xref: /netbsd-src/sys/dev/pci/xmm7360.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 // vim: noet ts=8 sts=8 sw=8
2 /*
3  * Device driver for Intel XMM7360 LTE modems, eg. Fibocom L850-GL.
4  * Written by James Wah
5  * james@laird-wah.net
6  *
7  * Development of this driver was supported by genua GmbH
8  *
9  * Copyright (c) 2020 genua GmbH <info@genua.de>
10  * Copyright (c) 2020 James Wah <james@laird-wah.net>
11  *
12  * The OpenBSD and NetBSD support was written by Jaromir Dolecek for
13  * Moritz Systems Technology Company Sp. z o.o.
14  *
15  * Permission to use, copy, modify, and/or distribute this software for any
16  * purpose with or without fee is hereby granted, provided that the above
17  * copyright notice and this permission notice appear in all copies.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
20  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES ON
21  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
22  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGE
23  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
24  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
25  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
26  */
27 
28 #ifdef __linux__
29 
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/delay.h>
36 #include <linux/uaccess.h>
37 #include <linux/cdev.h>
38 #include <linux/wait.h>
39 #include <linux/tty.h>
40 #include <linux/tty_flip.h>
41 #include <linux/poll.h>
42 #include <linux/skbuff.h>
43 #include <linux/netdevice.h>
44 #include <linux/if.h>
45 #include <linux/if_arp.h>
46 #include <net/rtnetlink.h>
47 #include <linux/hrtimer.h>
48 #include <linux/workqueue.h>
49 
50 MODULE_LICENSE("Dual BSD/GPL");
51 
52 static const struct pci_device_id xmm7360_ids[] = {
53 	{ PCI_DEVICE(0x8086, 0x7360), },
54 	{ 0, }
55 };
56 MODULE_DEVICE_TABLE(pci, xmm7360_ids);
57 
58 /* Actually this ioctl not used for xmm0/rpc device by python code */
59 #define XMM7360_IOCTL_GET_PAGE_SIZE _IOC(_IOC_READ, 'x', 0xc0, sizeof(u32))
60 
61 #define xmm7360_os_msleep(msec)		msleep(msec)
62 
63 #define __unused			/* nothing */
64 
65 #endif
66 
67 #if defined(__OpenBSD__) || defined(__NetBSD__)
68 
69 #ifdef __OpenBSD__
70 #include "bpfilter.h"
71 #endif
72 #ifdef __NetBSD__
73 #include "opt_inet.h"
74 #include "opt_gateway.h"
75 
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: xmm7360.c,v 1.7 2021/04/24 23:36:57 thorpej Exp $");
78 #endif
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/sockio.h>
83 #include <sys/mbuf.h>
84 #include <sys/kernel.h>
85 #include <sys/device.h>
86 #include <sys/socket.h>
87 #include <sys/mutex.h>
88 #include <sys/tty.h>
89 #include <sys/conf.h>
90 #include <sys/kthread.h>
91 #include <sys/poll.h>
92 #include <sys/fcntl.h>		/* for FREAD/FWRITE */
93 #include <sys/vnode.h>
94 #include <uvm/uvm_param.h>
95 
96 #include <dev/pci/pcireg.h>
97 #include <dev/pci/pcivar.h>
98 #include <dev/pci/pcidevs.h>
99 
100 #include <net/if.h>
101 #include <net/if_types.h>
102 
103 #include <netinet/in.h>
104 #include <netinet/ip.h>
105 #include <netinet/ip6.h>
106 
107 #ifdef __OpenBSD__
108 #include <netinet/if_ether.h>
109 #include <sys/timeout.h>
110 #include <machine/bus.h>
111 #endif
112 
113 #if NBPFILTER > 0 || defined(__NetBSD__)
114 #include <net/bpf.h>
115 #endif
116 
117 #ifdef __NetBSD__
118 #include "ioconf.h"
119 #include <sys/cpu.h>
120 #endif
121 
122 #ifdef INET
123 #include <netinet/in_var.h>
124 #endif
125 #ifdef INET6
126 #include <netinet6/in6_var.h>
127 #endif
128 
129 typedef uint8_t u8;
130 typedef uint16_t u16;
131 typedef uint32_t u32;
132 typedef bus_addr_t dma_addr_t;
133 typedef void * wait_queue_head_t;	/* just address for tsleep() */
134 
135 #define WWAN_BAR0	PCI_MAPREG_START
136 #define WWAN_BAR1	(PCI_MAPREG_START + 4)
137 #define WWAN_BAR2	(PCI_MAPREG_START + 8)
138 
139 #define BUG_ON(never_true)	KASSERT(!(never_true))
140 #define WARN_ON(x)		/* nothing */
141 
142 #ifdef __OpenBSD__
143 typedef struct mutex spinlock_t;
144 #define dev_err(devp, fmt, ...)		\
145 	printf("%s: " fmt, (devp)->dv_xname, ##__VA_ARGS__)
146 #define dev_info(devp, fmt, ...)	\
147 	printf("%s: " fmt, (devp)->dv_xname, ##__VA_ARGS__)
148 #define	kzalloc(size, flags)	malloc(size, M_DEVBUF, M_WAITOK | M_ZERO)
149 #define kfree(addr)		free(addr, M_DEVBUF, 0)
150 #define mutex_init(lock)	mtx_init(lock, IPL_TTY)
151 #define mutex_lock(lock)	mtx_enter(lock)
152 #define mutex_unlock(lock)	mtx_leave(lock)
153 /* In OpenBSD every mutex is spin mutex, and it must not be held on sleep */
154 #define spin_lock_irqsave(lock, flags)		mtx_enter(lock)
155 #define spin_unlock_irqrestore(lock, flags)	mtx_leave(lock)
156 
157 /* Compat defines for NetBSD API */
158 #define curlwp			curproc
159 #define LINESW(tp)				(linesw[(tp)->t_line])
160 #define selnotify(sel, band, note)		selwakeup(sel)
161 #define cfdata_t				void *
162 #define device_lookup_private(cdp, unit)	\
163 	(unit < (*cdp).cd_ndevs) ? (*cdp).cd_devs[unit] : NULL
164 #define IFQ_SET_READY(ifq)			/* nothing */
165 #define device_private(devt)			(void *)devt;
166 #define if_deferred_start_init(ifp, arg)	/* nothing */
167 #define IF_OUTPUT_CONST				/* nothing */
168 #define tty_lock()				int s = spltty()
169 #define tty_unlock()				splx(s)
170 #define tty_locked()				/* nothing */
171 #define pmf_device_deregister(dev)		/* nothing */
172 #if NBPFILTER > 0
173 #define BPF_MTAP_OUT(ifp, m)						\
174                 if (ifp->if_bpf) {					\
175                         bpf_mtap_af(ifp->if_bpf, m->m_pkthdr.ph_family,	\
176 			    m, BPF_DIRECTION_OUT);			\
177 		}
178 #else
179 #define BPF_MTAP_OUT(ifp, m)			/* nothing */
180 #endif
181 
182 /* Copied from NetBSD <lib/libkern/libkern.h> */
183 #define __validate_container_of(PTR, TYPE, FIELD)			\
184     (0 * sizeof((PTR) - &((TYPE *)(((char *)(PTR)) -			\
185     offsetof(TYPE, FIELD)))->FIELD))
186 #define	container_of(PTR, TYPE, FIELD)					\
187     ((TYPE *)(((char *)(PTR)) - offsetof(TYPE, FIELD))			\
188 	+ __validate_container_of(PTR, TYPE, FIELD))
189 
190 /* Copied from NetBSD <sys/cdefs.h> */
191 #define __UNVOLATILE(a)		((void *)(unsigned long)(volatile void *)(a))
192 
193 #if OpenBSD <= 201911
194 /* Backward compat with OpenBSD 6.6 */
195 #define klist_insert(klist, kn)		\
196 		SLIST_INSERT_HEAD(klist, kn, kn_selnext)
197 #define klist_remove(klist, kn)		\
198 		SLIST_REMOVE(klist, kn, knote, kn_selnext)
199 #define XMM_KQ_ISFD_INITIALIZER		.f_isfd = 1
200 #else
201 #define XMM_KQ_ISFD_INITIALIZER		.f_flags = FILTEROP_ISFD
202 #endif /* OpenBSD <= 201911 */
203 
204 #endif
205 
206 #ifdef __NetBSD__
207 typedef struct kmutex spinlock_t;
208 #define dev_err			aprint_error_dev
209 #define dev_info		aprint_normal_dev
210 #define mutex			kmutex
211 #define kzalloc(size, flags)	malloc(size, M_DEVBUF, M_WAITOK | M_ZERO)
212 #define kfree(addr)		free(addr, M_DEVBUF)
213 #define mutex_init(lock)	mutex_init(lock, MUTEX_DEFAULT, IPL_TTY)
214 #define mutex_lock(lock)	mutex_enter(lock)
215 #define mutex_unlock(lock)	mutex_exit(lock)
216 #define spin_lock_irqsave(lock, flags)	mutex_enter(lock)
217 #define spin_unlock_irqrestore(lock, flags)	mutex_exit(lock)
218 
219 /* Compat defines with OpenBSD API */
220 #define caddr_t			void *
221 #define proc			lwp
222 #define LINESW(tp)		(*tp->t_linesw)
223 #define ttymalloc(speed)	tty_alloc()
224 #define ttyfree(tp)		tty_free(tp)
225 #define l_open(dev, tp, p)	l_open(dev, tp)
226 #define l_close(tp, flag, p)	l_close(tp, flag)
227 #define ttkqfilter(dev, kn)	ttykqfilter(dev, kn)
228 #define msleep(ident, lock, prio, wmesg, timo) \
229 		mtsleep(ident, prio, wmesg, timo, lock)
230 #define pci_mapreg_map(pa, reg, type, busfl, tp, hp, bp, szp, maxsize) \
231 	pci_mapreg_map(pa, reg, type, busfl, tp, hp, bp, szp)
232 #define pci_intr_establish(pc, ih, lvl, func, arg, name) \
233 	pci_intr_establish_xname(pc, ih, lvl, func, arg, name)
234 #define suser(l)					\
235 	kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp)
236 #define kthread_create(func, arg, lwpp, name)		\
237 	kthread_create(0, 0, NULL, func, arg, lwpp, "%s", name)
238 #define MUTEX_ASSERT_LOCKED(lock)	KASSERT(mutex_owned(lock))
239 #define MCLGETI(m, how, m0, sz)		MCLGET(m, how)
240 #define m_copyback(m, off, sz, buf, how)		\
241 					m_copyback(m, off, sz, buf)
242 #define ifq_deq_begin(ifq)		({		\
243 		struct mbuf *m0;			\
244 		IFQ_DEQUEUE(ifq, m0);			\
245 		m0;					\
246 })
247 #define ifq_deq_rollback(ifq, m)	m_freem(m)
248 #define ifq_deq_commit(ifq, m)		/* nothing to do */
249 #define ifq_is_oactive(ifq)		true	/* always restart queue */
250 #define ifq_clr_oactive(ifq)		/* nothing to do */
251 #define ifq_empty(ifq)			IFQ_IS_EMPTY(ifq)
252 #define ifq_purge(ifq)			IF_PURGE(ifq)
253 #define if_enqueue(ifp, m)		ifq_enqueue(ifp, m)
254 #define if_ih_insert(ifp, func, arg)	(ifp)->_if_input = (func)
255 #define if_ih_remove(ifp, func, arg)	/* nothing to do */
256 #define if_hardmtu			if_mtu
257 #define IF_OUTPUT_CONST			const
258 #define si_note				sel_klist
259 #define klist_insert(klist, kn)		\
260 		SLIST_INSERT_HEAD(klist, kn, kn_selnext)
261 #define klist_remove(klist, kn)		\
262 		SLIST_REMOVE(klist, kn, knote, kn_selnext)
263 #define XMM_KQ_ISFD_INITIALIZER		.f_isfd = 1
264 #define tty_lock()			mutex_spin_enter(&tty_lock)
265 #define tty_unlock()			mutex_spin_exit(&tty_lock)
266 #define tty_locked()			KASSERT(mutex_owned(&tty_lock))
267 #define bpfattach(bpf, ifp, dlt, sz)	bpf_attach(ifp, dlt, sz)
268 #define NBPFILTER			1
269 #define BPF_MTAP_OUT(ifp, m)		bpf_mtap(ifp, m, BPF_D_OUT)
270 #endif /* __NetBSD__ */
271 
272 #define __user				/* nothing */
273 #define copy_from_user(kbuf, userbuf, sz)		\
274 ({							\
275 	int __ret = 0;					\
276 	int error = copyin(userbuf, kbuf, sz);		\
277 	if (error != 0)					\
278 		return -error;				\
279 	__ret;						\
280 })
281 #define copy_to_user(kbuf, userbuf, sz)			\
282 ({							\
283 	int __ret = 0;					\
284 	int error = copyout(userbuf, kbuf, sz);		\
285 	if (error != 0)					\
286 		return -error;				\
287 	__ret;						\
288 })
289 #define xmm7360_os_msleep(msec)					\
290 	do {							\
291 		KASSERT(!cold);					\
292 		tsleep(xmm, 0, "wwancsl", msec * hz / 1000);	\
293 	} while (0)
294 
295 static void *dma_alloc_coherent(struct device *, size_t, dma_addr_t *, int);
296 static void dma_free_coherent(struct device *, size_t, volatile void *, dma_addr_t);
297 
298 #ifndef PCI_PRODUCT_INTEL_XMM7360
299 #define PCI_PRODUCT_INTEL_XMM7360	0x7360
300 #endif
301 
302 #define init_waitqueue_head(wqp)	*(wqp) = (wqp)
303 #define wait_event_interruptible(wq, cond)				\
304 ({									\
305 	int __ret = 1;							\
306 	while (!(cond)) {						\
307 		KASSERT(!cold);						\
308 		int error = tsleep(wq, PCATCH, "xmmwq", 0);		\
309 		if (error) {						\
310 			__ret = (cond) ? 1				\
311 			    : ((error != ERESTART) ? -error : error);	\
312 			break;						\
313 		}							\
314 	}								\
315 	__ret;								\
316 })
317 
318 #define msecs_to_jiffies(msec)						\
319 ({									\
320 	KASSERT(hz < 1000);						\
321 	KASSERT(msec > (1000 / hz));					\
322 	msec * hz / 1000;						\
323 })
324 
325 #define wait_event_interruptible_timeout(wq, cond, jiffies)		\
326 ({									\
327 	int __ret = 1;							\
328 	while (!(cond)) {						\
329 		if (cold) {						\
330 			for (int loop = 0; loop < 10; loop++) {		\
331 				delay(jiffies * 1000 * 1000 / hz / 10);	\
332 				if (cond)				\
333 					break;				\
334 			}						\
335 			__ret = (cond) ? 1 : 0;				\
336 			break;						\
337 		}							\
338 		int error = tsleep(wq, PCATCH, "xmmwq", jiffies);	\
339 		if (error) {						\
340 			__ret = (cond) ? 1				\
341 			    : ((error != ERESTART) ? -error : error);	\
342 			break;						\
343 		}							\
344 	}								\
345 	__ret;								\
346 })
347 
348 #define GFP_KERNEL			0
349 
350 #endif /* __OpenBSD__ || __NetBSD__ */
351 
352 /*
353  * The XMM7360 communicates via DMA ring buffers. It has one
354  * command ring, plus sixteen transfer descriptor (TD)
355  * rings. The command ring is mainly used to configure and
356  * deconfigure the TD rings.
357  *
358  * The 16 TD rings form 8 queue pairs (QP). For example, QP
359  * 0 uses ring 0 for host->device, and ring 1 for
360  * device->host.
361  *
362  * The known queue pair functions are as follows:
363  *
364  * 0:	Mux (Raw IP packets, amongst others)
365  * 1:	RPC (funky command protocol based in part on ASN.1 BER)
366  * 2:	AT trace? port; does not accept commands after init
367  * 4:	AT command port
368  * 7:	AT command port
369  *
370  */
371 
372 /* Command ring, which is used to configure the queue pairs */
373 struct cmd_ring_entry {
374 	dma_addr_t ptr;
375 	u16 len;
376 	u8 parm;
377 	u8 cmd;
378 	u32 extra;
379 	u32 unk, flags;
380 };
381 
382 #define CMD_RING_OPEN	1
383 #define CMD_RING_CLOSE	2
384 #define CMD_RING_FLUSH	3
385 #define CMD_WAKEUP	4
386 
387 #define CMD_FLAG_DONE	1
388 #define CMD_FLAG_READY	2
389 
390 /* Transfer descriptors used on the Tx and Rx rings of each queue pair */
391 struct td_ring_entry {
392 	dma_addr_t addr;
393 	u16 length;
394 	u16 flags;
395 	u32 unk;
396 };
397 
398 #define TD_FLAG_COMPLETE 0x200
399 
400 /* Root configuration object. This contains pointers to all of the control
401  * structures that the modem will interact with.
402  */
403 struct control {
404 	dma_addr_t status;
405 	dma_addr_t s_wptr, s_rptr;
406 	dma_addr_t c_wptr, c_rptr;
407 	dma_addr_t c_ring;
408 	u16 c_ring_size;
409 	u16 unk;
410 };
411 
412 struct status {
413 	u32 code;
414 	u32 mode;
415 	u32 asleep;
416 	u32 pad;
417 };
418 
419 #define CMD_RING_SIZE 0x80
420 
421 /* All of the control structures can be packed into one page of RAM. */
422 struct control_page {
423 	struct control ctl;
424 	// Status words - written by modem.
425 	volatile struct status status;
426 	// Slave ring write/read pointers.
427 	volatile u32 s_wptr[16], s_rptr[16];
428 	// Command ring write/read pointers.
429 	volatile u32 c_wptr, c_rptr;
430 	// Command ring entries.
431 	volatile struct cmd_ring_entry c_ring[CMD_RING_SIZE];
432 };
433 
434 #define BAR0_MODE	0x0c
435 #define BAR0_DOORBELL	0x04
436 #define BAR0_WAKEUP	0x14
437 
438 #define DOORBELL_TD	0
439 #define DOORBELL_CMD	1
440 
441 #define BAR2_STATUS	0x00
442 #define BAR2_MODE	0x18
443 #define BAR2_CONTROL	0x19
444 #define BAR2_CONTROLH	0x1a
445 
446 #define BAR2_BLANK0	0x1b
447 #define BAR2_BLANK1	0x1c
448 #define BAR2_BLANK2	0x1d
449 #define BAR2_BLANK3	0x1e
450 
451 #define XMM_MODEM_BOOTING	0xfeedb007
452 #define XMM_MODEM_READY		0x600df00d
453 
454 #define XMM_TAG_ACBH		0x41434248	// 'ACBH'
455 #define XMM_TAG_CMDH		0x434d4448	// 'CMDH'
456 #define XMM_TAG_ADBH		0x41444248	// 'ADBH'
457 #define XMM_TAG_ADTH		0x41445448	// 'ADTH'
458 
459 /* There are 16 TD rings: a Tx and Rx ring for each queue pair */
460 struct td_ring {
461 	u8 depth;
462 	u8 last_handled;
463 	u16 page_size;
464 
465 	struct td_ring_entry *tds;
466 	dma_addr_t tds_phys;
467 
468 	// One page of page_size per td
469 	void **pages;
470 	dma_addr_t *pages_phys;
471 };
472 
473 #define TD_MAX_PAGE_SIZE 16384
474 
475 struct queue_pair {
476 	struct xmm_dev *xmm;
477 	u8 depth;
478 	u16 page_size;
479 	int tty_index;
480 	int tty_needs_wake;
481 	struct device dev;
482 	int num;
483 	int open;
484 	struct mutex lock;
485 	unsigned char user_buf[TD_MAX_PAGE_SIZE];
486 	wait_queue_head_t wq;
487 
488 #ifdef __linux__
489 	struct cdev cdev;
490 	struct tty_port port;
491 #endif
492 #if defined(__OpenBSD__) || defined(__NetBSD__)
493 	struct selinfo selr, selw;
494 #endif
495 };
496 
497 #define XMM_QP_COUNT	8
498 
499 struct xmm_dev {
500 	struct device *dev;
501 
502 	volatile uint32_t *bar0, *bar2;
503 
504 	volatile struct control_page *cp;
505 	dma_addr_t cp_phys;
506 
507 	struct td_ring td_ring[2 * XMM_QP_COUNT];
508 
509 	struct queue_pair qp[XMM_QP_COUNT];
510 
511 	struct xmm_net *net;
512 	struct net_device *netdev;
513 
514 	int error;
515 	int card_num;
516 	int num_ttys;
517 	wait_queue_head_t wq;
518 
519 #ifdef __linux__
520 	struct pci_dev *pci_dev;
521 
522 	int irq;
523 
524 	struct work_struct init_work;	// XXX work not actually scheduled
525 #endif
526 };
527 
528 struct mux_bounds {
529 	uint32_t offset;
530 	uint32_t length;
531 };
532 
533 struct mux_first_header {
534 	uint32_t tag;
535 	uint16_t unknown;
536 	uint16_t sequence;
537 	uint16_t length;
538 	uint16_t extra;
539 	uint16_t next;
540 	uint16_t pad;
541 };
542 
543 struct mux_next_header {
544 	uint32_t tag;
545 	uint16_t length;
546 	uint16_t extra;
547 	uint16_t next;
548 	uint16_t pad;
549 };
550 
551 #define MUX_MAX_PACKETS	64
552 
553 struct mux_frame {
554 	int n_packets, n_bytes, max_size, sequence;
555 	uint16_t *last_tag_length, *last_tag_next;
556 	struct mux_bounds bounds[MUX_MAX_PACKETS];
557 	uint8_t data[TD_MAX_PAGE_SIZE];
558 };
559 
560 struct xmm_net {
561 	struct xmm_dev *xmm;
562 	struct queue_pair *qp;
563 	int channel;
564 
565 #ifdef __linux__
566 	struct sk_buff_head queue;
567 	struct hrtimer deadline;
568 #endif
569 	int queued_packets, queued_bytes;
570 
571 	int sequence;
572 	spinlock_t lock;
573 	struct mux_frame frame;
574 };
575 
576 static void xmm7360_os_handle_net_frame(struct xmm_dev *, const u8 *, size_t);
577 static void xmm7360_os_handle_net_dequeue(struct xmm_net *, struct mux_frame *);
578 static void xmm7360_os_handle_net_txwake(struct xmm_net *);
579 static void xmm7360_os_handle_tty_idata(struct queue_pair *, const u8 *, size_t);
580 
581 static void xmm7360_poll(struct xmm_dev *xmm)
582 {
583 	if (xmm->cp->status.code == 0xbadc0ded) {
584 		dev_err(xmm->dev, "crashed but dma up\n");
585 		xmm->error = -ENODEV;
586 	}
587 	if (xmm->bar2[BAR2_STATUS] != XMM_MODEM_READY) {
588 		dev_err(xmm->dev, "bad status %x\n",xmm->bar2[BAR2_STATUS]);
589 		xmm->error = -ENODEV;
590 	}
591 }
592 
593 static void xmm7360_ding(struct xmm_dev *xmm, int bell)
594 {
595 	if (xmm->cp->status.asleep)
596 		xmm->bar0[BAR0_WAKEUP] = 1;
597 	xmm->bar0[BAR0_DOORBELL] = bell;
598 	xmm7360_poll(xmm);
599 }
600 
601 static int xmm7360_cmd_ring_wait(struct xmm_dev *xmm)
602 {
603 	// Wait for all commands to complete
604 	// XXX locking?
605 	int ret = wait_event_interruptible_timeout(xmm->wq, (xmm->cp->c_rptr == xmm->cp->c_wptr) || xmm->error, msecs_to_jiffies(1000));
606 	if (ret == 0)
607 		return -ETIMEDOUT;
608 	if (ret < 0)
609 		return ret;
610 	return xmm->error;
611 }
612 
613 static int xmm7360_cmd_ring_execute(struct xmm_dev *xmm, u8 cmd, u8 parm, u16 len, dma_addr_t ptr, u32 extra)
614 {
615 	u8 wptr = xmm->cp->c_wptr;
616 	u8 new_wptr = (wptr + 1) % CMD_RING_SIZE;
617 	if (xmm->error)
618 		return xmm->error;
619 	if (new_wptr == xmm->cp->c_rptr)	// ring full
620 		return -EAGAIN;
621 
622 	xmm->cp->c_ring[wptr].ptr = ptr;
623 	xmm->cp->c_ring[wptr].cmd = cmd;
624 	xmm->cp->c_ring[wptr].parm = parm;
625 	xmm->cp->c_ring[wptr].len = len;
626 	xmm->cp->c_ring[wptr].extra = extra;
627 	xmm->cp->c_ring[wptr].unk = 0;
628 	xmm->cp->c_ring[wptr].flags = CMD_FLAG_READY;
629 
630 	xmm->cp->c_wptr = new_wptr;
631 
632 	xmm7360_ding(xmm, DOORBELL_CMD);
633 	return xmm7360_cmd_ring_wait(xmm);
634 }
635 
636 static int xmm7360_cmd_ring_init(struct xmm_dev *xmm) {
637 	int timeout;
638 	int ret;
639 
640 	xmm->cp = dma_alloc_coherent(xmm->dev, sizeof(struct control_page), &xmm->cp_phys, GFP_KERNEL);
641 	BUG_ON(xmm->cp == NULL);
642 
643 	xmm->cp->ctl.status = xmm->cp_phys + offsetof(struct control_page, status);
644 	xmm->cp->ctl.s_wptr = xmm->cp_phys + offsetof(struct control_page, s_wptr);
645 	xmm->cp->ctl.s_rptr = xmm->cp_phys + offsetof(struct control_page, s_rptr);
646 	xmm->cp->ctl.c_wptr = xmm->cp_phys + offsetof(struct control_page, c_wptr);
647 	xmm->cp->ctl.c_rptr = xmm->cp_phys + offsetof(struct control_page, c_rptr);
648 	xmm->cp->ctl.c_ring = xmm->cp_phys + offsetof(struct control_page, c_ring);
649 	xmm->cp->ctl.c_ring_size = CMD_RING_SIZE;
650 
651 	xmm->bar2[BAR2_CONTROL] = xmm->cp_phys;
652 	xmm->bar2[BAR2_CONTROLH] = xmm->cp_phys >> 32;
653 
654 	xmm->bar0[BAR0_MODE] = 1;
655 
656 	timeout = 100;
657 	while (xmm->bar2[BAR2_MODE] == 0 && --timeout)
658 		xmm7360_os_msleep(10);
659 
660 	if (!timeout)
661 		return -ETIMEDOUT;
662 
663 	xmm->bar2[BAR2_BLANK0] = 0;
664 	xmm->bar2[BAR2_BLANK1] = 0;
665 	xmm->bar2[BAR2_BLANK2] = 0;
666 	xmm->bar2[BAR2_BLANK3] = 0;
667 
668 	xmm->bar0[BAR0_MODE] = 2;	// enable intrs?
669 
670 	timeout = 100;
671 	while (xmm->bar2[BAR2_MODE] != 2 && --timeout)
672 		xmm7360_os_msleep(10);
673 
674 	if (!timeout)
675 		return -ETIMEDOUT;
676 
677 	// enable going to sleep when idle
678 	ret = xmm7360_cmd_ring_execute(xmm, CMD_WAKEUP, 0, 1, 0, 0);
679 	if (ret)
680 		return ret;
681 
682 	return 0;
683 }
684 
685 static void xmm7360_cmd_ring_free(struct xmm_dev *xmm) {
686 	if (xmm->bar0)
687 		xmm->bar0[BAR0_MODE] = 0;
688 	if (xmm->cp)
689 		dma_free_coherent(xmm->dev, sizeof(struct control_page), (volatile void *)xmm->cp, xmm->cp_phys);
690 	xmm->cp = NULL;
691 	return;
692 }
693 
694 static void xmm7360_td_ring_activate(struct xmm_dev *xmm, u8 ring_id)
695 {
696 	struct td_ring *ring = &xmm->td_ring[ring_id];
697 	int ret __diagused;
698 
699 	xmm->cp->s_rptr[ring_id] = xmm->cp->s_wptr[ring_id] = 0;
700 	ring->last_handled = 0;
701 	ret = xmm7360_cmd_ring_execute(xmm, CMD_RING_OPEN, ring_id, ring->depth, ring->tds_phys, 0x60);
702 	BUG_ON(ret);
703 }
704 
705 static void xmm7360_td_ring_create(struct xmm_dev *xmm, u8 ring_id, u8 depth, u16 page_size)
706 {
707 	struct td_ring *ring = &xmm->td_ring[ring_id];
708 	int i;
709 
710 	BUG_ON(ring->depth);
711 	BUG_ON(depth & (depth-1));
712 	BUG_ON(page_size > TD_MAX_PAGE_SIZE);
713 
714 	memset(ring, 0, sizeof(struct td_ring));
715 	ring->depth = depth;
716 	ring->page_size = page_size;
717 	ring->tds = dma_alloc_coherent(xmm->dev, sizeof(struct td_ring_entry)*depth, &ring->tds_phys, GFP_KERNEL);
718 
719 	ring->pages = kzalloc(sizeof(void*)*depth, GFP_KERNEL);
720 	ring->pages_phys = kzalloc(sizeof(dma_addr_t)*depth, GFP_KERNEL);
721 
722 	for (i=0; i<depth; i++) {
723 		ring->pages[i] = dma_alloc_coherent(xmm->dev, ring->page_size, &ring->pages_phys[i], GFP_KERNEL);
724 		ring->tds[i].addr = ring->pages_phys[i];
725 	}
726 
727 	xmm7360_td_ring_activate(xmm, ring_id);
728 }
729 
730 static void xmm7360_td_ring_deactivate(struct xmm_dev *xmm, u8 ring_id)
731 {
732 	xmm7360_cmd_ring_execute(xmm, CMD_RING_CLOSE, ring_id, 0, 0, 0);
733 }
734 
735 static void xmm7360_td_ring_destroy(struct xmm_dev *xmm, u8 ring_id)
736 {
737 	struct td_ring *ring = &xmm->td_ring[ring_id];
738 	int i, depth=ring->depth;
739 
740 	if (!depth) {
741 		WARN_ON(1);
742 		dev_err(xmm->dev, "Tried destroying empty ring!\n");
743 		return;
744 	}
745 
746 	xmm7360_td_ring_deactivate(xmm, ring_id);
747 
748 	for (i=0; i<depth; i++) {
749 		dma_free_coherent(xmm->dev, ring->page_size, ring->pages[i], ring->pages_phys[i]);
750 	}
751 
752 	kfree(ring->pages_phys);
753 	kfree(ring->pages);
754 
755 	dma_free_coherent(xmm->dev, sizeof(struct td_ring_entry)*depth, ring->tds, ring->tds_phys);
756 
757 	ring->depth = 0;
758 }
759 
760 static void xmm7360_td_ring_write(struct xmm_dev *xmm, u8 ring_id, const void *buf, int len)
761 {
762 	struct td_ring *ring = &xmm->td_ring[ring_id];
763 	u8 wptr = xmm->cp->s_wptr[ring_id];
764 
765 	BUG_ON(!ring->depth);
766 	BUG_ON(len > ring->page_size);
767 	BUG_ON(ring_id & 1);
768 
769 	memcpy(ring->pages[wptr], buf, len);
770 	ring->tds[wptr].length = len;
771 	ring->tds[wptr].flags = 0;
772 	ring->tds[wptr].unk = 0;
773 
774 	wptr = (wptr + 1) & (ring->depth - 1);
775 	BUG_ON(wptr == xmm->cp->s_rptr[ring_id]);
776 
777 	xmm->cp->s_wptr[ring_id] = wptr;
778 }
779 
780 static int xmm7360_td_ring_full(struct xmm_dev *xmm, u8 ring_id)
781 {
782 	struct td_ring *ring = &xmm->td_ring[ring_id];
783 	u8 wptr = xmm->cp->s_wptr[ring_id];
784 	wptr = (wptr + 1) & (ring->depth - 1);
785 	return wptr == xmm->cp->s_rptr[ring_id];
786 }
787 
788 static void xmm7360_td_ring_read(struct xmm_dev *xmm, u8 ring_id)
789 {
790 	struct td_ring *ring = &xmm->td_ring[ring_id];
791 	u8 wptr = xmm->cp->s_wptr[ring_id];
792 
793 	if (!ring->depth) {
794 		dev_err(xmm->dev, "read on disabled ring\n");
795 		WARN_ON(1);
796 		return;
797 	}
798 	if (!(ring_id & 1)) {
799 		dev_err(xmm->dev, "read on write ring\n");
800 		WARN_ON(1);
801 		return;
802 	}
803 
804 	ring->tds[wptr].length = ring->page_size;
805 	ring->tds[wptr].flags = 0;
806 	ring->tds[wptr].unk = 0;
807 
808 	wptr = (wptr + 1) & (ring->depth - 1);
809 	BUG_ON(wptr == xmm->cp->s_rptr[ring_id]);
810 
811 	xmm->cp->s_wptr[ring_id] = wptr;
812 }
813 
814 static struct queue_pair * xmm7360_init_qp(struct xmm_dev *xmm, int num, u8 depth, u16 page_size)
815 {
816 	struct queue_pair *qp = &xmm->qp[num];
817 
818 	qp->xmm = xmm;
819 	qp->num = num;
820 	qp->open = 0;
821 	qp->depth = depth;
822 	qp->page_size = page_size;
823 
824 	mutex_init(&qp->lock);
825 	init_waitqueue_head(&qp->wq);
826 	return qp;
827 }
828 
829 static void xmm7360_qp_arm(struct xmm_dev *xmm, struct queue_pair *qp)
830 {
831 	while (!xmm7360_td_ring_full(xmm, qp->num*2+1))
832 		xmm7360_td_ring_read(xmm, qp->num*2+1);
833 	xmm7360_ding(xmm, DOORBELL_TD);
834 }
835 
836 static int xmm7360_qp_start(struct queue_pair *qp)
837 {
838 	struct xmm_dev *xmm = qp->xmm;
839 	int ret;
840 
841 	mutex_lock(&qp->lock);
842 	if (qp->open) {
843 		ret = -EBUSY;
844 	} else {
845 		ret = 0;
846 		qp->open = 1;
847 	}
848 	mutex_unlock(&qp->lock);
849 
850 	if (ret == 0) {
851 		xmm7360_td_ring_create(xmm, qp->num*2, qp->depth, qp->page_size);
852 		xmm7360_td_ring_create(xmm, qp->num*2+1, qp->depth, qp->page_size);
853 		xmm7360_qp_arm(xmm, qp);
854 	}
855 
856 	return ret;
857 }
858 
859 static void xmm7360_qp_resume(struct queue_pair *qp)
860 {
861 	struct xmm_dev *xmm = qp->xmm;
862 
863 	BUG_ON(!qp->open);
864 	xmm7360_td_ring_activate(xmm, qp->num*2);
865 	xmm7360_td_ring_activate(xmm, qp->num*2+1);
866 	xmm7360_qp_arm(xmm, qp);
867 }
868 
869 static int xmm7360_qp_stop(struct queue_pair *qp)
870 {
871 	struct xmm_dev *xmm = qp->xmm;
872 	int ret = 0;
873 
874 	mutex_lock(&qp->lock);
875 	if (!qp->open) {
876 		ret = -ENODEV;
877 	} else {
878 		ret = 0;
879 		/* still holding qp->open to prevent concurrent access */
880 	}
881 	mutex_unlock(&qp->lock);
882 
883 	if (ret == 0) {
884 		xmm7360_td_ring_destroy(xmm, qp->num*2);
885 		xmm7360_td_ring_destroy(xmm, qp->num*2+1);
886 
887 		mutex_lock(&qp->lock);
888 		qp->open = 0;
889 		mutex_unlock(&qp->lock);
890 	}
891 
892 	return ret;
893 }
894 
895 static void xmm7360_qp_suspend(struct queue_pair *qp)
896 {
897 	struct xmm_dev *xmm = qp->xmm;
898 
899 	BUG_ON(!qp->open);
900 	xmm7360_td_ring_deactivate(xmm, qp->num*2);
901 }
902 
903 static int xmm7360_qp_can_write(struct queue_pair *qp)
904 {
905 	struct xmm_dev *xmm = qp->xmm;
906 	return !xmm7360_td_ring_full(xmm, qp->num*2);
907 }
908 
909 static ssize_t xmm7360_qp_write(struct queue_pair *qp, const char *buf, size_t size)
910 {
911 	struct xmm_dev *xmm = qp->xmm;
912 	int page_size = qp->xmm->td_ring[qp->num*2].page_size;
913 	if (xmm->error)
914 		return xmm->error;
915 	if (!xmm7360_qp_can_write(qp))
916 		return 0;
917 	if (size > page_size)
918 		size = page_size;
919 	xmm7360_td_ring_write(xmm, qp->num*2, buf, size);
920 	xmm7360_ding(xmm, DOORBELL_TD);
921 	return size;
922 }
923 
924 static ssize_t xmm7360_qp_write_user(struct queue_pair *qp, const char __user *buf, size_t size)
925 {
926 	int page_size = qp->xmm->td_ring[qp->num*2].page_size;
927 	int ret;
928 
929 	if (size > page_size)
930 		size = page_size;
931 
932 	ret = copy_from_user(qp->user_buf, buf, size);
933 	size = size - ret;
934 	if (!size)
935 		return 0;
936 	return xmm7360_qp_write(qp, qp->user_buf, size);
937 }
938 
939 static int xmm7360_qp_has_data(struct queue_pair *qp)
940 {
941 	struct xmm_dev *xmm = qp->xmm;
942 	struct td_ring *ring = &xmm->td_ring[qp->num*2+1];
943 
944 	return (xmm->cp->s_rptr[qp->num*2+1] != ring->last_handled);
945 }
946 
947 static ssize_t xmm7360_qp_read_user(struct queue_pair *qp, char __user *buf, size_t size)
948 {
949 	struct xmm_dev *xmm = qp->xmm;
950 	struct td_ring *ring = &xmm->td_ring[qp->num*2+1];
951 	int idx, nread, ret;
952 	// XXX locking?
953 	ret = wait_event_interruptible(qp->wq, xmm7360_qp_has_data(qp) || xmm->error);
954 	if (ret < 0)
955 		return ret;
956 	if (xmm->error)
957 		return xmm->error;
958 
959 	idx = ring->last_handled;
960 	nread = ring->tds[idx].length;
961 	if (nread > size)
962 		nread = size;
963 	ret = copy_to_user(buf, ring->pages[idx], nread);
964 	nread -= ret;
965 	if (nread == 0)
966 		return 0;
967 
968 	// XXX all data not fitting into buf+size is discarded
969 	xmm7360_td_ring_read(xmm, qp->num*2+1);
970 	xmm7360_ding(xmm, DOORBELL_TD);
971 	ring->last_handled = (idx + 1) & (ring->depth - 1);
972 
973 	return nread;
974 }
975 
976 static void xmm7360_tty_poll_qp(struct queue_pair *qp)
977 {
978 	struct xmm_dev *xmm = qp->xmm;
979 	struct td_ring *ring = &xmm->td_ring[qp->num*2+1];
980 	int idx, nread;
981 	while (xmm7360_qp_has_data(qp)) {
982 		idx = ring->last_handled;
983 		nread = ring->tds[idx].length;
984 		xmm7360_os_handle_tty_idata(qp, ring->pages[idx], nread);
985 
986 		xmm7360_td_ring_read(xmm, qp->num*2+1);
987 		xmm7360_ding(xmm, DOORBELL_TD);
988 		ring->last_handled = (idx + 1) & (ring->depth - 1);
989 	}
990 }
991 
992 #ifdef __linux__
993 
994 static void xmm7360_os_handle_tty_idata(struct queue_pair *qp, const u8 *data, size_t nread)
995 {
996 	tty_insert_flip_string(&qp->port, data, nread);
997 	tty_flip_buffer_push(&qp->port);
998 }
999 
1000 int xmm7360_cdev_open (struct inode *inode, struct file *file)
1001 {
1002 	struct queue_pair *qp = container_of(inode->i_cdev, struct queue_pair, cdev);
1003 	file->private_data = qp;
1004 	return xmm7360_qp_start(qp);
1005 }
1006 
1007 int xmm7360_cdev_release (struct inode *inode, struct file *file)
1008 {
1009 	struct queue_pair *qp = file->private_data;
1010 	return xmm7360_qp_stop(qp);
1011 }
1012 
1013 ssize_t xmm7360_cdev_write (struct file *file, const char __user *buf, size_t size, loff_t *offset)
1014 {
1015 	struct queue_pair *qp = file->private_data;
1016 	int ret;
1017 
1018 	ret = xmm7360_qp_write_user(qp, buf, size);
1019 	if (ret < 0)
1020 		return ret;
1021 
1022 	*offset += ret;
1023 	return ret;
1024 }
1025 
1026 ssize_t xmm7360_cdev_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
1027 {
1028 	struct queue_pair *qp = file->private_data;
1029 	int ret;
1030 
1031 	ret = xmm7360_qp_read_user(qp, buf, size);
1032 	if (ret < 0)
1033 		return ret;
1034 
1035 	*offset += ret;
1036 	return ret;
1037 }
1038 
1039 static unsigned int xmm7360_cdev_poll(struct file *file, poll_table *wait)
1040 {
1041 	struct queue_pair *qp = file->private_data;
1042 	unsigned int mask = 0;
1043 
1044 	poll_wait(file, &qp->wq, wait);
1045 
1046 	if (qp->xmm->error)
1047 		return POLLHUP;
1048 
1049 	if (xmm7360_qp_has_data(qp))
1050 		mask |= POLLIN | POLLRDNORM;
1051 
1052 	if (xmm7360_qp_can_write(qp))
1053 		mask |= POLLOUT | POLLWRNORM;
1054 
1055 	return mask;
1056 }
1057 
1058 static long xmm7360_cdev_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1059 {
1060 	struct queue_pair *qp = file->private_data;
1061 
1062 	u32 val;
1063 
1064 	switch (cmd) {
1065 		case XMM7360_IOCTL_GET_PAGE_SIZE:
1066 			val = qp->xmm->td_ring[qp->num*2].page_size;
1067 			if (copy_to_user((u32*)arg, &val, sizeof(u32)))
1068 				return -EFAULT;
1069 			return 0;
1070 	}
1071 
1072 	return -ENOTTY;
1073 }
1074 
1075 static struct file_operations xmm7360_fops = {
1076 	.read		= xmm7360_cdev_read,
1077 	.write		= xmm7360_cdev_write,
1078 	.poll		= xmm7360_cdev_poll,
1079 	.unlocked_ioctl	= xmm7360_cdev_ioctl,
1080 	.open		= xmm7360_cdev_open,
1081 	.release	= xmm7360_cdev_release
1082 };
1083 
1084 #endif /* __linux__ */
1085 
1086 static void xmm7360_mux_frame_init(struct xmm_net *xn, struct mux_frame *frame, int sequence)
1087 {
1088 	frame->sequence = xn->sequence;
1089 	frame->max_size = xn->xmm->td_ring[0].page_size;
1090 	frame->n_packets = 0;
1091 	frame->n_bytes = 0;
1092 	frame->last_tag_next = NULL;
1093 	frame->last_tag_length = NULL;
1094 }
1095 
1096 static void xmm7360_mux_frame_add_tag(struct mux_frame *frame, uint32_t tag, uint16_t extra, void *data, int data_len)
1097 {
1098 	int total_length;
1099 	if (frame->n_bytes == 0)
1100 		total_length = sizeof(struct mux_first_header) + data_len;
1101 	else
1102 		total_length = sizeof(struct mux_next_header) + data_len;
1103 
1104 	while (frame->n_bytes & 3)
1105 		frame->n_bytes++;
1106 
1107 	BUG_ON(frame->n_bytes + total_length > frame->max_size);
1108 
1109 	if (frame->last_tag_next)
1110 		*frame->last_tag_next = frame->n_bytes;
1111 
1112 	if (frame->n_bytes == 0) {
1113 		struct mux_first_header *hdr = (struct mux_first_header *)frame->data;
1114 		memset(hdr, 0, sizeof(struct mux_first_header));
1115 		hdr->tag = htonl(tag);
1116 		hdr->sequence = frame->sequence;
1117 		hdr->length = total_length;
1118 		hdr->extra = extra;
1119 		frame->last_tag_length = &hdr->length;
1120 		frame->last_tag_next = &hdr->next;
1121 		frame->n_bytes += sizeof(struct mux_first_header);
1122 	} else {
1123 		struct mux_next_header *hdr = (struct mux_next_header *)(&frame->data[frame->n_bytes]);
1124 		memset(hdr, 0, sizeof(struct mux_next_header));
1125 		hdr->tag = htonl(tag);
1126 		hdr->length = total_length;
1127 		hdr->extra = extra;
1128 		frame->last_tag_length = &hdr->length;
1129 		frame->last_tag_next = &hdr->next;
1130 		frame->n_bytes += sizeof(struct mux_next_header);
1131 	}
1132 
1133 	if (data_len) {
1134 		memcpy(&frame->data[frame->n_bytes], data, data_len);
1135 		frame->n_bytes += data_len;
1136 	}
1137 }
1138 
1139 static void xmm7360_mux_frame_append_data(struct mux_frame *frame, const void *data, int data_len)
1140 {
1141 	BUG_ON(frame->n_bytes + data_len > frame->max_size);
1142 	BUG_ON(!frame->last_tag_length);
1143 
1144 	memcpy(&frame->data[frame->n_bytes], data, data_len);
1145 	*frame->last_tag_length += data_len;
1146 	frame->n_bytes += data_len;
1147 }
1148 
1149 static int xmm7360_mux_frame_append_packet(struct mux_frame *frame, const void *data, int data_len)
1150 {
1151 	int expected_adth_size = sizeof(struct mux_next_header) + 4 + (frame->n_packets+1)*sizeof(struct mux_bounds);
1152 	uint8_t pad[16];
1153 
1154 	if (frame->n_packets >= MUX_MAX_PACKETS)
1155 		return -1;
1156 
1157 	if (frame->n_bytes + data_len + 16 + expected_adth_size > frame->max_size)
1158 		return -1;
1159 
1160 	BUG_ON(!frame->last_tag_length);
1161 
1162 	frame->bounds[frame->n_packets].offset = frame->n_bytes;
1163 	frame->bounds[frame->n_packets].length = data_len + 16;
1164 	frame->n_packets++;
1165 
1166 	memset(pad, 0, sizeof(pad));
1167 	xmm7360_mux_frame_append_data(frame, pad, 16);
1168 	xmm7360_mux_frame_append_data(frame, data, data_len);
1169 	return 0;
1170 }
1171 
1172 static int xmm7360_mux_frame_push(struct xmm_dev *xmm, struct mux_frame *frame)
1173 {
1174 	struct mux_first_header *hdr = (void*)&frame->data[0];
1175 	int ret;
1176 	hdr->length = frame->n_bytes;
1177 
1178 	ret = xmm7360_qp_write(xmm->net->qp, frame->data, frame->n_bytes);
1179 	if (ret < 0)
1180 		return ret;
1181 	return 0;
1182 }
1183 
1184 static int xmm7360_mux_control(struct xmm_net *xn, u32 arg1, u32 arg2, u32 arg3, u32 arg4)
1185 {
1186 	struct mux_frame *frame = &xn->frame;
1187 	int ret;
1188 	uint32_t cmdh_args[] = {arg1, arg2, arg3, arg4};
1189 	unsigned long flags __unused;
1190 
1191 	spin_lock_irqsave(&xn->lock, flags);
1192 
1193 	xmm7360_mux_frame_init(xn, frame, 0);
1194 	xmm7360_mux_frame_add_tag(frame, XMM_TAG_ACBH, 0, NULL, 0);
1195 	xmm7360_mux_frame_add_tag(frame, XMM_TAG_CMDH, xn->channel, cmdh_args, sizeof(cmdh_args));
1196 	ret = xmm7360_mux_frame_push(xn->xmm, frame);
1197 
1198 	spin_unlock_irqrestore(&xn->lock, flags);
1199 
1200 	return ret;
1201 }
1202 
1203 static void xmm7360_net_flush(struct xmm_net *xn)
1204 {
1205 	struct mux_frame *frame = &xn->frame;
1206 	int ret;
1207 	u32 unknown = 0;
1208 
1209 #ifdef __linux__
1210 	/* Never called with empty queue */
1211 	BUG_ON(skb_queue_empty(&xn->queue));
1212 #endif
1213 	BUG_ON(!xmm7360_qp_can_write(xn->qp));
1214 
1215 	xmm7360_mux_frame_init(xn, frame, xn->sequence++);
1216 	xmm7360_mux_frame_add_tag(frame, XMM_TAG_ADBH, 0, NULL, 0);
1217 
1218 	xmm7360_os_handle_net_dequeue(xn, frame);
1219 	xn->queued_packets = xn->queued_bytes = 0;
1220 
1221 	xmm7360_mux_frame_add_tag(frame, XMM_TAG_ADTH, xn->channel, &unknown, sizeof(uint32_t));
1222 	xmm7360_mux_frame_append_data(frame, &frame->bounds[0], sizeof(struct mux_bounds)*frame->n_packets);
1223 
1224 	ret = xmm7360_mux_frame_push(xn->xmm, frame);
1225 	if (ret)
1226 		goto drop;
1227 
1228 	return;
1229 
1230 drop:
1231 	dev_err(xn->xmm->dev, "Failed to ship coalesced frame");
1232 }
1233 
1234 static int xmm7360_base_init(struct xmm_dev *xmm)
1235 {
1236 	int ret, i;
1237 	u32 status;
1238 
1239 	xmm->error = 0;
1240 	xmm->num_ttys = 0;
1241 
1242 	status = xmm->bar2[BAR2_STATUS];
1243 	if (status == XMM_MODEM_BOOTING) {
1244 		dev_info(xmm->dev, "modem still booting, waiting...\n");
1245 		for (i=0; i<100; i++) {
1246 			status = xmm->bar2[BAR2_STATUS];
1247 			if (status != XMM_MODEM_BOOTING)
1248 				break;
1249 			xmm7360_os_msleep(200);
1250 		}
1251 	}
1252 
1253 	if (status != XMM_MODEM_READY) {
1254 		dev_err(xmm->dev, "unknown modem status: 0x%08x\n", status);
1255 		return -EINVAL;
1256 	}
1257 
1258 	dev_info(xmm->dev, "modem is ready\n");
1259 
1260 	ret = xmm7360_cmd_ring_init(xmm);
1261 	if (ret) {
1262 		dev_err(xmm->dev, "Could not bring up command ring %d\n",
1263 		    ret);
1264 		return ret;
1265 	}
1266 
1267 	return 0;
1268 }
1269 
1270 static void xmm7360_net_mux_handle_frame(struct xmm_net *xn, u8 *data, int len)
1271 {
1272 	struct mux_first_header *first;
1273 	struct mux_next_header *adth;
1274 	int n_packets, i;
1275 	struct mux_bounds *bounds;
1276 
1277 	first = (void*)data;
1278 	if (ntohl(first->tag) == XMM_TAG_ACBH)
1279 		return;
1280 
1281 	if (ntohl(first->tag) != XMM_TAG_ADBH) {
1282 		dev_info(xn->xmm->dev, "Unexpected tag %x\n", first->tag);
1283 		return;
1284 	}
1285 
1286 	adth = (void*)(&data[first->next]);
1287 	if (ntohl(adth->tag) != XMM_TAG_ADTH) {
1288 		dev_err(xn->xmm->dev, "Unexpected tag %x, expected ADTH\n", adth->tag);
1289 		return;
1290 	}
1291 
1292 	n_packets = (adth->length - sizeof(struct mux_next_header) - 4) / sizeof(struct mux_bounds);
1293 
1294 	bounds = (void*)&data[first->next + sizeof(struct mux_next_header) + 4];
1295 
1296 	for (i=0; i<n_packets; i++) {
1297 		if (!bounds[i].length)
1298 			continue;
1299 
1300 		xmm7360_os_handle_net_frame(xn->xmm,
1301 		    &data[bounds[i].offset], bounds[i].length);
1302 	}
1303 }
1304 
1305 static void xmm7360_net_poll(struct xmm_dev *xmm)
1306 {
1307 	struct queue_pair *qp;
1308 	struct td_ring *ring;
1309 	int idx, nread;
1310 	struct xmm_net *xn = xmm->net;
1311 	unsigned long flags __unused;
1312 
1313 	BUG_ON(!xn);
1314 
1315 	qp = xn->qp;
1316 	ring = &xmm->td_ring[qp->num*2+1];
1317 
1318 	spin_lock_irqsave(&xn->lock, flags);
1319 
1320 	if (xmm7360_qp_can_write(qp))
1321 		xmm7360_os_handle_net_txwake(xn);
1322 
1323 	while (xmm7360_qp_has_data(qp)) {
1324 		idx = ring->last_handled;
1325 		nread = ring->tds[idx].length;
1326 		xmm7360_net_mux_handle_frame(xn, ring->pages[idx], nread);
1327 
1328 		xmm7360_td_ring_read(xmm, qp->num*2+1);
1329 		xmm7360_ding(xmm, DOORBELL_TD);
1330 		ring->last_handled = (idx + 1) & (ring->depth - 1);
1331 	}
1332 
1333 	spin_unlock_irqrestore(&xn->lock, flags);
1334 }
1335 
1336 #ifdef __linux__
1337 
1338 static void xmm7360_net_uninit(struct net_device *dev)
1339 {
1340 }
1341 
1342 static int xmm7360_net_open(struct net_device *dev)
1343 {
1344 	struct xmm_net *xn = netdev_priv(dev);
1345 	xn->queued_packets = xn->queued_bytes = 0;
1346 	skb_queue_purge(&xn->queue);
1347 	netif_start_queue(dev);
1348 	return xmm7360_mux_control(xn, 1, 0, 0, 0);
1349 }
1350 
1351 static int xmm7360_net_close(struct net_device *dev)
1352 {
1353 	netif_stop_queue(dev);
1354 	return 0;
1355 }
1356 
1357 static int xmm7360_net_must_flush(struct xmm_net *xn, int new_packet_bytes)
1358 {
1359 	int frame_size;
1360 	if (xn->queued_packets >= MUX_MAX_PACKETS)
1361 		return 1;
1362 
1363 	frame_size = sizeof(struct mux_first_header) + xn->queued_bytes + sizeof(struct mux_next_header) + 4 + sizeof(struct mux_bounds)*xn->queued_packets;
1364 
1365 	frame_size += 16 + new_packet_bytes + sizeof(struct mux_bounds);
1366 
1367 	return frame_size > xn->frame.max_size;
1368 }
1369 
1370 static enum hrtimer_restart xmm7360_net_deadline_cb(struct hrtimer *t)
1371 {
1372 	struct xmm_net *xn = container_of(t, struct xmm_net, deadline);
1373 	unsigned long flags;
1374 	spin_lock_irqsave(&xn->lock, flags);
1375 	if (!skb_queue_empty(&xn->queue) && xmm7360_qp_can_write(xn->qp))
1376 		xmm7360_net_flush(xn);
1377 	spin_unlock_irqrestore(&xn->lock, flags);
1378 	return HRTIMER_NORESTART;
1379 }
1380 
1381 static netdev_tx_t xmm7360_net_xmit(struct sk_buff *skb, struct net_device *dev)
1382 {
1383 	struct xmm_net *xn = netdev_priv(dev);
1384 	ktime_t kt;
1385 	unsigned long flags;
1386 
1387 	if (netif_queue_stopped(dev))
1388 		return NETDEV_TX_BUSY;
1389 
1390 	skb_orphan(skb);
1391 
1392 	spin_lock_irqsave(&xn->lock, flags);
1393 	if (xmm7360_net_must_flush(xn, skb->len)) {
1394 		if (xmm7360_qp_can_write(xn->qp)) {
1395 			xmm7360_net_flush(xn);
1396 		} else {
1397 			netif_stop_queue(dev);
1398 			spin_unlock_irqrestore(&xn->lock, flags);
1399 			return NETDEV_TX_BUSY;
1400 		}
1401 	}
1402 
1403 	xn->queued_packets++;
1404 	xn->queued_bytes += 16 + skb->len;
1405 	skb_queue_tail(&xn->queue, skb);
1406 
1407 	spin_unlock_irqrestore(&xn->lock, flags);
1408 
1409 	if (!hrtimer_active(&xn->deadline)) {
1410 		kt = ktime_set(0, 100000);
1411 		hrtimer_start(&xn->deadline, kt, HRTIMER_MODE_REL);
1412 	}
1413 
1414 	return NETDEV_TX_OK;
1415 }
1416 
1417 static void xmm7360_os_handle_net_frame(struct xmm_dev *xmm, const u8 *buf, size_t sz)
1418 {
1419 	struct sk_buff *skb;
1420 	void *p;
1421 	u8 ip_version;
1422 
1423 	skb = dev_alloc_skb(sz + NET_IP_ALIGN);
1424 	if (!skb)
1425 		return;
1426 	skb_reserve(skb, NET_IP_ALIGN);
1427 	p = skb_put(skb, sz);
1428 	memcpy(p, buf, sz);
1429 
1430 	skb->dev = xmm->netdev;
1431 
1432 	ip_version = skb->data[0] >> 4;
1433 	if (ip_version == 4) {
1434 		skb->protocol = htons(ETH_P_IP);
1435 	} else if (ip_version == 6) {
1436 		skb->protocol = htons(ETH_P_IPV6);
1437 	} else {
1438 		kfree_skb(skb);
1439 		return;
1440 	}
1441 
1442 	netif_rx(skb);
1443 }
1444 
1445 static void xmm7360_os_handle_net_dequeue(struct xmm_net *xn, struct mux_frame *frame)
1446 {
1447 	struct sk_buff *skb;
1448 	int ret;
1449 
1450 	while ((skb = skb_dequeue(&xn->queue))) {
1451 		ret = xmm7360_mux_frame_append_packet(frame,
1452 		    skb->data, skb->len);
1453 		kfree_skb(skb);
1454 		if (ret) {
1455 			/* No more space in the frame */
1456 			break;
1457 		}
1458 	}
1459 }
1460 
1461 static void xmm7360_os_handle_net_txwake(struct xmm_net *xn)
1462 {
1463 	BUG_ON(!xmm7360_qp_can_write(xn->qp));
1464 
1465 	if (netif_queue_stopped(xn->xmm->netdev))
1466 		netif_wake_queue(xn->xmm->netdev);
1467 }
1468 
1469 static const struct net_device_ops xmm7360_netdev_ops = {
1470 	.ndo_uninit		= xmm7360_net_uninit,
1471 	.ndo_open		= xmm7360_net_open,
1472 	.ndo_stop		= xmm7360_net_close,
1473 	.ndo_start_xmit		= xmm7360_net_xmit,
1474 };
1475 
1476 static void xmm7360_net_setup(struct net_device *dev)
1477 {
1478 	struct xmm_net *xn = netdev_priv(dev);
1479 	spin_lock_init(&xn->lock);
1480 	hrtimer_init(&xn->deadline, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1481 	xn->deadline.function = xmm7360_net_deadline_cb;
1482 	skb_queue_head_init(&xn->queue);
1483 
1484 	dev->netdev_ops = &xmm7360_netdev_ops;
1485 
1486 	dev->hard_header_len = 0;
1487 	dev->addr_len = 0;
1488 	dev->mtu = 1500;
1489 	dev->min_mtu = 1500;
1490 	dev->max_mtu = 1500;
1491 
1492 	dev->tx_queue_len = 1000;
1493 
1494 	dev->type = ARPHRD_NONE;
1495 	dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
1496 }
1497 
1498 static int xmm7360_create_net(struct xmm_dev *xmm, int num)
1499 {
1500 	struct net_device *netdev;
1501 	struct xmm_net *xn;
1502 	int ret;
1503 
1504 	netdev = alloc_netdev(sizeof(struct xmm_net), "wwan%d", NET_NAME_UNKNOWN, xmm7360_net_setup);
1505 
1506 	if (!netdev)
1507 		return -ENOMEM;
1508 
1509 	SET_NETDEV_DEV(netdev, xmm->dev);
1510 
1511 	xmm->netdev = netdev;
1512 
1513 	xn = netdev_priv(netdev);
1514 	xn->xmm = xmm;
1515 	xmm->net = xn;
1516 
1517 	rtnl_lock();
1518 	ret = register_netdevice(netdev);
1519 	rtnl_unlock();
1520 
1521 	xn->qp = xmm7360_init_qp(xmm, num, 128, TD_MAX_PAGE_SIZE);
1522 
1523 	if (!ret)
1524 		ret = xmm7360_qp_start(xn->qp);
1525 
1526 	if (ret < 0) {
1527 		free_netdev(netdev);
1528 		xmm->netdev = NULL;
1529 		xmm7360_qp_stop(xn->qp);
1530 	}
1531 
1532 	return ret;
1533 }
1534 
1535 static void xmm7360_destroy_net(struct xmm_dev *xmm)
1536 {
1537 	if (xmm->netdev) {
1538 		xmm7360_qp_stop(xmm->net->qp);
1539 		rtnl_lock();
1540 		unregister_netdevice(xmm->netdev);
1541 		rtnl_unlock();
1542 		free_netdev(xmm->netdev);
1543 		xmm->net = NULL;
1544 		xmm->netdev = NULL;
1545 	}
1546 }
1547 
1548 static irqreturn_t xmm7360_irq0(int irq, void *dev_id) {
1549 	struct xmm_dev *xmm = dev_id;
1550 	struct queue_pair *qp;
1551 	int id;
1552 
1553 	xmm7360_poll(xmm);
1554 	wake_up(&xmm->wq);
1555 	if (xmm->td_ring) {
1556 		if (xmm->net)
1557 			xmm7360_net_poll(xmm);
1558 
1559 		for (id=1; id<XMM_QP_COUNT; id++) {
1560 			qp = &xmm->qp[id];
1561 
1562 			/* wake _cdev_read() */
1563 			if (qp->open)
1564 				wake_up(&qp->wq);
1565 
1566 			/* tty tasks */
1567 			if (qp->open && qp->port.ops) {
1568 				xmm7360_tty_poll_qp(qp);
1569 				if (qp->tty_needs_wake && xmm7360_qp_can_write(qp) && qp->port.tty) {
1570 					struct tty_ldisc *ldisc = tty_ldisc_ref(qp->port.tty);
1571 					if (ldisc) {
1572 						if (ldisc->ops->write_wakeup)
1573 							ldisc->ops->write_wakeup(qp->port.tty);
1574 						tty_ldisc_deref(ldisc);
1575 					}
1576 					qp->tty_needs_wake = 0;
1577 				}
1578 			}
1579 		}
1580 	}
1581 
1582 	return IRQ_HANDLED;
1583 }
1584 
1585 static dev_t xmm_base;
1586 
1587 static struct tty_driver *xmm7360_tty_driver;
1588 
1589 static void xmm7360_dev_deinit(struct xmm_dev *xmm)
1590 {
1591 	int i;
1592 	xmm->error = -ENODEV;
1593 
1594 	cancel_work_sync(&xmm->init_work);
1595 
1596 	xmm7360_destroy_net(xmm);
1597 
1598 	for (i=0; i<XMM_QP_COUNT; i++) {
1599 		if (xmm->qp[i].xmm) {
1600 			if (xmm->qp[i].cdev.owner) {
1601 				cdev_del(&xmm->qp[i].cdev);
1602 				device_unregister(&xmm->qp[i].dev);
1603 			}
1604 			if (xmm->qp[i].port.ops) {
1605 				tty_unregister_device(xmm7360_tty_driver, xmm->qp[i].tty_index);
1606 				tty_port_destroy(&xmm->qp[i].port);
1607 			}
1608 		}
1609 		memset(&xmm->qp[i], 0, sizeof(struct queue_pair));
1610 	}
1611 	xmm7360_cmd_ring_free(xmm);
1612 
1613 }
1614 
1615 static void xmm7360_remove(struct pci_dev *dev)
1616 {
1617 	struct xmm_dev *xmm = pci_get_drvdata(dev);
1618 
1619 	xmm7360_dev_deinit(xmm);
1620 
1621 	if (xmm->irq)
1622 		free_irq(xmm->irq, xmm);
1623 	pci_free_irq_vectors(dev);
1624 	pci_release_region(dev, 0);
1625 	pci_release_region(dev, 2);
1626 	pci_disable_device(dev);
1627 	kfree(xmm);
1628 }
1629 
1630 static void xmm7360_cdev_dev_release(struct device *dev)
1631 {
1632 }
1633 
1634 static int xmm7360_tty_open(struct tty_struct *tty, struct file *filp)
1635 {
1636 	struct queue_pair *qp = tty->driver_data;
1637 	return tty_port_open(&qp->port, tty, filp);
1638 }
1639 
1640 static void xmm7360_tty_close(struct tty_struct *tty, struct file *filp)
1641 {
1642 	struct queue_pair *qp = tty->driver_data;
1643 	if (qp)
1644 		tty_port_close(&qp->port, tty, filp);
1645 }
1646 
1647 static int xmm7360_tty_write(struct tty_struct *tty, const unsigned char *buffer,
1648 		      int count)
1649 {
1650 	struct queue_pair *qp = tty->driver_data;
1651 	int written;
1652 	written = xmm7360_qp_write(qp, buffer, count);
1653 	if (written < count)
1654 		qp->tty_needs_wake = 1;
1655 	return written;
1656 }
1657 
1658 static int xmm7360_tty_write_room(struct tty_struct *tty)
1659 {
1660 	struct queue_pair *qp = tty->driver_data;
1661 	if (!xmm7360_qp_can_write(qp))
1662 		return 0;
1663 	else
1664 		return qp->xmm->td_ring[qp->num*2].page_size;
1665 }
1666 
1667 static int xmm7360_tty_install(struct tty_driver *driver, struct tty_struct *tty)
1668 {
1669 	struct queue_pair *qp;
1670 	int ret;
1671 
1672 	ret = tty_standard_install(driver, tty);
1673 	if (ret)
1674 		return ret;
1675 
1676 	tty->port = driver->ports[tty->index];
1677 	qp = container_of(tty->port, struct queue_pair, port);
1678 	tty->driver_data = qp;
1679 	return 0;
1680 }
1681 
1682 
1683 static int xmm7360_tty_port_activate(struct tty_port *tport, struct tty_struct *tty)
1684 {
1685 	struct queue_pair *qp = tty->driver_data;
1686 	return xmm7360_qp_start(qp);
1687 }
1688 
1689 static void xmm7360_tty_port_shutdown(struct tty_port *tport)
1690 {
1691 	struct queue_pair *qp = tport->tty->driver_data;
1692 	xmm7360_qp_stop(qp);
1693 }
1694 
1695 
1696 static const struct tty_port_operations xmm7360_tty_port_ops = {
1697 	.activate = xmm7360_tty_port_activate,
1698 	.shutdown = xmm7360_tty_port_shutdown,
1699 };
1700 
1701 static const struct tty_operations xmm7360_tty_ops = {
1702 	.open = xmm7360_tty_open,
1703 	.close = xmm7360_tty_close,
1704 	.write = xmm7360_tty_write,
1705 	.write_room = xmm7360_tty_write_room,
1706 	.install = xmm7360_tty_install,
1707 };
1708 
1709 static int xmm7360_create_tty(struct xmm_dev *xmm, int num)
1710 {
1711 	struct device *tty_dev;
1712 	struct queue_pair *qp = xmm7360_init_qp(xmm, num, 8, 4096);
1713 	int ret;
1714 	tty_port_init(&qp->port);
1715 	qp->port.low_latency = 1;
1716 	qp->port.ops = &xmm7360_tty_port_ops;
1717 	qp->tty_index = xmm->num_ttys++;
1718 	tty_dev = tty_port_register_device(&qp->port, xmm7360_tty_driver, qp->tty_index, xmm->dev);
1719 
1720 	if (IS_ERR(tty_dev)) {
1721 		qp->port.ops = NULL;	// prevent calling unregister
1722 		ret = PTR_ERR(tty_dev);
1723 		dev_err(xmm->dev, "Could not allocate tty?\n");
1724 		tty_port_destroy(&qp->port);
1725 		return ret;
1726 	}
1727 
1728 	return 0;
1729 }
1730 
1731 static int xmm7360_create_cdev(struct xmm_dev *xmm, int num, const char *name, int cardnum)
1732 {
1733 	struct queue_pair *qp = xmm7360_init_qp(xmm, num, 16, TD_MAX_PAGE_SIZE);
1734 	int ret;
1735 
1736 	cdev_init(&qp->cdev, &xmm7360_fops);
1737 	qp->cdev.owner = THIS_MODULE;
1738 	device_initialize(&qp->dev);
1739 	qp->dev.devt = MKDEV(MAJOR(xmm_base), num); // XXX multiple cards
1740 	qp->dev.parent = &xmm->pci_dev->dev;
1741 	qp->dev.release = xmm7360_cdev_dev_release;
1742 	dev_set_name(&qp->dev, name, cardnum);
1743 	dev_set_drvdata(&qp->dev, qp);
1744 	ret = cdev_device_add(&qp->cdev, &qp->dev);
1745 	if (ret) {
1746 		dev_err(xmm->dev, "cdev_device_add: %d\n", ret);
1747 		return ret;
1748 	}
1749 	return 0;
1750 }
1751 
1752 static int xmm7360_dev_init(struct xmm_dev *xmm)
1753 {
1754 	int ret;
1755 
1756 	ret = xmm7360_base_init(xmm);
1757 	if (ret)
1758 		return ret;
1759 
1760 	ret = xmm7360_create_cdev(xmm, 1, "xmm%d/rpc", xmm->card_num);
1761 	if (ret)
1762 		return ret;
1763 	ret = xmm7360_create_cdev(xmm, 3, "xmm%d/trace", xmm->card_num);
1764 	if (ret)
1765 		return ret;
1766 	ret = xmm7360_create_tty(xmm, 2);
1767 	if (ret)
1768 		return ret;
1769 	ret = xmm7360_create_tty(xmm, 4);
1770 	if (ret)
1771 		return ret;
1772 	ret = xmm7360_create_tty(xmm, 7);
1773 	if (ret)
1774 		return ret;
1775 	ret = xmm7360_create_net(xmm, 0);
1776 	if (ret)
1777 		return ret;
1778 
1779 	return 0;
1780 }
1781 
1782 void xmm7360_dev_init_work(struct work_struct *work)
1783 {
1784 	struct xmm_dev *xmm = container_of(work, struct xmm_dev, init_work);
1785 	xmm7360_dev_init(xmm);
1786 }
1787 
1788 static int xmm7360_probe(struct pci_dev *dev, const struct pci_device_id *id)
1789 {
1790 	struct xmm_dev *xmm = kzalloc(sizeof(struct xmm_dev), GFP_KERNEL);
1791 	int ret;
1792 
1793 	xmm->pci_dev = dev;
1794 	xmm->dev = &dev->dev;
1795 
1796 	if (!xmm) {
1797 		dev_err(&(dev->dev), "kzalloc\n");
1798 		return -ENOMEM;
1799 	}
1800 
1801 	ret = pci_enable_device(dev);
1802 	if (ret) {
1803 		dev_err(&(dev->dev), "pci_enable_device\n");
1804 		goto fail;
1805 	}
1806 	pci_set_master(dev);
1807 
1808 	ret = pci_set_dma_mask(dev, 0xffffffffffffffff);
1809 	if (ret) {
1810 		dev_err(xmm->dev, "Cannot set DMA mask\n");
1811 		goto fail;
1812 	}
1813 	dma_set_coherent_mask(xmm->dev, 0xffffffffffffffff);
1814 
1815 
1816 	ret = pci_request_region(dev, 0, "xmm0");
1817 	if (ret) {
1818 		dev_err(&(dev->dev), "pci_request_region(0)\n");
1819 		goto fail;
1820 	}
1821 	xmm->bar0 = pci_iomap(dev, 0, pci_resource_len(dev, 0));
1822 
1823 	ret = pci_request_region(dev, 2, "xmm2");
1824 	if (ret) {
1825 		dev_err(&(dev->dev), "pci_request_region(2)\n");
1826 		goto fail;
1827 	}
1828 	xmm->bar2 = pci_iomap(dev, 2, pci_resource_len(dev, 2));
1829 
1830 	ret = pci_alloc_irq_vectors(dev, 1, 1, PCI_IRQ_MSI | PCI_IRQ_MSIX);
1831 	if (ret < 0) {
1832 		dev_err(&(dev->dev), "pci_alloc_irq_vectors\n");
1833 		goto fail;
1834 	}
1835 
1836 	init_waitqueue_head(&xmm->wq);
1837 	INIT_WORK(&xmm->init_work, xmm7360_dev_init_work);
1838 
1839 	pci_set_drvdata(dev, xmm);
1840 
1841 	ret = xmm7360_dev_init(xmm);
1842 	if (ret)
1843 		goto fail;
1844 
1845 	xmm->irq = pci_irq_vector(dev, 0);
1846 	ret = request_irq(xmm->irq, xmm7360_irq0, 0, "xmm7360", xmm);
1847 	if (ret) {
1848 		dev_err(&(dev->dev), "request_irq\n");
1849 		goto fail;
1850 	}
1851 
1852 	return ret;
1853 
1854 fail:
1855 	xmm7360_dev_deinit(xmm);
1856 	xmm7360_remove(dev);
1857 	return ret;
1858 }
1859 
1860 static struct pci_driver xmm7360_driver = {
1861 	.name		= "xmm7360",
1862 	.id_table	= xmm7360_ids,
1863 	.probe		= xmm7360_probe,
1864 	.remove		= xmm7360_remove,
1865 };
1866 
1867 static int xmm7360_init(void)
1868 {
1869 	int ret;
1870 	ret = alloc_chrdev_region(&xmm_base, 0, 8, "xmm");
1871 	if (ret)
1872 		return ret;
1873 
1874 	xmm7360_tty_driver = alloc_tty_driver(8);
1875 	if (!xmm7360_tty_driver)
1876 		return -ENOMEM;
1877 
1878 	xmm7360_tty_driver->driver_name = "xmm7360";
1879 	xmm7360_tty_driver->name = "ttyXMM";
1880 	xmm7360_tty_driver->major = 0;
1881 	xmm7360_tty_driver->type = TTY_DRIVER_TYPE_SERIAL;
1882 	xmm7360_tty_driver->subtype = SERIAL_TYPE_NORMAL;
1883 	xmm7360_tty_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1884 	xmm7360_tty_driver->init_termios = tty_std_termios;
1885 	xmm7360_tty_driver->init_termios.c_cflag = B115200 | CS8 | CREAD | \
1886 						HUPCL | CLOCAL;
1887 	xmm7360_tty_driver->init_termios.c_lflag &= ~ECHO;
1888 	xmm7360_tty_driver->init_termios.c_ispeed = 115200;
1889 	xmm7360_tty_driver->init_termios.c_ospeed = 115200;
1890 	tty_set_operations(xmm7360_tty_driver, &xmm7360_tty_ops);
1891 
1892 	ret = tty_register_driver(xmm7360_tty_driver);
1893 	if (ret) {
1894 		pr_err("xmm7360: failed to register xmm7360_tty driver\n");
1895 		return ret;
1896 	}
1897 
1898 
1899 	ret = pci_register_driver(&xmm7360_driver);
1900 	if (ret)
1901 		return ret;
1902 
1903 	return 0;
1904 }
1905 
1906 static void xmm7360_exit(void)
1907 {
1908 	pci_unregister_driver(&xmm7360_driver);
1909 	unregister_chrdev_region(xmm_base, 8);
1910 	tty_unregister_driver(xmm7360_tty_driver);
1911 	put_tty_driver(xmm7360_tty_driver);
1912 }
1913 
1914 module_init(xmm7360_init);
1915 module_exit(xmm7360_exit);
1916 
1917 #endif /* __linux__ */
1918 
1919 #if defined(__OpenBSD__) || defined(__NetBSD__)
1920 
1921 /*
1922  * RPC and trace devices behave as regular character device,
1923  * other devices behave as terminal.
1924  */
1925 #define DEVCUA(x)	(minor(x) & 0x80)
1926 #define DEVUNIT(x)	((minor(x) & 0x70) >> 4)
1927 #define DEVFUNC_MASK	0x0f
1928 #define DEVFUNC(x)	(minor(x) & DEVFUNC_MASK)
1929 #define DEV_IS_TTY(x)	(DEVFUNC(x) == 2 || DEVFUNC(x) > 3)
1930 
1931 struct wwanc_softc {
1932 #ifdef __OpenBSD__
1933 	struct device		sc_devx;	/* gen. device info storage */
1934 #endif
1935 	struct device		*sc_dev;	/* generic device information */
1936         pci_chipset_tag_t       sc_pc;
1937         pcitag_t                sc_tag;
1938 	bus_dma_tag_t		sc_dmat;
1939 	pci_intr_handle_t	sc_pih;
1940         void                    *sc_ih;         /* interrupt vectoring */
1941 
1942 	bus_space_tag_t		sc_bar0_tag;
1943 	bus_space_handle_t	sc_bar0_handle;
1944 	bus_size_t		sc_bar0_sz;
1945 	bus_space_tag_t		sc_bar2_tag;
1946 	bus_space_handle_t	sc_bar2_handle;
1947 	bus_size_t		sc_bar2_sz;
1948 
1949 	struct xmm_dev		sc_xmm;
1950 	struct tty		*sc_tty[XMM_QP_COUNT];
1951 	struct device		*sc_net;
1952 	struct selinfo		sc_selr, sc_selw;
1953 	bool			sc_resume;
1954 };
1955 
1956 struct wwanc_attach_args {
1957 	enum wwanc_type {
1958 		WWMC_TYPE_RPC,
1959 		WWMC_TYPE_TRACE,
1960 		WWMC_TYPE_TTY,
1961 		WWMC_TYPE_NET
1962 	} aa_type;
1963 };
1964 
1965 static int     wwanc_match(struct device *, cfdata_t, void *);
1966 static void    wwanc_attach(struct device *, struct device *, void *);
1967 static int     wwanc_detach(struct device *, int);
1968 
1969 #ifdef __OpenBSD__
1970 static int     wwanc_activate(struct device *, int);
1971 
1972 struct cfattach wwanc_ca = {
1973         sizeof(struct wwanc_softc), wwanc_match, wwanc_attach,
1974         wwanc_detach, wwanc_activate
1975 };
1976 
1977 struct cfdriver wwanc_cd = {
1978         NULL, "wwanc", DV_DULL
1979 };
1980 #endif
1981 
1982 #ifdef __NetBSD__
1983 CFATTACH_DECL3_NEW(wwanc, sizeof(struct wwanc_softc),
1984    wwanc_match, wwanc_attach, wwanc_detach, NULL,
1985    NULL, NULL, DVF_DETACH_SHUTDOWN);
1986 
1987 static bool wwanc_pmf_suspend(device_t, const pmf_qual_t *);
1988 static bool wwanc_pmf_resume(device_t, const pmf_qual_t *);
1989 #endif /* __NetBSD__ */
1990 
1991 static int
1992 wwanc_match(struct device *parent, cfdata_t match, void *aux)
1993 {
1994 	struct pci_attach_args *pa = aux;
1995 
1996 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
1997 		PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_XMM7360);
1998 }
1999 
2000 static int xmm7360_dev_init(struct xmm_dev *xmm)
2001 {
2002 	int ret;
2003 	int depth, page_size;
2004 
2005 	ret = xmm7360_base_init(xmm);
2006 	if (ret)
2007 		return ret;
2008 
2009 	/* Initialize queue pairs for later use */
2010 	for (int num = 0; num < XMM_QP_COUNT; num++) {
2011 		switch (num) {
2012 		case 0:	/* net */
2013 			depth = 128;
2014 			page_size = TD_MAX_PAGE_SIZE;
2015 			break;
2016 		case 1:	/* rpc */
2017 		case 3: /* trace */
2018 			depth = 16;
2019 			page_size = TD_MAX_PAGE_SIZE;
2020 			break;
2021 		default: /* tty */
2022 			depth = 8;
2023 			page_size = 4096;
2024 			break;
2025 		}
2026 
2027 		xmm7360_init_qp(xmm, num, depth, page_size);
2028 	}
2029 
2030 	return 0;
2031 }
2032 
2033 static void xmm7360_dev_deinit(struct xmm_dev *xmm)
2034 {
2035 	struct wwanc_softc *sc = device_private(xmm->dev);
2036 	bool devgone = false;
2037 	struct tty *tp;
2038 
2039 	xmm->error = -ENODEV;
2040 
2041 	/* network device should be gone by now */
2042 	KASSERT(sc->sc_net == NULL);
2043 	KASSERT(xmm->net == NULL);
2044 
2045 	/* free ttys */
2046 	for (int i=0; i<XMM_QP_COUNT; i++) {
2047 		tp = sc->sc_tty[i];
2048 		if (tp) {
2049 			KASSERT(DEV_IS_TTY(i));
2050 			if (!devgone) {
2051 				vdevgone(major(tp->t_dev), 0, DEVFUNC_MASK,
2052 				    VCHR);
2053 				devgone = true;
2054 			}
2055 			ttyfree(tp);
2056 			sc->sc_tty[i] = NULL;
2057 		}
2058 	}
2059 
2060 	xmm7360_cmd_ring_free(xmm);
2061 }
2062 
2063 static void
2064 wwanc_io_wakeup(struct queue_pair *qp, int flag)
2065 {
2066         if (flag & FREAD) {
2067                 selnotify(&qp->selr, POLLIN|POLLRDNORM, NOTE_SUBMIT);
2068                 wakeup(qp->wq);
2069         }
2070         if (flag & FWRITE) {
2071                 selnotify(&qp->selw, POLLOUT|POLLWRNORM, NOTE_SUBMIT);
2072                 wakeup(qp->wq);
2073         }
2074 }
2075 
2076 static int
2077 wwanc_intr(void *xsc)
2078 {
2079 	struct wwanc_softc *sc = xsc;
2080 	struct xmm_dev *xmm = &sc->sc_xmm;
2081 	struct queue_pair *qp;
2082 
2083 	xmm7360_poll(xmm);
2084 	wakeup(&xmm->wq);
2085 
2086 	if (xmm->net && xmm->net->qp->open && xmm7360_qp_has_data(xmm->net->qp))
2087 		xmm7360_net_poll(xmm);
2088 
2089 	for (int func = 1; func < XMM_QP_COUNT; func++) {
2090 		qp = &xmm->qp[func];
2091 		if (!qp->open)
2092 			continue;
2093 
2094 		/* Check for input, wwancstart()/wwancwrite() does output */
2095 		if (xmm7360_qp_has_data(qp)) {
2096 			if (DEV_IS_TTY(func)) {
2097 				int s = spltty();
2098 				xmm7360_tty_poll_qp(qp);
2099 				splx(s);
2100 			}
2101 			wwanc_io_wakeup(qp, FREAD);
2102 		}
2103 
2104 		/* Wakeup/notify eventual writers */
2105 		if (xmm7360_qp_can_write(qp))
2106 			wwanc_io_wakeup(qp, FWRITE);
2107 	}
2108 
2109 	return 1;
2110 }
2111 
2112 static int
2113 wwancprint(void *aux, const char *pnp)
2114 {
2115 	struct wwanc_attach_args *wa = aux;
2116 
2117 	if (pnp)
2118                 printf("wwanc type %s at %s",
2119 		    (wa->aa_type == WWMC_TYPE_NET) ? "net" : "unk", pnp);
2120 	else
2121 		printf(" type %s",
2122 		    (wa->aa_type == WWMC_TYPE_NET) ? "net" : "unk");
2123 
2124 	return (UNCONF);
2125 }
2126 
2127 static void
2128 wwanc_attach_finish(struct device *self)
2129 {
2130 	struct wwanc_softc *sc = device_private(self);
2131 
2132 	if (xmm7360_dev_init(&sc->sc_xmm)) {
2133 		/* error already printed */
2134 		return;
2135 	}
2136 
2137 	/* Attach the network device */
2138 	struct wwanc_attach_args wa;
2139 	memset(&wa, 0, sizeof(wa));
2140 	wa.aa_type = WWMC_TYPE_NET;
2141 	sc->sc_net = config_found(self, &wa, wwancprint, CFARG_EOL);
2142 }
2143 
2144 static void
2145 wwanc_attach(struct device *parent, struct device *self, void *aux)
2146 {
2147 	struct wwanc_softc *sc = device_private(self);
2148 	struct pci_attach_args *pa = aux;
2149 	bus_space_tag_t memt;
2150 	bus_space_handle_t memh;
2151 	bus_size_t sz;
2152 	int error;
2153 	const char *intrstr;
2154 #ifdef __OpenBSD__
2155 	pci_intr_handle_t ih;
2156 #endif
2157 #ifdef __NetBSD__
2158 	pci_intr_handle_t *ih;
2159 	char intrbuf[PCI_INTRSTR_LEN];
2160 #endif
2161 
2162 	sc->sc_dev = self;
2163 	sc->sc_pc = pa->pa_pc;
2164 	sc->sc_tag = pa->pa_tag;
2165 	sc->sc_dmat = pa->pa_dmat;
2166 
2167 	/* map the register window, memory mapped 64-bit non-prefetchable */
2168 	error = pci_mapreg_map(pa, WWAN_BAR0,
2169 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT,
2170 	    BUS_SPACE_MAP_LINEAR, &memt, &memh, NULL, &sz, 0);
2171 	if (error != 0) {
2172 		printf(": can't map mem space for BAR0 %d\n", error);
2173 		return;
2174 	}
2175 	sc->sc_bar0_tag = memt;
2176 	sc->sc_bar0_handle = memh;
2177 	sc->sc_bar0_sz = sz;
2178 
2179 	error = pci_mapreg_map(pa, WWAN_BAR2,
2180 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT,
2181 	    BUS_SPACE_MAP_LINEAR, &memt, &memh, NULL, &sz, 0);
2182 	if (error != 0) {
2183 		bus_space_unmap(sc->sc_bar0_tag, sc->sc_bar0_handle,
2184 		    sc->sc_bar0_sz);
2185 		printf(": can't map mem space for BAR2\n");
2186 		return;
2187 	}
2188 	sc->sc_bar2_tag = memt;
2189 	sc->sc_bar2_handle = memh;
2190 	sc->sc_bar2_sz = sz;
2191 
2192 	/* Set xmm members needed for xmm7360_dev_init() */
2193 	sc->sc_xmm.dev = self;
2194 	sc->sc_xmm.bar0 = bus_space_vaddr(sc->sc_bar0_tag, sc->sc_bar0_handle);
2195 	sc->sc_xmm.bar2 = bus_space_vaddr(sc->sc_bar0_tag, sc->sc_bar2_handle);
2196 	init_waitqueue_head(&sc->sc_xmm.wq);
2197 
2198 #ifdef __OpenBSD__
2199 	if (pci_intr_map_msi(pa, &ih) && pci_intr_map(pa, &ih)) {
2200 		printf(": can't map interrupt\n");
2201 		goto fail;
2202 	}
2203 	sc->sc_pih = ih;
2204 	intrstr = pci_intr_string(sc->sc_pc, ih);
2205 	printf(": %s\n", intrstr);
2206 #endif
2207 #ifdef __NetBSD__
2208 	if (pci_intr_alloc(pa, &ih, NULL, 0)) {
2209 		printf(": can't map interrupt\n");
2210 		goto fail;
2211 	}
2212 	sc->sc_pih = ih[0];
2213 	intrstr = pci_intr_string(pa->pa_pc, ih[0], intrbuf, sizeof(intrbuf));
2214 	aprint_normal(": LTE modem\n");
2215 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
2216 #endif
2217 
2218 	/* Device initialized, can establish the interrupt now */
2219 	sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_pih, IPL_NET,
2220 	    wwanc_intr, sc, sc->sc_dev->dv_xname);
2221 	if (sc->sc_ih == NULL) {
2222 		printf("%s: can't establish interrupt\n", self->dv_xname);
2223 		return;
2224 	}
2225 
2226 #ifdef __NetBSD__
2227 	if (!pmf_device_register(self, wwanc_pmf_suspend, wwanc_pmf_resume))
2228 		aprint_error_dev(self, "couldn't establish power handler\n");
2229 #endif
2230 
2231 	/*
2232 	 * Device initialization requires working interrupts, so need
2233 	 * to postpone this until they are enabled.
2234 	 */
2235 	config_mountroot(self, wwanc_attach_finish);
2236 	return;
2237 
2238 fail:
2239 	bus_space_unmap(sc->sc_bar0_tag, sc->sc_bar0_handle, sc->sc_bar0_sz);
2240 	sc->sc_bar0_tag = 0;
2241 	bus_space_unmap(sc->sc_bar2_tag, sc->sc_bar2_handle, sc->sc_bar2_sz);
2242 	sc->sc_bar2_tag = 0;
2243 	return;
2244 }
2245 
2246 static int
2247 wwanc_detach(struct device *self, int flags)
2248 {
2249 	int error;
2250 	struct wwanc_softc *sc = device_private(self);
2251 
2252 	if (sc->sc_ih) {
2253 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
2254 		sc->sc_ih = NULL;
2255 	}
2256 
2257 	if (sc->sc_net) {
2258 		error = config_detach_children(self, flags);
2259 		if (error)
2260 			return error;
2261 		sc->sc_net = NULL;
2262 	}
2263 
2264 	pmf_device_deregister(self);
2265 
2266 	xmm7360_dev_deinit(&sc->sc_xmm);
2267 
2268 	if (sc->sc_bar0_tag) {
2269 		bus_space_unmap(sc->sc_bar0_tag, sc->sc_bar0_handle,
2270 		    sc->sc_bar0_sz);
2271 		sc->sc_bar0_tag = 0;
2272 	}
2273 	sc->sc_xmm.bar0 = NULL;
2274 
2275 	if (sc->sc_bar2_tag) {
2276 		bus_space_unmap(sc->sc_bar2_tag, sc->sc_bar2_handle,
2277 		    sc->sc_bar2_sz);
2278 		sc->sc_bar2_tag = 0;
2279 	}
2280 	sc->sc_xmm.bar2 = NULL;
2281 
2282 	return 0;
2283 }
2284 
2285 static void
2286 wwanc_suspend(struct device *self)
2287 {
2288 	struct wwanc_softc *sc = device_private(self);
2289 	struct xmm_dev *xmm = &sc->sc_xmm;
2290 	struct queue_pair *qp;
2291 
2292 	KASSERT(!sc->sc_resume);
2293 	KASSERT(xmm->cp != NULL);
2294 
2295 	for (int i = 0; i < XMM_QP_COUNT; i++) {
2296 		qp = &xmm->qp[i];
2297 		if (qp->open)
2298 			xmm7360_qp_suspend(qp);
2299 	}
2300 
2301 	xmm7360_cmd_ring_free(xmm);
2302 	KASSERT(xmm->cp == NULL);
2303 }
2304 
2305 static void
2306 wwanc_resume(struct device *self)
2307 {
2308 	struct wwanc_softc *sc = device_private(self);
2309 	struct xmm_dev *xmm = &sc->sc_xmm;
2310 	struct queue_pair *qp;
2311 
2312 	KASSERT(xmm->cp == NULL);
2313 
2314 	xmm7360_base_init(xmm);
2315 
2316 	for (int i = 0; i < XMM_QP_COUNT; i++) {
2317 		qp = &xmm->qp[i];
2318 		if (qp->open)
2319 			xmm7360_qp_resume(qp);
2320 	}
2321 }
2322 
2323 #ifdef __OpenBSD__
2324 
2325 static void
2326 wwanc_defer_resume(void *xarg)
2327 {
2328 	struct device *self = xarg;
2329 	struct wwanc_softc *sc = device_private(self);
2330 
2331 	tsleep(&sc->sc_resume, 0, "wwancdr", 2 * hz);
2332 
2333 	wwanc_resume(self);
2334 
2335 	(void)config_activate_children(self, DVACT_RESUME);
2336 
2337 	sc->sc_resume = false;
2338 	kthread_exit(0);
2339 }
2340 
2341 static int
2342 wwanc_activate(struct device *self, int act)
2343 {
2344 	struct wwanc_softc *sc = device_private(self);
2345 
2346 	switch (act) {
2347 	case DVACT_QUIESCE:
2348 		(void)config_activate_children(self, act);
2349 		break;
2350 	case DVACT_SUSPEND:
2351 		if (sc->sc_resume) {
2352 			/* Refuse to suspend if resume still ongoing */
2353 			printf("%s: not suspending, resume still ongoing\n",
2354 			    self->dv_xname);
2355 			return EBUSY;
2356 		}
2357 
2358 		(void)config_activate_children(self, act);
2359 		wwanc_suspend(self);
2360 		break;
2361 	case DVACT_RESUME:
2362 		/*
2363 		 * Modem reinitialization can take several seconds, defer
2364 		 * it via kernel thread to avoid blocking the resume.
2365 		 */
2366 		sc->sc_resume = true;
2367 		kthread_create(wwanc_defer_resume, self, NULL, "wwancres");
2368 		break;
2369 	default:
2370 		break;
2371 	}
2372 
2373 	return 0;
2374 }
2375 
2376 cdev_decl(wwanc);
2377 #endif /* __OpenBSD__ */
2378 
2379 #ifdef __NetBSD__
2380 static bool
2381 wwanc_pmf_suspend(device_t self, const pmf_qual_t *qual)
2382 {
2383 	wwanc_suspend(self);
2384 	return true;
2385 }
2386 
2387 static bool
2388 wwanc_pmf_resume(device_t self, const pmf_qual_t *qual)
2389 {
2390 	wwanc_resume(self);
2391 	return true;
2392 }
2393 
2394 static dev_type_open(wwancopen);
2395 static dev_type_close(wwancclose);
2396 static dev_type_read(wwancread);
2397 static dev_type_write(wwancwrite);
2398 static dev_type_ioctl(wwancioctl);
2399 static dev_type_poll(wwancpoll);
2400 static dev_type_kqfilter(wwanckqfilter);
2401 static dev_type_tty(wwanctty);
2402 
2403 const struct cdevsw wwanc_cdevsw = {
2404 	.d_open = wwancopen,
2405 	.d_close = wwancclose,
2406 	.d_read = wwancread,
2407 	.d_write = wwancwrite,
2408 	.d_ioctl = wwancioctl,
2409 	.d_stop = nullstop,
2410 	.d_tty = wwanctty,
2411 	.d_poll = wwancpoll,
2412 	.d_mmap = nommap,
2413 	.d_kqfilter = wwanckqfilter,
2414 	.d_discard = nodiscard,
2415 	.d_flag = D_TTY
2416 };
2417 #endif
2418 
2419 static int wwancparam(struct tty *, struct termios *);
2420 static void wwancstart(struct tty *);
2421 
2422 static void xmm7360_os_handle_tty_idata(struct queue_pair *qp, const u8 *data, size_t nread)
2423 {
2424 	struct xmm_dev *xmm = qp->xmm;
2425 	struct wwanc_softc *sc = device_private(xmm->dev);
2426 	int func = qp->num;
2427 	struct tty *tp = sc->sc_tty[func];
2428 
2429 	KASSERT(DEV_IS_TTY(func));
2430 	KASSERT(tp);
2431 
2432 	for (int i = 0; i < nread; i++)
2433 		LINESW(tp).l_rint(data[i], tp);
2434 }
2435 
2436 int
2437 wwancopen(dev_t dev, int flags, int mode, struct proc *p)
2438 {
2439 	int unit = DEVUNIT(dev);
2440 	struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, unit);
2441 	struct tty *tp;
2442 	int func, error;
2443 
2444 	if (sc == NULL)
2445 		return ENXIO;
2446 
2447 	/* Only allow opening the rpc/trace/AT queue pairs */
2448 	func = DEVFUNC(dev);
2449 	if (func < 1 || func > 7)
2450 		return ENXIO;
2451 
2452 	if (DEV_IS_TTY(dev)) {
2453 		if (!sc->sc_tty[func]) {
2454 			tp = sc->sc_tty[func] = ttymalloc(1000000);
2455 
2456 			tp->t_oproc = wwancstart;
2457 		        tp->t_param = wwancparam;
2458 			tp->t_dev = dev;
2459 			tp->t_sc = (void *)sc;
2460 		} else
2461 			tp = sc->sc_tty[func];
2462 
2463 		if (!ISSET(tp->t_state, TS_ISOPEN)) {
2464 			ttychars(tp);
2465 			tp->t_iflag = TTYDEF_IFLAG;
2466 			tp->t_oflag = TTYDEF_OFLAG;
2467 			tp->t_lflag = TTYDEF_LFLAG;
2468 			tp->t_cflag = TTYDEF_CFLAG;
2469 			tp->t_ispeed = tp->t_ospeed = B115200;
2470 			SET(tp->t_cflag, CS8 | CREAD | HUPCL | CLOCAL);
2471 
2472 			SET(tp->t_state, TS_CARR_ON);
2473 		} else if (suser(p) != 0) {
2474 			return EBUSY;
2475 		}
2476 
2477 		error = LINESW(tp).l_open(dev, tp, p);
2478 		if (error)
2479 			return error;
2480 	}
2481 
2482 	/* Initialize ring if qp not open yet */
2483 	xmm7360_qp_start(&sc->sc_xmm.qp[func]);
2484 
2485 	return 0;
2486 }
2487 
2488 int
2489 wwancread(dev_t dev, struct uio *uio, int flag)
2490 {
2491 	struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2492 	int func = DEVFUNC(dev);
2493 
2494 	KASSERT(sc != NULL);
2495 
2496 	if (DEV_IS_TTY(dev)) {
2497 		struct tty *tp = sc->sc_tty[func];
2498 
2499 		return (LINESW(tp).l_read(tp, uio, flag));
2500 	} else {
2501 		struct queue_pair *qp = &sc->sc_xmm.qp[func];
2502 		ssize_t ret;
2503 		char *buf;
2504 		size_t size, read = 0;
2505 
2506 #ifdef __OpenBSD__
2507 		KASSERT(uio->uio_segflg == UIO_USERSPACE);
2508 #endif
2509 
2510 		for (int i = 0; i < uio->uio_iovcnt; i++) {
2511 			buf = uio->uio_iov[i].iov_base;
2512 			size = uio->uio_iov[i].iov_len;
2513 
2514 			while (size > 0) {
2515 				ret = xmm7360_qp_read_user(qp, buf, size);
2516 				if (ret < 0) {
2517 					/*
2518 					 * This shadows -EPERM, but that is
2519 					 * not returned by the call stack,
2520 					 * so this condition is safe.
2521 					 */
2522 					return (ret == ERESTART) ? ret : -ret;
2523 				}
2524 
2525 				KASSERT(ret > 0 && ret <= size);
2526 				size -= ret;
2527 				buf += ret;
2528 				read += ret;
2529 
2530 				/* Reader will re-try if they want more */
2531 				goto out;
2532 			}
2533 		}
2534 
2535 out:
2536 		uio->uio_resid -= read;
2537 		uio->uio_offset += read;
2538 
2539 		return 0;
2540 	}
2541 }
2542 
2543 int
2544 wwancwrite(dev_t dev, struct uio *uio, int flag)
2545 {
2546 	struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2547 	int func = DEVFUNC(dev);
2548 
2549 	if (DEV_IS_TTY(dev)) {
2550 		struct tty *tp = sc->sc_tty[func];
2551 
2552 		return (LINESW(tp).l_write(tp, uio, flag));
2553 	} else {
2554 		struct queue_pair *qp = &sc->sc_xmm.qp[func];
2555 		ssize_t ret;
2556 		const char *buf;
2557 		size_t size, wrote = 0;
2558 
2559 #ifdef __OpenBSD__
2560 		KASSERT(uio->uio_segflg == UIO_USERSPACE);
2561 #endif
2562 
2563 		for (int i = 0; i < uio->uio_iovcnt; i++) {
2564 			buf = uio->uio_iov[i].iov_base;
2565 			size = uio->uio_iov[i].iov_len;
2566 
2567 			while (size > 0) {
2568 				ret = xmm7360_qp_write_user(qp, buf, size);
2569 				if (ret < 0) {
2570 					/*
2571 					 * This shadows -EPERM, but that is
2572 					 * not returned by the call stack,
2573 					 * so this condition is safe.
2574 					 */
2575 					return (ret == ERESTART) ? ret : -ret;
2576 				}
2577 
2578 				KASSERT(ret > 0 && ret <= size);
2579 				size -= ret;
2580 				buf += ret;
2581 				wrote += ret;
2582 			}
2583 		}
2584 
2585 		uio->uio_resid -= wrote;
2586 		uio->uio_offset += wrote;
2587 
2588 		return 0;
2589 	}
2590 }
2591 
2592 int
2593 wwancioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
2594 {
2595 	struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2596 	int error;
2597 
2598 	if (DEV_IS_TTY(dev)) {
2599 		struct tty *tp = sc->sc_tty[DEVFUNC(dev)];
2600 		KASSERT(tp);
2601 
2602 		error = LINESW(tp).l_ioctl(tp, cmd, data, flag, p);
2603 		if (error >= 0)
2604 			return error;
2605 		error = ttioctl(tp, cmd, data, flag, p);
2606 		if (error >= 0)
2607 			return error;
2608 	}
2609 
2610 	return ENOTTY;
2611 }
2612 
2613 int
2614 wwancclose(dev_t dev, int flag, int mode, struct proc *p)
2615 {
2616 	struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2617 	int func = DEVFUNC(dev);
2618 
2619 	if (DEV_IS_TTY(dev)) {
2620 		struct tty *tp = sc->sc_tty[func];
2621 		KASSERT(tp);
2622 
2623 		CLR(tp->t_state, TS_BUSY | TS_FLUSH);
2624 		LINESW(tp).l_close(tp, flag, p);
2625 		ttyclose(tp);
2626 	}
2627 
2628 	xmm7360_qp_stop(&sc->sc_xmm.qp[func]);
2629 
2630 	return 0;
2631 }
2632 
2633 struct tty *
2634 wwanctty(dev_t dev)
2635 {
2636 	struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2637 	struct tty *tp = sc->sc_tty[DEVFUNC(dev)];
2638 
2639 	KASSERT(DEV_IS_TTY(dev));
2640 	KASSERT(tp);
2641 
2642 	return tp;
2643 }
2644 
2645 static int
2646 wwancparam(struct tty *tp, struct termios *t)
2647 {
2648 	struct wwanc_softc *sc __diagused = (struct wwanc_softc *)tp->t_sc;
2649 	dev_t dev = tp->t_dev;
2650 	int func __diagused = DEVFUNC(dev);
2651 
2652 	KASSERT(DEV_IS_TTY(dev));
2653 	KASSERT(tp == sc->sc_tty[func]);
2654 	/* Can't assert tty_locked(), it's not taken when called via ttioctl()*/
2655 
2656 	/* Nothing to set on hardware side, just copy values */
2657 	tp->t_ispeed = t->c_ispeed;
2658 	tp->t_ospeed = t->c_ospeed;
2659 	tp->t_cflag = t->c_cflag;
2660 
2661 	return 0;
2662 }
2663 
2664 static void
2665 wwancstart(struct tty *tp)
2666 {
2667 	struct wwanc_softc *sc = (struct wwanc_softc *)tp->t_sc;
2668 	dev_t dev = tp->t_dev;
2669 	int func = DEVFUNC(dev);
2670 	struct queue_pair *qp = &sc->sc_xmm.qp[func];
2671 	int n, written;
2672 
2673 	KASSERT(DEV_IS_TTY(dev));
2674 	KASSERT(tp == sc->sc_tty[func]);
2675 	tty_locked();
2676 
2677 	if (ISSET(tp->t_state, TS_BUSY) || !xmm7360_qp_can_write(qp))
2678 		return;
2679 	if (tp->t_outq.c_cc == 0)
2680 		return;
2681 
2682 	/*
2683 	 * If we can write, we can write full qb page_size amount of data.
2684 	 * Once q_to_b() is called, the data must be trasmitted - q_to_b()
2685 	 * removes them from the tty output queue. Partial write is not
2686 	 * possible.
2687 	 */
2688 	KASSERT(sizeof(qp->user_buf) >= qp->page_size);
2689 	SET(tp->t_state, TS_BUSY);
2690 	n = q_to_b(&tp->t_outq, qp->user_buf, qp->page_size);
2691 	KASSERT(n > 0);
2692 	KASSERT(n <= qp->page_size);
2693 	written = xmm7360_qp_write(qp, qp->user_buf, n);
2694 	CLR(tp->t_state, TS_BUSY);
2695 
2696 	if (written != n) {
2697 		dev_err(sc->sc_dev, "xmm7360_qp_write(%d) failed %d != %d\n",
2698 		    func, written, n);
2699 		/* nothing to recover, just return */
2700 	}
2701 }
2702 
2703 int
2704 wwancpoll(dev_t dev, int events, struct proc *p)
2705 {
2706 	struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2707 	int func = DEVFUNC(dev);
2708 	struct queue_pair *qp = &sc->sc_xmm.qp[func];
2709 	int mask = 0;
2710 
2711 	if (DEV_IS_TTY(dev)) {
2712 #ifdef __OpenBSD__
2713 		return ttpoll(dev, events, p);
2714 #endif
2715 #ifdef __NetBSD__
2716 		struct tty *tp = sc->sc_tty[func];
2717 
2718 		return LINESW(tp).l_poll(tp, events, p);
2719 #endif
2720 	}
2721 
2722 	KASSERT(!DEV_IS_TTY(dev));
2723 
2724 	if (qp->xmm->error) {
2725 		mask |= POLLHUP;
2726 		goto out;
2727 	}
2728 
2729 	if (xmm7360_qp_has_data(qp))
2730 		mask |= POLLIN | POLLRDNORM;
2731 
2732 	if (xmm7360_qp_can_write(qp))
2733 		mask |= POLLOUT | POLLWRNORM;
2734 
2735 out:
2736 	if ((mask & events) == 0) {
2737 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND))
2738 			selrecord(p, &sc->sc_selr);
2739                 if (events & (POLLOUT | POLLWRNORM))
2740                         selrecord(p, &sc->sc_selw);
2741 	}
2742 
2743 	return mask & events;
2744 }
2745 
2746 static void
2747 filt_wwancrdetach(struct knote *kn)
2748 {
2749 	struct queue_pair *qp = (struct queue_pair *)kn->kn_hook;
2750 
2751 	tty_lock();
2752 	klist_remove(&qp->selr.si_note, kn);
2753 	tty_unlock();
2754 }
2755 
2756 static int
2757 filt_wwancread(struct knote *kn, long hint)
2758 {
2759 	struct queue_pair *qp = (struct queue_pair *)kn->kn_hook;
2760 
2761 	kn->kn_data = 0;
2762 
2763 	if (!qp->open) {
2764 		kn->kn_flags |= EV_EOF;
2765 		return (1);
2766 	} else {
2767 		kn->kn_data = xmm7360_qp_has_data(qp) ? 1 : 0;
2768 	}
2769 
2770 	return (kn->kn_data > 0);
2771 }
2772 
2773 static void
2774 filt_wwancwdetach(struct knote *kn)
2775 {
2776 	struct queue_pair *qp = (struct queue_pair *)kn->kn_hook;
2777 
2778 	tty_lock();
2779 	klist_remove(&qp->selw.si_note, kn);
2780 	tty_unlock();
2781 }
2782 
2783 static int
2784 filt_wwancwrite(struct knote *kn, long hint)
2785 {
2786 	struct queue_pair *qp = (struct queue_pair *)kn->kn_hook;
2787 
2788 	kn->kn_data = 0;
2789 
2790 	if (qp->open) {
2791 		if (xmm7360_qp_can_write(qp))
2792 			kn->kn_data = qp->page_size;
2793 	}
2794 
2795 	return (kn->kn_data > 0);
2796 }
2797 
2798 static const struct filterops wwancread_filtops = {
2799 	XMM_KQ_ISFD_INITIALIZER,
2800 	.f_attach	= NULL,
2801 	.f_detach	= filt_wwancrdetach,
2802 	.f_event	= filt_wwancread,
2803 };
2804 
2805 static const struct filterops wwancwrite_filtops = {
2806 	XMM_KQ_ISFD_INITIALIZER,
2807 	.f_attach	= NULL,
2808 	.f_detach	= filt_wwancwdetach,
2809 	.f_event	= filt_wwancwrite,
2810 };
2811 
2812 int
2813 wwanckqfilter(dev_t dev, struct knote *kn)
2814 {
2815 	struct wwanc_softc *sc = device_lookup_private(&wwanc_cd, DEVUNIT(dev));
2816 	int func = DEVFUNC(dev);
2817 	struct queue_pair *qp = &sc->sc_xmm.qp[func];
2818 	struct klist *klist;
2819 
2820 	if (DEV_IS_TTY(func))
2821 		return ttkqfilter(dev, kn);
2822 
2823 	KASSERT(!DEV_IS_TTY(func));
2824 
2825 	switch (kn->kn_filter) {
2826 	case EVFILT_READ:
2827 		klist = &qp->selr.si_note;
2828 		kn->kn_fop = &wwancread_filtops;
2829 		break;
2830 	case EVFILT_WRITE:
2831 		klist = &qp->selw.si_note;
2832 		kn->kn_fop = &wwancwrite_filtops;
2833 		break;
2834 	default:
2835 		return (EINVAL);
2836 	}
2837 
2838 	kn->kn_hook = (void *)qp;
2839 
2840 	tty_lock();
2841 	klist_insert(klist, kn);
2842 	tty_unlock();
2843 
2844 	return (0);
2845 }
2846 
2847 static void *
2848 dma_alloc_coherent(struct device *self, size_t sz, dma_addr_t *physp, int flags)
2849 {
2850 	struct wwanc_softc *sc = device_private(self);
2851 	bus_dma_segment_t seg;
2852 	int nsegs;
2853 	int error;
2854 	caddr_t kva;
2855 
2856 	error = bus_dmamem_alloc(sc->sc_dmat, sz, 0, 0, &seg, 1, &nsegs,
2857 	    BUS_DMA_WAITOK);
2858 	if (error) {
2859 		panic("%s: bus_dmamem_alloc(%lu) failed %d\n",
2860 		    self->dv_xname, (unsigned long)sz, error);
2861 		/* NOTREACHED */
2862 	}
2863 
2864 	KASSERT(nsegs == 1);
2865 	KASSERT(seg.ds_len == round_page(sz));
2866 
2867 	error = bus_dmamem_map(sc->sc_dmat, &seg, nsegs, sz, &kva,
2868 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT);
2869 	if (error) {
2870 		panic("%s: bus_dmamem_alloc(%lu) failed %d\n",
2871 		    self->dv_xname, (unsigned long)sz, error);
2872 		/* NOTREACHED */
2873 	}
2874 
2875 	memset(kva, 0, sz);
2876 	*physp = seg.ds_addr;
2877 	return (void *)kva;
2878 }
2879 
2880 static void
2881 dma_free_coherent(struct device *self, size_t sz, volatile void *vaddr, dma_addr_t phys)
2882 {
2883 	struct wwanc_softc *sc = device_private(self);
2884 	bus_dma_segment_t seg;
2885 
2886 	sz = round_page(sz);
2887 
2888 	bus_dmamem_unmap(sc->sc_dmat, __UNVOLATILE(vaddr), sz);
2889 
2890 	/* this does't need the exact seg returned by bus_dmamem_alloc() */
2891 	memset(&seg, 0, sizeof(seg));
2892 	seg.ds_addr = phys;
2893 	seg.ds_len  = sz;
2894 	bus_dmamem_free(sc->sc_dmat, &seg, 1);
2895 }
2896 
2897 struct wwan_softc {
2898 #ifdef __OpenBSD__
2899 	struct device		sc_devx;	/* gen. device info storage */
2900 #endif
2901 	struct device		*sc_dev;	/* generic device */
2902 	struct wwanc_softc	*sc_parent;	/* parent device */
2903 	struct ifnet		sc_ifnet;	/* network-visible interface */
2904 	struct xmm_net		sc_xmm_net;
2905 };
2906 
2907 static void xmm7360_os_handle_net_frame(struct xmm_dev *xmm, const u8 *buf, size_t sz)
2908 {
2909 	struct wwanc_softc *sc = device_private(xmm->dev);
2910 	struct wwan_softc *sc_if = device_private(sc->sc_net);
2911 	struct ifnet *ifp = &sc_if->sc_ifnet;
2912 	struct mbuf *m;
2913 
2914 	KASSERT(sz <= MCLBYTES);
2915 
2916 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2917 	if (!m)
2918 		return;
2919 	if (sz > MHLEN) {
2920 		MCLGETI(m, M_DONTWAIT, NULL, sz);
2921 		if ((m->m_flags & M_EXT) == 0) {
2922 			m_freem(m);
2923 			return;
2924 		}
2925 	}
2926 	m->m_len = m->m_pkthdr.len = sz;
2927 
2928 	/*
2929 	 * No explicit alignment necessary - there is no ethernet header,
2930 	 * so IP address is already aligned.
2931 	 */
2932 	KASSERT(m->m_pkthdr.len == sz);
2933 	m_copyback(m, 0, sz, (const void *)buf, M_NOWAIT);
2934 
2935 #ifdef __OpenBSD__
2936 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
2937 	ml_enqueue(&ml, m);
2938 	if_input(ifp, &ml);
2939 #endif
2940 #ifdef __NetBSD__
2941 	if_percpuq_enqueue(ifp->if_percpuq, m);
2942 #endif
2943 }
2944 
2945 static void
2946 xmm7360_os_handle_net_dequeue(struct xmm_net *xn, struct mux_frame *frame)
2947 {
2948 	struct wwan_softc *sc_if =
2949 		container_of(xn, struct wwan_softc, sc_xmm_net);
2950 	struct ifnet *ifp = &sc_if->sc_ifnet;
2951 	struct mbuf *m;
2952 	int ret;
2953 
2954 	MUTEX_ASSERT_LOCKED(&xn->lock);
2955 
2956 	while ((m = ifq_deq_begin(&ifp->if_snd))) {
2957 		/*
2958 		 * xmm7360_mux_frame_append_packet() requires single linear
2959 		 * buffer, so try m_defrag(). Another option would be
2960 		 * using m_copydata() into an intermediate buffer.
2961 		 */
2962 		if (m->m_next) {
2963 			if (m_defrag(m, M_DONTWAIT) != 0 || m->m_next) {
2964 				/* Can't defrag, drop and continue */
2965 				ifq_deq_commit(&ifp->if_snd, m);
2966 				m_freem(m);
2967 				continue;
2968 			}
2969 		}
2970 
2971 		ret = xmm7360_mux_frame_append_packet(frame,
2972 		    mtod(m, void *), m->m_pkthdr.len);
2973 		if (ret) {
2974 			/* No more space in the frame */
2975 			ifq_deq_rollback(&ifp->if_snd, m);
2976 			break;
2977 		}
2978 		ifq_deq_commit(&ifp->if_snd, m);
2979 
2980 		/* Send a copy of the frame to the BPF listener */
2981 		BPF_MTAP_OUT(ifp, m);
2982 
2983 		m_freem(m);
2984 	}
2985 }
2986 
2987 static void xmm7360_os_handle_net_txwake(struct xmm_net *xn)
2988 {
2989 	struct wwan_softc *sc_if =
2990 		container_of(xn, struct wwan_softc, sc_xmm_net);
2991 	struct ifnet *ifp = &sc_if->sc_ifnet;
2992 
2993 	MUTEX_ASSERT_LOCKED(&xn->lock);
2994 
2995 	KASSERT(xmm7360_qp_can_write(xn->qp));
2996 	if (ifq_is_oactive(&ifp->if_snd)) {
2997 		ifq_clr_oactive(&ifp->if_snd);
2998 #ifdef __OpenBSD__
2999 		ifq_restart(&ifp->if_snd);
3000 #endif
3001 #ifdef __NetBSD__
3002 		if_schedule_deferred_start(ifp);
3003 #endif
3004 	}
3005 }
3006 
3007 #ifdef __OpenBSD__
3008 /*
3009  * Process received raw IPv4/IPv6 packet. There is no encapsulation.
3010  */
3011 static int
3012 wwan_if_input(struct ifnet *ifp, struct mbuf *m, void *cookie)
3013 {
3014 	const uint8_t *data = mtod(m, uint8_t *);
3015 	void (*input)(struct ifnet *, struct mbuf *);
3016 	u8 ip_version;
3017 
3018 	ip_version = data[0] >> 4;
3019 
3020 	switch (ip_version) {
3021 	case IPVERSION:
3022 		input = ipv4_input;
3023 		break;
3024 	case (IPV6_VERSION >> 4):
3025 		input = ipv6_input;
3026 		break;
3027 	default:
3028 		/* Unknown protocol, just drop packet */
3029 		m_freem(m);
3030 		return 1;
3031 		/* NOTREACHED */
3032 	}
3033 
3034 	/* Needed for tcpdump(1) et.al */
3035 	m->m_pkthdr.ph_rtableid = ifp->if_rdomain;
3036 	m_adj(m, sizeof(u_int32_t));
3037 
3038 	(*input)(ifp, m);
3039 	return 1;
3040 }
3041 #endif /* __OpenBSD__ */
3042 
3043 #ifdef __NetBSD__
3044 static bool wwan_pmf_suspend(device_t, const pmf_qual_t *);
3045 
3046 /*
3047  * Process received raw IPv4/IPv6 packet. There is no encapsulation.
3048  */
3049 static void
3050 wwan_if_input(struct ifnet *ifp, struct mbuf *m)
3051 {
3052 	const uint8_t *data = mtod(m, uint8_t *);
3053 	pktqueue_t *pktq = NULL;
3054 	u8 ip_version;
3055 
3056 	KASSERT(!cpu_intr_p());
3057 	KASSERT((m->m_flags & M_PKTHDR) != 0);
3058 
3059 	if ((ifp->if_flags & IFF_UP) == 0) {
3060 		m_freem(m);
3061 		return;
3062 	}
3063 
3064 	if_statadd(ifp, if_ibytes, m->m_pkthdr.len);
3065 
3066 	/*
3067 	 * The interface can't receive packets for other host, so never
3068 	 * really IFF_PROMISC even if bpf listener is attached.
3069 	 */
3070 	if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
3071 		return;
3072 	if (m == NULL)
3073 		return;
3074 
3075 	ip_version = data[0] >> 4;
3076 	switch (ip_version) {
3077 #ifdef INET
3078 	case IPVERSION:
3079 #ifdef GATEWAY
3080 		if (ipflow_fastforward(m))
3081 			return;
3082 #endif
3083 		pktq = ip_pktq;
3084 		break;
3085 #endif /* INET */
3086 #ifdef INET6
3087 	case (IPV6_VERSION >> 4):
3088 		if (__predict_false(!in6_present)) {
3089 			m_freem(m);
3090 			return;
3091 		}
3092 #ifdef GATEWAY
3093 		if (ip6flow_fastforward(&m))
3094 			return;
3095 #endif
3096 		pktq = ip6_pktq;
3097 		break;
3098 #endif /* INET6 */
3099 	default:
3100 		/* Unknown protocol, just drop packet */
3101 		m_freem(m);
3102 		return;
3103 		/* NOTREACHED */
3104 	}
3105 
3106 	KASSERT(pktq != NULL);
3107 
3108 	/* No errors.  Receive the packet. */
3109 	m_set_rcvif(m, ifp);
3110 
3111 #ifdef NET_MPSAFE
3112 	const u_int h = curcpu()->ci_index;
3113 #else
3114 	const uint32_t h = pktq_rps_hash(m);
3115 #endif
3116 	if (__predict_false(!pktq_enqueue(pktq, m, h))) {
3117 		m_freem(m);
3118 	}
3119 }
3120 #endif
3121 
3122 /*
3123  * Transmit raw IPv4/IPv6 packet. No encapsulation necessary.
3124  */
3125 static int
3126 wwan_if_output(struct ifnet *ifp, struct mbuf *m,
3127     IF_OUTPUT_CONST struct sockaddr *dst, IF_OUTPUT_CONST struct rtentry *rt)
3128 {
3129 	// there is no ethernet frame, this means no bridge(4) handling
3130 	return (if_enqueue(ifp, m));
3131 }
3132 
3133 static int
3134 wwan_if_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3135 {
3136 	struct wwan_softc *sc_if = ifp->if_softc;
3137 	int error = 0;
3138 	int s;
3139 
3140 	s = splnet();
3141 
3142 	switch (cmd) {
3143 #ifdef __NetBSD__
3144 	case SIOCINITIFADDR:
3145 #endif
3146 #ifdef __OpenBSD__
3147 	case SIOCAIFADDR:
3148 	case SIOCAIFADDR_IN6:
3149 	case SIOCSIFADDR:
3150 #endif
3151 		/* Make interface ready to run if address is assigned */
3152 		ifp->if_flags |= IFF_UP;
3153 		if (!(ifp->if_flags & IFF_RUNNING)) {
3154 			ifp->if_flags |= IFF_RUNNING;
3155 			xmm7360_mux_control(&sc_if->sc_xmm_net, 1, 0, 0, 0);
3156 		}
3157 		break;
3158 	case SIOCSIFFLAGS:
3159 	case SIOCADDMULTI:
3160 	case SIOCDELMULTI:
3161 		/* nothing special to do */
3162 		break;
3163 	case SIOCSIFMTU:
3164 		error = ENOTTY;
3165 		break;
3166 	default:
3167 #ifdef __NetBSD__
3168 		/*
3169 		 * Call common code for SIOCG* ioctls. In OpenBSD those ioctls
3170 		 * are handled in ifioctl(), and the if_ioctl is not called
3171 		 * for them at all.
3172 		 */
3173 		error = ifioctl_common(ifp, cmd, data);
3174 		if (error == ENETRESET)
3175 			error = 0;
3176 #endif
3177 #ifdef __OpenBSD__
3178 		error = ENOTTY;
3179 #endif
3180 		break;
3181 	}
3182 
3183 	splx(s);
3184 
3185 	return error;
3186 }
3187 
3188 static void
3189 wwan_if_start(struct ifnet *ifp)
3190 {
3191 	struct wwan_softc *sc = ifp->if_softc;
3192 
3193 	mutex_lock(&sc->sc_xmm_net.lock);
3194 	while (!ifq_empty(&ifp->if_snd)) {
3195 		if (!xmm7360_qp_can_write(sc->sc_xmm_net.qp)) {
3196 			break;
3197 		}
3198 		xmm7360_net_flush(&sc->sc_xmm_net);
3199 	}
3200 	mutex_unlock(&sc->sc_xmm_net.lock);
3201 }
3202 
3203 static int
3204 wwan_match(struct device *parent, cfdata_t match, void *aux)
3205 {
3206 	struct wwanc_attach_args *wa = aux;
3207 
3208 	return (wa->aa_type == WWMC_TYPE_NET);
3209 }
3210 
3211 static void
3212 wwan_attach(struct device *parent, struct device *self, void *aux)
3213 {
3214 	struct wwan_softc *sc_if = device_private(self);
3215 	struct ifnet *ifp = &sc_if->sc_ifnet;
3216 	struct xmm_dev *xmm;
3217 	struct xmm_net *xn;
3218 
3219 	sc_if->sc_dev = self;
3220 	sc_if->sc_parent = device_private(parent);
3221 	xmm = sc_if->sc_xmm_net.xmm = &sc_if->sc_parent->sc_xmm;
3222 	xn = &sc_if->sc_xmm_net;
3223 	mutex_init(&xn->lock);
3224 
3225 	/* QP already initialized in parent, just set pointers and start */
3226 	xn->qp = &xmm->qp[0];
3227 	xmm7360_qp_start(xn->qp);
3228 	xmm->net = xn;
3229 
3230 	ifp->if_softc = sc_if;
3231 	ifp->if_flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST \
3232 		| IFF_SIMPLEX;
3233 	ifp->if_ioctl = wwan_if_ioctl;
3234 	ifp->if_start = wwan_if_start;
3235 	ifp->if_mtu = 1500;
3236 	ifp->if_hardmtu = 1500;
3237 	ifp->if_type = IFT_OTHER;
3238 	IFQ_SET_MAXLEN(&ifp->if_snd, xn->qp->depth);
3239 	IFQ_SET_READY(&ifp->if_snd);
3240 	bcopy(sc_if->sc_dev->dv_xname, ifp->if_xname, IFNAMSIZ);
3241 
3242 	/* Call MI attach routines. */
3243 	if_attach(ifp);
3244 
3245 	/* Hook custom input and output processing, and dummy sadl */
3246 	ifp->if_output = wwan_if_output;
3247 	if_ih_insert(ifp, wwan_if_input, NULL);
3248 	if_deferred_start_init(ifp, NULL);
3249 	if_alloc_sadl(ifp);
3250 #if NBPFILTER > 0
3251 #ifdef __OpenBSD__
3252 	bpfattach(&ifp->if_bpf, ifp, DLT_LOOP, sizeof(u_int32_t));
3253 #endif
3254 #ifdef __NetBSD__
3255 	bpfattach(&ifp->if_bpf, ifp, DLT_RAW, 0);
3256 #endif
3257 #endif
3258 
3259 	printf("\n");
3260 
3261 #ifdef __NetBSD__
3262 	if (pmf_device_register(self, wwan_pmf_suspend, NULL))
3263 		pmf_class_network_register(self, ifp);
3264 	else
3265 		aprint_error_dev(self, "couldn't establish power handler\n");
3266 #endif
3267 }
3268 
3269 static int
3270 wwan_detach(struct device *self, int flags)
3271 {
3272 	struct wwan_softc *sc_if = device_private(self);
3273 	struct ifnet *ifp = &sc_if->sc_ifnet;
3274 
3275 	if (ifp->if_flags & (IFF_UP|IFF_RUNNING))
3276 		ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
3277 
3278 	pmf_device_deregister(self);
3279 
3280 	if_ih_remove(ifp, wwan_if_input, NULL);
3281 	if_detach(ifp);
3282 
3283 	xmm7360_qp_stop(sc_if->sc_xmm_net.qp);
3284 
3285 	sc_if->sc_xmm_net.xmm->net = NULL;
3286 
3287 	return 0;
3288 }
3289 
3290 static void
3291 wwan_suspend(struct device *self)
3292 {
3293 	struct wwan_softc *sc_if = device_private(self);
3294 	struct ifnet *ifp = &sc_if->sc_ifnet;
3295 
3296 	/*
3297 	 * Interface is marked down on suspend, and needs to be reconfigured
3298 	 * after resume.
3299 	 */
3300 	if (ifp->if_flags & (IFF_UP|IFF_RUNNING))
3301 		ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
3302 
3303 	ifq_purge(&ifp->if_snd);
3304 }
3305 
3306 #ifdef __OpenBSD__
3307 static int
3308 wwan_activate(struct device *self, int act)
3309 {
3310 	switch (act) {
3311 	case DVACT_QUIESCE:
3312 	case DVACT_SUSPEND:
3313 		wwan_suspend(self);
3314 		break;
3315 	case DVACT_RESUME:
3316 		/* Nothing to do */
3317 		break;
3318 	}
3319 
3320 	return 0;
3321 }
3322 
3323 struct cfattach wwan_ca = {
3324         sizeof(struct wwan_softc), wwan_match, wwan_attach,
3325         wwan_detach, wwan_activate
3326 };
3327 
3328 struct cfdriver wwan_cd = {
3329         NULL, "wwan", DV_IFNET
3330 };
3331 #endif /* __OpenBSD__ */
3332 
3333 #ifdef __NetBSD__
3334 static bool
3335 wwan_pmf_suspend(device_t self, const pmf_qual_t *qual)
3336 {
3337 	wwan_suspend(self);
3338 	return true;
3339 }
3340 
3341 CFATTACH_DECL3_NEW(wwan, sizeof(struct wwan_softc),
3342    wwan_match, wwan_attach, wwan_detach, NULL,
3343    NULL, NULL, DVF_DETACH_SHUTDOWN);
3344 #endif /* __NetBSD__ */
3345 
3346 #endif /* __OpenBSD__ || __NetBSD__ */
3347