xref: /netbsd-src/sys/dev/raidframe/rf_dagdegwr.c (revision 481fca6e59249d8ffcf24fef7cfbe7b131bfb080)
1 /*	$NetBSD: rf_dagdegwr.c,v 1.5 2000/01/07 03:40:57 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /*
30  * rf_dagdegwr.c
31  *
32  * code for creating degraded write DAGs
33  *
34  */
35 
36 #include "rf_types.h"
37 #include "rf_raid.h"
38 #include "rf_dag.h"
39 #include "rf_dagutils.h"
40 #include "rf_dagfuncs.h"
41 #include "rf_debugMem.h"
42 #include "rf_memchunk.h"
43 #include "rf_general.h"
44 #include "rf_dagdegwr.h"
45 
46 
47 /******************************************************************************
48  *
49  * General comments on DAG creation:
50  *
51  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
52  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
53  * is reached, the execution engine will halt forward execution and work
54  * backward through the graph, executing the undo functions.  Assuming that
55  * each node in the graph prior to the Cmt node are undoable and atomic - or -
56  * does not make changes to permanent state, the graph will fail atomically.
57  * If an error occurs after the Cmt node executes, the engine will roll-forward
58  * through the graph, blindly executing nodes until it reaches the end.
59  * If a graph reaches the end, it is assumed to have completed successfully.
60  *
61  * A graph has only 1 Cmt node.
62  *
63  */
64 
65 
66 /******************************************************************************
67  *
68  * The following wrappers map the standard DAG creation interface to the
69  * DAG creation routines.  Additionally, these wrappers enable experimentation
70  * with new DAG structures by providing an extra level of indirection, allowing
71  * the DAG creation routines to be replaced at this single point.
72  */
73 
74 static
75 RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
76 {
77 	rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
78 	    flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
79 }
80 
81 void
82 rf_CreateDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList)
83 	RF_Raid_t *raidPtr;
84 	RF_AccessStripeMap_t *asmap;
85 	RF_DagHeader_t *dag_h;
86 	void   *bp;
87 	RF_RaidAccessFlags_t flags;
88 	RF_AllocListElem_t *allocList;
89 {
90 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
91 	RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
92 
93 	RF_ASSERT(asmap->numDataFailed == 1);
94 	dag_h->creator = "DegradedWriteDAG";
95 
96 	/* if the access writes only a portion of the failed unit, and also
97 	 * writes some portion of at least one surviving unit, we create two
98 	 * DAGs, one for the failed component and one for the non-failed
99 	 * component, and do them sequentially.  Note that the fact that we're
100 	 * accessing only a portion of the failed unit indicates that the
101 	 * access either starts or ends in the failed unit, and hence we need
102 	 * create only two dags.  This is inefficient in that the same data or
103 	 * parity can get read and written twice using this structure.  I need
104 	 * to fix this to do the access all at once. */
105 	RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit));
106 	rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList);
107 }
108 
109 
110 
111 /******************************************************************************
112  *
113  * DAG creation code begins here
114  */
115 
116 
117 
118 /******************************************************************************
119  *
120  * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
121  * write, which is as follows
122  *
123  *                                        / {Wnq} --\
124  * hdr -> blockNode ->  Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
125  *                  \  {Rod} /            \  Wnd ---/
126  *                                        \ {Wnd} -/
127  *
128  * commit nodes: Xor, Wnd
129  *
130  * IMPORTANT:
131  * This DAG generator does not work for double-degraded archs since it does not
132  * generate Q
133  *
134  * This dag is essentially identical to the large-write dag, except that the
135  * write to the failed data unit is suppressed.
136  *
137  * IMPORTANT:  this dag does not work in the case where the access writes only
138  * a portion of the failed unit, and also writes some portion of at least one
139  * surviving SU.  this case is handled in CreateDegradedWriteDAG above.
140  *
141  * The block & unblock nodes are leftovers from a previous version.  They
142  * do nothing, but I haven't deleted them because it would be a tremendous
143  * effort to put them back in.
144  *
145  * This dag is used whenever a one of the data units in a write has failed.
146  * If it is the parity unit that failed, the nonredundant write dag (below)
147  * is used.
148  *****************************************************************************/
149 
150 void
151 rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
152     allocList, nfaults, redFunc, allowBufferRecycle)
153 	RF_Raid_t *raidPtr;
154 	RF_AccessStripeMap_t *asmap;
155 	RF_DagHeader_t *dag_h;
156 	void   *bp;
157 	RF_RaidAccessFlags_t flags;
158 	RF_AllocListElem_t *allocList;
159 	int     nfaults;
160 	int     (*redFunc) (RF_DagNode_t *);
161 	int     allowBufferRecycle;
162 {
163 	int     nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum,
164 	        rdnodesFaked;
165 	RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode;
166 	RF_DagNode_t *nodes, *wndNodes, *rrdNodes, *xorNode, *commitNode;
167 	RF_SectorCount_t sectorsPerSU;
168 	RF_ReconUnitNum_t which_ru;
169 	char   *xorTargetBuf = NULL;	/* the target buffer for the XOR
170 					 * operation */
171 	char   *overlappingPDAs;/* a temporary array of flags */
172 	RF_AccessStripeMapHeader_t *new_asm_h[2];
173 	RF_PhysDiskAddr_t *pda, *parityPDA;
174 	RF_StripeNum_t parityStripeID;
175 	RF_PhysDiskAddr_t *failedPDA;
176 	RF_RaidLayout_t *layoutPtr;
177 
178 	layoutPtr = &(raidPtr->Layout);
179 	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
180 	    &which_ru);
181 	sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
182 	/* failedPDA points to the pda within the asm that targets the failed
183 	 * disk */
184 	failedPDA = asmap->failedPDAs[0];
185 
186 	if (rf_dagDebug)
187 		printf("[Creating degraded-write DAG]\n");
188 
189 	RF_ASSERT(asmap->numDataFailed == 1);
190 	dag_h->creator = "SimpleDegradedWriteDAG";
191 
192 	/*
193          * Generate two ASMs identifying the surviving data
194          * we need in order to recover the lost data.
195          */
196 	/* overlappingPDAs array must be zero'd */
197 	RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
198 	rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
199 	    &nXorBufs, NULL, overlappingPDAs, allocList);
200 
201 	/* create all the nodes at once */
202 	nWndNodes = asmap->numStripeUnitsAccessed - 1;	/* no access is
203 							 * generated for the
204 							 * failed pda */
205 
206 	nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
207 	    ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
208 	/*
209          * XXX
210          *
211          * There's a bug with a complete stripe overwrite- that means 0 reads
212          * of old data, and the rest of the DAG generation code doesn't like
213          * that. A release is coming, and I don't wanna risk breaking a critical
214          * DAG generator, so here's what I'm gonna do- if there's no read nodes,
215          * I'm gonna fake there being a read node, and I'm gonna swap in a
216          * no-op node in its place (to make all the link-up code happy).
217          * This should be fixed at some point.  --jimz
218          */
219 	if (nRrdNodes == 0) {
220 		nRrdNodes = 1;
221 		rdnodesFaked = 1;
222 	} else {
223 		rdnodesFaked = 0;
224 	}
225 	/* lock, unlock, xor, Wnd, Rrd, W(nfaults) */
226 	nNodes = 5 + nfaults + nWndNodes + nRrdNodes;
227 	RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t),
228 	    (RF_DagNode_t *), allocList);
229 	i = 0;
230 	blockNode = &nodes[i];
231 	i += 1;
232 	commitNode = &nodes[i];
233 	i += 1;
234 	unblockNode = &nodes[i];
235 	i += 1;
236 	termNode = &nodes[i];
237 	i += 1;
238 	xorNode = &nodes[i];
239 	i += 1;
240 	wnpNode = &nodes[i];
241 	i += 1;
242 	wndNodes = &nodes[i];
243 	i += nWndNodes;
244 	rrdNodes = &nodes[i];
245 	i += nRrdNodes;
246 	if (nfaults == 2) {
247 		wnqNode = &nodes[i];
248 		i += 1;
249 	} else {
250 		wnqNode = NULL;
251 	}
252 	RF_ASSERT(i == nNodes);
253 
254 	/* this dag can not commit until all rrd and xor Nodes have completed */
255 	dag_h->numCommitNodes = 1;
256 	dag_h->numCommits = 0;
257 	dag_h->numSuccedents = 1;
258 
259 	RF_ASSERT(nRrdNodes > 0);
260 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
261 	    NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
262 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
263 	    NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
264 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
265 	    NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
266 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
267 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
268 	rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
269 	    nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList);
270 
271 	/*
272          * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
273          * the failed buffer, save a pointer to it so we can use it as the target
274          * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
275          * a buffer is the same size as the failed buffer, it must also be at the
276          * same alignment within the SU.
277          */
278 	i = 0;
279 	if (new_asm_h[0]) {
280 		for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo;
281 		    i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
282 		    i++, pda = pda->next) {
283 			rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
284 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
285 			RF_ASSERT(pda);
286 			rrdNodes[i].params[0].p = pda;
287 			rrdNodes[i].params[1].p = pda->bufPtr;
288 			rrdNodes[i].params[2].v = parityStripeID;
289 			rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
290 		}
291 	}
292 	/* i now equals the number of stripe units accessed in new_asm_h[0] */
293 	if (new_asm_h[1]) {
294 		for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
295 		    j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
296 		    j++, pda = pda->next) {
297 			rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
298 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
299 			RF_ASSERT(pda);
300 			rrdNodes[i + j].params[0].p = pda;
301 			rrdNodes[i + j].params[1].p = pda->bufPtr;
302 			rrdNodes[i + j].params[2].v = parityStripeID;
303 			rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
304 			if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
305 				xorTargetBuf = pda->bufPtr;
306 		}
307 	}
308 	if (rdnodesFaked) {
309 		/*
310 	         * This is where we'll init that fake noop read node
311 	         * (XXX should the wakeup func be different?)
312 	         */
313 		rf_InitNode(&rrdNodes[0], rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
314 		    NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
315 	}
316 	/*
317          * Make a PDA for the parity unit.  The parity PDA should start at
318          * the same offset into the SU as the failed PDA.
319          */
320 	/* Danner comment: I don't think this copy is really necessary. We are
321 	 * in one of two cases here. (1) The entire failed unit is written.
322 	 * Then asmap->parityInfo will describe the entire parity. (2) We are
323 	 * only writing a subset of the failed unit and nothing else. Then the
324 	 * asmap->parityInfo describes the failed unit and the copy can also
325 	 * be avoided. */
326 
327 	RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
328 	parityPDA->row = asmap->parityInfo->row;
329 	parityPDA->col = asmap->parityInfo->col;
330 	parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
331 	    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
332 	parityPDA->numSector = failedPDA->numSector;
333 
334 	if (!xorTargetBuf) {
335 		RF_CallocAndAdd(xorTargetBuf, 1,
336 		    rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
337 	}
338 	/* init the Wnp node */
339 	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
340 	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
341 	wnpNode->params[0].p = parityPDA;
342 	wnpNode->params[1].p = xorTargetBuf;
343 	wnpNode->params[2].v = parityStripeID;
344 	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
345 
346 	/* fill in the Wnq Node */
347 	if (nfaults == 2) {
348 		{
349 			RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t),
350 			    (RF_PhysDiskAddr_t *), allocList);
351 			parityPDA->row = asmap->qInfo->row;
352 			parityPDA->col = asmap->qInfo->col;
353 			parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
354 			    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
355 			parityPDA->numSector = failedPDA->numSector;
356 
357 			rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
358 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
359 			wnqNode->params[0].p = parityPDA;
360 			RF_CallocAndAdd(xorNode->results[1], 1,
361 			    rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
362 			wnqNode->params[1].p = xorNode->results[1];
363 			wnqNode->params[2].v = parityStripeID;
364 			wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
365 		}
366 	}
367 	/* fill in the Wnd nodes */
368 	for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) {
369 		if (pda == failedPDA) {
370 			i--;
371 			continue;
372 		}
373 		rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
374 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
375 		RF_ASSERT(pda);
376 		wndNodes[i].params[0].p = pda;
377 		wndNodes[i].params[1].p = pda->bufPtr;
378 		wndNodes[i].params[2].v = parityStripeID;
379 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
380 	}
381 
382 	/* fill in the results of the xor node */
383 	xorNode->results[0] = xorTargetBuf;
384 
385 	/* fill in the params of the xor node */
386 
387 	paramNum = 0;
388 	if (rdnodesFaked == 0) {
389 		for (i = 0; i < nRrdNodes; i++) {
390 			/* all the Rrd nodes need to be xored together */
391 			xorNode->params[paramNum++] = rrdNodes[i].params[0];
392 			xorNode->params[paramNum++] = rrdNodes[i].params[1];
393 		}
394 	}
395 	for (i = 0; i < nWndNodes; i++) {
396 		/* any Wnd nodes that overlap the failed access need to be
397 		 * xored in */
398 		if (overlappingPDAs[i]) {
399 			RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
400 			bcopy((char *) wndNodes[i].params[0].p, (char *) pda, sizeof(RF_PhysDiskAddr_t));
401 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
402 			xorNode->params[paramNum++].p = pda;
403 			xorNode->params[paramNum++].p = pda->bufPtr;
404 		}
405 	}
406 	RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
407 
408 	/*
409          * Install the failed PDA into the xor param list so that the
410          * new data gets xor'd in.
411          */
412 	xorNode->params[paramNum++].p = failedPDA;
413 	xorNode->params[paramNum++].p = failedPDA->bufPtr;
414 
415 	/*
416          * The last 2 params to the recovery xor node are always the failed
417          * PDA and the raidPtr. install the failedPDA even though we have just
418          * done so above. This allows us to use the same XOR function for both
419          * degraded reads and degraded writes.
420          */
421 	xorNode->params[paramNum++].p = failedPDA;
422 	xorNode->params[paramNum++].p = raidPtr;
423 	RF_ASSERT(paramNum == 2 * nXorBufs + 2);
424 
425 	/*
426          * Code to link nodes begins here
427          */
428 
429 	/* link header to block node */
430 	RF_ASSERT(blockNode->numAntecedents == 0);
431 	dag_h->succedents[0] = blockNode;
432 
433 	/* link block node to rd nodes */
434 	RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
435 	for (i = 0; i < nRrdNodes; i++) {
436 		RF_ASSERT(rrdNodes[i].numAntecedents == 1);
437 		blockNode->succedents[i] = &rrdNodes[i];
438 		rrdNodes[i].antecedents[0] = blockNode;
439 		rrdNodes[i].antType[0] = rf_control;
440 	}
441 
442 	/* link read nodes to xor node */
443 	RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
444 	for (i = 0; i < nRrdNodes; i++) {
445 		RF_ASSERT(rrdNodes[i].numSuccedents == 1);
446 		rrdNodes[i].succedents[0] = xorNode;
447 		xorNode->antecedents[i] = &rrdNodes[i];
448 		xorNode->antType[i] = rf_trueData;
449 	}
450 
451 	/* link xor node to commit node */
452 	RF_ASSERT(xorNode->numSuccedents == 1);
453 	RF_ASSERT(commitNode->numAntecedents == 1);
454 	xorNode->succedents[0] = commitNode;
455 	commitNode->antecedents[0] = xorNode;
456 	commitNode->antType[0] = rf_control;
457 
458 	/* link commit node to wnd nodes */
459 	RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
460 	for (i = 0; i < nWndNodes; i++) {
461 		RF_ASSERT(wndNodes[i].numAntecedents == 1);
462 		commitNode->succedents[i] = &wndNodes[i];
463 		wndNodes[i].antecedents[0] = commitNode;
464 		wndNodes[i].antType[0] = rf_control;
465 	}
466 
467 	/* link the commit node to wnp, wnq nodes */
468 	RF_ASSERT(wnpNode->numAntecedents == 1);
469 	commitNode->succedents[nWndNodes] = wnpNode;
470 	wnpNode->antecedents[0] = commitNode;
471 	wnpNode->antType[0] = rf_control;
472 	if (nfaults == 2) {
473 		RF_ASSERT(wnqNode->numAntecedents == 1);
474 		commitNode->succedents[nWndNodes + 1] = wnqNode;
475 		wnqNode->antecedents[0] = commitNode;
476 		wnqNode->antType[0] = rf_control;
477 	}
478 	/* link write new data nodes to unblock node */
479 	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
480 	for (i = 0; i < nWndNodes; i++) {
481 		RF_ASSERT(wndNodes[i].numSuccedents == 1);
482 		wndNodes[i].succedents[0] = unblockNode;
483 		unblockNode->antecedents[i] = &wndNodes[i];
484 		unblockNode->antType[i] = rf_control;
485 	}
486 
487 	/* link write new parity node to unblock node */
488 	RF_ASSERT(wnpNode->numSuccedents == 1);
489 	wnpNode->succedents[0] = unblockNode;
490 	unblockNode->antecedents[nWndNodes] = wnpNode;
491 	unblockNode->antType[nWndNodes] = rf_control;
492 
493 	/* link write new q node to unblock node */
494 	if (nfaults == 2) {
495 		RF_ASSERT(wnqNode->numSuccedents == 1);
496 		wnqNode->succedents[0] = unblockNode;
497 		unblockNode->antecedents[nWndNodes + 1] = wnqNode;
498 		unblockNode->antType[nWndNodes + 1] = rf_control;
499 	}
500 	/* link unblock node to term node */
501 	RF_ASSERT(unblockNode->numSuccedents == 1);
502 	RF_ASSERT(termNode->numAntecedents == 1);
503 	RF_ASSERT(termNode->numSuccedents == 0);
504 	unblockNode->succedents[0] = termNode;
505 	termNode->antecedents[0] = unblockNode;
506 	termNode->antType[0] = rf_control;
507 }
508 #define CONS_PDA(if,start,num) \
509   pda_p->row = asmap->if->row;    pda_p->col = asmap->if->col; \
510   pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
511   pda_p->numSector = num; \
512   pda_p->next = NULL; \
513   RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
514 
515 void
516 rf_WriteGenerateFailedAccessASMs(
517     RF_Raid_t * raidPtr,
518     RF_AccessStripeMap_t * asmap,
519     RF_PhysDiskAddr_t ** pdap,
520     int *nNodep,
521     RF_PhysDiskAddr_t ** pqpdap,
522     int *nPQNodep,
523     RF_AllocListElem_t * allocList)
524 {
525 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
526 	int     PDAPerDisk, i;
527 	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
528 	int     numDataCol = layoutPtr->numDataCol;
529 	int     state;
530 	unsigned napdas;
531 	RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end;
532 	RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
533 	RF_PhysDiskAddr_t *pda_p;
534 	RF_RaidAddr_t sosAddr;
535 
536 	/* determine how many pda's we will have to generate per unaccess
537 	 * stripe. If there is only one failed data unit, it is one; if two,
538 	 * possibly two, depending wether they overlap. */
539 
540 	fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
541 	fone_end = fone_start + fone->numSector;
542 
543 	if (asmap->numDataFailed == 1) {
544 		PDAPerDisk = 1;
545 		state = 1;
546 		RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
547 		pda_p = *pqpdap;
548 		/* build p */
549 		CONS_PDA(parityInfo, fone_start, fone->numSector);
550 		pda_p->type = RF_PDA_TYPE_PARITY;
551 		pda_p++;
552 		/* build q */
553 		CONS_PDA(qInfo, fone_start, fone->numSector);
554 		pda_p->type = RF_PDA_TYPE_Q;
555 	} else {
556 		ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
557 		ftwo_end = ftwo_start + ftwo->numSector;
558 		if (fone->numSector + ftwo->numSector > secPerSU) {
559 			PDAPerDisk = 1;
560 			state = 2;
561 			RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
562 			pda_p = *pqpdap;
563 			CONS_PDA(parityInfo, 0, secPerSU);
564 			pda_p->type = RF_PDA_TYPE_PARITY;
565 			pda_p++;
566 			CONS_PDA(qInfo, 0, secPerSU);
567 			pda_p->type = RF_PDA_TYPE_Q;
568 		} else {
569 			PDAPerDisk = 2;
570 			state = 3;
571 			/* four of them, fone, then ftwo */
572 			RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
573 			pda_p = *pqpdap;
574 			CONS_PDA(parityInfo, fone_start, fone->numSector);
575 			pda_p->type = RF_PDA_TYPE_PARITY;
576 			pda_p++;
577 			CONS_PDA(qInfo, fone_start, fone->numSector);
578 			pda_p->type = RF_PDA_TYPE_Q;
579 			pda_p++;
580 			CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
581 			pda_p->type = RF_PDA_TYPE_PARITY;
582 			pda_p++;
583 			CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
584 			pda_p->type = RF_PDA_TYPE_Q;
585 		}
586 	}
587 	/* figure out number of nonaccessed pda */
588 	napdas = PDAPerDisk * (numDataCol - 2);
589 	*nPQNodep = PDAPerDisk;
590 
591 	*nNodep = napdas;
592 	if (napdas == 0)
593 		return;		/* short circuit */
594 
595 	/* allocate up our list of pda's */
596 
597 	RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
598 	*pdap = pda_p;
599 
600 	/* linkem together */
601 	for (i = 0; i < (napdas - 1); i++)
602 		pda_p[i].next = pda_p + (i + 1);
603 
604 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
605 	for (i = 0; i < numDataCol; i++) {
606 		if ((pda_p - (*pdap)) == napdas)
607 			continue;
608 		pda_p->type = RF_PDA_TYPE_DATA;
609 		pda_p->raidAddress = sosAddr + (i * secPerSU);
610 		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
611 		/* skip over dead disks */
612 		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
613 			continue;
614 		switch (state) {
615 		case 1:	/* fone */
616 			pda_p->numSector = fone->numSector;
617 			pda_p->raidAddress += fone_start;
618 			pda_p->startSector += fone_start;
619 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
620 			break;
621 		case 2:	/* full stripe */
622 			pda_p->numSector = secPerSU;
623 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
624 			break;
625 		case 3:	/* two slabs */
626 			pda_p->numSector = fone->numSector;
627 			pda_p->raidAddress += fone_start;
628 			pda_p->startSector += fone_start;
629 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
630 			pda_p++;
631 			pda_p->type = RF_PDA_TYPE_DATA;
632 			pda_p->raidAddress = sosAddr + (i * secPerSU);
633 			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
634 			pda_p->numSector = ftwo->numSector;
635 			pda_p->raidAddress += ftwo_start;
636 			pda_p->startSector += ftwo_start;
637 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
638 			break;
639 		default:
640 			RF_PANIC();
641 		}
642 		pda_p++;
643 	}
644 
645 	RF_ASSERT(pda_p - *pdap == napdas);
646 	return;
647 }
648 #define DISK_NODE_PDA(node)  ((node)->params[0].p)
649 
650 #define DISK_NODE_PARAMS(_node_,_p_) \
651   (_node_).params[0].p = _p_ ; \
652   (_node_).params[1].p = (_p_)->bufPtr; \
653   (_node_).params[2].v = parityStripeID; \
654   (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
655 
656 void
657 rf_DoubleDegSmallWrite(
658     RF_Raid_t * raidPtr,
659     RF_AccessStripeMap_t * asmap,
660     RF_DagHeader_t * dag_h,
661     void *bp,
662     RF_RaidAccessFlags_t flags,
663     RF_AllocListElem_t * allocList,
664     char *redundantReadNodeName,
665     char *redundantWriteNodeName,
666     char *recoveryNodeName,
667     int (*recovFunc) (RF_DagNode_t *))
668 {
669 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
670 	RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode,
671 	       *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode;
672 	RF_PhysDiskAddr_t *pda, *pqPDAs;
673 	RF_PhysDiskAddr_t *npdas;
674 	int     nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
675 	RF_ReconUnitNum_t which_ru;
676 	int     nPQNodes;
677 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
678 
679 	/* simple small write case - First part looks like a reconstruct-read
680 	 * of the failed data units. Then a write of all data units not
681 	 * failed. */
682 
683 
684 	/* Hdr | ------Block- /  /         \   Rrd  Rrd ...  Rrd  Rp Rq \  \
685 	 * /  -------PQ----- /   \   \ Wud   Wp  WQ	     \    |   /
686 	 * --Unblock- | T
687 	 *
688 	 * Rrd = read recovery data  (potentially none) Wud = write user data
689 	 * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q
690 	 * (could be two)
691 	 *
692 	 */
693 
694 	rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
695 
696 	RF_ASSERT(asmap->numDataFailed == 1);
697 
698 	nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
699 	nReadNodes = nRrdNodes + 2 * nPQNodes;
700 	nWriteNodes = nWudNodes + 2 * nPQNodes;
701 	nNodes = 4 + nReadNodes + nWriteNodes;
702 
703 	RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
704 	blockNode = nodes;
705 	unblockNode = blockNode + 1;
706 	termNode = unblockNode + 1;
707 	recoveryNode = termNode + 1;
708 	rrdNodes = recoveryNode + 1;
709 	rpNodes = rrdNodes + nRrdNodes;
710 	rqNodes = rpNodes + nPQNodes;
711 	wudNodes = rqNodes + nPQNodes;
712 	wpNodes = wudNodes + nWudNodes;
713 	wqNodes = wpNodes + nPQNodes;
714 
715 	dag_h->creator = "PQ_DDSimpleSmallWrite";
716 	dag_h->numSuccedents = 1;
717 	dag_h->succedents[0] = blockNode;
718 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
719 	termNode->antecedents[0] = unblockNode;
720 	termNode->antType[0] = rf_control;
721 
722 	/* init the block and unblock nodes */
723 	/* The block node has all the read nodes as successors */
724 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
725 	for (i = 0; i < nReadNodes; i++)
726 		blockNode->succedents[i] = rrdNodes + i;
727 
728 	/* The unblock node has all the writes as successors */
729 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
730 	for (i = 0; i < nWriteNodes; i++) {
731 		unblockNode->antecedents[i] = wudNodes + i;
732 		unblockNode->antType[i] = rf_control;
733 	}
734 	unblockNode->succedents[0] = termNode;
735 
736 #define INIT_READ_NODE(node,name) \
737   rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
738   (node)->succedents[0] = recoveryNode; \
739   (node)->antecedents[0] = blockNode; \
740   (node)->antType[0] = rf_control;
741 
742 	/* build the read nodes */
743 	pda = npdas;
744 	for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
745 		INIT_READ_NODE(rrdNodes + i, "rrd");
746 		DISK_NODE_PARAMS(rrdNodes[i], pda);
747 	}
748 
749 	/* read redundancy pdas */
750 	pda = pqPDAs;
751 	INIT_READ_NODE(rpNodes, "Rp");
752 	RF_ASSERT(pda);
753 	DISK_NODE_PARAMS(rpNodes[0], pda);
754 	pda++;
755 	INIT_READ_NODE(rqNodes, redundantReadNodeName);
756 	RF_ASSERT(pda);
757 	DISK_NODE_PARAMS(rqNodes[0], pda);
758 	if (nPQNodes == 2) {
759 		pda++;
760 		INIT_READ_NODE(rpNodes + 1, "Rp");
761 		RF_ASSERT(pda);
762 		DISK_NODE_PARAMS(rpNodes[1], pda);
763 		pda++;
764 		INIT_READ_NODE(rqNodes + 1, redundantReadNodeName);
765 		RF_ASSERT(pda);
766 		DISK_NODE_PARAMS(rqNodes[1], pda);
767 	}
768 	/* the recovery node has all reads as precedessors and all writes as
769 	 * successors. It generates a result for every write P or write Q
770 	 * node. As parameters, it takes a pda per read and a pda per stripe
771 	 * of user data written. It also takes as the last params the raidPtr
772 	 * and asm. For results, it takes PDA for P & Q. */
773 
774 
775 	rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
776 	    nWriteNodes,	/* succesors */
777 	    nReadNodes,		/* preds */
778 	    nReadNodes + nWudNodes + 3,	/* params */
779 	    2 * nPQNodes,	/* results */
780 	    dag_h, recoveryNodeName, allocList);
781 
782 
783 
784 	for (i = 0; i < nReadNodes; i++) {
785 		recoveryNode->antecedents[i] = rrdNodes + i;
786 		recoveryNode->antType[i] = rf_control;
787 		recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i);
788 	}
789 	for (i = 0; i < nWudNodes; i++) {
790 		recoveryNode->succedents[i] = wudNodes + i;
791 	}
792 	recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0];
793 	recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr;
794 	recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap;
795 
796 	for (; i < nWriteNodes; i++)
797 		recoveryNode->succedents[i] = wudNodes + i;
798 
799 	pda = pqPDAs;
800 	recoveryNode->results[0] = pda;
801 	pda++;
802 	recoveryNode->results[1] = pda;
803 	if (nPQNodes == 2) {
804 		pda++;
805 		recoveryNode->results[2] = pda;
806 		pda++;
807 		recoveryNode->results[3] = pda;
808 	}
809 	/* fill writes */
810 #define INIT_WRITE_NODE(node,name) \
811   rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
812     (node)->succedents[0] = unblockNode; \
813     (node)->antecedents[0] = recoveryNode; \
814     (node)->antType[0] = rf_control;
815 
816 	pda = asmap->physInfo;
817 	for (i = 0; i < nWudNodes; i++) {
818 		INIT_WRITE_NODE(wudNodes + i, "Wd");
819 		DISK_NODE_PARAMS(wudNodes[i], pda);
820 		recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i);
821 		pda = pda->next;
822 	}
823 	/* write redundancy pdas */
824 	pda = pqPDAs;
825 	INIT_WRITE_NODE(wpNodes, "Wp");
826 	RF_ASSERT(pda);
827 	DISK_NODE_PARAMS(wpNodes[0], pda);
828 	pda++;
829 	INIT_WRITE_NODE(wqNodes, "Wq");
830 	RF_ASSERT(pda);
831 	DISK_NODE_PARAMS(wqNodes[0], pda);
832 	if (nPQNodes == 2) {
833 		pda++;
834 		INIT_WRITE_NODE(wpNodes + 1, "Wp");
835 		RF_ASSERT(pda);
836 		DISK_NODE_PARAMS(wpNodes[1], pda);
837 		pda++;
838 		INIT_WRITE_NODE(wqNodes + 1, "Wq");
839 		RF_ASSERT(pda);
840 		DISK_NODE_PARAMS(wqNodes[1], pda);
841 	}
842 }
843