xref: /netbsd-src/sys/dev/raidframe/rf_aselect.c (revision 5e4c038a45edbc7d63b7c2daa76e29f88b64a4e3)
1 /*	$NetBSD: rf_aselect.c,v 1.5 2001/11/13 07:11:12 lukem Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland, William V. Courtright II
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /*****************************************************************************
30  *
31  * aselect.c -- algorithm selection code
32  *
33  *****************************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_aselect.c,v 1.5 2001/11/13 07:11:12 lukem Exp $");
37 
38 #include <dev/raidframe/raidframevar.h>
39 
40 #include "rf_archs.h"
41 #include "rf_raid.h"
42 #include "rf_dag.h"
43 #include "rf_dagutils.h"
44 #include "rf_dagfuncs.h"
45 #include "rf_general.h"
46 #include "rf_desc.h"
47 #include "rf_map.h"
48 
49 #if defined(__NetBSD__) && defined(_KERNEL)
50 /* the function below is not used... so don't define it! */
51 #else
52 static void TransferDagMemory(RF_DagHeader_t *, RF_DagHeader_t *);
53 #endif
54 
55 static int InitHdrNode(RF_DagHeader_t **, RF_Raid_t *, int);
56 static void UpdateNodeHdrPtr(RF_DagHeader_t *, RF_DagNode_t *);
57 int     rf_SelectAlgorithm(RF_RaidAccessDesc_t *, RF_RaidAccessFlags_t);
58 
59 
60 /******************************************************************************
61  *
62  * Create and Initialiaze a dag header and termination node
63  *
64  *****************************************************************************/
65 static int
66 InitHdrNode(hdr, raidPtr, memChunkEnable)
67 	RF_DagHeader_t **hdr;
68 	RF_Raid_t *raidPtr;
69 	int     memChunkEnable;
70 {
71 	/* create and initialize dag hdr */
72 	*hdr = rf_AllocDAGHeader();
73 	rf_MakeAllocList((*hdr)->allocList);
74 	if ((*hdr)->allocList == NULL) {
75 		rf_FreeDAGHeader(*hdr);
76 		return (ENOMEM);
77 	}
78 	(*hdr)->status = rf_enable;
79 	(*hdr)->numSuccedents = 0;
80 	(*hdr)->raidPtr = raidPtr;
81 	(*hdr)->next = NULL;
82 	return (0);
83 }
84 /******************************************************************************
85  *
86  * Transfer allocation list and mem chunks from one dag to another
87  *
88  *****************************************************************************/
89 #if defined(__NetBSD__) && defined(_KERNEL)
90 /* the function below is not used... so don't define it! */
91 #else
92 static void
93 TransferDagMemory(daga, dagb)
94 	RF_DagHeader_t *daga;
95 	RF_DagHeader_t *dagb;
96 {
97 	RF_AccessStripeMapHeader_t *end;
98 	RF_AllocListElem_t *p;
99 	int     i, memChunksXfrd = 0, xtraChunksXfrd = 0;
100 
101 	/* transfer allocList from dagb to daga */
102 	for (p = dagb->allocList; p; p = p->next) {
103 		for (i = 0; i < p->numPointers; i++) {
104 			rf_AddToAllocList(daga->allocList, p->pointers[i], p->sizes[i]);
105 			p->pointers[i] = NULL;
106 			p->sizes[i] = 0;
107 		}
108 		p->numPointers = 0;
109 	}
110 
111 	/* transfer chunks from dagb to daga */
112 	while ((memChunksXfrd + xtraChunksXfrd < dagb->chunkIndex + dagb->xtraChunkIndex) && (daga->chunkIndex < RF_MAXCHUNKS)) {
113 		/* stuff chunks into daga's memChunk array */
114 		if (memChunksXfrd < dagb->chunkIndex) {
115 			daga->memChunk[daga->chunkIndex++] = dagb->memChunk[memChunksXfrd];
116 			dagb->memChunk[memChunksXfrd++] = NULL;
117 		} else {
118 			daga->memChunk[daga->xtraChunkIndex++] = dagb->xtraMemChunk[xtraChunksXfrd];
119 			dagb->xtraMemChunk[xtraChunksXfrd++] = NULL;
120 		}
121 	}
122 	/* use escape hatch to hold excess chunks */
123 	while (memChunksXfrd + xtraChunksXfrd < dagb->chunkIndex + dagb->xtraChunkIndex) {
124 		if (memChunksXfrd < dagb->chunkIndex) {
125 			daga->xtraMemChunk[daga->xtraChunkIndex++] = dagb->memChunk[memChunksXfrd];
126 			dagb->memChunk[memChunksXfrd++] = NULL;
127 		} else {
128 			daga->xtraMemChunk[daga->xtraChunkIndex++] = dagb->xtraMemChunk[xtraChunksXfrd];
129 			dagb->xtraMemChunk[xtraChunksXfrd++] = NULL;
130 		}
131 	}
132 	RF_ASSERT((memChunksXfrd == dagb->chunkIndex) && (xtraChunksXfrd == dagb->xtraChunkIndex));
133 	RF_ASSERT(daga->chunkIndex <= RF_MAXCHUNKS);
134 	RF_ASSERT(daga->xtraChunkIndex <= daga->xtraChunkCnt);
135 	dagb->chunkIndex = 0;
136 	dagb->xtraChunkIndex = 0;
137 
138 	/* transfer asmList from dagb to daga */
139 	if (dagb->asmList) {
140 		if (daga->asmList) {
141 			end = daga->asmList;
142 			while (end->next)
143 				end = end->next;
144 			end->next = dagb->asmList;
145 		} else
146 			daga->asmList = dagb->asmList;
147 		dagb->asmList = NULL;
148 	}
149 }
150 #endif				/* __NetBSD__ */
151 
152 /*****************************************************************************************
153  *
154  * Ensure that all node->dagHdr fields in a dag are consistent
155  *
156  * IMPORTANT: This routine recursively searches all succedents of the node.  If a
157  * succedent is encountered whose dagHdr ptr does not require adjusting, that node's
158  * succedents WILL NOT BE EXAMINED.
159  *
160  ****************************************************************************************/
161 static void
162 UpdateNodeHdrPtr(hdr, node)
163 	RF_DagHeader_t *hdr;
164 	RF_DagNode_t *node;
165 {
166 	int     i;
167 	RF_ASSERT(hdr != NULL && node != NULL);
168 	for (i = 0; i < node->numSuccedents; i++)
169 		if (node->succedents[i]->dagHdr != hdr)
170 			UpdateNodeHdrPtr(hdr, node->succedents[i]);
171 	node->dagHdr = hdr;
172 }
173 /******************************************************************************
174  *
175  * Create a DAG to do a read or write operation.
176  *
177  * create an array of dagLists, one list per parity stripe.
178  * return the lists in the array desc->dagArray.
179  *
180  * Normally, each list contains one dag for the entire stripe.  In some
181  * tricky cases, we break this into multiple dags, either one per stripe
182  * unit or one per block (sector).  When this occurs, these dags are returned
183  * as a linked list (dagList) which is executed sequentially (to preserve
184  * atomic parity updates in the stripe).
185  *
186  * dags which operate on independent parity goups (stripes) are returned in
187  * independent dagLists (distinct elements in desc->dagArray) and may be
188  * executed concurrently.
189  *
190  * Finally, if the SelectionFunc fails to create a dag for a block, we punt
191  * and return 1.
192  *
193  * The above process is performed in two phases:
194  *   1) create an array(s) of creation functions (eg stripeFuncs)
195  *   2) create dags and concatenate/merge to form the final dag.
196  *
197  * Because dag's are basic blocks (single entry, single exit, unconditional
198  * control flow, we can add the following optimizations (future work):
199  *   first-pass optimizer to allow max concurrency (need all data dependencies)
200  *   second-pass optimizer to eliminate common subexpressions (need true
201  *                         data dependencies)
202  *   third-pass optimizer to eliminate dead code (need true data dependencies)
203  *****************************************************************************/
204 
205 #define MAXNSTRIPES 50
206 
207 int
208 rf_SelectAlgorithm(desc, flags)
209 	RF_RaidAccessDesc_t *desc;
210 	RF_RaidAccessFlags_t flags;
211 {
212 	RF_AccessStripeMapHeader_t *asm_h = desc->asmap;
213 	RF_IoType_t type = desc->type;
214 	RF_Raid_t *raidPtr = desc->raidPtr;
215 	void   *bp = desc->bp;
216 
217 	RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
218 	RF_AccessStripeMap_t *asm_p;
219 	RF_DagHeader_t *dag_h = NULL, *tempdag_h, *lastdag_h;
220 	int     i, j, k;
221 	RF_VoidFuncPtr *stripeFuncs, normalStripeFuncs[MAXNSTRIPES];
222 	RF_AccessStripeMap_t *asm_up, *asm_bp;
223 	RF_AccessStripeMapHeader_t ***asmh_u, *endASMList;
224 	RF_AccessStripeMapHeader_t ***asmh_b;
225 	RF_VoidFuncPtr **stripeUnitFuncs, uFunc;
226 	RF_VoidFuncPtr **blockFuncs, bFunc;
227 	int     numStripesBailed = 0, cantCreateDAGs = RF_FALSE;
228 	int     numStripeUnitsBailed = 0;
229 	int     stripeNum, numUnitDags = 0, stripeUnitNum, numBlockDags = 0;
230 	RF_StripeNum_t numStripeUnits;
231 	RF_SectorNum_t numBlocks;
232 	RF_RaidAddr_t address;
233 	int     length;
234 	RF_PhysDiskAddr_t *physPtr;
235 	caddr_t buffer;
236 
237 	lastdag_h = NULL;
238 	asmh_u = asmh_b = NULL;
239 	stripeUnitFuncs = NULL;
240 	blockFuncs = NULL;
241 
242 	/* get an array of dag-function creation pointers, try to avoid
243 	 * calling malloc */
244 	if (asm_h->numStripes <= MAXNSTRIPES)
245 		stripeFuncs = normalStripeFuncs;
246 	else
247 		RF_Calloc(stripeFuncs, asm_h->numStripes, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
248 
249 	/* walk through the asm list once collecting information */
250 	/* attempt to find a single creation function for each stripe */
251 	desc->numStripes = 0;
252 	for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) {
253 		desc->numStripes++;
254 		(raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_p, &stripeFuncs[i]);
255 		/* check to see if we found a creation func for this stripe */
256 		if (stripeFuncs[i] == (RF_VoidFuncPtr) NULL) {
257 			/* could not find creation function for entire stripe
258 			 * so, let's see if we can find one for each stripe
259 			 * unit in the stripe */
260 
261 			if (numStripesBailed == 0) {
262 				/* one stripe map header for each stripe we
263 				 * bail on */
264 				RF_Malloc(asmh_u, sizeof(RF_AccessStripeMapHeader_t **) * asm_h->numStripes, (RF_AccessStripeMapHeader_t ***));
265 				/* create an array of ptrs to arrays of
266 				 * stripeFuncs */
267 				RF_Calloc(stripeUnitFuncs, asm_h->numStripes, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr **));
268 			}
269 			/* create an array of creation funcs (called
270 			 * stripeFuncs) for this stripe */
271 			numStripeUnits = asm_p->numStripeUnitsAccessed;
272 			RF_Calloc(stripeUnitFuncs[numStripesBailed], numStripeUnits, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
273 			RF_Malloc(asmh_u[numStripesBailed], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *), (RF_AccessStripeMapHeader_t **));
274 
275 			/* lookup array of stripeUnitFuncs for this stripe */
276 			for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
277 				/* remap for series of single stripe-unit
278 				 * accesses */
279 				address = physPtr->raidAddress;
280 				length = physPtr->numSector;
281 				buffer = physPtr->bufPtr;
282 
283 				asmh_u[numStripesBailed][j] = rf_MapAccess(raidPtr, address, length, buffer, RF_DONT_REMAP);
284 				asm_up = asmh_u[numStripesBailed][j]->stripeMap;
285 
286 				/* get the creation func for this stripe unit */
287 				(raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_up, &(stripeUnitFuncs[numStripesBailed][j]));
288 
289 				/* check to see if we found a creation func
290 				 * for this stripe unit */
291 				if (stripeUnitFuncs[numStripesBailed][j] == (RF_VoidFuncPtr) NULL) {
292 					/* could not find creation function
293 					 * for stripe unit so, let's see if we
294 					 * can find one for each block in the
295 					 * stripe unit */
296 					if (numStripeUnitsBailed == 0) {
297 						/* one stripe map header for
298 						 * each stripe unit we bail on */
299 						RF_Malloc(asmh_b, sizeof(RF_AccessStripeMapHeader_t **) * asm_h->numStripes * raidPtr->Layout.numDataCol, (RF_AccessStripeMapHeader_t ***));
300 						/* create an array of ptrs to
301 						 * arrays of blockFuncs */
302 						RF_Calloc(blockFuncs, asm_h->numStripes * raidPtr->Layout.numDataCol, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr **));
303 					}
304 					/* create an array of creation funcs
305 					 * (called blockFuncs) for this stripe
306 					 * unit */
307 					numBlocks = physPtr->numSector;
308 					numBlockDags += numBlocks;
309 					RF_Calloc(blockFuncs[numStripeUnitsBailed], numBlocks, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
310 					RF_Malloc(asmh_b[numStripeUnitsBailed], numBlocks * sizeof(RF_AccessStripeMapHeader_t *), (RF_AccessStripeMapHeader_t **));
311 
312 					/* lookup array of blockFuncs for this
313 					 * stripe unit */
314 					for (k = 0; k < numBlocks; k++) {
315 						/* remap for series of single
316 						 * stripe-unit accesses */
317 						address = physPtr->raidAddress + k;
318 						length = 1;
319 						buffer = physPtr->bufPtr + (k * (1 << raidPtr->logBytesPerSector));
320 
321 						asmh_b[numStripeUnitsBailed][k] = rf_MapAccess(raidPtr, address, length, buffer, RF_DONT_REMAP);
322 						asm_bp = asmh_b[numStripeUnitsBailed][k]->stripeMap;
323 
324 						/* get the creation func for
325 						 * this stripe unit */
326 						(raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_bp, &(blockFuncs[numStripeUnitsBailed][k]));
327 
328 						/* check to see if we found a
329 						 * creation func for this
330 						 * stripe unit */
331 						if (blockFuncs[numStripeUnitsBailed][k] == NULL)
332 							cantCreateDAGs = RF_TRUE;
333 					}
334 					numStripeUnitsBailed++;
335 				} else {
336 					numUnitDags++;
337 				}
338 			}
339 			RF_ASSERT(j == numStripeUnits);
340 			numStripesBailed++;
341 		}
342 	}
343 
344 	if (cantCreateDAGs) {
345 		/* free memory and punt */
346 		if (asm_h->numStripes > MAXNSTRIPES)
347 			RF_Free(stripeFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
348 		if (numStripesBailed > 0) {
349 			stripeNum = 0;
350 			for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++)
351 				if (stripeFuncs[i] == NULL) {
352 					numStripeUnits = asm_p->numStripeUnitsAccessed;
353 					for (j = 0; j < numStripeUnits; j++)
354 						rf_FreeAccessStripeMap(asmh_u[stripeNum][j]);
355 					RF_Free(asmh_u[stripeNum], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *));
356 					RF_Free(stripeUnitFuncs[stripeNum], numStripeUnits * sizeof(RF_VoidFuncPtr));
357 					stripeNum++;
358 				}
359 			RF_ASSERT(stripeNum == numStripesBailed);
360 			RF_Free(stripeUnitFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
361 			RF_Free(asmh_u, asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
362 		}
363 		return (1);
364 	} else {
365 		/* begin dag creation */
366 		stripeNum = 0;
367 		stripeUnitNum = 0;
368 
369 		/* create an array of dagLists and fill them in */
370 		RF_CallocAndAdd(desc->dagArray, desc->numStripes, sizeof(RF_DagList_t), (RF_DagList_t *), desc->cleanupList);
371 
372 		for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) {
373 			/* grab dag header for this stripe */
374 			dag_h = NULL;
375 			desc->dagArray[i].desc = desc;
376 
377 			if (stripeFuncs[i] == (RF_VoidFuncPtr) NULL) {
378 				/* use bailout functions for this stripe */
379 				for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
380 					uFunc = stripeUnitFuncs[stripeNum][j];
381 					if (uFunc == (RF_VoidFuncPtr) NULL) {
382 						/* use bailout functions for
383 						 * this stripe unit */
384 						for (k = 0; k < physPtr->numSector; k++) {
385 							/* create a dag for
386 							 * this block */
387 							InitHdrNode(&tempdag_h, raidPtr, rf_useMemChunks);
388 							desc->dagArray[i].numDags++;
389 							if (dag_h == NULL) {
390 								dag_h = tempdag_h;
391 							} else {
392 								lastdag_h->next = tempdag_h;
393 							}
394 							lastdag_h = tempdag_h;
395 
396 							bFunc = blockFuncs[stripeUnitNum][k];
397 							RF_ASSERT(bFunc);
398 							asm_bp = asmh_b[stripeUnitNum][k]->stripeMap;
399 							(*bFunc) (raidPtr, asm_bp, tempdag_h, bp, flags, tempdag_h->allocList);
400 						}
401 						stripeUnitNum++;
402 					} else {
403 						/* create a dag for this unit */
404 						InitHdrNode(&tempdag_h, raidPtr, rf_useMemChunks);
405 						desc->dagArray[i].numDags++;
406 						if (dag_h == NULL) {
407 							dag_h = tempdag_h;
408 						} else {
409 							lastdag_h->next = tempdag_h;
410 						}
411 						lastdag_h = tempdag_h;
412 
413 						asm_up = asmh_u[stripeNum][j]->stripeMap;
414 						(*uFunc) (raidPtr, asm_up, tempdag_h, bp, flags, tempdag_h->allocList);
415 					}
416 				}
417 				RF_ASSERT(j == asm_p->numStripeUnitsAccessed);
418 				/* merge linked bailout dag to existing dag
419 				 * collection */
420 				stripeNum++;
421 			} else {
422 				/* Create a dag for this parity stripe */
423 				InitHdrNode(&tempdag_h, raidPtr, rf_useMemChunks);
424 				desc->dagArray[i].numDags++;
425 				if (dag_h == NULL) {
426 					dag_h = tempdag_h;
427 				} else {
428 					lastdag_h->next = tempdag_h;
429 				}
430 				lastdag_h = tempdag_h;
431 
432 				(stripeFuncs[i]) (raidPtr, asm_p, tempdag_h, bp, flags, tempdag_h->allocList);
433 			}
434 			desc->dagArray[i].dags = dag_h;
435 		}
436 		RF_ASSERT(i == desc->numStripes);
437 
438 		/* free memory */
439 		if (asm_h->numStripes > MAXNSTRIPES)
440 			RF_Free(stripeFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
441 		if ((numStripesBailed > 0) || (numStripeUnitsBailed > 0)) {
442 			stripeNum = 0;
443 			stripeUnitNum = 0;
444 			if (dag_h->asmList) {
445 				endASMList = dag_h->asmList;
446 				while (endASMList->next)
447 					endASMList = endASMList->next;
448 			} else
449 				endASMList = NULL;
450 			/* walk through io, stripe by stripe */
451 			for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++)
452 				if (stripeFuncs[i] == NULL) {
453 					numStripeUnits = asm_p->numStripeUnitsAccessed;
454 					/* walk through stripe, stripe unit by
455 					 * stripe unit */
456 					for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
457 						if (stripeUnitFuncs[stripeNum][j] == NULL) {
458 							numBlocks = physPtr->numSector;
459 							/* walk through stripe
460 							 * unit, block by
461 							 * block */
462 							for (k = 0; k < numBlocks; k++)
463 								if (dag_h->asmList == NULL) {
464 									dag_h->asmList = asmh_b[stripeUnitNum][k];
465 									endASMList = dag_h->asmList;
466 								} else {
467 									endASMList->next = asmh_b[stripeUnitNum][k];
468 									endASMList = endASMList->next;
469 								}
470 							RF_Free(asmh_b[stripeUnitNum], numBlocks * sizeof(RF_AccessStripeMapHeader_t *));
471 							RF_Free(blockFuncs[stripeUnitNum], numBlocks * sizeof(RF_VoidFuncPtr));
472 							stripeUnitNum++;
473 						}
474 						if (dag_h->asmList == NULL) {
475 							dag_h->asmList = asmh_u[stripeNum][j];
476 							endASMList = dag_h->asmList;
477 						} else {
478 							endASMList->next = asmh_u[stripeNum][j];
479 							endASMList = endASMList->next;
480 						}
481 					}
482 					RF_Free(asmh_u[stripeNum], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *));
483 					RF_Free(stripeUnitFuncs[stripeNum], numStripeUnits * sizeof(RF_VoidFuncPtr));
484 					stripeNum++;
485 				}
486 			RF_ASSERT(stripeNum == numStripesBailed);
487 			RF_Free(stripeUnitFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
488 			RF_Free(asmh_u, asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
489 			if (numStripeUnitsBailed > 0) {
490 				RF_ASSERT(stripeUnitNum == numStripeUnitsBailed);
491 				RF_Free(blockFuncs, raidPtr->Layout.numDataCol * asm_h->numStripes * sizeof(RF_VoidFuncPtr));
492 				RF_Free(asmh_b, raidPtr->Layout.numDataCol * asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
493 			}
494 		}
495 		return (0);
496 	}
497 }
498