xref: /netbsd-src/sys/dev/raidframe/rf_dagffrd.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: rf_dagffrd.c,v 1.19 2013/09/15 12:23:06 martin Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /*
30  * rf_dagffrd.c
31  *
32  * code for creating fault-free read DAGs
33  *
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: rf_dagffrd.c,v 1.19 2013/09/15 12:23:06 martin Exp $");
38 
39 #include <dev/raidframe/raidframevar.h>
40 
41 #include "rf_raid.h"
42 #include "rf_dag.h"
43 #include "rf_dagutils.h"
44 #include "rf_dagfuncs.h"
45 #include "rf_debugMem.h"
46 #include "rf_general.h"
47 #include "rf_dagffrd.h"
48 
49 /******************************************************************************
50  *
51  * General comments on DAG creation:
52  *
53  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
54  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
55  * is reached, the execution engine will halt forward execution and work
56  * backward through the graph, executing the undo functions.  Assuming that
57  * each node in the graph prior to the Cmt node are undoable and atomic - or -
58  * does not make changes to permanent state, the graph will fail atomically.
59  * If an error occurs after the Cmt node executes, the engine will roll-forward
60  * through the graph, blindly executing nodes until it reaches the end.
61  * If a graph reaches the end, it is assumed to have completed successfully.
62  *
63  * A graph has only 1 Cmt node.
64  *
65  */
66 
67 
68 /******************************************************************************
69  *
70  * The following wrappers map the standard DAG creation interface to the
71  * DAG creation routines.  Additionally, these wrappers enable experimentation
72  * with new DAG structures by providing an extra level of indirection, allowing
73  * the DAG creation routines to be replaced at this single point.
74  */
75 
76 void
77 rf_CreateFaultFreeReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
78 			  RF_DagHeader_t *dag_h, void *bp,
79 			  RF_RaidAccessFlags_t flags,
80 			  RF_AllocListElem_t *allocList)
81 {
82 	rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
83 	    RF_IO_TYPE_READ);
84 }
85 
86 
87 /******************************************************************************
88  *
89  * DAG creation code begins here
90  */
91 
92 /******************************************************************************
93  *
94  * creates a DAG to perform a nonredundant read or write of data within one
95  * stripe.
96  * For reads, this DAG is as follows:
97  *
98  *                   /---- read ----\
99  *    Header -- Block ---- read ---- Commit -- Terminate
100  *                   \---- read ----/
101  *
102  * For writes, this DAG is as follows:
103  *
104  *                    /---- write ----\
105  *    Header -- Commit ---- write ---- Block -- Terminate
106  *                    \---- write ----/
107  *
108  * There is one disk node per stripe unit accessed, and all disk nodes are in
109  * parallel.
110  *
111  * Tricky point here:  The first disk node (read or write) is created
112  * normally.  Subsequent disk nodes are created by copying the first one,
113  * and modifying a few params.  The "succedents" and "antecedents" fields are
114  * _not_ re-created in each node, but rather left pointing to the same array
115  * that was malloc'd when the first node was created.  Thus, it's essential
116  * that when this DAG is freed, the succedents and antecedents fields be freed
117  * in ONLY ONE of the read nodes.  This does not apply to the "params" field
118  * because it is recreated for each READ node.
119  *
120  * Note that normal-priority accesses do not need to be tagged with their
121  * parity stripe ID, because they will never be promoted.  Hence, I've
122  * commented-out the code to do this, and marked it with UNNEEDED.
123  *
124  *****************************************************************************/
125 
126 void
127 rf_CreateNonredundantDAG(RF_Raid_t *raidPtr,
128     RF_AccessStripeMap_t *asmap, RF_DagHeader_t *dag_h, void *bp,
129     RF_RaidAccessFlags_t flags, RF_AllocListElem_t *allocList,
130     RF_IoType_t type)
131 {
132 	RF_DagNode_t *diskNodes, *blockNode, *commitNode, *termNode;
133 	RF_DagNode_t *tmpNode, *tmpdiskNode;
134 	RF_PhysDiskAddr_t *pda = asmap->physInfo;
135 	int     (*doFunc) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
136 	int     i, n;
137 	const char   *name;
138 
139 	n = asmap->numStripeUnitsAccessed;
140 	dag_h->creator = "NonredundantDAG";
141 
142 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
143 	switch (type) {
144 	case RF_IO_TYPE_READ:
145 		doFunc = rf_DiskReadFunc;
146 		undoFunc = rf_DiskReadUndoFunc;
147 		name = "R  ";
148 #if RF_DEBUG_DAG
149 		if (rf_dagDebug)
150 			printf("[Creating non-redundant read DAG]\n");
151 #endif
152 		break;
153 	case RF_IO_TYPE_WRITE:
154 		doFunc = rf_DiskWriteFunc;
155 		undoFunc = rf_DiskWriteUndoFunc;
156 		name = "W  ";
157 #if RF_DEBUG_DAG
158 		if (rf_dagDebug)
159 			printf("[Creating non-redundant write DAG]\n");
160 #endif
161 		break;
162 	default:
163 		RF_PANIC();
164 	}
165 
166 	/*
167          * For reads, the dag can not commit until the block node is reached.
168          * for writes, the dag commits immediately.
169          */
170 	dag_h->numCommitNodes = 1;
171 	dag_h->numCommits = 0;
172 	dag_h->numSuccedents = 1;
173 
174 	/*
175          * Node count:
176          * 1 block node
177          * n data reads (or writes)
178          * 1 commit node
179          * 1 terminator node
180          */
181 	RF_ASSERT(n > 0);
182 
183 	for (i = 0; i < n; i++) {
184 		tmpNode = rf_AllocDAGNode();
185 		tmpNode->list_next = dag_h->nodes;
186 		dag_h->nodes = tmpNode;
187 	}
188 	diskNodes = dag_h->nodes;
189 
190 	blockNode = rf_AllocDAGNode();
191 	blockNode->list_next = dag_h->nodes;
192 	dag_h->nodes = blockNode;
193 
194 	commitNode = rf_AllocDAGNode();
195 	commitNode->list_next = dag_h->nodes;
196 	dag_h->nodes = commitNode;
197 
198 	termNode = rf_AllocDAGNode();
199 	termNode->list_next = dag_h->nodes;
200 	dag_h->nodes = termNode;
201 
202 	/* initialize nodes */
203 	switch (type) {
204 	case RF_IO_TYPE_READ:
205 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
206 		    NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
207 		rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
208 		    NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
209 		rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
210 		    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
211 		break;
212 	case RF_IO_TYPE_WRITE:
213 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
214 		    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
215 		rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
216 		    NULL, n, 1, 0, 0, dag_h, "Cmt", allocList);
217 		rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
218 		    NULL, 0, n, 0, 0, dag_h, "Trm", allocList);
219 		break;
220 	default:
221 		RF_PANIC();
222 	}
223 
224 	tmpdiskNode = diskNodes;
225 	for (i = 0; i < n; i++) {
226 		RF_ASSERT(pda != NULL);
227 		rf_InitNode(tmpdiskNode, rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc,
228 		    1, 1, 4, 0, dag_h, name, allocList);
229 		tmpdiskNode->params[0].p = pda;
230 		tmpdiskNode->params[1].p = pda->bufPtr;
231 		/* parity stripe id is not necessary */
232 		tmpdiskNode->params[2].v = 0;
233 		tmpdiskNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0);
234 		pda = pda->next;
235 		tmpdiskNode = tmpdiskNode->list_next;
236 	}
237 
238 	/*
239          * Connect nodes.
240          */
241 
242 	/* connect hdr to block node */
243 	RF_ASSERT(blockNode->numAntecedents == 0);
244 	dag_h->succedents[0] = blockNode;
245 
246 	if (type == RF_IO_TYPE_READ) {
247 		/* connecting a nonredundant read DAG */
248 		RF_ASSERT(blockNode->numSuccedents == n);
249 		RF_ASSERT(commitNode->numAntecedents == n);
250 		tmpdiskNode = diskNodes;
251 		for (i = 0; i < n; i++) {
252 			/* connect block node to each read node */
253 			RF_ASSERT(tmpdiskNode->numAntecedents == 1);
254 			blockNode->succedents[i] = tmpdiskNode;
255 			tmpdiskNode->antecedents[0] = blockNode;
256 			tmpdiskNode->antType[0] = rf_control;
257 
258 			/* connect each read node to the commit node */
259 			RF_ASSERT(tmpdiskNode->numSuccedents == 1);
260 			tmpdiskNode->succedents[0] = commitNode;
261 			commitNode->antecedents[i] = tmpdiskNode;
262 			commitNode->antType[i] = rf_control;
263 			tmpdiskNode = tmpdiskNode->list_next;
264 		}
265 		/* connect the commit node to the term node */
266 		RF_ASSERT(commitNode->numSuccedents == 1);
267 		RF_ASSERT(termNode->numAntecedents == 1);
268 		RF_ASSERT(termNode->numSuccedents == 0);
269 		commitNode->succedents[0] = termNode;
270 		termNode->antecedents[0] = commitNode;
271 		termNode->antType[0] = rf_control;
272 	} else {
273 		/* connecting a nonredundant write DAG */
274 		/* connect the block node to the commit node */
275 		RF_ASSERT(blockNode->numSuccedents == 1);
276 		RF_ASSERT(commitNode->numAntecedents == 1);
277 		blockNode->succedents[0] = commitNode;
278 		commitNode->antecedents[0] = blockNode;
279 		commitNode->antType[0] = rf_control;
280 
281 		RF_ASSERT(commitNode->numSuccedents == n);
282 		RF_ASSERT(termNode->numAntecedents == n);
283 		RF_ASSERT(termNode->numSuccedents == 0);
284 		tmpdiskNode = diskNodes;
285 		for (i = 0; i < n; i++) {
286 			/* connect the commit node to each write node */
287 			RF_ASSERT(tmpdiskNode->numAntecedents == 1);
288 			commitNode->succedents[i] = tmpdiskNode;
289 			tmpdiskNode->antecedents[0] = commitNode;
290 			tmpdiskNode->antType[0] = rf_control;
291 
292 			/* connect each write node to the term node */
293 			RF_ASSERT(tmpdiskNode->numSuccedents == 1);
294 			tmpdiskNode->succedents[0] = termNode;
295 			termNode->antecedents[i] = tmpdiskNode;
296 			termNode->antType[i] = rf_control;
297 			tmpdiskNode = tmpdiskNode->list_next;
298 		}
299 	}
300 }
301 /******************************************************************************
302  * Create a fault-free read DAG for RAID level 1
303  *
304  * Hdr -> Nil -> Rmir -> Cmt -> Trm
305  *
306  * The "Rmir" node schedules a read from the disk in the mirror pair with the
307  * shortest disk queue.  the proper queue is selected at Rmir execution.  this
308  * deferred mapping is unlike other archs in RAIDframe which generally fix
309  * mapping at DAG creation time.
310  *
311  * Parameters:  raidPtr   - description of the physical array
312  *              asmap     - logical & physical addresses for this access
313  *              bp        - buffer ptr (for holding read data)
314  *              flags     - general flags (e.g. disk locking)
315  *              allocList - list of memory allocated in DAG creation
316  *****************************************************************************/
317 
318 static void
319 CreateMirrorReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
320     RF_DagHeader_t *dag_h, void *bp,
321     RF_RaidAccessFlags_t flags, RF_AllocListElem_t *allocList,
322     int (*readfunc) (RF_DagNode_t * node))
323 {
324 	RF_DagNode_t *readNodes, *blockNode, *commitNode, *termNode;
325 	RF_DagNode_t *tmpNode, *tmpreadNode;
326 	RF_PhysDiskAddr_t *data_pda = asmap->physInfo;
327 	RF_PhysDiskAddr_t *parity_pda = asmap->parityInfo;
328 	int     i, n;
329 
330 	n = asmap->numStripeUnitsAccessed;
331 	dag_h->creator = "RaidOneReadDAG";
332 #if RF_DEBUG_DAG
333 	if (rf_dagDebug) {
334 		printf("[Creating RAID level 1 read DAG]\n");
335 	}
336 #endif
337 	/*
338          * This dag can not commit until the commit node is reached
339          * errors prior to the commit point imply the dag has failed.
340          */
341 	dag_h->numCommitNodes = 1;
342 	dag_h->numCommits = 0;
343 	dag_h->numSuccedents = 1;
344 
345 	/*
346          * Node count:
347          * n data reads
348          * 1 block node
349          * 1 commit node
350          * 1 terminator node
351          */
352 	RF_ASSERT(n > 0);
353 
354 	for (i = 0; i < n; i++) {
355 		tmpNode = rf_AllocDAGNode();
356 		tmpNode->list_next = dag_h->nodes;
357 		dag_h->nodes = tmpNode;
358 	}
359 	readNodes = dag_h->nodes;
360 
361 	blockNode = rf_AllocDAGNode();
362 	blockNode->list_next = dag_h->nodes;
363 	dag_h->nodes = blockNode;
364 
365 	commitNode = rf_AllocDAGNode();
366 	commitNode->list_next = dag_h->nodes;
367 	dag_h->nodes = commitNode;
368 
369 	termNode = rf_AllocDAGNode();
370 	termNode->list_next = dag_h->nodes;
371 	dag_h->nodes = termNode;
372 
373 	/* initialize nodes */
374 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
375 	    rf_NullNodeUndoFunc, NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
376 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
377 	    rf_NullNodeUndoFunc, NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
378 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
379 	    rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
380 
381 	tmpreadNode = readNodes;
382 	for (i = 0; i < n; i++) {
383 		RF_ASSERT(data_pda != NULL);
384 		RF_ASSERT(parity_pda != NULL);
385 		rf_InitNode(tmpreadNode, rf_wait, RF_FALSE, readfunc,
386 		    rf_DiskReadMirrorUndoFunc, rf_GenericWakeupFunc, 1, 1, 5, 0, dag_h,
387 		    "Rmir", allocList);
388 		tmpreadNode->params[0].p = data_pda;
389 		tmpreadNode->params[1].p = data_pda->bufPtr;
390 		/* parity stripe id is not necessary */
391 		tmpreadNode->params[2].p = 0;
392 		tmpreadNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0);
393 		tmpreadNode->params[4].p = parity_pda;
394 		data_pda = data_pda->next;
395 		parity_pda = parity_pda->next;
396 		tmpreadNode = tmpreadNode->list_next;
397 	}
398 
399 	/*
400          * Connect nodes
401          */
402 
403 	/* connect hdr to block node */
404 	RF_ASSERT(blockNode->numAntecedents == 0);
405 	dag_h->succedents[0] = blockNode;
406 
407 	/* connect block node to read nodes */
408 	RF_ASSERT(blockNode->numSuccedents == n);
409 	tmpreadNode = readNodes;
410 	for (i = 0; i < n; i++) {
411 		RF_ASSERT(tmpreadNode->numAntecedents == 1);
412 		blockNode->succedents[i] = tmpreadNode;
413 		tmpreadNode->antecedents[0] = blockNode;
414 		tmpreadNode->antType[0] = rf_control;
415 		tmpreadNode = tmpreadNode->list_next;
416 	}
417 
418 	/* connect read nodes to commit node */
419 	RF_ASSERT(commitNode->numAntecedents == n);
420 	tmpreadNode = readNodes;
421 	for (i = 0; i < n; i++) {
422 		RF_ASSERT(tmpreadNode->numSuccedents == 1);
423 		tmpreadNode->succedents[0] = commitNode;
424 		commitNode->antecedents[i] = tmpreadNode;
425 		commitNode->antType[i] = rf_control;
426 		tmpreadNode = tmpreadNode->list_next;
427 	}
428 
429 	/* connect commit node to term node */
430 	RF_ASSERT(commitNode->numSuccedents == 1);
431 	RF_ASSERT(termNode->numAntecedents == 1);
432 	RF_ASSERT(termNode->numSuccedents == 0);
433 	commitNode->succedents[0] = termNode;
434 	termNode->antecedents[0] = commitNode;
435 	termNode->antType[0] = rf_control;
436 }
437 
438 void
439 rf_CreateMirrorIdleReadDAG(
440     RF_Raid_t * raidPtr,
441     RF_AccessStripeMap_t * asmap,
442     RF_DagHeader_t * dag_h,
443     void *bp,
444     RF_RaidAccessFlags_t flags,
445     RF_AllocListElem_t * allocList)
446 {
447 	CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
448 	    rf_DiskReadMirrorIdleFunc);
449 }
450 
451 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0)
452 
453 void
454 rf_CreateMirrorPartitionReadDAG(RF_Raid_t *raidPtr,
455 				RF_AccessStripeMap_t *asmap,
456 				RF_DagHeader_t *dag_h, void *bp,
457 				RF_RaidAccessFlags_t flags,
458 				RF_AllocListElem_t *allocList)
459 {
460 	CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
461 	    rf_DiskReadMirrorPartitionFunc);
462 }
463 #endif
464