read data 126 * 2 - parity stripe ID 127 * 3 - flags 128 * 4 - physical disk address of mirror (parity) 129 * 130 ****************************************************************************/ 131 132 void 133 rf_DiskReadMirrorIdleFunc(RF_DagNode_t *node) 134 { 135 /* select the mirror copy with the shortest queue and fill in node 136 * parameters with physical disk address */ 137 138 rf_SelectMirrorDiskIdle(node); 139 rf_DiskReadFunc(node); 140 } 141 142 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0) 143 void 144 rf_DiskReadMirrorPartitionFunc(RF_DagNode_t *node) 145 { 146 /* select the mirror copy with the shortest queue and fill in node 147 * parameters with physical disk address */ 148 149 rf_SelectMirrorDiskPartition(node); 150 rf_DiskReadFunc(node); 151 } 152 #endif 153 154 void 155 rf_DiskReadMirrorUndoFunc(RF_DagNode_t *node) 156 { 157 } 158 159 160 161 #if RF_INCLUDE_PARITYLOGGING > 0 162 /***************************************************************************** 163 * the execution function associated with a parity log update node 164 ****************************************************************************/ 165 void 166 rf_ParityLogUpdateFunc(RF_DagNode_t *node) 167 { 168 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p; 169 void *bf = (void *) node->params[1].p; 170 RF_ParityLogData_t *logData; 171 #if RF_ACC_TRACE > 0 172 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; 173 RF_Etimer_t timer; 174 #endif 175 176 if (node->dagHdr->status == rf_enable) { 177 #if RF_ACC_TRACE > 0 178 RF_ETIMER_START(timer); 179 #endif 180 logData = rf_CreateParityLogData(RF_UPDATE, pda, bf, 181 (RF_Raid_t *) (node->dagHdr->raidPtr), 182 node->wakeFunc, node, 183 node->dagHdr->tracerec, timer); 184 if (logData) 185 rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE); 186 else { 187 #if RF_ACC_TRACE > 0 188 RF_ETIMER_STOP(timer); 189 RF_ETIMER_EVAL(timer); 190 tracerec->plog_us += RF_ETIMER_VAL_US(timer); 191 #endif 192 (node->wakeFunc) (node, ENOMEM); 193 } 194 } 195 } 196 197 198 /***************************************************************************** 199 * the execution function associated with a parity log overwrite node 200 ****************************************************************************/ 201 void 202 rf_ParityLogOverwriteFunc(RF_DagNode_t *node) 203 { 204 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p; 205 void *bf = (void *) node->params[1].p; 206 RF_ParityLogData_t *logData; 207 #if RF_ACC_TRACE > 0 208 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; 209 RF_Etimer_t timer; 210 #endif 211 212 if (node->dagHdr->status == rf_enable) { 213 #if RF_ACC_TRACE > 0 214 RF_ETIMER_START(timer); 215 #endif 216 logData = rf_CreateParityLogData(RF_OVERWRITE, pda, bf, 217 (RF_Raid_t *) (node->dagHdr->raidPtr), 218 node->wakeFunc, node, node->dagHdr->tracerec, timer); 219 if (logData) 220 rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE); 221 else { 222 #if RF_ACC_TRACE > 0 223 RF_ETIMER_STOP(timer); 224 RF_ETIMER_EVAL(timer); 225 tracerec->plog_us += RF_ETIMER_VAL_US(timer); 226 #endif 227 (node->wakeFunc) (node, ENOMEM); 228 } 229 } 230 } 231 232 void 233 rf_ParityLogUpdateUndoFunc(RF_DagNode_t *node) 234 { 235 } 236 237 void 238 rf_ParityLogOverwriteUndoFunc(RF_DagNode_t *node) 239 { 240 } 241 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */ 242 243 /***************************************************************************** 244 * the execution function associated with a NOP node 245 ****************************************************************************/ 246 void 247 rf_NullNodeFunc(RF_DagNode_t *node) 248 { 249 node->status = rf_good; 250 rf_FinishNode(node, RF_THREAD_CONTEXT); 251 } 252 253 void 254 rf_NullNodeUndoFunc(RF_DagNode_t *node) 255 { 256 node->status = rf_undone; 257 rf_FinishNode(node, RF_THREAD_CONTEXT); 258 } 259 260 261 /***************************************************************************** 262 * the execution function associated with a disk-read node 263 ****************************************************************************/ 264 void 265 rf_DiskReadFuncForThreads(RF_DagNode_t *node) 266 { 267 RF_DiskQueueData_t *req; 268 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p; 269 void *bf = (void *) node->params[1].p; 270 RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v; 271 unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v); 272 unsigned which_ru = RF_EXTRACT_RU(node->params[3].v); 273 RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP; 274 RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues; 275 void *b_proc = NULL; 276 277 if (node->dagHdr->bp) 278 b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc; 279 280 req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector, 281 bf, parityStripeID, which_ru, node->wakeFunc, node, 282 #if RF_ACC_TRACE > 0 283 node->dagHdr->tracerec, 284 #else 285 NULL, 286 #endif 287 (void *) (node->dagHdr->raidPtr), 0, b_proc, PR_NOWAIT); 288 if (!req) { 289 (node->wakeFunc) (node, ENOMEM); 290 } else { 291 node->dagFuncData = (void *) req; 292 rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority); 293 } 294 } 295 296 297 /***************************************************************************** 298 * the execution function associated with a disk-write node 299 ****************************************************************************/ 300 void 301 rf_DiskWriteFuncForThreads(RF_DagNode_t *node) 302 { 303 RF_DiskQueueData_t *req; 304 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p; 305 void *bf = (void *) node->params[1].p; 306 RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v; 307 unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v); 308 unsigned which_ru = RF_EXTRACT_RU(node->params[3].v); 309 RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP; 310 RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues; 311 void *b_proc = NULL; 312 313 if (node->dagHdr->bp) 314 b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc; 315 316 /* normal processing (rollaway or forward recovery) begins here */ 317 req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector, 318 bf, parityStripeID, which_ru, node->wakeFunc, node, 319 #if RF_ACC_TRACE > 0 320 node->dagHdr->tracerec, 321 #else 322 NULL, 323 #endif 324 (void *) (node->dagHdr->raidPtr), 325 0, b_proc, PR_NOWAIT); 326 327 if (!req) { 328 (node->wakeFunc) (node, ENOMEM); 329 } else { 330 node->dagFuncData = (void *) req; 331 rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority); 332 } 333 } 334 /***************************************************************************** 335 * the undo function for disk nodes 336 * Note: this is not a proper undo of a write node, only locks are released. 337 * old data is not restored to disk! 338 ****************************************************************************/ 339 void 340 rf_DiskUndoFunc(RF_DagNode_t *node) 341 { 342 RF_DiskQueueData_t *req; 343 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p; 344 RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues; 345 346 req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP, 347 0L, 0, NULL, 0L, 0, node->wakeFunc, node, 348 #if RF_ACC_TRACE > 0 349 node->dagHdr->tracerec, 350 #else 351 NULL, 352 #endif 353 (void *) (node->dagHdr->raidPtr), 354 0, NULL, PR_NOWAIT); 355 if (!req) 356 (node->wakeFunc) (node, ENOMEM); 357 else { 358 node->dagFuncData = (void *) req; 359 rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY); 360 } 361 } 362 363 /***************************************************************************** 364 * Callback routine for DiskRead and DiskWrite nodes. When the disk 365 * op completes, the routine is called to set the node status and 366 * inform the execution engine that the node has fired. 367 ****************************************************************************/ 368 void 369 rf_GenericWakeupFunc(void *v, int status) 370 { 371 RF_DagNode_t *node = v; 372 373 switch (node->status) { 374 case rf_fired: 375 if (status) 376 node->status = rf_bad; 377 else 378 node->status = rf_good; 379 break; 380 case rf_recover: 381 /* probably should never reach this case */ 382 if (status) 383 node->status = rf_panic; 384 else 385 node->status = rf_undone; 386 break; 387 default: 388 printf("rf_GenericWakeupFunc:"); 389 printf("node->status is %d,", node->status); 390 printf("status is %d \n", status); 391 RF_PANIC(); 392 break; 393 } 394 if (node->dagFuncData) 395 rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData); 396 rf_FinishNode(node, RF_INTR_CONTEXT); 397 } 398 399 400 /***************************************************************************** 401 * there are three distinct types of xor nodes: 402 403 * A "regular xor" is used in the fault-free case where the access 404 * spans a complete stripe unit. It assumes that the result buffer is 405 * one full stripe unit in size, and uses the stripe-unit-offset 406 * values that it computes from the PDAs to determine where within the 407 * stripe unit to XOR each argument buffer. 408 * 409 * A "simple xor" is used in the fault-free case where the access 410 * touches only a portion of one (or two, in some cases) stripe 411 * unit(s). It assumes that all the argument buffers are of the same 412 * size and have the same stripe unit offset. 413 * 414 * A "recovery xor" is used in the degraded-mode case. It's similar 415 * to the regular xor function except that it takes the failed PDA as 416 * an additional parameter, and uses it to determine what portions of 417 * the argument buffers need to be xor'd into the result buffer, and 418 * where in the result buffer they should go. 419 ****************************************************************************/ 420 421 /* xor the params together and store the result in the result field. 422 * assume the result field points to a buffer that is the size of one 423 * SU, and use the pda params to determine where within the buffer to 424 * XOR the input buffers. */ 425 void 426 rf_RegularXorFunc(RF_DagNode_t *node) 427 { 428 RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p; 429 #if RF_ACC_TRACE > 0 430 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; 431 RF_Etimer_t timer; 432 #endif 433 int i, retcode; 434 435 retcode = 0; 436 if (node->dagHdr->status == rf_enable) { 437 /* don't do the XOR if the input is the same as the output */ 438 #if RF_ACC_TRACE > 0 439 RF_ETIMER_START(timer); 440 #endif 441 for (i = 0; i < node->numParams - 1; i += 2) 442 if (node->params[i + 1].p != node->results[0]) { 443 retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p, 444 (char *) node->params[i + 1].p, (char *) node->results[0]); 445 } 446 #if RF_ACC_TRACE > 0 447 RF_ETIMER_STOP(timer); 448 RF_ETIMER_EVAL(timer); 449 tracerec->xor_us += RF_ETIMER_VAL_US(timer); 450 #endif 451 } 452 rf_GenericWakeupFunc(node, retcode); /* call wake func 453 * explicitly since no 454 * I/O in this node */ 455 } 456 /* xor the inputs into the result buffer, ignoring placement issues */ 457 void 458 rf_SimpleXorFunc(RF_DagNode_t *node) 459 { 460 RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p; 461 int i, retcode = 0; 462 #if RF_ACC_TRACE > 0 463 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; 464 RF_Etimer_t timer; 465 #endif 466 467 if (node->dagHdr->status == rf_enable) { 468 #if RF_ACC_TRACE > 0 469 RF_ETIMER_START(timer); 470 #endif 471 /* don't do the XOR if the input is the same as the output */ 472 for (i = 0; i < node->numParams - 1; i += 2) 473 if (node->params[i + 1].p != node->results[0]) { 474 retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0], 475 rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector)); 476 } 477 #if RF_ACC_TRACE > 0 478 RF_ETIMER_STOP(timer); 479 RF_ETIMER_EVAL(timer); 480 tracerec->xor_us += RF_ETIMER_VAL_US(timer); 481 #endif 482 } 483 rf_GenericWakeupFunc(node, retcode); /* call wake func 484 * explicitly since no 485 * I/O in this node */ 486 } 487 /* this xor is used by the degraded-mode dag functions to recover lost 488 * data. the second-to-last parameter is the PDA for the failed 489 * portion of the access. the code here looks at this PDA and assumes 490 * that the xor target buffer is equal in size to the number of 491 * sectors in the failed PDA. It then uses the other PDAs in the 492 * parameter list to determine where within the target buffer the 493 * corresponding data should be xored. */ 494 void 495 rf_RecoveryXorFunc(RF_DagNode_t *node) 496 { 497 RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p; 498 RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout; 499 RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p; 500 int i, retcode = 0; 501 RF_PhysDiskAddr_t *pda; 502 int suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector); 503 char *srcbuf, *destbuf; 504 #if RF_ACC_TRACE > 0 505 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; 506 RF_Etimer_t timer; 507 #endif 508 509 if (node->dagHdr->status == rf_enable) { 510 #if RF_ACC_TRACE > 0 511 RF_ETIMER_START(timer); 512 #endif 513 for (i = 0; i < node->numParams - 2; i += 2) 514 if (node->params[i + 1].p != node->results[0]) { 515 pda = (RF_PhysDiskAddr_t *) node->params[i].p; 516 srcbuf = (char *) node->params[i + 1].p; 517 suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector); 518 destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset); 519 retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector)); 520 } 521 #if RF_ACC_TRACE > 0 522 RF_ETIMER_STOP(timer); 523 RF_ETIMER_EVAL(timer); 524 tracerec->xor_us += RF_ETIMER_VAL_US(timer); 525 #endif 526 } 527 rf_GenericWakeupFunc(node, retcode); 528 } 529 /***************************************************************************** 530 * The next three functions are utilities used by the above 531 * xor-execution functions. 532 ****************************************************************************/ 533 534 535 /* 536 * this is just a glorified buffer xor. targbuf points to a buffer 537 * that is one full stripe unit in size. srcbuf points to a buffer 538 * that may be less than 1 SU, but never more. When the access 539 * described by pda is one SU in size (which by implication means it's 540 * SU-aligned), all that happens is (targbuf) <- (srcbuf ^ targbuf). 541 * When the access is less than one SU in size the XOR occurs on only 542 * the portion of targbuf identified in the pda. */ 543 544 int 545 rf_XorIntoBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda, 546 char *srcbuf, char *targbuf) 547 { 548 char *targptr; 549 int sectPerSU = raidPtr->Layout.sectorsPerStripeUnit; 550 int SUOffset = pda->startSector % sectPerSU; 551 int length, retcode = 0; 552 553 RF_ASSERT(pda->numSector <= sectPerSU); 554 555 targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset); 556 length = rf_RaidAddressToByte(raidPtr, pda->numSector); 557 retcode = rf_bxor(srcbuf, targptr, length); 558 return (retcode); 559 } 560 /* it really should be the case that the buffer pointers (returned by 561 * malloc) are aligned to the natural word size of the machine, so 562 * this is the only case we optimize for. The length should always be 563 * a multiple of the sector size, so there should be no problem with 564 * leftover bytes at the end. */ 565 int 566 rf_bxor(char *src, char *dest, int len) 567 { 568 unsigned mask = sizeof(long) - 1, retcode = 0; 569 570 if (!(((unsigned long) src) & mask) && 571 !(((unsigned long) dest) & mask) && !(len & mask)) { 572 retcode = rf_longword_bxor((unsigned long *) src, 573 (unsigned long *) dest, 574 len >> RF_LONGSHIFT); 575 } else { 576 RF_ASSERT(0); 577 } 578 return (retcode); 579 } 580 581 /* When XORing in kernel mode, we need to map each user page to kernel 582 * space before we can access it. We don't want to assume anything 583 * about which input buffers are in kernel/user space, nor about their 584 * alignment, so in each loop we compute the maximum number of bytes 585 * that we can xor without crossing any page boundaries, and do only 586 * this many bytes before the next remap. 587 * 588 * len - is in longwords 589 */ 590 int 591 rf_longword_bxor(unsigned long *src, unsigned long *dest, int len) 592 { 593 unsigned long *end = src + len; 594 unsigned long d0, d1, d2, d3, s0, s1, s2, s3; /* temps */ 595 unsigned long *pg_src, *pg_dest; /* per-page source/dest pointers */ 596 int longs_this_time;/* # longwords to xor in the current iteration */ 597 598 pg_src = src; 599 pg_dest = dest; 600 if (!pg_src || !pg_dest) 601 return (EFAULT); 602 603 while (len >= 4) { 604 longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT); /* note len in longwords */ 605 src += longs_this_time; 606 dest += longs_this_time; 607 len -= longs_this_time; 608 while (longs_this_time >= 4) { 609 d0 = pg_dest[0]; 610 d1 = pg_dest[1]; 611 d2 = pg_dest[2]; 612 d3 = pg_dest[3]; 613 s0 = pg_src[0]; 614 s1 = pg_src[1]; 615 s2 = pg_src[2]; 616 s3 = pg_src[3]; 617 pg_dest[0] = d0 ^ s0; 618 pg_dest[1] = d1 ^ s1; 619 pg_dest[2] = d2 ^ s2; 620 pg_dest[3] = d3 ^ s3; 621 pg_src += 4; 622 pg_dest += 4; 623 longs_this_time -= 4; 624 } 625 while (longs_this_time > 0) { /* cannot cross any page 626 * boundaries here */ 627 *pg_dest++ ^= *pg_src++; 628 longs_this_time--; 629 } 630 631 /* either we're done, or we've reached a page boundary on one 632 * (or possibly both) of the pointers */ 633 if (len) { 634 if (RF_PAGE_ALIGNED(src)) 635 pg_src = src; 636 if (RF_PAGE_ALIGNED(dest)) 637 pg_dest = dest; 638 if (!pg_src || !pg_dest) 639 return (EFAULT); 640 } 641 } 642 while (src < end) { 643 *pg_dest++ ^= *pg_src++; 644 src++; 645 dest++; 646 len--; 647 if (RF_PAGE_ALIGNED(src)) 648 pg_src = src; 649 if (RF_PAGE_ALIGNED(dest)) 650 pg_dest = dest; 651 } 652 RF_ASSERT(len == 0); 653 return (0); 654 } 655 656 #if 0 657 /* 658 dst = a ^ b ^ c; 659 a may equal dst 660 see comment above longword_bxor 661 len is length in longwords 662 */ 663 int 664 rf_longword_bxor3(unsigned long *dst, unsigned long *a, unsigned long *b, 665 unsigned long *c, int len, void *bp) 666 { 667 unsigned long a0, a1, a2, a3, b0, b1, b2, b3; 668 unsigned long *pg_a, *pg_b, *pg_c, *pg_dst; /* per-page source/dest 669 * pointers */ 670 int longs_this_time;/* # longs to xor in the current iteration */ 671 char dst_is_a = 0; 672 673 pg_a = a; 674 pg_b = b; 675 pg_c = c; 676 if (a == dst) { 677 pg_dst = pg_a; 678 dst_is_a = 1; 679 } else { 680 pg_dst = dst; 681 } 682 683 /* align dest to cache line. Can't cross a pg boundary on dst here. */ 684 while ((((unsigned long) pg_dst) & 0x1f)) { 685 *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++; 686 dst++; 687 a++; 688 b++; 689 c++; 690 if (RF_PAGE_ALIGNED(a)) { 691 pg_a = a; 692 if (!pg_a) 693 return (EFAULT); 694 } 695 if (RF_PAGE_ALIGNED(b)) { 696 pg_b = a; 697 if (!pg_b) 698 return (EFAULT); 699 } 700 if (RF_PAGE_ALIGNED(c)) { 701 pg_c = a; 702 if (!pg_c) 703 return (EFAULT); 704 } 705 len--; 706 } 707 708 while (len > 4) { 709 longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT); 710 a += longs_this_time; 711 b += longs_this_time; 712 c += longs_this_time; 713 dst += longs_this_time; 714 len -= longs_this_time; 715 while (longs_this_time >= 4) { 716 a0 = pg_a[0]; 717 longs_this_time -= 4; 718 719 a1 = pg_a[1]; 720 a2 = pg_a[2]; 721 722 a3 = pg_a[3]; 723 pg_a += 4; 724 725 b0 = pg_b[0]; 726 b1 = pg_b[1]; 727 728 b2 = pg_b[2]; 729 b3 = pg_b[3]; 730 /* start dual issue */ 731 a0 ^= b0; 732 b0 = pg_c[0]; 733 734 pg_b += 4; 735 a1 ^= b1; 736 737 a2 ^= b2; 738 a3 ^= b3; 739 740 b1 = pg_c[1]; 741 a0 ^= b0; 742 743 b2 = pg_c[2]; 744 a1 ^= b1; 745 746 b3 = pg_c[3]; 747 a2 ^= b2; 748 749 pg_dst[0] = a0; 750 a3 ^= b3; 751 pg_dst[1] = a1; 752 pg_c += 4; 753 pg_dst[2] = a2; 754 pg_dst[3] = a3; 755 pg_dst += 4; 756 } 757 while (longs_this_time > 0) { /* cannot cross any page 758 * boundaries here */ 759 *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++; 760 longs_this_time--; 761 } 762 763 if (len) { 764 if (RF_PAGE_ALIGNED(a)) { 765 pg_a = a; 766 if (!pg_a) 767 return (EFAULT); 768 if (dst_is_a) 769 pg_dst = pg_a; 770 } 771 if (RF_PAGE_ALIGNED(b)) { 772 pg_b = b; 773 if (!pg_b) 774 return (EFAULT); 775 } 776 if (RF_PAGE_ALIGNED(c)) { 777 pg_c = c; 778 if (!pg_c) 779 return (EFAULT); 780 } 781 if (!dst_is_a) 782 if (RF_PAGE_ALIGNED(dst)) { 783 pg_dst = dst; 784 if (!pg_dst) 785 return (EFAULT); 786 } 787 } 788 } 789 while (len) { 790 *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++; 791 dst++; 792 a++; 793 b++; 794 c++; 795 if (RF_PAGE_ALIGNED(a)) { 796 pg_a = a; 797 if (!pg_a) 798 return (EFAULT); 799 if (dst_is_a) 800 pg_dst = pg_a; 801 } 802 if (RF_PAGE_ALIGNED(b)) { 803 pg_b = b; 804 if (!pg_b) 805 return (EFAULT); 806 } 807 if (RF_PAGE_ALIGNED(c)) { 808 pg_c = c; 809 if (!pg_c) 810 return (EFAULT); 811 } 812 if (!dst_is_a) 813 if (RF_PAGE_ALIGNED(dst)) { 814 pg_dst = dst; 815 if (!pg_dst) 816 return (EFAULT); 817 } 818 len--; 819 } 820 return (0); 821 } 822 823 int 824 rf_bxor3(unsigned char *dst, unsigned char *a, unsigned char *b, 825 unsigned char *c, unsigned long len, void *bp) 826 { 827 RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0); 828 829 return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a, 830 (unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp)); 831 } 832 #endif 833