xref: /netbsd-src/sys/dev/raidframe/rf_dagffrd.c (revision 3b01aba77a7a698587faaae455bbfe740923c1f5)
1 /*	$NetBSD: rf_dagffrd.c,v 1.4 2000/01/07 03:40:58 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /*
30  * rf_dagffrd.c
31  *
32  * code for creating fault-free read DAGs
33  *
34  */
35 
36 #include "rf_types.h"
37 #include "rf_raid.h"
38 #include "rf_dag.h"
39 #include "rf_dagutils.h"
40 #include "rf_dagfuncs.h"
41 #include "rf_debugMem.h"
42 #include "rf_memchunk.h"
43 #include "rf_general.h"
44 #include "rf_dagffrd.h"
45 
46 /******************************************************************************
47  *
48  * General comments on DAG creation:
49  *
50  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
51  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
52  * is reached, the execution engine will halt forward execution and work
53  * backward through the graph, executing the undo functions.  Assuming that
54  * each node in the graph prior to the Cmt node are undoable and atomic - or -
55  * does not make changes to permanent state, the graph will fail atomically.
56  * If an error occurs after the Cmt node executes, the engine will roll-forward
57  * through the graph, blindly executing nodes until it reaches the end.
58  * If a graph reaches the end, it is assumed to have completed successfully.
59  *
60  * A graph has only 1 Cmt node.
61  *
62  */
63 
64 
65 /******************************************************************************
66  *
67  * The following wrappers map the standard DAG creation interface to the
68  * DAG creation routines.  Additionally, these wrappers enable experimentation
69  * with new DAG structures by providing an extra level of indirection, allowing
70  * the DAG creation routines to be replaced at this single point.
71  */
72 
73 void
74 rf_CreateFaultFreeReadDAG(
75     RF_Raid_t * raidPtr,
76     RF_AccessStripeMap_t * asmap,
77     RF_DagHeader_t * dag_h,
78     void *bp,
79     RF_RaidAccessFlags_t flags,
80     RF_AllocListElem_t * allocList)
81 {
82 	rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
83 	    RF_IO_TYPE_READ);
84 }
85 
86 
87 /******************************************************************************
88  *
89  * DAG creation code begins here
90  */
91 
92 /******************************************************************************
93  *
94  * creates a DAG to perform a nonredundant read or write of data within one
95  * stripe.
96  * For reads, this DAG is as follows:
97  *
98  *                   /---- read ----\
99  *    Header -- Block ---- read ---- Commit -- Terminate
100  *                   \---- read ----/
101  *
102  * For writes, this DAG is as follows:
103  *
104  *                    /---- write ----\
105  *    Header -- Commit ---- write ---- Block -- Terminate
106  *                    \---- write ----/
107  *
108  * There is one disk node per stripe unit accessed, and all disk nodes are in
109  * parallel.
110  *
111  * Tricky point here:  The first disk node (read or write) is created
112  * normally.  Subsequent disk nodes are created by copying the first one,
113  * and modifying a few params.  The "succedents" and "antecedents" fields are
114  * _not_ re-created in each node, but rather left pointing to the same array
115  * that was malloc'd when the first node was created.  Thus, it's essential
116  * that when this DAG is freed, the succedents and antecedents fields be freed
117  * in ONLY ONE of the read nodes.  This does not apply to the "params" field
118  * because it is recreated for each READ node.
119  *
120  * Note that normal-priority accesses do not need to be tagged with their
121  * parity stripe ID, because they will never be promoted.  Hence, I've
122  * commented-out the code to do this, and marked it with UNNEEDED.
123  *
124  *****************************************************************************/
125 
126 void
127 rf_CreateNonredundantDAG(
128     RF_Raid_t * raidPtr,
129     RF_AccessStripeMap_t * asmap,
130     RF_DagHeader_t * dag_h,
131     void *bp,
132     RF_RaidAccessFlags_t flags,
133     RF_AllocListElem_t * allocList,
134     RF_IoType_t type)
135 {
136 	RF_DagNode_t *nodes, *diskNodes, *blockNode, *commitNode, *termNode;
137 	RF_PhysDiskAddr_t *pda = asmap->physInfo;
138 	int     (*doFunc) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
139 	int     i, n, totalNumNodes;
140 	char   *name;
141 
142 	n = asmap->numStripeUnitsAccessed;
143 	dag_h->creator = "NonredundantDAG";
144 
145 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
146 	switch (type) {
147 	case RF_IO_TYPE_READ:
148 		doFunc = rf_DiskReadFunc;
149 		undoFunc = rf_DiskReadUndoFunc;
150 		name = "R  ";
151 		if (rf_dagDebug)
152 			printf("[Creating non-redundant read DAG]\n");
153 		break;
154 	case RF_IO_TYPE_WRITE:
155 		doFunc = rf_DiskWriteFunc;
156 		undoFunc = rf_DiskWriteUndoFunc;
157 		name = "W  ";
158 		if (rf_dagDebug)
159 			printf("[Creating non-redundant write DAG]\n");
160 		break;
161 	default:
162 		RF_PANIC();
163 	}
164 
165 	/*
166          * For reads, the dag can not commit until the block node is reached.
167          * for writes, the dag commits immediately.
168          */
169 	dag_h->numCommitNodes = 1;
170 	dag_h->numCommits = 0;
171 	dag_h->numSuccedents = 1;
172 
173 	/*
174          * Node count:
175          * 1 block node
176          * n data reads (or writes)
177          * 1 commit node
178          * 1 terminator node
179          */
180 	RF_ASSERT(n > 0);
181 	totalNumNodes = n + 3;
182 	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
183 	    (RF_DagNode_t *), allocList);
184 	i = 0;
185 	diskNodes = &nodes[i];
186 	i += n;
187 	blockNode = &nodes[i];
188 	i += 1;
189 	commitNode = &nodes[i];
190 	i += 1;
191 	termNode = &nodes[i];
192 	i += 1;
193 	RF_ASSERT(i == totalNumNodes);
194 
195 	/* initialize nodes */
196 	switch (type) {
197 	case RF_IO_TYPE_READ:
198 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
199 		    NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
200 		rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
201 		    NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
202 		rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
203 		    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
204 		break;
205 	case RF_IO_TYPE_WRITE:
206 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
207 		    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
208 		rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
209 		    NULL, n, 1, 0, 0, dag_h, "Cmt", allocList);
210 		rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
211 		    NULL, 0, n, 0, 0, dag_h, "Trm", allocList);
212 		break;
213 	default:
214 		RF_PANIC();
215 	}
216 
217 	for (i = 0; i < n; i++) {
218 		RF_ASSERT(pda != NULL);
219 		rf_InitNode(&diskNodes[i], rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc,
220 		    1, 1, 4, 0, dag_h, name, allocList);
221 		diskNodes[i].params[0].p = pda;
222 		diskNodes[i].params[1].p = pda->bufPtr;
223 		/* parity stripe id is not necessary */
224 		diskNodes[i].params[2].v = 0;
225 		diskNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
226 		pda = pda->next;
227 	}
228 
229 	/*
230          * Connect nodes.
231          */
232 
233 	/* connect hdr to block node */
234 	RF_ASSERT(blockNode->numAntecedents == 0);
235 	dag_h->succedents[0] = blockNode;
236 
237 	if (type == RF_IO_TYPE_READ) {
238 		/* connecting a nonredundant read DAG */
239 		RF_ASSERT(blockNode->numSuccedents == n);
240 		RF_ASSERT(commitNode->numAntecedents == n);
241 		for (i = 0; i < n; i++) {
242 			/* connect block node to each read node */
243 			RF_ASSERT(diskNodes[i].numAntecedents == 1);
244 			blockNode->succedents[i] = &diskNodes[i];
245 			diskNodes[i].antecedents[0] = blockNode;
246 			diskNodes[i].antType[0] = rf_control;
247 
248 			/* connect each read node to the commit node */
249 			RF_ASSERT(diskNodes[i].numSuccedents == 1);
250 			diskNodes[i].succedents[0] = commitNode;
251 			commitNode->antecedents[i] = &diskNodes[i];
252 			commitNode->antType[i] = rf_control;
253 		}
254 		/* connect the commit node to the term node */
255 		RF_ASSERT(commitNode->numSuccedents == 1);
256 		RF_ASSERT(termNode->numAntecedents == 1);
257 		RF_ASSERT(termNode->numSuccedents == 0);
258 		commitNode->succedents[0] = termNode;
259 		termNode->antecedents[0] = commitNode;
260 		termNode->antType[0] = rf_control;
261 	} else {
262 		/* connecting a nonredundant write DAG */
263 		/* connect the block node to the commit node */
264 		RF_ASSERT(blockNode->numSuccedents == 1);
265 		RF_ASSERT(commitNode->numAntecedents == 1);
266 		blockNode->succedents[0] = commitNode;
267 		commitNode->antecedents[0] = blockNode;
268 		commitNode->antType[0] = rf_control;
269 
270 		RF_ASSERT(commitNode->numSuccedents == n);
271 		RF_ASSERT(termNode->numAntecedents == n);
272 		RF_ASSERT(termNode->numSuccedents == 0);
273 		for (i = 0; i < n; i++) {
274 			/* connect the commit node to each write node */
275 			RF_ASSERT(diskNodes[i].numAntecedents == 1);
276 			commitNode->succedents[i] = &diskNodes[i];
277 			diskNodes[i].antecedents[0] = commitNode;
278 			diskNodes[i].antType[0] = rf_control;
279 
280 			/* connect each write node to the term node */
281 			RF_ASSERT(diskNodes[i].numSuccedents == 1);
282 			diskNodes[i].succedents[0] = termNode;
283 			termNode->antecedents[i] = &diskNodes[i];
284 			termNode->antType[i] = rf_control;
285 		}
286 	}
287 }
288 /******************************************************************************
289  * Create a fault-free read DAG for RAID level 1
290  *
291  * Hdr -> Nil -> Rmir -> Cmt -> Trm
292  *
293  * The "Rmir" node schedules a read from the disk in the mirror pair with the
294  * shortest disk queue.  the proper queue is selected at Rmir execution.  this
295  * deferred mapping is unlike other archs in RAIDframe which generally fix
296  * mapping at DAG creation time.
297  *
298  * Parameters:  raidPtr   - description of the physical array
299  *              asmap     - logical & physical addresses for this access
300  *              bp        - buffer ptr (for holding read data)
301  *              flags     - general flags (e.g. disk locking)
302  *              allocList - list of memory allocated in DAG creation
303  *****************************************************************************/
304 
305 static void
306 CreateMirrorReadDAG(
307     RF_Raid_t * raidPtr,
308     RF_AccessStripeMap_t * asmap,
309     RF_DagHeader_t * dag_h,
310     void *bp,
311     RF_RaidAccessFlags_t flags,
312     RF_AllocListElem_t * allocList,
313     int (*readfunc) (RF_DagNode_t * node))
314 {
315 	RF_DagNode_t *readNodes, *nodes, *blockNode, *commitNode, *termNode;
316 	RF_PhysDiskAddr_t *data_pda = asmap->physInfo;
317 	RF_PhysDiskAddr_t *parity_pda = asmap->parityInfo;
318 	int     i, n, totalNumNodes;
319 
320 	n = asmap->numStripeUnitsAccessed;
321 	dag_h->creator = "RaidOneReadDAG";
322 	if (rf_dagDebug) {
323 		printf("[Creating RAID level 1 read DAG]\n");
324 	}
325 	/*
326          * This dag can not commit until the commit node is reached
327          * errors prior to the commit point imply the dag has failed.
328          */
329 	dag_h->numCommitNodes = 1;
330 	dag_h->numCommits = 0;
331 	dag_h->numSuccedents = 1;
332 
333 	/*
334          * Node count:
335          * n data reads
336          * 1 block node
337          * 1 commit node
338          * 1 terminator node
339          */
340 	RF_ASSERT(n > 0);
341 	totalNumNodes = n + 3;
342 	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
343 	    (RF_DagNode_t *), allocList);
344 	i = 0;
345 	readNodes = &nodes[i];
346 	i += n;
347 	blockNode = &nodes[i];
348 	i += 1;
349 	commitNode = &nodes[i];
350 	i += 1;
351 	termNode = &nodes[i];
352 	i += 1;
353 	RF_ASSERT(i == totalNumNodes);
354 
355 	/* initialize nodes */
356 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
357 	    rf_NullNodeUndoFunc, NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
358 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
359 	    rf_NullNodeUndoFunc, NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
360 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
361 	    rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
362 
363 	for (i = 0; i < n; i++) {
364 		RF_ASSERT(data_pda != NULL);
365 		RF_ASSERT(parity_pda != NULL);
366 		rf_InitNode(&readNodes[i], rf_wait, RF_FALSE, readfunc,
367 		    rf_DiskReadMirrorUndoFunc, rf_GenericWakeupFunc, 1, 1, 5, 0, dag_h,
368 		    "Rmir", allocList);
369 		readNodes[i].params[0].p = data_pda;
370 		readNodes[i].params[1].p = data_pda->bufPtr;
371 		/* parity stripe id is not necessary */
372 		readNodes[i].params[2].p = 0;
373 		readNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
374 		readNodes[i].params[4].p = parity_pda;
375 		data_pda = data_pda->next;
376 		parity_pda = parity_pda->next;
377 	}
378 
379 	/*
380          * Connect nodes
381          */
382 
383 	/* connect hdr to block node */
384 	RF_ASSERT(blockNode->numAntecedents == 0);
385 	dag_h->succedents[0] = blockNode;
386 
387 	/* connect block node to read nodes */
388 	RF_ASSERT(blockNode->numSuccedents == n);
389 	for (i = 0; i < n; i++) {
390 		RF_ASSERT(readNodes[i].numAntecedents == 1);
391 		blockNode->succedents[i] = &readNodes[i];
392 		readNodes[i].antecedents[0] = blockNode;
393 		readNodes[i].antType[0] = rf_control;
394 	}
395 
396 	/* connect read nodes to commit node */
397 	RF_ASSERT(commitNode->numAntecedents == n);
398 	for (i = 0; i < n; i++) {
399 		RF_ASSERT(readNodes[i].numSuccedents == 1);
400 		readNodes[i].succedents[0] = commitNode;
401 		commitNode->antecedents[i] = &readNodes[i];
402 		commitNode->antType[i] = rf_control;
403 	}
404 
405 	/* connect commit node to term node */
406 	RF_ASSERT(commitNode->numSuccedents == 1);
407 	RF_ASSERT(termNode->numAntecedents == 1);
408 	RF_ASSERT(termNode->numSuccedents == 0);
409 	commitNode->succedents[0] = termNode;
410 	termNode->antecedents[0] = commitNode;
411 	termNode->antType[0] = rf_control;
412 }
413 
414 void
415 rf_CreateMirrorIdleReadDAG(
416     RF_Raid_t * raidPtr,
417     RF_AccessStripeMap_t * asmap,
418     RF_DagHeader_t * dag_h,
419     void *bp,
420     RF_RaidAccessFlags_t flags,
421     RF_AllocListElem_t * allocList)
422 {
423 	CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
424 	    rf_DiskReadMirrorIdleFunc);
425 }
426 
427 void
428 rf_CreateMirrorPartitionReadDAG(
429     RF_Raid_t * raidPtr,
430     RF_AccessStripeMap_t * asmap,
431     RF_DagHeader_t * dag_h,
432     void *bp,
433     RF_RaidAccessFlags_t flags,
434     RF_AllocListElem_t * allocList)
435 {
436 	CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
437 	    rf_DiskReadMirrorPartitionFunc);
438 }
439