xref: /netbsd-src/sys/dev/raidframe/rf_dagdegwr.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: rf_dagdegwr.c,v 1.33 2014/03/23 03:42:39 christos Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /*
30  * rf_dagdegwr.c
31  *
32  * code for creating degraded write DAGs
33  *
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: rf_dagdegwr.c,v 1.33 2014/03/23 03:42:39 christos Exp $");
38 
39 #include <dev/raidframe/raidframevar.h>
40 
41 #include "rf_raid.h"
42 #include "rf_dag.h"
43 #include "rf_dagutils.h"
44 #include "rf_dagfuncs.h"
45 #include "rf_debugMem.h"
46 #include "rf_general.h"
47 #include "rf_dagdegwr.h"
48 #include "rf_map.h"
49 
50 
51 /******************************************************************************
52  *
53  * General comments on DAG creation:
54  *
55  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
56  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
57  * is reached, the execution engine will halt forward execution and work
58  * backward through the graph, executing the undo functions.  Assuming that
59  * each node in the graph prior to the Cmt node are undoable and atomic - or -
60  * does not make changes to permanent state, the graph will fail atomically.
61  * If an error occurs after the Cmt node executes, the engine will roll-forward
62  * through the graph, blindly executing nodes until it reaches the end.
63  * If a graph reaches the end, it is assumed to have completed successfully.
64  *
65  * A graph has only 1 Cmt node.
66  *
67  */
68 
69 
70 /******************************************************************************
71  *
72  * The following wrappers map the standard DAG creation interface to the
73  * DAG creation routines.  Additionally, these wrappers enable experimentation
74  * with new DAG structures by providing an extra level of indirection, allowing
75  * the DAG creation routines to be replaced at this single point.
76  */
77 
78 static
79 RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
80 {
81 	rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
82 	    flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
83 }
84 
85 void
86 rf_CreateDegradedWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
87 			  RF_DagHeader_t *dag_h, void *bp,
88 			  RF_RaidAccessFlags_t flags,
89 			  RF_AllocListElem_t *allocList)
90 {
91 
92 	RF_ASSERT(asmap->numDataFailed == 1);
93 	dag_h->creator = "DegradedWriteDAG";
94 
95 	/*
96 	 * if the access writes only a portion of the failed unit, and also
97 	 * writes some portion of at least one surviving unit, we create two
98 	 * DAGs, one for the failed component and one for the non-failed
99 	 * component, and do them sequentially.  Note that the fact that we're
100 	 * accessing only a portion of the failed unit indicates that the
101 	 * access either starts or ends in the failed unit, and hence we need
102 	 * create only two dags.  This is inefficient in that the same data or
103 	 * parity can get read and written twice using this structure.  I need
104 	 * to fix this to do the access all at once.
105 	 */
106 	RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 &&
107 		    asmap->failedPDAs[0]->numSector !=
108 			raidPtr->Layout.sectorsPerStripeUnit));
109 	rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
110 	    allocList);
111 }
112 
113 
114 
115 /******************************************************************************
116  *
117  * DAG creation code begins here
118  */
119 
120 
121 
122 /******************************************************************************
123  *
124  * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
125  * write, which is as follows
126  *
127  *                                        / {Wnq} --\
128  * hdr -> blockNode ->  Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
129  *                  \  {Rod} /            \  Wnd ---/
130  *                                        \ {Wnd} -/
131  *
132  * commit nodes: Xor, Wnd
133  *
134  * IMPORTANT:
135  * This DAG generator does not work for double-degraded archs since it does not
136  * generate Q
137  *
138  * This dag is essentially identical to the large-write dag, except that the
139  * write to the failed data unit is suppressed.
140  *
141  * IMPORTANT:  this dag does not work in the case where the access writes only
142  * a portion of the failed unit, and also writes some portion of at least one
143  * surviving SU.  this case is handled in CreateDegradedWriteDAG above.
144  *
145  * The block & unblock nodes are leftovers from a previous version.  They
146  * do nothing, but I haven't deleted them because it would be a tremendous
147  * effort to put them back in.
148  *
149  * This dag is used whenever a one of the data units in a write has failed.
150  * If it is the parity unit that failed, the nonredundant write dag (below)
151  * is used.
152  *****************************************************************************/
153 
154 void
155 rf_CommonCreateSimpleDegradedWriteDAG(RF_Raid_t *raidPtr,
156 				      RF_AccessStripeMap_t *asmap,
157 				      RF_DagHeader_t *dag_h, void *bp,
158 				      RF_RaidAccessFlags_t flags,
159 				      RF_AllocListElem_t *allocList,
160 				      int nfaults,
161 				      int (*redFunc) (RF_DagNode_t *),
162 				      int allowBufferRecycle)
163 {
164 	int     nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum,
165 	        rdnodesFaked;
166 	RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *termNode;
167 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
168 	RF_DagNode_t *wnqNode;
169 #endif
170 	RF_DagNode_t *wndNodes, *rrdNodes, *xorNode, *commitNode;
171 	RF_DagNode_t *tmpNode, *tmpwndNode, *tmprrdNode;
172 	RF_SectorCount_t sectorsPerSU;
173 	RF_ReconUnitNum_t which_ru;
174 	char   *xorTargetBuf = NULL;	/* the target buffer for the XOR
175 					 * operation */
176 	char   overlappingPDAs[RF_MAXCOL];/* a temporary array of flags */
177 	RF_AccessStripeMapHeader_t *new_asm_h[2];
178 	RF_PhysDiskAddr_t *pda, *parityPDA;
179 	RF_StripeNum_t parityStripeID;
180 	RF_PhysDiskAddr_t *failedPDA;
181 	RF_RaidLayout_t *layoutPtr;
182 
183 	layoutPtr = &(raidPtr->Layout);
184 	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
185 	    &which_ru);
186 	sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
187 	/* failedPDA points to the pda within the asm that targets the failed
188 	 * disk */
189 	failedPDA = asmap->failedPDAs[0];
190 
191 #if RF_DEBUG_DAG
192 	if (rf_dagDebug)
193 		printf("[Creating degraded-write DAG]\n");
194 #endif
195 
196 	RF_ASSERT(asmap->numDataFailed == 1);
197 	dag_h->creator = "SimpleDegradedWriteDAG";
198 
199 	/*
200          * Generate two ASMs identifying the surviving data
201          * we need in order to recover the lost data.
202          */
203 	/* overlappingPDAs array must be zero'd */
204 	memset(overlappingPDAs, 0, RF_MAXCOL);
205 	rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
206 	    &nXorBufs, NULL, overlappingPDAs, allocList);
207 
208 	/* create all the nodes at once */
209 	nWndNodes = asmap->numStripeUnitsAccessed - 1;	/* no access is
210 							 * generated for the
211 							 * failed pda */
212 
213 	nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
214 	    ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
215 	/*
216          * XXX
217          *
218          * There's a bug with a complete stripe overwrite- that means 0 reads
219          * of old data, and the rest of the DAG generation code doesn't like
220          * that. A release is coming, and I don't wanna risk breaking a critical
221          * DAG generator, so here's what I'm gonna do- if there's no read nodes,
222          * I'm gonna fake there being a read node, and I'm gonna swap in a
223          * no-op node in its place (to make all the link-up code happy).
224          * This should be fixed at some point.  --jimz
225          */
226 	if (nRrdNodes == 0) {
227 		nRrdNodes = 1;
228 		rdnodesFaked = 1;
229 	} else {
230 		rdnodesFaked = 0;
231 	}
232 
233 	blockNode = rf_AllocDAGNode();
234 	blockNode->list_next = dag_h->nodes;
235 	dag_h->nodes = blockNode;
236 
237 	commitNode = rf_AllocDAGNode();
238 	commitNode->list_next = dag_h->nodes;
239 	dag_h->nodes = commitNode;
240 
241 	unblockNode = rf_AllocDAGNode();
242 	unblockNode->list_next = dag_h->nodes;
243 	dag_h->nodes = unblockNode;
244 
245 	termNode = rf_AllocDAGNode();
246 	termNode->list_next = dag_h->nodes;
247 	dag_h->nodes = termNode;
248 
249 	xorNode = rf_AllocDAGNode();
250 	xorNode->list_next = dag_h->nodes;
251 	dag_h->nodes = xorNode;
252 
253 	wnpNode = rf_AllocDAGNode();
254 	wnpNode->list_next = dag_h->nodes;
255 	dag_h->nodes = wnpNode;
256 
257 	for (i = 0; i < nWndNodes; i++) {
258 		tmpNode = rf_AllocDAGNode();
259 		tmpNode->list_next = dag_h->nodes;
260 		dag_h->nodes = tmpNode;
261 	}
262 	wndNodes = dag_h->nodes;
263 
264 	for (i = 0; i < nRrdNodes; i++) {
265 		tmpNode = rf_AllocDAGNode();
266 		tmpNode->list_next = dag_h->nodes;
267 		dag_h->nodes = tmpNode;
268 	}
269 	rrdNodes = dag_h->nodes;
270 
271 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
272 	if (nfaults == 2) {
273 		wnqNode = rf_AllocDAGNode();
274 		wnqNode->list_next = dag_h->nodes;
275 		dag_h->nodes = wnqNode;
276 	} else {
277 		wnqNode = NULL;
278 	}
279 #endif
280 
281 	/* this dag can not commit until all rrd and xor Nodes have completed */
282 	dag_h->numCommitNodes = 1;
283 	dag_h->numCommits = 0;
284 	dag_h->numSuccedents = 1;
285 
286 	RF_ASSERT(nRrdNodes > 0);
287 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
288 	    NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
289 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
290 	    NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
291 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
292 	    NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
293 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
294 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
295 	rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
296 	    nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList);
297 
298 	/*
299          * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
300          * the failed buffer, save a pointer to it so we can use it as the target
301          * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
302          * a buffer is the same size as the failed buffer, it must also be at the
303          * same alignment within the SU.
304          */
305 	i = 0;
306 	tmprrdNode = rrdNodes;
307 	if (new_asm_h[0]) {
308 		for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo;
309 		    i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
310 		    i++, pda = pda->next) {
311 			rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
312 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
313 			RF_ASSERT(pda);
314 			tmprrdNode->params[0].p = pda;
315 			tmprrdNode->params[1].p = pda->bufPtr;
316 			tmprrdNode->params[2].v = parityStripeID;
317 			tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
318 			tmprrdNode = tmprrdNode->list_next;
319 		}
320 	}
321 	/* i now equals the number of stripe units accessed in new_asm_h[0] */
322 	/* Note that for tmprrdNode, this means a continuation from above, so no need to
323 	   assign it anything.. */
324 	if (new_asm_h[1]) {
325 		for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
326 		    j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
327 		    j++, pda = pda->next) {
328 			rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
329 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
330 			RF_ASSERT(pda);
331 			tmprrdNode->params[0].p = pda;
332 			tmprrdNode->params[1].p = pda->bufPtr;
333 			tmprrdNode->params[2].v = parityStripeID;
334 			tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
335 			if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
336 				xorTargetBuf = pda->bufPtr;
337 			tmprrdNode = tmprrdNode->list_next;
338 		}
339 	}
340 	if (rdnodesFaked) {
341 		/*
342 	         * This is where we'll init that fake noop read node
343 	         * (XXX should the wakeup func be different?)
344 	         */
345 		/* node that rrdNodes will just be a single node... */
346 		rf_InitNode(rrdNodes, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
347 		    NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
348 	}
349 	/*
350          * Make a PDA for the parity unit.  The parity PDA should start at
351          * the same offset into the SU as the failed PDA.
352          */
353 	/* Danner comment: I don't think this copy is really necessary. We are
354 	 * in one of two cases here. (1) The entire failed unit is written.
355 	 * Then asmap->parityInfo will describe the entire parity. (2) We are
356 	 * only writing a subset of the failed unit and nothing else. Then the
357 	 * asmap->parityInfo describes the failed unit and the copy can also
358 	 * be avoided. */
359 
360 	parityPDA = rf_AllocPhysDiskAddr();
361 	parityPDA->next = dag_h->pda_cleanup_list;
362 	dag_h->pda_cleanup_list = parityPDA;
363 	parityPDA->col = asmap->parityInfo->col;
364 	parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
365 	    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
366 	parityPDA->numSector = failedPDA->numSector;
367 
368 	if (!xorTargetBuf) {
369 		xorTargetBuf = rf_AllocBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, failedPDA->numSector));
370 	}
371 	/* init the Wnp node */
372 	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
373 	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
374 	wnpNode->params[0].p = parityPDA;
375 	wnpNode->params[1].p = xorTargetBuf;
376 	wnpNode->params[2].v = parityStripeID;
377 	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
378 
379 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
380 	/* fill in the Wnq Node */
381 	if (nfaults == 2) {
382 		{
383 			RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t),
384 			    (RF_PhysDiskAddr_t *), allocList);
385 			parityPDA->col = asmap->qInfo->col;
386 			parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
387 			    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
388 			parityPDA->numSector = failedPDA->numSector;
389 
390 			rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
391 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
392 			wnqNode->params[0].p = parityPDA;
393 			RF_MallocAndAdd(xorNode->results[1],
394 			    rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
395 			wnqNode->params[1].p = xorNode->results[1];
396 			wnqNode->params[2].v = parityStripeID;
397 			wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
398 		}
399 	}
400 #endif
401 	/* fill in the Wnd nodes */
402 	tmpwndNode = wndNodes;
403 	for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) {
404 		if (pda == failedPDA) {
405 			i--;
406 			continue;
407 		}
408 		rf_InitNode(tmpwndNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
409 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
410 		RF_ASSERT(pda);
411 		tmpwndNode->params[0].p = pda;
412 		tmpwndNode->params[1].p = pda->bufPtr;
413 		tmpwndNode->params[2].v = parityStripeID;
414 		tmpwndNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
415 		tmpwndNode = tmpwndNode->list_next;
416 	}
417 
418 	/* fill in the results of the xor node */
419 	xorNode->results[0] = xorTargetBuf;
420 
421 	/* fill in the params of the xor node */
422 
423 	paramNum = 0;
424 	if (rdnodesFaked == 0) {
425 		tmprrdNode = rrdNodes;
426 		for (i = 0; i < nRrdNodes; i++) {
427 			/* all the Rrd nodes need to be xored together */
428 			xorNode->params[paramNum++] = tmprrdNode->params[0];
429 			xorNode->params[paramNum++] = tmprrdNode->params[1];
430 			tmprrdNode = tmprrdNode->list_next;
431 		}
432 	}
433 	tmpwndNode = wndNodes;
434 	for (i = 0; i < nWndNodes; i++) {
435 		/* any Wnd nodes that overlap the failed access need to be
436 		 * xored in */
437 		if (overlappingPDAs[i]) {
438 			pda = rf_AllocPhysDiskAddr();
439 			memcpy((char *) pda, (char *) tmpwndNode->params[0].p, sizeof(RF_PhysDiskAddr_t));
440 			/* add it into the pda_cleanup_list *after* the copy, TYVM */
441 			pda->next = dag_h->pda_cleanup_list;
442 			dag_h->pda_cleanup_list = pda;
443 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
444 			xorNode->params[paramNum++].p = pda;
445 			xorNode->params[paramNum++].p = pda->bufPtr;
446 		}
447 		tmpwndNode = tmpwndNode->list_next;
448 	}
449 
450 	/*
451          * Install the failed PDA into the xor param list so that the
452          * new data gets xor'd in.
453          */
454 	xorNode->params[paramNum++].p = failedPDA;
455 	xorNode->params[paramNum++].p = failedPDA->bufPtr;
456 
457 	/*
458          * The last 2 params to the recovery xor node are always the failed
459          * PDA and the raidPtr. install the failedPDA even though we have just
460          * done so above. This allows us to use the same XOR function for both
461          * degraded reads and degraded writes.
462          */
463 	xorNode->params[paramNum++].p = failedPDA;
464 	xorNode->params[paramNum++].p = raidPtr;
465 	RF_ASSERT(paramNum == 2 * nXorBufs + 2);
466 
467 	/*
468          * Code to link nodes begins here
469          */
470 
471 	/* link header to block node */
472 	RF_ASSERT(blockNode->numAntecedents == 0);
473 	dag_h->succedents[0] = blockNode;
474 
475 	/* link block node to rd nodes */
476 	RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
477 	tmprrdNode = rrdNodes;
478 	for (i = 0; i < nRrdNodes; i++) {
479 		RF_ASSERT(tmprrdNode->numAntecedents == 1);
480 		blockNode->succedents[i] = tmprrdNode;
481 		tmprrdNode->antecedents[0] = blockNode;
482 		tmprrdNode->antType[0] = rf_control;
483 		tmprrdNode = tmprrdNode->list_next;
484 	}
485 
486 	/* link read nodes to xor node */
487 	RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
488 	tmprrdNode = rrdNodes;
489 	for (i = 0; i < nRrdNodes; i++) {
490 		RF_ASSERT(tmprrdNode->numSuccedents == 1);
491 		tmprrdNode->succedents[0] = xorNode;
492 		xorNode->antecedents[i] = tmprrdNode;
493 		xorNode->antType[i] = rf_trueData;
494 		tmprrdNode = tmprrdNode->list_next;
495 	}
496 
497 	/* link xor node to commit node */
498 	RF_ASSERT(xorNode->numSuccedents == 1);
499 	RF_ASSERT(commitNode->numAntecedents == 1);
500 	xorNode->succedents[0] = commitNode;
501 	commitNode->antecedents[0] = xorNode;
502 	commitNode->antType[0] = rf_control;
503 
504 	/* link commit node to wnd nodes */
505 	RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
506 	tmpwndNode = wndNodes;
507 	for (i = 0; i < nWndNodes; i++) {
508 		RF_ASSERT(tmpwndNode->numAntecedents == 1);
509 		commitNode->succedents[i] = tmpwndNode;
510 		tmpwndNode->antecedents[0] = commitNode;
511 		tmpwndNode->antType[0] = rf_control;
512 		tmpwndNode = tmpwndNode->list_next;
513 	}
514 
515 	/* link the commit node to wnp, wnq nodes */
516 	RF_ASSERT(wnpNode->numAntecedents == 1);
517 	commitNode->succedents[nWndNodes] = wnpNode;
518 	wnpNode->antecedents[0] = commitNode;
519 	wnpNode->antType[0] = rf_control;
520 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
521 	if (nfaults == 2) {
522 		RF_ASSERT(wnqNode->numAntecedents == 1);
523 		commitNode->succedents[nWndNodes + 1] = wnqNode;
524 		wnqNode->antecedents[0] = commitNode;
525 		wnqNode->antType[0] = rf_control;
526 	}
527 #endif
528 	/* link write new data nodes to unblock node */
529 	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
530 	tmpwndNode = wndNodes;
531 	for (i = 0; i < nWndNodes; i++) {
532 		RF_ASSERT(tmpwndNode->numSuccedents == 1);
533 		tmpwndNode->succedents[0] = unblockNode;
534 		unblockNode->antecedents[i] = tmpwndNode;
535 		unblockNode->antType[i] = rf_control;
536 		tmpwndNode = tmpwndNode->list_next;
537 	}
538 
539 	/* link write new parity node to unblock node */
540 	RF_ASSERT(wnpNode->numSuccedents == 1);
541 	wnpNode->succedents[0] = unblockNode;
542 	unblockNode->antecedents[nWndNodes] = wnpNode;
543 	unblockNode->antType[nWndNodes] = rf_control;
544 
545 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
546 	/* link write new q node to unblock node */
547 	if (nfaults == 2) {
548 		RF_ASSERT(wnqNode->numSuccedents == 1);
549 		wnqNode->succedents[0] = unblockNode;
550 		unblockNode->antecedents[nWndNodes + 1] = wnqNode;
551 		unblockNode->antType[nWndNodes + 1] = rf_control;
552 	}
553 #endif
554 	/* link unblock node to term node */
555 	RF_ASSERT(unblockNode->numSuccedents == 1);
556 	RF_ASSERT(termNode->numAntecedents == 1);
557 	RF_ASSERT(termNode->numSuccedents == 0);
558 	unblockNode->succedents[0] = termNode;
559 	termNode->antecedents[0] = unblockNode;
560 	termNode->antType[0] = rf_control;
561 }
562 #define CONS_PDA(if,start,num) \
563   pda_p->col = asmap->if->col; \
564   pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
565   pda_p->numSector = num; \
566   pda_p->next = NULL; \
567   RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
568 #if (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0)
569 void
570 rf_WriteGenerateFailedAccessASMs(
571     RF_Raid_t * raidPtr,
572     RF_AccessStripeMap_t * asmap,
573     RF_PhysDiskAddr_t ** pdap,
574     int *nNodep,
575     RF_PhysDiskAddr_t ** pqpdap,
576     int *nPQNodep,
577     RF_AllocListElem_t * allocList)
578 {
579 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
580 	int     PDAPerDisk, i;
581 	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
582 	int     numDataCol = layoutPtr->numDataCol;
583 	int     state;
584 	unsigned napdas;
585 	RF_SectorNum_t fone_start, ftwo_start = 0;
586 	RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
587 	RF_PhysDiskAddr_t *pda_p;
588 	RF_RaidAddr_t sosAddr;
589 
590 	/* determine how many pda's we will have to generate per unaccess
591 	 * stripe. If there is only one failed data unit, it is one; if two,
592 	 * possibly two, depending whether they overlap. */
593 
594 	fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
595 
596 	if (asmap->numDataFailed == 1) {
597 		PDAPerDisk = 1;
598 		state = 1;
599 		RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
600 		pda_p = *pqpdap;
601 		/* build p */
602 		CONS_PDA(parityInfo, fone_start, fone->numSector);
603 		pda_p->type = RF_PDA_TYPE_PARITY;
604 		pda_p++;
605 		/* build q */
606 		CONS_PDA(qInfo, fone_start, fone->numSector);
607 		pda_p->type = RF_PDA_TYPE_Q;
608 	} else {
609 		ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
610 		if (fone->numSector + ftwo->numSector > secPerSU) {
611 			PDAPerDisk = 1;
612 			state = 2;
613 			RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
614 			pda_p = *pqpdap;
615 			CONS_PDA(parityInfo, 0, secPerSU);
616 			pda_p->type = RF_PDA_TYPE_PARITY;
617 			pda_p++;
618 			CONS_PDA(qInfo, 0, secPerSU);
619 			pda_p->type = RF_PDA_TYPE_Q;
620 		} else {
621 			PDAPerDisk = 2;
622 			state = 3;
623 			/* four of them, fone, then ftwo */
624 			RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
625 			pda_p = *pqpdap;
626 			CONS_PDA(parityInfo, fone_start, fone->numSector);
627 			pda_p->type = RF_PDA_TYPE_PARITY;
628 			pda_p++;
629 			CONS_PDA(qInfo, fone_start, fone->numSector);
630 			pda_p->type = RF_PDA_TYPE_Q;
631 			pda_p++;
632 			CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
633 			pda_p->type = RF_PDA_TYPE_PARITY;
634 			pda_p++;
635 			CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
636 			pda_p->type = RF_PDA_TYPE_Q;
637 		}
638 	}
639 	/* figure out number of nonaccessed pda */
640 	napdas = PDAPerDisk * (numDataCol - 2);
641 	*nPQNodep = PDAPerDisk;
642 
643 	*nNodep = napdas;
644 	if (napdas == 0)
645 		return;		/* short circuit */
646 
647 	/* allocate up our list of pda's */
648 
649 	RF_MallocAndAdd(pda_p, napdas * sizeof(RF_PhysDiskAddr_t),
650 			(RF_PhysDiskAddr_t *), allocList);
651 	*pdap = pda_p;
652 
653 	/* linkem together */
654 	for (i = 0; i < (napdas - 1); i++)
655 		pda_p[i].next = pda_p + (i + 1);
656 
657 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
658 	for (i = 0; i < numDataCol; i++) {
659 		if ((pda_p - (*pdap)) == napdas)
660 			continue;
661 		pda_p->type = RF_PDA_TYPE_DATA;
662 		pda_p->raidAddress = sosAddr + (i * secPerSU);
663 		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
664 		/* skip over dead disks */
665 		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
666 			continue;
667 		switch (state) {
668 		case 1:	/* fone */
669 			pda_p->numSector = fone->numSector;
670 			pda_p->raidAddress += fone_start;
671 			pda_p->startSector += fone_start;
672 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
673 			break;
674 		case 2:	/* full stripe */
675 			pda_p->numSector = secPerSU;
676 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
677 			break;
678 		case 3:	/* two slabs */
679 			pda_p->numSector = fone->numSector;
680 			pda_p->raidAddress += fone_start;
681 			pda_p->startSector += fone_start;
682 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
683 			pda_p++;
684 			pda_p->type = RF_PDA_TYPE_DATA;
685 			pda_p->raidAddress = sosAddr + (i * secPerSU);
686 			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
687 			pda_p->numSector = ftwo->numSector;
688 			pda_p->raidAddress += ftwo_start;
689 			pda_p->startSector += ftwo_start;
690 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
691 			break;
692 		default:
693 			RF_PANIC();
694 		}
695 		pda_p++;
696 	}
697 
698 	RF_ASSERT(pda_p - *pdap == napdas);
699 	return;
700 }
701 #define DISK_NODE_PDA(node)  ((node)->params[0].p)
702 
703 #define DISK_NODE_PARAMS(_node_,_p_) \
704   (_node_).params[0].p = _p_ ; \
705   (_node_).params[1].p = (_p_)->bufPtr; \
706   (_node_).params[2].v = parityStripeID; \
707   (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru)
708 
709 void
710 rf_DoubleDegSmallWrite(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
711 		       RF_DagHeader_t *dag_h, void *bp,
712 		       RF_RaidAccessFlags_t flags,
713 		       RF_AllocListElem_t *allocList,
714 		       const char *redundantReadNodeName,
715 		       const char *redundantWriteNodeName,
716 		       const char *recoveryNodeName,
717 		       int (*recovFunc) (RF_DagNode_t *))
718 {
719 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
720 	RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode,
721 	       *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode;
722 	RF_PhysDiskAddr_t *pda, *pqPDAs;
723 	RF_PhysDiskAddr_t *npdas;
724 	int     nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
725 	RF_ReconUnitNum_t which_ru;
726 	int     nPQNodes;
727 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
728 
729 	/* simple small write case - First part looks like a reconstruct-read
730 	 * of the failed data units. Then a write of all data units not
731 	 * failed. */
732 
733 
734 	/* Hdr | ------Block- /  /         \   Rrd  Rrd ...  Rrd  Rp Rq \  \
735 	 * /  -------PQ----- /   \   \ Wud   Wp  WQ	     \    |   /
736 	 * --Unblock- | T
737 	 *
738 	 * Rrd = read recovery data  (potentially none) Wud = write user data
739 	 * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q
740 	 * (could be two)
741 	 *
742 	 */
743 
744 	rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
745 
746 	RF_ASSERT(asmap->numDataFailed == 1);
747 
748 	nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
749 	nReadNodes = nRrdNodes + 2 * nPQNodes;
750 	nWriteNodes = nWudNodes + 2 * nPQNodes;
751 	nNodes = 4 + nReadNodes + nWriteNodes;
752 
753 	RF_MallocAndAdd(nodes, nNodes * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
754 	blockNode = nodes;
755 	unblockNode = blockNode + 1;
756 	termNode = unblockNode + 1;
757 	recoveryNode = termNode + 1;
758 	rrdNodes = recoveryNode + 1;
759 	rpNodes = rrdNodes + nRrdNodes;
760 	rqNodes = rpNodes + nPQNodes;
761 	wudNodes = rqNodes + nPQNodes;
762 	wpNodes = wudNodes + nWudNodes;
763 	wqNodes = wpNodes + nPQNodes;
764 
765 	dag_h->creator = "PQ_DDSimpleSmallWrite";
766 	dag_h->numSuccedents = 1;
767 	dag_h->succedents[0] = blockNode;
768 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
769 	termNode->antecedents[0] = unblockNode;
770 	termNode->antType[0] = rf_control;
771 
772 	/* init the block and unblock nodes */
773 	/* The block node has all the read nodes as successors */
774 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
775 	for (i = 0; i < nReadNodes; i++)
776 		blockNode->succedents[i] = rrdNodes + i;
777 
778 	/* The unblock node has all the writes as successors */
779 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
780 	for (i = 0; i < nWriteNodes; i++) {
781 		unblockNode->antecedents[i] = wudNodes + i;
782 		unblockNode->antType[i] = rf_control;
783 	}
784 	unblockNode->succedents[0] = termNode;
785 
786 #define INIT_READ_NODE(node,name) \
787   rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
788   (node)->succedents[0] = recoveryNode; \
789   (node)->antecedents[0] = blockNode; \
790   (node)->antType[0] = rf_control;
791 
792 	/* build the read nodes */
793 	pda = npdas;
794 	for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
795 		INIT_READ_NODE(rrdNodes + i, "rrd");
796 		DISK_NODE_PARAMS(rrdNodes[i], pda);
797 	}
798 
799 	/* read redundancy pdas */
800 	pda = pqPDAs;
801 	INIT_READ_NODE(rpNodes, "Rp");
802 	RF_ASSERT(pda);
803 	DISK_NODE_PARAMS(rpNodes[0], pda);
804 	pda++;
805 	INIT_READ_NODE(rqNodes, redundantReadNodeName);
806 	RF_ASSERT(pda);
807 	DISK_NODE_PARAMS(rqNodes[0], pda);
808 	if (nPQNodes == 2) {
809 		pda++;
810 		INIT_READ_NODE(rpNodes + 1, "Rp");
811 		RF_ASSERT(pda);
812 		DISK_NODE_PARAMS(rpNodes[1], pda);
813 		pda++;
814 		INIT_READ_NODE(rqNodes + 1, redundantReadNodeName);
815 		RF_ASSERT(pda);
816 		DISK_NODE_PARAMS(rqNodes[1], pda);
817 	}
818 	/* the recovery node has all reads as precedessors and all writes as
819 	 * successors. It generates a result for every write P or write Q
820 	 * node. As parameters, it takes a pda per read and a pda per stripe
821 	 * of user data written. It also takes as the last params the raidPtr
822 	 * and asm. For results, it takes PDA for P & Q. */
823 
824 
825 	rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
826 	    nWriteNodes,	/* succesors */
827 	    nReadNodes,		/* preds */
828 	    nReadNodes + nWudNodes + 3,	/* params */
829 	    2 * nPQNodes,	/* results */
830 	    dag_h, recoveryNodeName, allocList);
831 
832 
833 
834 	for (i = 0; i < nReadNodes; i++) {
835 		recoveryNode->antecedents[i] = rrdNodes + i;
836 		recoveryNode->antType[i] = rf_control;
837 		recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i);
838 	}
839 	for (i = 0; i < nWudNodes; i++) {
840 		recoveryNode->succedents[i] = wudNodes + i;
841 	}
842 	recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0];
843 	recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr;
844 	recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap;
845 
846 	for (; i < nWriteNodes; i++)
847 		recoveryNode->succedents[i] = wudNodes + i;
848 
849 	pda = pqPDAs;
850 	recoveryNode->results[0] = pda;
851 	pda++;
852 	recoveryNode->results[1] = pda;
853 	if (nPQNodes == 2) {
854 		pda++;
855 		recoveryNode->results[2] = pda;
856 		pda++;
857 		recoveryNode->results[3] = pda;
858 	}
859 	/* fill writes */
860 #define INIT_WRITE_NODE(node,name) \
861   rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
862     (node)->succedents[0] = unblockNode; \
863     (node)->antecedents[0] = recoveryNode; \
864     (node)->antType[0] = rf_control;
865 
866 	pda = asmap->physInfo;
867 	for (i = 0; i < nWudNodes; i++) {
868 		INIT_WRITE_NODE(wudNodes + i, "Wd");
869 		DISK_NODE_PARAMS(wudNodes[i], pda);
870 		recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i);
871 		pda = pda->next;
872 	}
873 	/* write redundancy pdas */
874 	pda = pqPDAs;
875 	INIT_WRITE_NODE(wpNodes, "Wp");
876 	RF_ASSERT(pda);
877 	DISK_NODE_PARAMS(wpNodes[0], pda);
878 	pda++;
879 	INIT_WRITE_NODE(wqNodes, "Wq");
880 	RF_ASSERT(pda);
881 	DISK_NODE_PARAMS(wqNodes[0], pda);
882 	if (nPQNodes == 2) {
883 		pda++;
884 		INIT_WRITE_NODE(wpNodes + 1, "Wp");
885 		RF_ASSERT(pda);
886 		DISK_NODE_PARAMS(wpNodes[1], pda);
887 		pda++;
888 		INIT_WRITE_NODE(wqNodes + 1, "Wq");
889 		RF_ASSERT(pda);
890 		DISK_NODE_PARAMS(wqNodes[1], pda);
891 	}
892 }
893 #endif   /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0) */
894