xref: /netbsd-src/sys/dev/raidframe/rf_dagfuncs.c (revision 3b01aba77a7a698587faaae455bbfe740923c1f5)
1 /*	$NetBSD: rf_dagfuncs.c,v 1.7 2001/02/03 12:51:10 mrg Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland, William V. Courtright II
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /*
30  * dagfuncs.c -- DAG node execution routines
31  *
32  * Rules:
33  * 1. Every DAG execution function must eventually cause node->status to
34  *    get set to "good" or "bad", and "FinishNode" to be called. In the
35  *    case of nodes that complete immediately (xor, NullNodeFunc, etc),
36  *    the node execution function can do these two things directly. In
37  *    the case of nodes that have to wait for some event (a disk read to
38  *    complete, a lock to be released, etc) to occur before they can
39  *    complete, this is typically achieved by having whatever module
40  *    is doing the operation call GenericWakeupFunc upon completion.
41  * 2. DAG execution functions should check the status in the DAG header
42  *    and NOP out their operations if the status is not "enable". However,
43  *    execution functions that release resources must be sure to release
44  *    them even when they NOP out the function that would use them.
45  *    Functions that acquire resources should go ahead and acquire them
46  *    even when they NOP, so that a downstream release node will not have
47  *    to check to find out whether or not the acquire was suppressed.
48  */
49 
50 #include <sys/param.h>
51 #include <sys/ioctl.h>
52 
53 #include "rf_archs.h"
54 #include "rf_raid.h"
55 #include "rf_dag.h"
56 #include "rf_layout.h"
57 #include "rf_etimer.h"
58 #include "rf_acctrace.h"
59 #include "rf_diskqueue.h"
60 #include "rf_dagfuncs.h"
61 #include "rf_general.h"
62 #include "rf_engine.h"
63 #include "rf_dagutils.h"
64 
65 #include "rf_kintf.h"
66 
67 #if RF_INCLUDE_PARITYLOGGING > 0
68 #include "rf_paritylog.h"
69 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
70 
71 int     (*rf_DiskReadFunc) (RF_DagNode_t *);
72 int     (*rf_DiskWriteFunc) (RF_DagNode_t *);
73 int     (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
74 int     (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
75 int     (*rf_DiskUnlockFunc) (RF_DagNode_t *);
76 int     (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *);
77 int     (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
78 int     (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
79 int     (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
80 
81 /*****************************************************************************************
82  * main (only) configuration routine for this module
83  ****************************************************************************************/
84 int
85 rf_ConfigureDAGFuncs(listp)
86 	RF_ShutdownList_t **listp;
87 {
88 	RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) || ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
89 	rf_DiskReadFunc = rf_DiskReadFuncForThreads;
90 	rf_DiskReadUndoFunc = rf_DiskUndoFunc;
91 	rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
92 	rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
93 	rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads;
94 	rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc;
95 	rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
96 	rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
97 	rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
98 	return (0);
99 }
100 
101 
102 
103 /*****************************************************************************************
104  * the execution function associated with a terminate node
105  ****************************************************************************************/
106 int
107 rf_TerminateFunc(node)
108 	RF_DagNode_t *node;
109 {
110 	RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
111 	node->status = rf_good;
112 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
113 }
114 
115 int
116 rf_TerminateUndoFunc(node)
117 	RF_DagNode_t *node;
118 {
119 	return (0);
120 }
121 
122 
123 /*****************************************************************************************
124  * execution functions associated with a mirror node
125  *
126  * parameters:
127  *
128  * 0 - physical disk addres of data
129  * 1 - buffer for holding read data
130  * 2 - parity stripe ID
131  * 3 - flags
132  * 4 - physical disk address of mirror (parity)
133  *
134  ****************************************************************************************/
135 
136 int
137 rf_DiskReadMirrorIdleFunc(node)
138 	RF_DagNode_t *node;
139 {
140 	/* select the mirror copy with the shortest queue and fill in node
141 	 * parameters with physical disk address */
142 
143 	rf_SelectMirrorDiskIdle(node);
144 	return (rf_DiskReadFunc(node));
145 }
146 
147 int
148 rf_DiskReadMirrorPartitionFunc(node)
149 	RF_DagNode_t *node;
150 {
151 	/* select the mirror copy with the shortest queue and fill in node
152 	 * parameters with physical disk address */
153 
154 	rf_SelectMirrorDiskPartition(node);
155 	return (rf_DiskReadFunc(node));
156 }
157 
158 int
159 rf_DiskReadMirrorUndoFunc(node)
160 	RF_DagNode_t *node;
161 {
162 	return (0);
163 }
164 
165 
166 
167 #if RF_INCLUDE_PARITYLOGGING > 0
168 /*****************************************************************************************
169  * the execution function associated with a parity log update node
170  ****************************************************************************************/
171 int
172 rf_ParityLogUpdateFunc(node)
173 	RF_DagNode_t *node;
174 {
175 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
176 	caddr_t buf = (caddr_t) node->params[1].p;
177 	RF_ParityLogData_t *logData;
178 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
179 	RF_Etimer_t timer;
180 
181 	if (node->dagHdr->status == rf_enable) {
182 		RF_ETIMER_START(timer);
183 		logData = rf_CreateParityLogData(RF_UPDATE, pda, buf,
184 		    (RF_Raid_t *) (node->dagHdr->raidPtr),
185 		    node->wakeFunc, (void *) node,
186 		    node->dagHdr->tracerec, timer);
187 		if (logData)
188 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
189 		else {
190 			RF_ETIMER_STOP(timer);
191 			RF_ETIMER_EVAL(timer);
192 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
193 			(node->wakeFunc) (node, ENOMEM);
194 		}
195 	}
196 	return (0);
197 }
198 
199 
200 /*****************************************************************************************
201  * the execution function associated with a parity log overwrite node
202  ****************************************************************************************/
203 int
204 rf_ParityLogOverwriteFunc(node)
205 	RF_DagNode_t *node;
206 {
207 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
208 	caddr_t buf = (caddr_t) node->params[1].p;
209 	RF_ParityLogData_t *logData;
210 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
211 	RF_Etimer_t timer;
212 
213 	if (node->dagHdr->status == rf_enable) {
214 		RF_ETIMER_START(timer);
215 		logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf, (RF_Raid_t *) (node->dagHdr->raidPtr),
216 		    node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
217 		if (logData)
218 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
219 		else {
220 			RF_ETIMER_STOP(timer);
221 			RF_ETIMER_EVAL(timer);
222 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
223 			(node->wakeFunc) (node, ENOMEM);
224 		}
225 	}
226 	return (0);
227 }
228 #else				/* RF_INCLUDE_PARITYLOGGING > 0 */
229 
230 int
231 rf_ParityLogUpdateFunc(node)
232 	RF_DagNode_t *node;
233 {
234 	return (0);
235 }
236 int
237 rf_ParityLogOverwriteFunc(node)
238 	RF_DagNode_t *node;
239 {
240 	return (0);
241 }
242 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
243 
244 int
245 rf_ParityLogUpdateUndoFunc(node)
246 	RF_DagNode_t *node;
247 {
248 	return (0);
249 }
250 
251 int
252 rf_ParityLogOverwriteUndoFunc(node)
253 	RF_DagNode_t *node;
254 {
255 	return (0);
256 }
257 /*****************************************************************************************
258  * the execution function associated with a NOP node
259  ****************************************************************************************/
260 int
261 rf_NullNodeFunc(node)
262 	RF_DagNode_t *node;
263 {
264 	node->status = rf_good;
265 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
266 }
267 
268 int
269 rf_NullNodeUndoFunc(node)
270 	RF_DagNode_t *node;
271 {
272 	node->status = rf_undone;
273 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
274 }
275 
276 
277 /*****************************************************************************************
278  * the execution function associated with a disk-read node
279  ****************************************************************************************/
280 int
281 rf_DiskReadFuncForThreads(node)
282 	RF_DagNode_t *node;
283 {
284 	RF_DiskQueueData_t *req;
285 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
286 	caddr_t buf = (caddr_t) node->params[1].p;
287 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
288 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
289 	unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
290 	unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
291 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
292 	RF_DiskQueueDataFlags_t flags = 0;
293 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
294 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
295 	void   *b_proc = NULL;
296 
297 	if (node->dagHdr->bp)
298 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
299 
300 	RF_ASSERT(!(lock && unlock));
301 	flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
302 	flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
303 
304 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
305 	    buf, parityStripeID, which_ru,
306 	    (int (*) (void *, int)) node->wakeFunc,
307 	    node, NULL, node->dagHdr->tracerec,
308 	    (void *) (node->dagHdr->raidPtr), flags, b_proc);
309 	if (!req) {
310 		(node->wakeFunc) (node, ENOMEM);
311 	} else {
312 		node->dagFuncData = (void *) req;
313 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
314 	}
315 	return (0);
316 }
317 
318 
319 /*****************************************************************************************
320  * the execution function associated with a disk-write node
321  ****************************************************************************************/
322 int
323 rf_DiskWriteFuncForThreads(node)
324 	RF_DagNode_t *node;
325 {
326 	RF_DiskQueueData_t *req;
327 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
328 	caddr_t buf = (caddr_t) node->params[1].p;
329 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
330 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
331 	unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
332 	unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
333 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
334 	RF_DiskQueueDataFlags_t flags = 0;
335 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
336 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
337 	void   *b_proc = NULL;
338 
339 	if (node->dagHdr->bp)
340 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
341 
342 	/* normal processing (rollaway or forward recovery) begins here */
343 	RF_ASSERT(!(lock && unlock));
344 	flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
345 	flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
346 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
347 	    buf, parityStripeID, which_ru,
348 	    (int (*) (void *, int)) node->wakeFunc,
349 	    (void *) node, NULL,
350 	    node->dagHdr->tracerec,
351 	    (void *) (node->dagHdr->raidPtr),
352 	    flags, b_proc);
353 
354 	if (!req) {
355 		(node->wakeFunc) (node, ENOMEM);
356 	} else {
357 		node->dagFuncData = (void *) req;
358 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
359 	}
360 
361 	return (0);
362 }
363 /*****************************************************************************************
364  * the undo function for disk nodes
365  * Note:  this is not a proper undo of a write node, only locks are released.
366  *        old data is not restored to disk!
367  ****************************************************************************************/
368 int
369 rf_DiskUndoFunc(node)
370 	RF_DagNode_t *node;
371 {
372 	RF_DiskQueueData_t *req;
373 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
374 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
375 
376 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
377 	    0L, 0, NULL, 0L, 0,
378 	    (int (*) (void *, int)) node->wakeFunc,
379 	    (void *) node,
380 	    NULL, node->dagHdr->tracerec,
381 	    (void *) (node->dagHdr->raidPtr),
382 	    RF_UNLOCK_DISK_QUEUE, NULL);
383 	if (!req)
384 		(node->wakeFunc) (node, ENOMEM);
385 	else {
386 		node->dagFuncData = (void *) req;
387 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
388 	}
389 
390 	return (0);
391 }
392 /*****************************************************************************************
393  * the execution function associated with an "unlock disk queue" node
394  ****************************************************************************************/
395 int
396 rf_DiskUnlockFuncForThreads(node)
397 	RF_DagNode_t *node;
398 {
399 	RF_DiskQueueData_t *req;
400 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
401 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
402 
403 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
404 	    0L, 0, NULL, 0L, 0,
405 	    (int (*) (void *, int)) node->wakeFunc,
406 	    (void *) node,
407 	    NULL, node->dagHdr->tracerec,
408 	    (void *) (node->dagHdr->raidPtr),
409 	    RF_UNLOCK_DISK_QUEUE, NULL);
410 	if (!req)
411 		(node->wakeFunc) (node, ENOMEM);
412 	else {
413 		node->dagFuncData = (void *) req;
414 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
415 	}
416 
417 	return (0);
418 }
419 /*****************************************************************************************
420  * Callback routine for DiskRead and DiskWrite nodes.  When the disk op completes,
421  * the routine is called to set the node status and inform the execution engine that
422  * the node has fired.
423  ****************************************************************************************/
424 int
425 rf_GenericWakeupFunc(node, status)
426 	RF_DagNode_t *node;
427 	int     status;
428 {
429 	switch (node->status) {
430 	case rf_bwd1:
431 		node->status = rf_bwd2;
432 		if (node->dagFuncData)
433 			rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
434 		return (rf_DiskWriteFuncForThreads(node));
435 		break;
436 	case rf_fired:
437 		if (status)
438 			node->status = rf_bad;
439 		else
440 			node->status = rf_good;
441 		break;
442 	case rf_recover:
443 		/* probably should never reach this case */
444 		if (status)
445 			node->status = rf_panic;
446 		else
447 			node->status = rf_undone;
448 		break;
449 	default:
450 		printf("rf_GenericWakeupFunc:");
451 		printf("node->status is %d,", node->status);
452 		printf("status is %d \n", status);
453 		RF_PANIC();
454 		break;
455 	}
456 	if (node->dagFuncData)
457 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
458 	return (rf_FinishNode(node, RF_INTR_CONTEXT));
459 }
460 
461 
462 /*****************************************************************************************
463  * there are three distinct types of xor nodes
464  * A "regular xor" is used in the fault-free case where the access spans a complete
465  * stripe unit.  It assumes that the result buffer is one full stripe unit in size,
466  * and uses the stripe-unit-offset values that it computes from the PDAs to determine
467  * where within the stripe unit to XOR each argument buffer.
468  *
469  * A "simple xor" is used in the fault-free case where the access touches only a portion
470  * of one (or two, in some cases) stripe unit(s).  It assumes that all the argument
471  * buffers are of the same size and have the same stripe unit offset.
472  *
473  * A "recovery xor" is used in the degraded-mode case.  It's similar to the regular
474  * xor function except that it takes the failed PDA as an additional parameter, and
475  * uses it to determine what portions of the argument buffers need to be xor'd into
476  * the result buffer, and where in the result buffer they should go.
477  ****************************************************************************************/
478 
479 /* xor the params together and store the result in the result field.
480  * assume the result field points to a buffer that is the size of one SU,
481  * and use the pda params to determine where within the buffer to XOR
482  * the input buffers.
483  */
484 int
485 rf_RegularXorFunc(node)
486 	RF_DagNode_t *node;
487 {
488 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
489 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
490 	RF_Etimer_t timer;
491 	int     i, retcode;
492 
493 	retcode = 0;
494 	if (node->dagHdr->status == rf_enable) {
495 		/* don't do the XOR if the input is the same as the output */
496 		RF_ETIMER_START(timer);
497 		for (i = 0; i < node->numParams - 1; i += 2)
498 			if (node->params[i + 1].p != node->results[0]) {
499 				retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
500 				    (char *) node->params[i + 1].p, (char *) node->results[0], node->dagHdr->bp);
501 			}
502 		RF_ETIMER_STOP(timer);
503 		RF_ETIMER_EVAL(timer);
504 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
505 	}
506 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
507 							 * explicitly since no
508 							 * I/O in this node */
509 }
510 /* xor the inputs into the result buffer, ignoring placement issues */
511 int
512 rf_SimpleXorFunc(node)
513 	RF_DagNode_t *node;
514 {
515 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
516 	int     i, retcode = 0;
517 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
518 	RF_Etimer_t timer;
519 
520 	if (node->dagHdr->status == rf_enable) {
521 		RF_ETIMER_START(timer);
522 		/* don't do the XOR if the input is the same as the output */
523 		for (i = 0; i < node->numParams - 1; i += 2)
524 			if (node->params[i + 1].p != node->results[0]) {
525 				retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
526 				    rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector),
527 				    (struct buf *) node->dagHdr->bp);
528 			}
529 		RF_ETIMER_STOP(timer);
530 		RF_ETIMER_EVAL(timer);
531 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
532 	}
533 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
534 							 * explicitly since no
535 							 * I/O in this node */
536 }
537 /* this xor is used by the degraded-mode dag functions to recover lost data.
538  * the second-to-last parameter is the PDA for the failed portion of the access.
539  * the code here looks at this PDA and assumes that the xor target buffer is
540  * equal in size to the number of sectors in the failed PDA.  It then uses
541  * the other PDAs in the parameter list to determine where within the target
542  * buffer the corresponding data should be xored.
543  */
544 int
545 rf_RecoveryXorFunc(node)
546 	RF_DagNode_t *node;
547 {
548 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
549 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
550 	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
551 	int     i, retcode = 0;
552 	RF_PhysDiskAddr_t *pda;
553 	int     suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
554 	char   *srcbuf, *destbuf;
555 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
556 	RF_Etimer_t timer;
557 
558 	if (node->dagHdr->status == rf_enable) {
559 		RF_ETIMER_START(timer);
560 		for (i = 0; i < node->numParams - 2; i += 2)
561 			if (node->params[i + 1].p != node->results[0]) {
562 				pda = (RF_PhysDiskAddr_t *) node->params[i].p;
563 				srcbuf = (char *) node->params[i + 1].p;
564 				suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
565 				destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
566 				retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), node->dagHdr->bp);
567 			}
568 		RF_ETIMER_STOP(timer);
569 		RF_ETIMER_EVAL(timer);
570 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
571 	}
572 	return (rf_GenericWakeupFunc(node, retcode));
573 }
574 /*****************************************************************************************
575  * The next three functions are utilities used by the above xor-execution functions.
576  ****************************************************************************************/
577 
578 
579 /*
580  * this is just a glorified buffer xor.  targbuf points to a buffer that is one full stripe unit
581  * in size.  srcbuf points to a buffer that may be less than 1 SU, but never more.  When the
582  * access described by pda is one SU in size (which by implication means it's SU-aligned),
583  * all that happens is (targbuf) <- (srcbuf ^ targbuf).  When the access is less than one
584  * SU in size the XOR occurs on only the portion of targbuf identified in the pda.
585  */
586 
587 int
588 rf_XorIntoBuffer(raidPtr, pda, srcbuf, targbuf, bp)
589 	RF_Raid_t *raidPtr;
590 	RF_PhysDiskAddr_t *pda;
591 	char   *srcbuf;
592 	char   *targbuf;
593 	void   *bp;
594 {
595 	char   *targptr;
596 	int     sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
597 	int     SUOffset = pda->startSector % sectPerSU;
598 	int     length, retcode = 0;
599 
600 	RF_ASSERT(pda->numSector <= sectPerSU);
601 
602 	targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
603 	length = rf_RaidAddressToByte(raidPtr, pda->numSector);
604 	retcode = rf_bxor(srcbuf, targptr, length, bp);
605 	return (retcode);
606 }
607 /* it really should be the case that the buffer pointers (returned by malloc)
608  * are aligned to the natural word size of the machine, so this is the only
609  * case we optimize for.  The length should always be a multiple of the sector
610  * size, so there should be no problem with leftover bytes at the end.
611  */
612 int
613 rf_bxor(src, dest, len, bp)
614 	char   *src;
615 	char   *dest;
616 	int     len;
617 	void   *bp;
618 {
619 	unsigned mask = sizeof(long) - 1, retcode = 0;
620 
621 	if (!(((unsigned long) src) & mask) && !(((unsigned long) dest) & mask) && !(len & mask)) {
622 		retcode = rf_longword_bxor((unsigned long *) src, (unsigned long *) dest, len >> RF_LONGSHIFT, bp);
623 	} else {
624 		RF_ASSERT(0);
625 	}
626 	return (retcode);
627 }
628 /* map a user buffer into kernel space, if necessary */
629 #define REMAP_VA(_bp,x,y) (y) = (x)
630 
631 /* When XORing in kernel mode, we need to map each user page to kernel space before we can access it.
632  * We don't want to assume anything about which input buffers are in kernel/user
633  * space, nor about their alignment, so in each loop we compute the maximum number
634  * of bytes that we can xor without crossing any page boundaries, and do only this many
635  * bytes before the next remap.
636  */
637 int
638 rf_longword_bxor(src, dest, len, bp)
639 	unsigned long *src;
640 	unsigned long *dest;
641 	int     len;		/* longwords */
642 	void   *bp;
643 {
644 	unsigned long *end = src + len;
645 	unsigned long d0, d1, d2, d3, s0, s1, s2, s3;	/* temps */
646 	unsigned long *pg_src, *pg_dest;	/* per-page source/dest
647 							 * pointers */
648 	int     longs_this_time;/* # longwords to xor in the current iteration */
649 
650 	REMAP_VA(bp, src, pg_src);
651 	REMAP_VA(bp, dest, pg_dest);
652 	if (!pg_src || !pg_dest)
653 		return (EFAULT);
654 
655 	while (len >= 4) {
656 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT);	/* note len in longwords */
657 		src += longs_this_time;
658 		dest += longs_this_time;
659 		len -= longs_this_time;
660 		while (longs_this_time >= 4) {
661 			d0 = pg_dest[0];
662 			d1 = pg_dest[1];
663 			d2 = pg_dest[2];
664 			d3 = pg_dest[3];
665 			s0 = pg_src[0];
666 			s1 = pg_src[1];
667 			s2 = pg_src[2];
668 			s3 = pg_src[3];
669 			pg_dest[0] = d0 ^ s0;
670 			pg_dest[1] = d1 ^ s1;
671 			pg_dest[2] = d2 ^ s2;
672 			pg_dest[3] = d3 ^ s3;
673 			pg_src += 4;
674 			pg_dest += 4;
675 			longs_this_time -= 4;
676 		}
677 		while (longs_this_time > 0) {	/* cannot cross any page
678 						 * boundaries here */
679 			*pg_dest++ ^= *pg_src++;
680 			longs_this_time--;
681 		}
682 
683 		/* either we're done, or we've reached a page boundary on one
684 		 * (or possibly both) of the pointers */
685 		if (len) {
686 			if (RF_PAGE_ALIGNED(src))
687 				REMAP_VA(bp, src, pg_src);
688 			if (RF_PAGE_ALIGNED(dest))
689 				REMAP_VA(bp, dest, pg_dest);
690 			if (!pg_src || !pg_dest)
691 				return (EFAULT);
692 		}
693 	}
694 	while (src < end) {
695 		*pg_dest++ ^= *pg_src++;
696 		src++;
697 		dest++;
698 		len--;
699 		if (RF_PAGE_ALIGNED(src))
700 			REMAP_VA(bp, src, pg_src);
701 		if (RF_PAGE_ALIGNED(dest))
702 			REMAP_VA(bp, dest, pg_dest);
703 	}
704 	RF_ASSERT(len == 0);
705 	return (0);
706 }
707 
708 
709 /*
710    dst = a ^ b ^ c;
711    a may equal dst
712    see comment above longword_bxor
713 */
714 int
715 rf_longword_bxor3(dst, a, b, c, len, bp)
716 	unsigned long *dst;
717 	unsigned long *a;
718 	unsigned long *b;
719 	unsigned long *c;
720 	int     len;		/* length in longwords */
721 	void   *bp;
722 {
723 	unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
724 	unsigned long *pg_a, *pg_b, *pg_c, *pg_dst;	/* per-page source/dest
725 								 * pointers */
726 	int     longs_this_time;/* # longs to xor in the current iteration */
727 	char    dst_is_a = 0;
728 
729 	REMAP_VA(bp, a, pg_a);
730 	REMAP_VA(bp, b, pg_b);
731 	REMAP_VA(bp, c, pg_c);
732 	if (a == dst) {
733 		pg_dst = pg_a;
734 		dst_is_a = 1;
735 	} else {
736 		REMAP_VA(bp, dst, pg_dst);
737 	}
738 
739 	/* align dest to cache line.  Can't cross a pg boundary on dst here. */
740 	while ((((unsigned long) pg_dst) & 0x1f)) {
741 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
742 		dst++;
743 		a++;
744 		b++;
745 		c++;
746 		if (RF_PAGE_ALIGNED(a)) {
747 			REMAP_VA(bp, a, pg_a);
748 			if (!pg_a)
749 				return (EFAULT);
750 		}
751 		if (RF_PAGE_ALIGNED(b)) {
752 			REMAP_VA(bp, a, pg_b);
753 			if (!pg_b)
754 				return (EFAULT);
755 		}
756 		if (RF_PAGE_ALIGNED(c)) {
757 			REMAP_VA(bp, a, pg_c);
758 			if (!pg_c)
759 				return (EFAULT);
760 		}
761 		len--;
762 	}
763 
764 	while (len > 4) {
765 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
766 		a += longs_this_time;
767 		b += longs_this_time;
768 		c += longs_this_time;
769 		dst += longs_this_time;
770 		len -= longs_this_time;
771 		while (longs_this_time >= 4) {
772 			a0 = pg_a[0];
773 			longs_this_time -= 4;
774 
775 			a1 = pg_a[1];
776 			a2 = pg_a[2];
777 
778 			a3 = pg_a[3];
779 			pg_a += 4;
780 
781 			b0 = pg_b[0];
782 			b1 = pg_b[1];
783 
784 			b2 = pg_b[2];
785 			b3 = pg_b[3];
786 			/* start dual issue */
787 			a0 ^= b0;
788 			b0 = pg_c[0];
789 
790 			pg_b += 4;
791 			a1 ^= b1;
792 
793 			a2 ^= b2;
794 			a3 ^= b3;
795 
796 			b1 = pg_c[1];
797 			a0 ^= b0;
798 
799 			b2 = pg_c[2];
800 			a1 ^= b1;
801 
802 			b3 = pg_c[3];
803 			a2 ^= b2;
804 
805 			pg_dst[0] = a0;
806 			a3 ^= b3;
807 			pg_dst[1] = a1;
808 			pg_c += 4;
809 			pg_dst[2] = a2;
810 			pg_dst[3] = a3;
811 			pg_dst += 4;
812 		}
813 		while (longs_this_time > 0) {	/* cannot cross any page
814 						 * boundaries here */
815 			*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
816 			longs_this_time--;
817 		}
818 
819 		if (len) {
820 			if (RF_PAGE_ALIGNED(a)) {
821 				REMAP_VA(bp, a, pg_a);
822 				if (!pg_a)
823 					return (EFAULT);
824 				if (dst_is_a)
825 					pg_dst = pg_a;
826 			}
827 			if (RF_PAGE_ALIGNED(b)) {
828 				REMAP_VA(bp, b, pg_b);
829 				if (!pg_b)
830 					return (EFAULT);
831 			}
832 			if (RF_PAGE_ALIGNED(c)) {
833 				REMAP_VA(bp, c, pg_c);
834 				if (!pg_c)
835 					return (EFAULT);
836 			}
837 			if (!dst_is_a)
838 				if (RF_PAGE_ALIGNED(dst)) {
839 					REMAP_VA(bp, dst, pg_dst);
840 					if (!pg_dst)
841 						return (EFAULT);
842 				}
843 		}
844 	}
845 	while (len) {
846 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
847 		dst++;
848 		a++;
849 		b++;
850 		c++;
851 		if (RF_PAGE_ALIGNED(a)) {
852 			REMAP_VA(bp, a, pg_a);
853 			if (!pg_a)
854 				return (EFAULT);
855 			if (dst_is_a)
856 				pg_dst = pg_a;
857 		}
858 		if (RF_PAGE_ALIGNED(b)) {
859 			REMAP_VA(bp, b, pg_b);
860 			if (!pg_b)
861 				return (EFAULT);
862 		}
863 		if (RF_PAGE_ALIGNED(c)) {
864 			REMAP_VA(bp, c, pg_c);
865 			if (!pg_c)
866 				return (EFAULT);
867 		}
868 		if (!dst_is_a)
869 			if (RF_PAGE_ALIGNED(dst)) {
870 				REMAP_VA(bp, dst, pg_dst);
871 				if (!pg_dst)
872 					return (EFAULT);
873 			}
874 		len--;
875 	}
876 	return (0);
877 }
878 
879 int
880 rf_bxor3(dst, a, b, c, len, bp)
881 	unsigned char *dst;
882 	unsigned char *a;
883 	unsigned char *b;
884 	unsigned char *c;
885 	unsigned long len;
886 	void   *bp;
887 {
888 	RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
889 
890 	return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
891 		(unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
892 }
893