xref: /netbsd-src/sys/dev/raidframe/rf_aselect.c (revision 3b01aba77a7a698587faaae455bbfe740923c1f5)
1 /*	$NetBSD: rf_aselect.c,v 1.3 1999/02/05 00:06:06 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland, William V. Courtright II
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /*****************************************************************************
30  *
31  * aselect.c -- algorithm selection code
32  *
33  *****************************************************************************/
34 
35 
36 #include "rf_archs.h"
37 #include "rf_types.h"
38 #include "rf_raid.h"
39 #include "rf_dag.h"
40 #include "rf_dagutils.h"
41 #include "rf_dagfuncs.h"
42 #include "rf_general.h"
43 #include "rf_desc.h"
44 #include "rf_map.h"
45 
46 #if defined(__NetBSD__) && defined(_KERNEL)
47 /* the function below is not used... so don't define it! */
48 #else
49 static void TransferDagMemory(RF_DagHeader_t *, RF_DagHeader_t *);
50 #endif
51 
52 static int InitHdrNode(RF_DagHeader_t **, RF_Raid_t *, int);
53 static void UpdateNodeHdrPtr(RF_DagHeader_t *, RF_DagNode_t *);
54 int     rf_SelectAlgorithm(RF_RaidAccessDesc_t *, RF_RaidAccessFlags_t);
55 
56 
57 /******************************************************************************
58  *
59  * Create and Initialiaze a dag header and termination node
60  *
61  *****************************************************************************/
62 static int
63 InitHdrNode(hdr, raidPtr, memChunkEnable)
64 	RF_DagHeader_t **hdr;
65 	RF_Raid_t *raidPtr;
66 	int     memChunkEnable;
67 {
68 	/* create and initialize dag hdr */
69 	*hdr = rf_AllocDAGHeader();
70 	rf_MakeAllocList((*hdr)->allocList);
71 	if ((*hdr)->allocList == NULL) {
72 		rf_FreeDAGHeader(*hdr);
73 		return (ENOMEM);
74 	}
75 	(*hdr)->status = rf_enable;
76 	(*hdr)->numSuccedents = 0;
77 	(*hdr)->raidPtr = raidPtr;
78 	(*hdr)->next = NULL;
79 	return (0);
80 }
81 /******************************************************************************
82  *
83  * Transfer allocation list and mem chunks from one dag to another
84  *
85  *****************************************************************************/
86 #if defined(__NetBSD__) && defined(_KERNEL)
87 /* the function below is not used... so don't define it! */
88 #else
89 static void
90 TransferDagMemory(daga, dagb)
91 	RF_DagHeader_t *daga;
92 	RF_DagHeader_t *dagb;
93 {
94 	RF_AccessStripeMapHeader_t *end;
95 	RF_AllocListElem_t *p;
96 	int     i, memChunksXfrd = 0, xtraChunksXfrd = 0;
97 
98 	/* transfer allocList from dagb to daga */
99 	for (p = dagb->allocList; p; p = p->next) {
100 		for (i = 0; i < p->numPointers; i++) {
101 			rf_AddToAllocList(daga->allocList, p->pointers[i], p->sizes[i]);
102 			p->pointers[i] = NULL;
103 			p->sizes[i] = 0;
104 		}
105 		p->numPointers = 0;
106 	}
107 
108 	/* transfer chunks from dagb to daga */
109 	while ((memChunksXfrd + xtraChunksXfrd < dagb->chunkIndex + dagb->xtraChunkIndex) && (daga->chunkIndex < RF_MAXCHUNKS)) {
110 		/* stuff chunks into daga's memChunk array */
111 		if (memChunksXfrd < dagb->chunkIndex) {
112 			daga->memChunk[daga->chunkIndex++] = dagb->memChunk[memChunksXfrd];
113 			dagb->memChunk[memChunksXfrd++] = NULL;
114 		} else {
115 			daga->memChunk[daga->xtraChunkIndex++] = dagb->xtraMemChunk[xtraChunksXfrd];
116 			dagb->xtraMemChunk[xtraChunksXfrd++] = NULL;
117 		}
118 	}
119 	/* use escape hatch to hold excess chunks */
120 	while (memChunksXfrd + xtraChunksXfrd < dagb->chunkIndex + dagb->xtraChunkIndex) {
121 		if (memChunksXfrd < dagb->chunkIndex) {
122 			daga->xtraMemChunk[daga->xtraChunkIndex++] = dagb->memChunk[memChunksXfrd];
123 			dagb->memChunk[memChunksXfrd++] = NULL;
124 		} else {
125 			daga->xtraMemChunk[daga->xtraChunkIndex++] = dagb->xtraMemChunk[xtraChunksXfrd];
126 			dagb->xtraMemChunk[xtraChunksXfrd++] = NULL;
127 		}
128 	}
129 	RF_ASSERT((memChunksXfrd == dagb->chunkIndex) && (xtraChunksXfrd == dagb->xtraChunkIndex));
130 	RF_ASSERT(daga->chunkIndex <= RF_MAXCHUNKS);
131 	RF_ASSERT(daga->xtraChunkIndex <= daga->xtraChunkCnt);
132 	dagb->chunkIndex = 0;
133 	dagb->xtraChunkIndex = 0;
134 
135 	/* transfer asmList from dagb to daga */
136 	if (dagb->asmList) {
137 		if (daga->asmList) {
138 			end = daga->asmList;
139 			while (end->next)
140 				end = end->next;
141 			end->next = dagb->asmList;
142 		} else
143 			daga->asmList = dagb->asmList;
144 		dagb->asmList = NULL;
145 	}
146 }
147 #endif				/* __NetBSD__ */
148 
149 /*****************************************************************************************
150  *
151  * Ensure that all node->dagHdr fields in a dag are consistent
152  *
153  * IMPORTANT: This routine recursively searches all succedents of the node.  If a
154  * succedent is encountered whose dagHdr ptr does not require adjusting, that node's
155  * succedents WILL NOT BE EXAMINED.
156  *
157  ****************************************************************************************/
158 static void
159 UpdateNodeHdrPtr(hdr, node)
160 	RF_DagHeader_t *hdr;
161 	RF_DagNode_t *node;
162 {
163 	int     i;
164 	RF_ASSERT(hdr != NULL && node != NULL);
165 	for (i = 0; i < node->numSuccedents; i++)
166 		if (node->succedents[i]->dagHdr != hdr)
167 			UpdateNodeHdrPtr(hdr, node->succedents[i]);
168 	node->dagHdr = hdr;
169 }
170 /******************************************************************************
171  *
172  * Create a DAG to do a read or write operation.
173  *
174  * create an array of dagLists, one list per parity stripe.
175  * return the lists in the array desc->dagArray.
176  *
177  * Normally, each list contains one dag for the entire stripe.  In some
178  * tricky cases, we break this into multiple dags, either one per stripe
179  * unit or one per block (sector).  When this occurs, these dags are returned
180  * as a linked list (dagList) which is executed sequentially (to preserve
181  * atomic parity updates in the stripe).
182  *
183  * dags which operate on independent parity goups (stripes) are returned in
184  * independent dagLists (distinct elements in desc->dagArray) and may be
185  * executed concurrently.
186  *
187  * Finally, if the SelectionFunc fails to create a dag for a block, we punt
188  * and return 1.
189  *
190  * The above process is performed in two phases:
191  *   1) create an array(s) of creation functions (eg stripeFuncs)
192  *   2) create dags and concatenate/merge to form the final dag.
193  *
194  * Because dag's are basic blocks (single entry, single exit, unconditional
195  * control flow, we can add the following optimizations (future work):
196  *   first-pass optimizer to allow max concurrency (need all data dependencies)
197  *   second-pass optimizer to eliminate common subexpressions (need true
198  *                         data dependencies)
199  *   third-pass optimizer to eliminate dead code (need true data dependencies)
200  *****************************************************************************/
201 
202 #define MAXNSTRIPES 50
203 
204 int
205 rf_SelectAlgorithm(desc, flags)
206 	RF_RaidAccessDesc_t *desc;
207 	RF_RaidAccessFlags_t flags;
208 {
209 	RF_AccessStripeMapHeader_t *asm_h = desc->asmap;
210 	RF_IoType_t type = desc->type;
211 	RF_Raid_t *raidPtr = desc->raidPtr;
212 	void   *bp = desc->bp;
213 
214 	RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
215 	RF_AccessStripeMap_t *asm_p;
216 	RF_DagHeader_t *dag_h = NULL, *tempdag_h, *lastdag_h;
217 	int     i, j, k;
218 	RF_VoidFuncPtr *stripeFuncs, normalStripeFuncs[MAXNSTRIPES];
219 	RF_AccessStripeMap_t *asm_up, *asm_bp;
220 	RF_AccessStripeMapHeader_t ***asmh_u, *endASMList;
221 	RF_AccessStripeMapHeader_t ***asmh_b;
222 	RF_VoidFuncPtr **stripeUnitFuncs, uFunc;
223 	RF_VoidFuncPtr **blockFuncs, bFunc;
224 	int     numStripesBailed = 0, cantCreateDAGs = RF_FALSE;
225 	int     numStripeUnitsBailed = 0;
226 	int     stripeNum, numUnitDags = 0, stripeUnitNum, numBlockDags = 0;
227 	RF_StripeNum_t numStripeUnits;
228 	RF_SectorNum_t numBlocks;
229 	RF_RaidAddr_t address;
230 	int     length;
231 	RF_PhysDiskAddr_t *physPtr;
232 	caddr_t buffer;
233 
234 	lastdag_h = NULL;
235 	asmh_u = asmh_b = NULL;
236 	stripeUnitFuncs = NULL;
237 	blockFuncs = NULL;
238 
239 	/* get an array of dag-function creation pointers, try to avoid
240 	 * calling malloc */
241 	if (asm_h->numStripes <= MAXNSTRIPES)
242 		stripeFuncs = normalStripeFuncs;
243 	else
244 		RF_Calloc(stripeFuncs, asm_h->numStripes, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
245 
246 	/* walk through the asm list once collecting information */
247 	/* attempt to find a single creation function for each stripe */
248 	desc->numStripes = 0;
249 	for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) {
250 		desc->numStripes++;
251 		(raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_p, &stripeFuncs[i]);
252 		/* check to see if we found a creation func for this stripe */
253 		if (stripeFuncs[i] == (RF_VoidFuncPtr) NULL) {
254 			/* could not find creation function for entire stripe
255 			 * so, let's see if we can find one for each stripe
256 			 * unit in the stripe */
257 
258 			if (numStripesBailed == 0) {
259 				/* one stripe map header for each stripe we
260 				 * bail on */
261 				RF_Malloc(asmh_u, sizeof(RF_AccessStripeMapHeader_t **) * asm_h->numStripes, (RF_AccessStripeMapHeader_t ***));
262 				/* create an array of ptrs to arrays of
263 				 * stripeFuncs */
264 				RF_Calloc(stripeUnitFuncs, asm_h->numStripes, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr **));
265 			}
266 			/* create an array of creation funcs (called
267 			 * stripeFuncs) for this stripe */
268 			numStripeUnits = asm_p->numStripeUnitsAccessed;
269 			RF_Calloc(stripeUnitFuncs[numStripesBailed], numStripeUnits, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
270 			RF_Malloc(asmh_u[numStripesBailed], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *), (RF_AccessStripeMapHeader_t **));
271 
272 			/* lookup array of stripeUnitFuncs for this stripe */
273 			for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
274 				/* remap for series of single stripe-unit
275 				 * accesses */
276 				address = physPtr->raidAddress;
277 				length = physPtr->numSector;
278 				buffer = physPtr->bufPtr;
279 
280 				asmh_u[numStripesBailed][j] = rf_MapAccess(raidPtr, address, length, buffer, RF_DONT_REMAP);
281 				asm_up = asmh_u[numStripesBailed][j]->stripeMap;
282 
283 				/* get the creation func for this stripe unit */
284 				(raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_up, &(stripeUnitFuncs[numStripesBailed][j]));
285 
286 				/* check to see if we found a creation func
287 				 * for this stripe unit */
288 				if (stripeUnitFuncs[numStripesBailed][j] == (RF_VoidFuncPtr) NULL) {
289 					/* could not find creation function
290 					 * for stripe unit so, let's see if we
291 					 * can find one for each block in the
292 					 * stripe unit */
293 					if (numStripeUnitsBailed == 0) {
294 						/* one stripe map header for
295 						 * each stripe unit we bail on */
296 						RF_Malloc(asmh_b, sizeof(RF_AccessStripeMapHeader_t **) * asm_h->numStripes * raidPtr->Layout.numDataCol, (RF_AccessStripeMapHeader_t ***));
297 						/* create an array of ptrs to
298 						 * arrays of blockFuncs */
299 						RF_Calloc(blockFuncs, asm_h->numStripes * raidPtr->Layout.numDataCol, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr **));
300 					}
301 					/* create an array of creation funcs
302 					 * (called blockFuncs) for this stripe
303 					 * unit */
304 					numBlocks = physPtr->numSector;
305 					numBlockDags += numBlocks;
306 					RF_Calloc(blockFuncs[numStripeUnitsBailed], numBlocks, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
307 					RF_Malloc(asmh_b[numStripeUnitsBailed], numBlocks * sizeof(RF_AccessStripeMapHeader_t *), (RF_AccessStripeMapHeader_t **));
308 
309 					/* lookup array of blockFuncs for this
310 					 * stripe unit */
311 					for (k = 0; k < numBlocks; k++) {
312 						/* remap for series of single
313 						 * stripe-unit accesses */
314 						address = physPtr->raidAddress + k;
315 						length = 1;
316 						buffer = physPtr->bufPtr + (k * (1 << raidPtr->logBytesPerSector));
317 
318 						asmh_b[numStripeUnitsBailed][k] = rf_MapAccess(raidPtr, address, length, buffer, RF_DONT_REMAP);
319 						asm_bp = asmh_b[numStripeUnitsBailed][k]->stripeMap;
320 
321 						/* get the creation func for
322 						 * this stripe unit */
323 						(raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_bp, &(blockFuncs[numStripeUnitsBailed][k]));
324 
325 						/* check to see if we found a
326 						 * creation func for this
327 						 * stripe unit */
328 						if (blockFuncs[numStripeUnitsBailed][k] == NULL)
329 							cantCreateDAGs = RF_TRUE;
330 					}
331 					numStripeUnitsBailed++;
332 				} else {
333 					numUnitDags++;
334 				}
335 			}
336 			RF_ASSERT(j == numStripeUnits);
337 			numStripesBailed++;
338 		}
339 	}
340 
341 	if (cantCreateDAGs) {
342 		/* free memory and punt */
343 		if (asm_h->numStripes > MAXNSTRIPES)
344 			RF_Free(stripeFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
345 		if (numStripesBailed > 0) {
346 			stripeNum = 0;
347 			for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++)
348 				if (stripeFuncs[i] == NULL) {
349 					numStripeUnits = asm_p->numStripeUnitsAccessed;
350 					for (j = 0; j < numStripeUnits; j++)
351 						rf_FreeAccessStripeMap(asmh_u[stripeNum][j]);
352 					RF_Free(asmh_u[stripeNum], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *));
353 					RF_Free(stripeUnitFuncs[stripeNum], numStripeUnits * sizeof(RF_VoidFuncPtr));
354 					stripeNum++;
355 				}
356 			RF_ASSERT(stripeNum == numStripesBailed);
357 			RF_Free(stripeUnitFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
358 			RF_Free(asmh_u, asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
359 		}
360 		return (1);
361 	} else {
362 		/* begin dag creation */
363 		stripeNum = 0;
364 		stripeUnitNum = 0;
365 
366 		/* create an array of dagLists and fill them in */
367 		RF_CallocAndAdd(desc->dagArray, desc->numStripes, sizeof(RF_DagList_t), (RF_DagList_t *), desc->cleanupList);
368 
369 		for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) {
370 			/* grab dag header for this stripe */
371 			dag_h = NULL;
372 			desc->dagArray[i].desc = desc;
373 
374 			if (stripeFuncs[i] == (RF_VoidFuncPtr) NULL) {
375 				/* use bailout functions for this stripe */
376 				for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
377 					uFunc = stripeUnitFuncs[stripeNum][j];
378 					if (uFunc == (RF_VoidFuncPtr) NULL) {
379 						/* use bailout functions for
380 						 * this stripe unit */
381 						for (k = 0; k < physPtr->numSector; k++) {
382 							/* create a dag for
383 							 * this block */
384 							InitHdrNode(&tempdag_h, raidPtr, rf_useMemChunks);
385 							desc->dagArray[i].numDags++;
386 							if (dag_h == NULL) {
387 								dag_h = tempdag_h;
388 							} else {
389 								lastdag_h->next = tempdag_h;
390 							}
391 							lastdag_h = tempdag_h;
392 
393 							bFunc = blockFuncs[stripeUnitNum][k];
394 							RF_ASSERT(bFunc);
395 							asm_bp = asmh_b[stripeUnitNum][k]->stripeMap;
396 							(*bFunc) (raidPtr, asm_bp, tempdag_h, bp, flags, tempdag_h->allocList);
397 						}
398 						stripeUnitNum++;
399 					} else {
400 						/* create a dag for this unit */
401 						InitHdrNode(&tempdag_h, raidPtr, rf_useMemChunks);
402 						desc->dagArray[i].numDags++;
403 						if (dag_h == NULL) {
404 							dag_h = tempdag_h;
405 						} else {
406 							lastdag_h->next = tempdag_h;
407 						}
408 						lastdag_h = tempdag_h;
409 
410 						asm_up = asmh_u[stripeNum][j]->stripeMap;
411 						(*uFunc) (raidPtr, asm_up, tempdag_h, bp, flags, tempdag_h->allocList);
412 					}
413 				}
414 				RF_ASSERT(j == asm_p->numStripeUnitsAccessed);
415 				/* merge linked bailout dag to existing dag
416 				 * collection */
417 				stripeNum++;
418 			} else {
419 				/* Create a dag for this parity stripe */
420 				InitHdrNode(&tempdag_h, raidPtr, rf_useMemChunks);
421 				desc->dagArray[i].numDags++;
422 				if (dag_h == NULL) {
423 					dag_h = tempdag_h;
424 				} else {
425 					lastdag_h->next = tempdag_h;
426 				}
427 				lastdag_h = tempdag_h;
428 
429 				(stripeFuncs[i]) (raidPtr, asm_p, tempdag_h, bp, flags, tempdag_h->allocList);
430 			}
431 			desc->dagArray[i].dags = dag_h;
432 		}
433 		RF_ASSERT(i == desc->numStripes);
434 
435 		/* free memory */
436 		if (asm_h->numStripes > MAXNSTRIPES)
437 			RF_Free(stripeFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
438 		if ((numStripesBailed > 0) || (numStripeUnitsBailed > 0)) {
439 			stripeNum = 0;
440 			stripeUnitNum = 0;
441 			if (dag_h->asmList) {
442 				endASMList = dag_h->asmList;
443 				while (endASMList->next)
444 					endASMList = endASMList->next;
445 			} else
446 				endASMList = NULL;
447 			/* walk through io, stripe by stripe */
448 			for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++)
449 				if (stripeFuncs[i] == NULL) {
450 					numStripeUnits = asm_p->numStripeUnitsAccessed;
451 					/* walk through stripe, stripe unit by
452 					 * stripe unit */
453 					for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
454 						if (stripeUnitFuncs[stripeNum][j] == NULL) {
455 							numBlocks = physPtr->numSector;
456 							/* walk through stripe
457 							 * unit, block by
458 							 * block */
459 							for (k = 0; k < numBlocks; k++)
460 								if (dag_h->asmList == NULL) {
461 									dag_h->asmList = asmh_b[stripeUnitNum][k];
462 									endASMList = dag_h->asmList;
463 								} else {
464 									endASMList->next = asmh_b[stripeUnitNum][k];
465 									endASMList = endASMList->next;
466 								}
467 							RF_Free(asmh_b[stripeUnitNum], numBlocks * sizeof(RF_AccessStripeMapHeader_t *));
468 							RF_Free(blockFuncs[stripeUnitNum], numBlocks * sizeof(RF_VoidFuncPtr));
469 							stripeUnitNum++;
470 						}
471 						if (dag_h->asmList == NULL) {
472 							dag_h->asmList = asmh_u[stripeNum][j];
473 							endASMList = dag_h->asmList;
474 						} else {
475 							endASMList->next = asmh_u[stripeNum][j];
476 							endASMList = endASMList->next;
477 						}
478 					}
479 					RF_Free(asmh_u[stripeNum], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *));
480 					RF_Free(stripeUnitFuncs[stripeNum], numStripeUnits * sizeof(RF_VoidFuncPtr));
481 					stripeNum++;
482 				}
483 			RF_ASSERT(stripeNum == numStripesBailed);
484 			RF_Free(stripeUnitFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
485 			RF_Free(asmh_u, asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
486 			if (numStripeUnitsBailed > 0) {
487 				RF_ASSERT(stripeUnitNum == numStripeUnitsBailed);
488 				RF_Free(blockFuncs, raidPtr->Layout.numDataCol * asm_h->numStripes * sizeof(RF_VoidFuncPtr));
489 				RF_Free(asmh_b, raidPtr->Layout.numDataCol * asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
490 			}
491 		}
492 		return (0);
493 	}
494 }
495