xref: /netbsd-src/sys/dev/raidframe/rf_dagdegrd.c (revision e5548b402ae4c44fb816de42c7bba9581ce23ef5)
1 /*	$NetBSD: rf_dagdegrd.c,v 1.24 2005/12/11 12:23:37 christos Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /*
30  * rf_dagdegrd.c
31  *
32  * code for creating degraded read DAGs
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagdegrd.c,v 1.24 2005/12/11 12:23:37 christos Exp $");
37 
38 #include <dev/raidframe/raidframevar.h>
39 
40 #include "rf_archs.h"
41 #include "rf_raid.h"
42 #include "rf_dag.h"
43 #include "rf_dagutils.h"
44 #include "rf_dagfuncs.h"
45 #include "rf_debugMem.h"
46 #include "rf_general.h"
47 #include "rf_dagdegrd.h"
48 #include "rf_map.h"
49 
50 
51 /******************************************************************************
52  *
53  * General comments on DAG creation:
54  *
55  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
56  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
57  * is reached, the execution engine will halt forward execution and work
58  * backward through the graph, executing the undo functions.  Assuming that
59  * each node in the graph prior to the Cmt node are undoable and atomic - or -
60  * does not make changes to permanent state, the graph will fail atomically.
61  * If an error occurs after the Cmt node executes, the engine will roll-forward
62  * through the graph, blindly executing nodes until it reaches the end.
63  * If a graph reaches the end, it is assumed to have completed successfully.
64  *
65  * A graph has only 1 Cmt node.
66  *
67  */
68 
69 
70 /******************************************************************************
71  *
72  * The following wrappers map the standard DAG creation interface to the
73  * DAG creation routines.  Additionally, these wrappers enable experimentation
74  * with new DAG structures by providing an extra level of indirection, allowing
75  * the DAG creation routines to be replaced at this single point.
76  */
77 
78 void
79 rf_CreateRaidFiveDegradedReadDAG(RF_Raid_t *raidPtr,
80 				 RF_AccessStripeMap_t *asmap,
81 				 RF_DagHeader_t *dag_h,
82 				 void *bp,
83 				 RF_RaidAccessFlags_t flags,
84 				 RF_AllocListElem_t *allocList)
85 {
86 	rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
87 	    &rf_xorRecoveryFuncs);
88 }
89 
90 
91 /******************************************************************************
92  *
93  * DAG creation code begins here
94  */
95 
96 
97 /******************************************************************************
98  * Create a degraded read DAG for RAID level 1
99  *
100  * Hdr -> Nil -> R(p/s)d -> Commit -> Trm
101  *
102  * The "Rd" node reads data from the surviving disk in the mirror pair
103  *   Rpd - read of primary copy
104  *   Rsd - read of secondary copy
105  *
106  * Parameters:  raidPtr   - description of the physical array
107  *              asmap     - logical & physical addresses for this access
108  *              bp        - buffer ptr (for holding write data)
109  *              flags     - general flags (e.g. disk locking)
110  *              allocList - list of memory allocated in DAG creation
111  *****************************************************************************/
112 
113 void
114 rf_CreateRaidOneDegradedReadDAG(RF_Raid_t *raidPtr,
115 				RF_AccessStripeMap_t *asmap,
116 				RF_DagHeader_t *dag_h,
117 				void *bp,
118 				RF_RaidAccessFlags_t flags,
119 				RF_AllocListElem_t *allocList)
120 {
121 	RF_DagNode_t *rdNode, *blockNode, *commitNode, *termNode;
122 	RF_StripeNum_t parityStripeID;
123 	RF_ReconUnitNum_t which_ru;
124 	RF_PhysDiskAddr_t *pda;
125 	int     useMirror;
126 
127 	useMirror = 0;
128 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
129 	    asmap->raidAddress, &which_ru);
130 #if RF_DEBUG_DAG
131 	if (rf_dagDebug) {
132 		printf("[Creating RAID level 1 degraded read DAG]\n");
133 	}
134 #endif
135 	dag_h->creator = "RaidOneDegradedReadDAG";
136 	/* alloc the Wnd nodes and the Wmir node */
137 	if (asmap->numDataFailed == 0)
138 		useMirror = RF_FALSE;
139 	else
140 		useMirror = RF_TRUE;
141 
142 	/* total number of nodes = 1 + (block + commit + terminator) */
143 
144 	rdNode = rf_AllocDAGNode();
145 	rdNode->list_next = dag_h->nodes;
146 	dag_h->nodes = rdNode;
147 
148 	blockNode = rf_AllocDAGNode();
149 	blockNode->list_next = dag_h->nodes;
150 	dag_h->nodes = blockNode;
151 
152 	commitNode = rf_AllocDAGNode();
153 	commitNode->list_next = dag_h->nodes;
154 	dag_h->nodes = commitNode;
155 
156 	termNode = rf_AllocDAGNode();
157 	termNode->list_next = dag_h->nodes;
158 	dag_h->nodes = termNode;
159 
160 	/* this dag can not commit until the commit node is reached.   errors
161 	 * prior to the commit point imply the dag has failed and must be
162 	 * retried */
163 	dag_h->numCommitNodes = 1;
164 	dag_h->numCommits = 0;
165 	dag_h->numSuccedents = 1;
166 
167 	/* initialize the block, commit, and terminator nodes */
168 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
169 	    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
170 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
171 	    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
172 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
173 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
174 
175 	pda = asmap->physInfo;
176 	RF_ASSERT(pda != NULL);
177 	/* parityInfo must describe entire parity unit */
178 	RF_ASSERT(asmap->parityInfo->next == NULL);
179 
180 	/* initialize the data node */
181 	if (!useMirror) {
182 		/* read primary copy of data */
183 		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
184 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
185 		rdNode->params[0].p = pda;
186 		rdNode->params[1].p = pda->bufPtr;
187 		rdNode->params[2].v = parityStripeID;
188 		rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
189 						       which_ru);
190 	} else {
191 		/* read secondary copy of data */
192 		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
193 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
194 		rdNode->params[0].p = asmap->parityInfo;
195 		rdNode->params[1].p = pda->bufPtr;
196 		rdNode->params[2].v = parityStripeID;
197 		rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
198 						       which_ru);
199 	}
200 
201 	/* connect header to block node */
202 	RF_ASSERT(dag_h->numSuccedents == 1);
203 	RF_ASSERT(blockNode->numAntecedents == 0);
204 	dag_h->succedents[0] = blockNode;
205 
206 	/* connect block node to rdnode */
207 	RF_ASSERT(blockNode->numSuccedents == 1);
208 	RF_ASSERT(rdNode->numAntecedents == 1);
209 	blockNode->succedents[0] = rdNode;
210 	rdNode->antecedents[0] = blockNode;
211 	rdNode->antType[0] = rf_control;
212 
213 	/* connect rdnode to commit node */
214 	RF_ASSERT(rdNode->numSuccedents == 1);
215 	RF_ASSERT(commitNode->numAntecedents == 1);
216 	rdNode->succedents[0] = commitNode;
217 	commitNode->antecedents[0] = rdNode;
218 	commitNode->antType[0] = rf_control;
219 
220 	/* connect commit node to terminator */
221 	RF_ASSERT(commitNode->numSuccedents == 1);
222 	RF_ASSERT(termNode->numAntecedents == 1);
223 	RF_ASSERT(termNode->numSuccedents == 0);
224 	commitNode->succedents[0] = termNode;
225 	termNode->antecedents[0] = commitNode;
226 	termNode->antType[0] = rf_control;
227 }
228 
229 
230 
231 /******************************************************************************
232  *
233  * creates a DAG to perform a degraded-mode read of data within one stripe.
234  * This DAG is as follows:
235  *
236  * Hdr -> Block -> Rud -> Xor -> Cmt -> T
237  *              -> Rrd ->
238  *              -> Rp -->
239  *
240  * Each R node is a successor of the L node
241  * One successor arc from each R node goes to C, and the other to X
242  * There is one Rud for each chunk of surviving user data requested by the
243  * user, and one Rrd for each chunk of surviving user data _not_ being read by
244  * the user
245  * R = read, ud = user data, rd = recovery (surviving) data, p = parity
246  * X = XOR, C = Commit, T = terminate
247  *
248  * The block node guarantees a single source node.
249  *
250  * Note:  The target buffer for the XOR node is set to the actual user buffer
251  * where the failed data is supposed to end up.  This buffer is zero'd by the
252  * code here.  Thus, if you create a degraded read dag, use it, and then
253  * re-use, you have to be sure to zero the target buffer prior to the re-use.
254  *
255  * The recfunc argument at the end specifies the name and function used for
256  * the redundancy
257  * recovery function.
258  *
259  *****************************************************************************/
260 
261 void
262 rf_CreateDegradedReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
263 			 RF_DagHeader_t *dag_h, void *bp,
264 			 RF_RaidAccessFlags_t flags,
265 			 RF_AllocListElem_t *allocList,
266 			 const RF_RedFuncs_t *recFunc)
267 {
268 	RF_DagNode_t *rudNodes, *rrdNodes, *xorNode, *blockNode;
269 	RF_DagNode_t *commitNode, *rpNode, *termNode;
270 	RF_DagNode_t *tmpNode, *tmprudNode, *tmprrdNode;
271 	int     nNodes, nRrdNodes, nRudNodes, nXorBufs, i;
272 	int     j, paramNum;
273 	RF_SectorCount_t sectorsPerSU;
274 	RF_ReconUnitNum_t which_ru;
275 	char    overlappingPDAs[RF_MAXCOL];/* a temporary array of flags */
276 	RF_AccessStripeMapHeader_t *new_asm_h[2];
277 	RF_PhysDiskAddr_t *pda, *parityPDA;
278 	RF_StripeNum_t parityStripeID;
279 	RF_PhysDiskAddr_t *failedPDA;
280 	RF_RaidLayout_t *layoutPtr;
281 	char   *rpBuf;
282 
283 	layoutPtr = &(raidPtr->Layout);
284 	/* failedPDA points to the pda within the asm that targets the failed
285 	 * disk */
286 	failedPDA = asmap->failedPDAs[0];
287 	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr,
288 	    asmap->raidAddress, &which_ru);
289 	sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
290 
291 #if RF_DEBUG_DAG
292 	if (rf_dagDebug) {
293 		printf("[Creating degraded read DAG]\n");
294 	}
295 #endif
296 	RF_ASSERT(asmap->numDataFailed == 1);
297 	dag_h->creator = "DegradedReadDAG";
298 
299 	/*
300          * generate two ASMs identifying the surviving data we need
301          * in order to recover the lost data
302          */
303 
304 	/* overlappingPDAs array must be zero'd */
305 	memset(overlappingPDAs, 0, RF_MAXCOL);
306 	rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, &nXorBufs,
307 	    &rpBuf, overlappingPDAs, allocList);
308 
309 	/*
310          * create all the nodes at once
311          *
312          * -1 because no access is generated for the failed pda
313          */
314 	nRudNodes = asmap->numStripeUnitsAccessed - 1;
315 	nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
316 	    ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
317 	nNodes = 5 + nRudNodes + nRrdNodes;	/* lock, unlock, xor, Rp, Rud,
318 						 * Rrd */
319 
320 	blockNode = rf_AllocDAGNode();
321 	blockNode->list_next = dag_h->nodes;
322 	dag_h->nodes = blockNode;
323 
324 	commitNode = rf_AllocDAGNode();
325 	commitNode->list_next = dag_h->nodes;
326 	dag_h->nodes = commitNode;
327 
328 	xorNode = rf_AllocDAGNode();
329 	xorNode->list_next = dag_h->nodes;
330 	dag_h->nodes = xorNode;
331 
332 	rpNode = rf_AllocDAGNode();
333 	rpNode->list_next = dag_h->nodes;
334 	dag_h->nodes = rpNode;
335 
336 	termNode = rf_AllocDAGNode();
337 	termNode->list_next = dag_h->nodes;
338 	dag_h->nodes = termNode;
339 
340 	for (i = 0; i < nRudNodes; i++) {
341 		tmpNode = rf_AllocDAGNode();
342 		tmpNode->list_next = dag_h->nodes;
343 		dag_h->nodes = tmpNode;
344 	}
345 	rudNodes = dag_h->nodes;
346 
347 	for (i = 0; i < nRrdNodes; i++) {
348 		tmpNode = rf_AllocDAGNode();
349 		tmpNode->list_next = dag_h->nodes;
350 		dag_h->nodes = tmpNode;
351 	}
352 	rrdNodes = dag_h->nodes;
353 
354 	/* initialize nodes */
355 	dag_h->numCommitNodes = 1;
356 	dag_h->numCommits = 0;
357 	/* this dag can not commit until the commit node is reached errors
358 	 * prior to the commit point imply the dag has failed */
359 	dag_h->numSuccedents = 1;
360 
361 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
362 	    NULL, nRudNodes + nRrdNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
363 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
364 	    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
365 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
366 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
367 	rf_InitNode(xorNode, rf_wait, RF_FALSE, recFunc->simple, rf_NullNodeUndoFunc,
368 	    NULL, 1, nRudNodes + nRrdNodes + 1, 2 * nXorBufs + 2, 1, dag_h,
369 	    recFunc->SimpleName, allocList);
370 
371 	/* fill in the Rud nodes */
372 	tmprudNode = rudNodes;
373 	for (pda = asmap->physInfo, i = 0; i < nRudNodes; i++, pda = pda->next) {
374 		if (pda == failedPDA) {
375 			i--;
376 			continue;
377 		}
378 		rf_InitNode(tmprudNode, rf_wait, RF_FALSE, rf_DiskReadFunc,
379 		    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
380 		    "Rud", allocList);
381 		RF_ASSERT(pda);
382 		tmprudNode->params[0].p = pda;
383 		tmprudNode->params[1].p = pda->bufPtr;
384 		tmprudNode->params[2].v = parityStripeID;
385 		tmprudNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
386 		tmprudNode = tmprudNode->list_next;
387 	}
388 
389 	/* fill in the Rrd nodes */
390 	i = 0;
391 	tmprrdNode = rrdNodes;
392 	if (new_asm_h[0]) {
393 		for (pda = new_asm_h[0]->stripeMap->physInfo;
394 		    i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
395 		    i++, pda = pda->next) {
396 			rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc,
397 			    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
398 			    dag_h, "Rrd", allocList);
399 			RF_ASSERT(pda);
400 			tmprrdNode->params[0].p = pda;
401 			tmprrdNode->params[1].p = pda->bufPtr;
402 			tmprrdNode->params[2].v = parityStripeID;
403 			tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
404 			tmprrdNode = tmprrdNode->list_next;
405 		}
406 	}
407 	if (new_asm_h[1]) {
408 		/* tmprrdNode = rrdNodes; */ /* don't set this here -- old code was using i+j, which means
409 		   we need to just continue using tmprrdNode for the next 'j' elements. */
410 		for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
411 		    j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
412 		    j++, pda = pda->next) {
413 			rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc,
414 			    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
415 			    dag_h, "Rrd", allocList);
416 			RF_ASSERT(pda);
417 			tmprrdNode->params[0].p = pda;
418 			tmprrdNode->params[1].p = pda->bufPtr;
419 			tmprrdNode->params[2].v = parityStripeID;
420 			tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
421 			tmprrdNode = tmprrdNode->list_next;
422 		}
423 	}
424 	/* make a PDA for the parity unit */
425 	parityPDA = rf_AllocPhysDiskAddr();
426 	parityPDA->next = dag_h->pda_cleanup_list;
427 	dag_h->pda_cleanup_list = parityPDA;
428 	parityPDA->col = asmap->parityInfo->col;
429 	parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
430 	    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
431 	parityPDA->numSector = failedPDA->numSector;
432 
433 	/* initialize the Rp node */
434 	rf_InitNode(rpNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
435 	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rp ", allocList);
436 	rpNode->params[0].p = parityPDA;
437 	rpNode->params[1].p = rpBuf;
438 	rpNode->params[2].v = parityStripeID;
439 	rpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
440 
441 	/*
442          * the last and nastiest step is to assign all
443          * the parameters of the Xor node
444          */
445 	paramNum = 0;
446 	tmprrdNode = rrdNodes;
447 	for (i = 0; i < nRrdNodes; i++) {
448 		/* all the Rrd nodes need to be xored together */
449 		xorNode->params[paramNum++] = tmprrdNode->params[0];
450 		xorNode->params[paramNum++] = tmprrdNode->params[1];
451 		tmprrdNode = tmprrdNode->list_next;
452 	}
453 	tmprudNode = rudNodes;
454 	for (i = 0; i < nRudNodes; i++) {
455 		/* any Rud nodes that overlap the failed access need to be
456 		 * xored in */
457 		if (overlappingPDAs[i]) {
458 			pda = rf_AllocPhysDiskAddr();
459 			memcpy((char *) pda, (char *) tmprudNode->params[0].p, sizeof(RF_PhysDiskAddr_t));
460 			/* add it into the pda_cleanup_list *after* the copy, TYVM */
461 			pda->next = dag_h->pda_cleanup_list;
462 			dag_h->pda_cleanup_list = pda;
463 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
464 			xorNode->params[paramNum++].p = pda;
465 			xorNode->params[paramNum++].p = pda->bufPtr;
466 		}
467 		tmprudNode = tmprudNode->list_next;
468 	}
469 
470 	/* install parity pda as last set of params to be xor'd */
471 	xorNode->params[paramNum++].p = parityPDA;
472 	xorNode->params[paramNum++].p = rpBuf;
473 
474 	/*
475          * the last 2 params to the recovery xor node are
476          * the failed PDA and the raidPtr
477          */
478 	xorNode->params[paramNum++].p = failedPDA;
479 	xorNode->params[paramNum++].p = raidPtr;
480 	RF_ASSERT(paramNum == 2 * nXorBufs + 2);
481 
482 	/*
483          * The xor node uses results[0] as the target buffer.
484          * Set pointer and zero the buffer. In the kernel, this
485          * may be a user buffer in which case we have to remap it.
486          */
487 	xorNode->results[0] = failedPDA->bufPtr;
488 	memset(failedPDA->bufPtr, 0, rf_RaidAddressToByte(raidPtr,
489 		failedPDA->numSector));
490 
491 	/* connect nodes to form graph */
492 	/* connect the header to the block node */
493 	RF_ASSERT(dag_h->numSuccedents == 1);
494 	RF_ASSERT(blockNode->numAntecedents == 0);
495 	dag_h->succedents[0] = blockNode;
496 
497 	/* connect the block node to the read nodes */
498 	RF_ASSERT(blockNode->numSuccedents == (1 + nRrdNodes + nRudNodes));
499 	RF_ASSERT(rpNode->numAntecedents == 1);
500 	blockNode->succedents[0] = rpNode;
501 	rpNode->antecedents[0] = blockNode;
502 	rpNode->antType[0] = rf_control;
503 	tmprrdNode = rrdNodes;
504 	for (i = 0; i < nRrdNodes; i++) {
505 		RF_ASSERT(tmprrdNode->numSuccedents == 1);
506 		blockNode->succedents[1 + i] = tmprrdNode;
507 		tmprrdNode->antecedents[0] = blockNode;
508 		tmprrdNode->antType[0] = rf_control;
509 		tmprrdNode = tmprrdNode->list_next;
510 	}
511 	tmprudNode = rudNodes;
512 	for (i = 0; i < nRudNodes; i++) {
513 		RF_ASSERT(tmprudNode->numSuccedents == 1);
514 		blockNode->succedents[1 + nRrdNodes + i] = tmprudNode;
515 		tmprudNode->antecedents[0] = blockNode;
516 		tmprudNode->antType[0] = rf_control;
517 		tmprudNode = tmprudNode->list_next;
518 	}
519 
520 	/* connect the read nodes to the xor node */
521 	RF_ASSERT(xorNode->numAntecedents == (1 + nRrdNodes + nRudNodes));
522 	RF_ASSERT(rpNode->numSuccedents == 1);
523 	rpNode->succedents[0] = xorNode;
524 	xorNode->antecedents[0] = rpNode;
525 	xorNode->antType[0] = rf_trueData;
526 	tmprrdNode = rrdNodes;
527 	for (i = 0; i < nRrdNodes; i++) {
528 		RF_ASSERT(tmprrdNode->numSuccedents == 1);
529 		tmprrdNode->succedents[0] = xorNode;
530 		xorNode->antecedents[1 + i] = tmprrdNode;
531 		xorNode->antType[1 + i] = rf_trueData;
532 		tmprrdNode = tmprrdNode->list_next;
533 	}
534 	tmprudNode = rudNodes;
535 	for (i = 0; i < nRudNodes; i++) {
536 		RF_ASSERT(tmprudNode->numSuccedents == 1);
537 		tmprudNode->succedents[0] = xorNode;
538 		xorNode->antecedents[1 + nRrdNodes + i] = tmprudNode;
539 		xorNode->antType[1 + nRrdNodes + i] = rf_trueData;
540 		tmprudNode = tmprudNode->list_next;
541 	}
542 
543 	/* connect the xor node to the commit node */
544 	RF_ASSERT(xorNode->numSuccedents == 1);
545 	RF_ASSERT(commitNode->numAntecedents == 1);
546 	xorNode->succedents[0] = commitNode;
547 	commitNode->antecedents[0] = xorNode;
548 	commitNode->antType[0] = rf_control;
549 
550 	/* connect the termNode to the commit node */
551 	RF_ASSERT(commitNode->numSuccedents == 1);
552 	RF_ASSERT(termNode->numAntecedents == 1);
553 	RF_ASSERT(termNode->numSuccedents == 0);
554 	commitNode->succedents[0] = termNode;
555 	termNode->antType[0] = rf_control;
556 	termNode->antecedents[0] = commitNode;
557 }
558 
559 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
560 /******************************************************************************
561  * Create a degraded read DAG for Chained Declustering
562  *
563  * Hdr -> Nil -> R(p/s)d -> Cmt -> Trm
564  *
565  * The "Rd" node reads data from the surviving disk in the mirror pair
566  *   Rpd - read of primary copy
567  *   Rsd - read of secondary copy
568  *
569  * Parameters:  raidPtr   - description of the physical array
570  *              asmap     - logical & physical addresses for this access
571  *              bp        - buffer ptr (for holding write data)
572  *              flags     - general flags (e.g. disk locking)
573  *              allocList - list of memory allocated in DAG creation
574  *****************************************************************************/
575 
576 void
577 rf_CreateRaidCDegradedReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
578 			      RF_DagHeader_t *dag_h, void *bp,
579 			      RF_RaidAccessFlags_t flags,
580 			      RF_AllocListElem_t *allocList)
581 {
582 	RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
583 	RF_StripeNum_t parityStripeID;
584 	int     useMirror, i, shiftable;
585 	RF_ReconUnitNum_t which_ru;
586 	RF_PhysDiskAddr_t *pda;
587 
588 	if ((asmap->numDataFailed + asmap->numParityFailed) == 0) {
589 		shiftable = RF_TRUE;
590 	} else {
591 		shiftable = RF_FALSE;
592 	}
593 	useMirror = 0;
594 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
595 	    asmap->raidAddress, &which_ru);
596 
597 #if RF_DEBUG_DAG
598 	if (rf_dagDebug) {
599 		printf("[Creating RAID C degraded read DAG]\n");
600 	}
601 #endif
602 	dag_h->creator = "RaidCDegradedReadDAG";
603 	/* alloc the Wnd nodes and the Wmir node */
604 	if (asmap->numDataFailed == 0)
605 		useMirror = RF_FALSE;
606 	else
607 		useMirror = RF_TRUE;
608 
609 	/* total number of nodes = 1 + (block + commit + terminator) */
610 	RF_MallocAndAdd(nodes, 4 * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
611 	i = 0;
612 	rdNode = &nodes[i];
613 	i++;
614 	blockNode = &nodes[i];
615 	i++;
616 	commitNode = &nodes[i];
617 	i++;
618 	termNode = &nodes[i];
619 	i++;
620 
621 	/*
622          * This dag can not commit until the commit node is reached.
623          * Errors prior to the commit point imply the dag has failed
624          * and must be retried.
625          */
626 	dag_h->numCommitNodes = 1;
627 	dag_h->numCommits = 0;
628 	dag_h->numSuccedents = 1;
629 
630 	/* initialize the block, commit, and terminator nodes */
631 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
632 	    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
633 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
634 	    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
635 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
636 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
637 
638 	pda = asmap->physInfo;
639 	RF_ASSERT(pda != NULL);
640 	/* parityInfo must describe entire parity unit */
641 	RF_ASSERT(asmap->parityInfo->next == NULL);
642 
643 	/* initialize the data node */
644 	if (!useMirror) {
645 		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
646 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
647 		if (shiftable && rf_compute_workload_shift(raidPtr, pda)) {
648 			/* shift this read to the next disk in line */
649 			rdNode->params[0].p = asmap->parityInfo;
650 			rdNode->params[1].p = pda->bufPtr;
651 			rdNode->params[2].v = parityStripeID;
652 			rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
653 		} else {
654 			/* read primary copy */
655 			rdNode->params[0].p = pda;
656 			rdNode->params[1].p = pda->bufPtr;
657 			rdNode->params[2].v = parityStripeID;
658 			rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
659 		}
660 	} else {
661 		/* read secondary copy of data */
662 		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
663 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
664 		rdNode->params[0].p = asmap->parityInfo;
665 		rdNode->params[1].p = pda->bufPtr;
666 		rdNode->params[2].v = parityStripeID;
667 		rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
668 	}
669 
670 	/* connect header to block node */
671 	RF_ASSERT(dag_h->numSuccedents == 1);
672 	RF_ASSERT(blockNode->numAntecedents == 0);
673 	dag_h->succedents[0] = blockNode;
674 
675 	/* connect block node to rdnode */
676 	RF_ASSERT(blockNode->numSuccedents == 1);
677 	RF_ASSERT(rdNode->numAntecedents == 1);
678 	blockNode->succedents[0] = rdNode;
679 	rdNode->antecedents[0] = blockNode;
680 	rdNode->antType[0] = rf_control;
681 
682 	/* connect rdnode to commit node */
683 	RF_ASSERT(rdNode->numSuccedents == 1);
684 	RF_ASSERT(commitNode->numAntecedents == 1);
685 	rdNode->succedents[0] = commitNode;
686 	commitNode->antecedents[0] = rdNode;
687 	commitNode->antType[0] = rf_control;
688 
689 	/* connect commit node to terminator */
690 	RF_ASSERT(commitNode->numSuccedents == 1);
691 	RF_ASSERT(termNode->numAntecedents == 1);
692 	RF_ASSERT(termNode->numSuccedents == 0);
693 	commitNode->succedents[0] = termNode;
694 	termNode->antecedents[0] = commitNode;
695 	termNode->antType[0] = rf_control;
696 }
697 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
698 
699 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0)
700 /*
701  * XXX move this elsewhere?
702  */
703 void
704 rf_DD_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
705 			       RF_PhysDiskAddr_t **pdap, int *nNodep,
706 			       RF_PhysDiskAddr_t **pqpdap, int *nPQNodep,
707 			       RF_AllocListElem_t *allocList)
708 {
709 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
710 	int     PDAPerDisk, i;
711 	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
712 	int     numDataCol = layoutPtr->numDataCol;
713 	int     state;
714 	RF_SectorNum_t suoff, suend;
715 	unsigned firstDataCol, napdas, count;
716 	RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end = 0;
717 	RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
718 	RF_PhysDiskAddr_t *pda_p;
719 	RF_PhysDiskAddr_t *phys_p;
720 	RF_RaidAddr_t sosAddr;
721 
722 	/* determine how many pda's we will have to generate per unaccess
723 	 * stripe. If there is only one failed data unit, it is one; if two,
724 	 * possibly two, depending wether they overlap. */
725 
726 	fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
727 	fone_end = fone_start + fone->numSector;
728 
729 #define CONS_PDA(if,start,num) \
730   pda_p->col = asmap->if->col; \
731   pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
732   pda_p->numSector = num; \
733   pda_p->next = NULL; \
734   RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
735 
736 	if (asmap->numDataFailed == 1) {
737 		PDAPerDisk = 1;
738 		state = 1;
739 		RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
740 		pda_p = *pqpdap;
741 		/* build p */
742 		CONS_PDA(parityInfo, fone_start, fone->numSector);
743 		pda_p->type = RF_PDA_TYPE_PARITY;
744 		pda_p++;
745 		/* build q */
746 		CONS_PDA(qInfo, fone_start, fone->numSector);
747 		pda_p->type = RF_PDA_TYPE_Q;
748 	} else {
749 		ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
750 		ftwo_end = ftwo_start + ftwo->numSector;
751 		if (fone->numSector + ftwo->numSector > secPerSU) {
752 			PDAPerDisk = 1;
753 			state = 2;
754 			RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
755 			pda_p = *pqpdap;
756 			CONS_PDA(parityInfo, 0, secPerSU);
757 			pda_p->type = RF_PDA_TYPE_PARITY;
758 			pda_p++;
759 			CONS_PDA(qInfo, 0, secPerSU);
760 			pda_p->type = RF_PDA_TYPE_Q;
761 		} else {
762 			PDAPerDisk = 2;
763 			state = 3;
764 			/* four of them, fone, then ftwo */
765 			RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
766 			pda_p = *pqpdap;
767 			CONS_PDA(parityInfo, fone_start, fone->numSector);
768 			pda_p->type = RF_PDA_TYPE_PARITY;
769 			pda_p++;
770 			CONS_PDA(qInfo, fone_start, fone->numSector);
771 			pda_p->type = RF_PDA_TYPE_Q;
772 			pda_p++;
773 			CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
774 			pda_p->type = RF_PDA_TYPE_PARITY;
775 			pda_p++;
776 			CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
777 			pda_p->type = RF_PDA_TYPE_Q;
778 		}
779 	}
780 	/* figure out number of nonaccessed pda */
781 	napdas = PDAPerDisk * (numDataCol - asmap->numStripeUnitsAccessed - (ftwo == NULL ? 1 : 0));
782 	*nPQNodep = PDAPerDisk;
783 
784 	/* sweep over the over accessed pda's, figuring out the number of
785 	 * additional pda's to generate. Of course, skip the failed ones */
786 
787 	count = 0;
788 	for (pda_p = asmap->physInfo; pda_p; pda_p = pda_p->next) {
789 		if ((pda_p == fone) || (pda_p == ftwo))
790 			continue;
791 		suoff = rf_StripeUnitOffset(layoutPtr, pda_p->startSector);
792 		suend = suoff + pda_p->numSector;
793 		switch (state) {
794 		case 1:	/* one failed PDA to overlap */
795 			/* if a PDA doesn't contain the failed unit, it can
796 			 * only miss the start or end, not both */
797 			if ((suoff > fone_start) || (suend < fone_end))
798 				count++;
799 			break;
800 		case 2:	/* whole stripe */
801 			if (suoff)	/* leak at begining */
802 				count++;
803 			if (suend < numDataCol)	/* leak at end */
804 				count++;
805 			break;
806 		case 3:	/* two disjoint units */
807 			if ((suoff > fone_start) || (suend < fone_end))
808 				count++;
809 			if ((suoff > ftwo_start) || (suend < ftwo_end))
810 				count++;
811 			break;
812 		default:
813 			RF_PANIC();
814 		}
815 	}
816 
817 	napdas += count;
818 	*nNodep = napdas;
819 	if (napdas == 0)
820 		return;		/* short circuit */
821 
822 	/* allocate up our list of pda's */
823 
824 	RF_MallocAndAdd(pda_p, napdas * sizeof(RF_PhysDiskAddr_t),
825 			(RF_PhysDiskAddr_t *), allocList);
826 	*pdap = pda_p;
827 
828 	/* linkem together */
829 	for (i = 0; i < (napdas - 1); i++)
830 		pda_p[i].next = pda_p + (i + 1);
831 
832 	/* march through the one's up to the first accessed disk */
833 	firstDataCol = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), asmap->physInfo->raidAddress) % numDataCol;
834 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
835 	for (i = 0; i < firstDataCol; i++) {
836 		if ((pda_p - (*pdap)) == napdas)
837 			continue;
838 		pda_p->type = RF_PDA_TYPE_DATA;
839 		pda_p->raidAddress = sosAddr + (i * secPerSU);
840 		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
841 		/* skip over dead disks */
842 		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
843 			continue;
844 		switch (state) {
845 		case 1:	/* fone */
846 			pda_p->numSector = fone->numSector;
847 			pda_p->raidAddress += fone_start;
848 			pda_p->startSector += fone_start;
849 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
850 			break;
851 		case 2:	/* full stripe */
852 			pda_p->numSector = secPerSU;
853 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
854 			break;
855 		case 3:	/* two slabs */
856 			pda_p->numSector = fone->numSector;
857 			pda_p->raidAddress += fone_start;
858 			pda_p->startSector += fone_start;
859 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
860 			pda_p++;
861 			pda_p->type = RF_PDA_TYPE_DATA;
862 			pda_p->raidAddress = sosAddr + (i * secPerSU);
863 			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
864 			pda_p->numSector = ftwo->numSector;
865 			pda_p->raidAddress += ftwo_start;
866 			pda_p->startSector += ftwo_start;
867 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
868 			break;
869 		default:
870 			RF_PANIC();
871 		}
872 		pda_p++;
873 	}
874 
875 	/* march through the touched stripe units */
876 	for (phys_p = asmap->physInfo; phys_p; phys_p = phys_p->next, i++) {
877 		if ((phys_p == asmap->failedPDAs[0]) || (phys_p == asmap->failedPDAs[1]))
878 			continue;
879 		suoff = rf_StripeUnitOffset(layoutPtr, phys_p->startSector);
880 		suend = suoff + phys_p->numSector;
881 		switch (state) {
882 		case 1:	/* single buffer */
883 			if (suoff > fone_start) {
884 				RF_ASSERT(suend >= fone_end);
885 				/* The data read starts after the mapped
886 				 * access, snip off the begining */
887 				pda_p->numSector = suoff - fone_start;
888 				pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
889 				(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
890 				RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
891 				pda_p++;
892 			}
893 			if (suend < fone_end) {
894 				RF_ASSERT(suoff <= fone_start);
895 				/* The data read stops before the end of the
896 				 * failed access, extend */
897 				pda_p->numSector = fone_end - suend;
898 				pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
899 				(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
900 				RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
901 				pda_p++;
902 			}
903 			break;
904 		case 2:	/* whole stripe unit */
905 			RF_ASSERT((suoff == 0) || (suend == secPerSU));
906 			if (suend < secPerSU) {	/* short read, snip from end
907 						 * on */
908 				pda_p->numSector = secPerSU - suend;
909 				pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
910 				(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
911 				RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
912 				pda_p++;
913 			} else
914 				if (suoff > 0) {	/* short at front */
915 					pda_p->numSector = suoff;
916 					pda_p->raidAddress = sosAddr + (i * secPerSU);
917 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
918 					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
919 					pda_p++;
920 				}
921 			break;
922 		case 3:	/* two nonoverlapping failures */
923 			if ((suoff > fone_start) || (suend < fone_end)) {
924 				if (suoff > fone_start) {
925 					RF_ASSERT(suend >= fone_end);
926 					/* The data read starts after the
927 					 * mapped access, snip off the
928 					 * begining */
929 					pda_p->numSector = suoff - fone_start;
930 					pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
931 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
932 					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
933 					pda_p++;
934 				}
935 				if (suend < fone_end) {
936 					RF_ASSERT(suoff <= fone_start);
937 					/* The data read stops before the end
938 					 * of the failed access, extend */
939 					pda_p->numSector = fone_end - suend;
940 					pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
941 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
942 					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
943 					pda_p++;
944 				}
945 			}
946 			if ((suoff > ftwo_start) || (suend < ftwo_end)) {
947 				if (suoff > ftwo_start) {
948 					RF_ASSERT(suend >= ftwo_end);
949 					/* The data read starts after the
950 					 * mapped access, snip off the
951 					 * begining */
952 					pda_p->numSector = suoff - ftwo_start;
953 					pda_p->raidAddress = sosAddr + (i * secPerSU) + ftwo_start;
954 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
955 					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
956 					pda_p++;
957 				}
958 				if (suend < ftwo_end) {
959 					RF_ASSERT(suoff <= ftwo_start);
960 					/* The data read stops before the end
961 					 * of the failed access, extend */
962 					pda_p->numSector = ftwo_end - suend;
963 					pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
964 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
965 					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
966 					pda_p++;
967 				}
968 			}
969 			break;
970 		default:
971 			RF_PANIC();
972 		}
973 	}
974 
975 	/* after the last accessed disk */
976 	for (; i < numDataCol; i++) {
977 		if ((pda_p - (*pdap)) == napdas)
978 			continue;
979 		pda_p->type = RF_PDA_TYPE_DATA;
980 		pda_p->raidAddress = sosAddr + (i * secPerSU);
981 		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
982 		/* skip over dead disks */
983 		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
984 			continue;
985 		switch (state) {
986 		case 1:	/* fone */
987 			pda_p->numSector = fone->numSector;
988 			pda_p->raidAddress += fone_start;
989 			pda_p->startSector += fone_start;
990 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
991 			break;
992 		case 2:	/* full stripe */
993 			pda_p->numSector = secPerSU;
994 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
995 			break;
996 		case 3:	/* two slabs */
997 			pda_p->numSector = fone->numSector;
998 			pda_p->raidAddress += fone_start;
999 			pda_p->startSector += fone_start;
1000 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
1001 			pda_p++;
1002 			pda_p->type = RF_PDA_TYPE_DATA;
1003 			pda_p->raidAddress = sosAddr + (i * secPerSU);
1004 			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
1005 			pda_p->numSector = ftwo->numSector;
1006 			pda_p->raidAddress += ftwo_start;
1007 			pda_p->startSector += ftwo_start;
1008 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
1009 			break;
1010 		default:
1011 			RF_PANIC();
1012 		}
1013 		pda_p++;
1014 	}
1015 
1016 	RF_ASSERT(pda_p - *pdap == napdas);
1017 	return;
1018 }
1019 #define INIT_DISK_NODE(node,name) \
1020 rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \
1021 (node)->succedents[0] = unblockNode; \
1022 (node)->succedents[1] = recoveryNode; \
1023 (node)->antecedents[0] = blockNode; \
1024 (node)->antType[0] = rf_control
1025 
1026 #define DISK_NODE_PARAMS(_node_,_p_) \
1027   (_node_).params[0].p = _p_ ; \
1028   (_node_).params[1].p = (_p_)->bufPtr; \
1029   (_node_).params[2].v = parityStripeID; \
1030   (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru)
1031 
1032 void
1033 rf_DoubleDegRead(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1034 		 RF_DagHeader_t *dag_h, void *bp, RF_RaidAccessFlags_t flags,
1035 		 RF_AllocListElem_t *allocList,
1036 		 char *redundantReadNodeName, char *recoveryNodeName,
1037 		 int (*recovFunc) (RF_DagNode_t *))
1038 {
1039 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
1040 	RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *recoveryNode, *blockNode,
1041 	       *unblockNode, *rpNodes, *rqNodes, *termNode;
1042 	RF_PhysDiskAddr_t *pda, *pqPDAs;
1043 	RF_PhysDiskAddr_t *npdas;
1044 	int     nNodes, nRrdNodes, nRudNodes, i;
1045 	RF_ReconUnitNum_t which_ru;
1046 	int     nReadNodes, nPQNodes;
1047 	RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
1048 	RF_PhysDiskAddr_t *failedPDAtwo = asmap->failedPDAs[1];
1049 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
1050 
1051 #if RF_DEBUG_DAG
1052 	if (rf_dagDebug)
1053 		printf("[Creating Double Degraded Read DAG]\n");
1054 #endif
1055 	rf_DD_GenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
1056 
1057 	nRudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
1058 	nReadNodes = nRrdNodes + nRudNodes + 2 * nPQNodes;
1059 	nNodes = 4 /* block, unblock, recovery, term */ + nReadNodes;
1060 
1061 	RF_MallocAndAdd(nodes, nNodes * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
1062 	i = 0;
1063 	blockNode = &nodes[i];
1064 	i += 1;
1065 	unblockNode = &nodes[i];
1066 	i += 1;
1067 	recoveryNode = &nodes[i];
1068 	i += 1;
1069 	termNode = &nodes[i];
1070 	i += 1;
1071 	rudNodes = &nodes[i];
1072 	i += nRudNodes;
1073 	rrdNodes = &nodes[i];
1074 	i += nRrdNodes;
1075 	rpNodes = &nodes[i];
1076 	i += nPQNodes;
1077 	rqNodes = &nodes[i];
1078 	i += nPQNodes;
1079 	RF_ASSERT(i == nNodes);
1080 
1081 	dag_h->numSuccedents = 1;
1082 	dag_h->succedents[0] = blockNode;
1083 	dag_h->creator = "DoubleDegRead";
1084 	dag_h->numCommits = 0;
1085 	dag_h->numCommitNodes = 1;	/* unblock */
1086 
1087 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 2, 0, 0, dag_h, "Trm", allocList);
1088 	termNode->antecedents[0] = unblockNode;
1089 	termNode->antType[0] = rf_control;
1090 	termNode->antecedents[1] = recoveryNode;
1091 	termNode->antType[1] = rf_control;
1092 
1093 	/* init the block and unblock nodes */
1094 	/* The block node has all nodes except itself, unblock and recovery as
1095 	 * successors. Similarly for predecessors of the unblock. */
1096 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
1097 	rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nReadNodes, 0, 0, dag_h, "Nil", allocList);
1098 
1099 	for (i = 0; i < nReadNodes; i++) {
1100 		blockNode->succedents[i] = rudNodes + i;
1101 		unblockNode->antecedents[i] = rudNodes + i;
1102 		unblockNode->antType[i] = rf_control;
1103 	}
1104 	unblockNode->succedents[0] = termNode;
1105 
1106 	/* The recovery node has all the reads as predecessors, and the term
1107 	 * node as successors. It gets a pda as a param from each of the read
1108 	 * nodes plus the raidPtr. For each failed unit is has a result pda. */
1109 	rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
1110 	    1,			/* succesors */
1111 	    nReadNodes,		/* preds */
1112 	    nReadNodes + 2,	/* params */
1113 	    asmap->numDataFailed,	/* results */
1114 	    dag_h, recoveryNodeName, allocList);
1115 
1116 	recoveryNode->succedents[0] = termNode;
1117 	for (i = 0; i < nReadNodes; i++) {
1118 		recoveryNode->antecedents[i] = rudNodes + i;
1119 		recoveryNode->antType[i] = rf_trueData;
1120 	}
1121 
1122 	/* build the read nodes, then come back and fill in recovery params
1123 	 * and results */
1124 	pda = asmap->physInfo;
1125 	for (i = 0; i < nRudNodes; pda = pda->next) {
1126 		if ((pda == failedPDA) || (pda == failedPDAtwo))
1127 			continue;
1128 		INIT_DISK_NODE(rudNodes + i, "Rud");
1129 		RF_ASSERT(pda);
1130 		DISK_NODE_PARAMS(rudNodes[i], pda);
1131 		i++;
1132 	}
1133 
1134 	pda = npdas;
1135 	for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
1136 		INIT_DISK_NODE(rrdNodes + i, "Rrd");
1137 		RF_ASSERT(pda);
1138 		DISK_NODE_PARAMS(rrdNodes[i], pda);
1139 	}
1140 
1141 	/* redundancy pdas */
1142 	pda = pqPDAs;
1143 	INIT_DISK_NODE(rpNodes, "Rp");
1144 	RF_ASSERT(pda);
1145 	DISK_NODE_PARAMS(rpNodes[0], pda);
1146 	pda++;
1147 	INIT_DISK_NODE(rqNodes, redundantReadNodeName);
1148 	RF_ASSERT(pda);
1149 	DISK_NODE_PARAMS(rqNodes[0], pda);
1150 	if (nPQNodes == 2) {
1151 		pda++;
1152 		INIT_DISK_NODE(rpNodes + 1, "Rp");
1153 		RF_ASSERT(pda);
1154 		DISK_NODE_PARAMS(rpNodes[1], pda);
1155 		pda++;
1156 		INIT_DISK_NODE(rqNodes + 1, redundantReadNodeName);
1157 		RF_ASSERT(pda);
1158 		DISK_NODE_PARAMS(rqNodes[1], pda);
1159 	}
1160 	/* fill in recovery node params */
1161 	for (i = 0; i < nReadNodes; i++)
1162 		recoveryNode->params[i] = rudNodes[i].params[0];	/* pda */
1163 	recoveryNode->params[i++].p = (void *) raidPtr;
1164 	recoveryNode->params[i++].p = (void *) asmap;
1165 	recoveryNode->results[0] = failedPDA;
1166 	if (asmap->numDataFailed == 2)
1167 		recoveryNode->results[1] = failedPDAtwo;
1168 
1169 	/* zero fill the target data buffers? */
1170 }
1171 
1172 #endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) */
1173