xref: /netbsd-src/sys/dev/pci/virtio.c (revision 627f7eb200a4419d89b531d55fccd2ee3ffdcde0)
1 /*	$NetBSD: virtio.c,v 1.49 2021/02/07 09:29:53 skrll Exp $	*/
2 
3 /*
4  * Copyright (c) 2020 The NetBSD Foundation, Inc.
5  * Copyright (c) 2012 Stefan Fritsch, Alexander Fiveg.
6  * Copyright (c) 2010 Minoura Makoto.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: virtio.c,v 1.49 2021/02/07 09:29:53 skrll Exp $");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/atomic.h>
37 #include <sys/bus.h>
38 #include <sys/device.h>
39 #include <sys/kmem.h>
40 #include <sys/module.h>
41 
42 #define VIRTIO_PRIVATE
43 
44 #include <dev/pci/virtioreg.h> /* XXX: move to non-pci */
45 #include <dev/pci/virtiovar.h> /* XXX: move to non-pci */
46 
47 #define MINSEG_INDIRECT		2 /* use indirect if nsegs >= this value */
48 
49 /* incomplete list */
50 static const char *virtio_device_name[] = {
51 	"unknown (0)",			/*  0 */
52 	"network",			/*  1 */
53 	"block",			/*  2 */
54 	"console",			/*  3 */
55 	"entropy",			/*  4 */
56 	"memory balloon",		/*  5 */
57 	"I/O memory",			/*  6 */
58 	"remote processor messaging",	/*  7 */
59 	"SCSI",				/*  8 */
60 	"9P transport",			/*  9 */
61 };
62 #define NDEVNAMES	__arraycount(virtio_device_name)
63 
64 static void	virtio_init_vq(struct virtio_softc *,
65 		    struct virtqueue *, const bool);
66 
67 void
68 virtio_set_status(struct virtio_softc *sc, int status)
69 {
70 	sc->sc_ops->set_status(sc, status);
71 }
72 
73 /*
74  * Reset the device.
75  */
76 /*
77  * To reset the device to a known state, do following:
78  *	virtio_reset(sc);	     // this will stop the device activity
79  *	<dequeue finished requests>; // virtio_dequeue() still can be called
80  *	<revoke pending requests in the vqs if any>;
81  *	virtio_reinit_start(sc);     // dequeue prohibitted
82  *	newfeatures = virtio_negotiate_features(sc, requestedfeatures);
83  *	<some other initialization>;
84  *	virtio_reinit_end(sc);	     // device activated; enqueue allowed
85  * Once attached, feature negotiation can only be allowed after virtio_reset.
86  */
87 void
88 virtio_reset(struct virtio_softc *sc)
89 {
90 	virtio_device_reset(sc);
91 }
92 
93 void
94 virtio_reinit_start(struct virtio_softc *sc)
95 {
96 	int i;
97 
98 	virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_ACK);
99 	virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_DRIVER);
100 	for (i = 0; i < sc->sc_nvqs; i++) {
101 		int n;
102 		struct virtqueue *vq = &sc->sc_vqs[i];
103 		n = sc->sc_ops->read_queue_size(sc, vq->vq_index);
104 		if (n == 0)	/* vq disappeared */
105 			continue;
106 		if (n != vq->vq_num) {
107 			panic("%s: virtqueue size changed, vq index %d\n",
108 			      device_xname(sc->sc_dev),
109 			      vq->vq_index);
110 		}
111 		virtio_init_vq(sc, vq, true);
112 		sc->sc_ops->setup_queue(sc, vq->vq_index,
113 		    vq->vq_dmamap->dm_segs[0].ds_addr);
114 	}
115 }
116 
117 void
118 virtio_reinit_end(struct virtio_softc *sc)
119 {
120 	virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_DRIVER_OK);
121 }
122 
123 /*
124  * Feature negotiation.
125  */
126 void
127 virtio_negotiate_features(struct virtio_softc *sc, uint64_t guest_features)
128 {
129 	if (!(device_cfdata(sc->sc_dev)->cf_flags & 1) &&
130 	    !(device_cfdata(sc->sc_child)->cf_flags & 1)) /* XXX */
131 		guest_features |= VIRTIO_F_RING_INDIRECT_DESC;
132 	sc->sc_ops->neg_features(sc, guest_features);
133 	if (sc->sc_active_features & VIRTIO_F_RING_INDIRECT_DESC)
134 		sc->sc_indirect = true;
135 	else
136 		sc->sc_indirect = false;
137 }
138 
139 
140 /*
141  * Device configuration registers readers/writers
142  */
143 #if 0
144 #define DPRINTFR(n, fmt, val, index, num) \
145 	printf("\n%s (", n); \
146 	for (int i = 0; i < num; i++) \
147 		printf("%02x ", bus_space_read_1(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index+i)); \
148 	printf(") -> "); printf(fmt, val); printf("\n");
149 #define DPRINTFR2(n, fmt, val_s, val_n) \
150 	printf("%s ", n); \
151 	printf("\n        stream "); printf(fmt, val_s); printf(" norm "); printf(fmt, val_n); printf("\n");
152 #else
153 #define DPRINTFR(n, fmt, val, index, num)
154 #define DPRINTFR2(n, fmt, val_s, val_n)
155 #endif
156 
157 
158 uint8_t
159 virtio_read_device_config_1(struct virtio_softc *sc, int index) {
160 	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
161 	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
162 	uint8_t val;
163 
164 	val = bus_space_read_1(iot, ioh, index);
165 
166 	DPRINTFR("read_1", "%02x", val, index, 1);
167 	return val;
168 }
169 
170 uint16_t
171 virtio_read_device_config_2(struct virtio_softc *sc, int index) {
172 	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
173 	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
174 	uint16_t val;
175 
176 	val = bus_space_read_2(iot, ioh, index);
177 	if (BYTE_ORDER != sc->sc_bus_endian)
178 		val = bswap16(val);
179 
180 	DPRINTFR("read_2", "%04x", val, index, 2);
181 	DPRINTFR2("read_2", "%04x",
182 		bus_space_read_stream_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index),
183 		bus_space_read_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index));
184 	return val;
185 }
186 
187 uint32_t
188 virtio_read_device_config_4(struct virtio_softc *sc, int index) {
189 	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
190 	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
191 	uint32_t val;
192 
193 	val = bus_space_read_4(iot, ioh, index);
194 	if (BYTE_ORDER != sc->sc_bus_endian)
195 		val = bswap32(val);
196 
197 	DPRINTFR("read_4", "%08x", val, index, 4);
198 	DPRINTFR2("read_4", "%08x",
199 		bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index),
200 		bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index));
201 	return val;
202 }
203 
204 /*
205  * The Virtio spec explicitly tells that reading and writing 8 bytes are not
206  * considered atomic and no triggers may be connected to reading or writing
207  * it. We access it using two 32 reads. See virtio spec 4.1.3.1.
208  */
209 uint64_t
210 virtio_read_device_config_8(struct virtio_softc *sc, int index) {
211 	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
212 	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
213 	union {
214 		uint64_t u64;
215 		uint32_t l[2];
216 	} v;
217 	uint64_t val;
218 
219 	v.l[0] = bus_space_read_4(iot, ioh, index);
220 	v.l[1] = bus_space_read_4(iot, ioh, index + 4);
221 	if (sc->sc_bus_endian != sc->sc_struct_endian) {
222 		v.l[0] = bswap32(v.l[0]);
223 		v.l[1] = bswap32(v.l[1]);
224 	}
225 	val = v.u64;
226 
227 	if (BYTE_ORDER != sc->sc_struct_endian)
228 		val = bswap64(val);
229 
230 	DPRINTFR("read_8", "%08lx", val, index, 8);
231 	DPRINTFR2("read_8 low ", "%08x",
232 		bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index),
233 		bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index));
234 	DPRINTFR2("read_8 high ", "%08x",
235 		bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index + 4),
236 		bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index + 4));
237 	return val;
238 }
239 
240 /*
241  * In the older virtio spec, device config registers are host endian. On newer
242  * they are little endian. Some newer devices however explicitly specify their
243  * register to always be little endian. These fuctions cater for these.
244  */
245 uint16_t
246 virtio_read_device_config_le_2(struct virtio_softc *sc, int index) {
247 	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
248 	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
249 	uint16_t val;
250 
251 	val = bus_space_read_2(iot, ioh, index);
252 	if (sc->sc_bus_endian != LITTLE_ENDIAN)
253 		val = bswap16(val);
254 
255 	DPRINTFR("read_le_2", "%04x", val, index, 2);
256 	DPRINTFR2("read_le_2", "%04x",
257 		bus_space_read_stream_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0),
258 		bus_space_read_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0));
259 	return val;
260 }
261 
262 uint32_t
263 virtio_read_device_config_le_4(struct virtio_softc *sc, int index) {
264 	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
265 	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
266 	uint32_t val;
267 
268 	val = bus_space_read_4(iot, ioh, index);
269 	if (sc->sc_bus_endian != LITTLE_ENDIAN)
270 		val = bswap32(val);
271 
272 	DPRINTFR("read_le_4", "%08x", val, index, 4);
273 	DPRINTFR2("read_le_4", "%08x",
274 		bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0),
275 		bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0));
276 	return val;
277 }
278 
279 void
280 virtio_write_device_config_1(struct virtio_softc *sc, int index, uint8_t value)
281 {
282 	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
283 	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
284 
285 	bus_space_write_1(iot, ioh, index, value);
286 }
287 
288 void
289 virtio_write_device_config_2(struct virtio_softc *sc, int index, uint16_t value)
290 {
291 	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
292 	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
293 
294 	if (BYTE_ORDER != sc->sc_bus_endian)
295 		value = bswap16(value);
296 	bus_space_write_2(iot, ioh, index, value);
297 }
298 
299 void
300 virtio_write_device_config_4(struct virtio_softc *sc, int index, uint32_t value)
301 {
302 	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
303 	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
304 
305 	if (BYTE_ORDER != sc->sc_bus_endian)
306 		value = bswap32(value);
307 	bus_space_write_4(iot, ioh, index, value);
308 }
309 
310 /*
311  * The Virtio spec explicitly tells that reading and writing 8 bytes are not
312  * considered atomic and no triggers may be connected to reading or writing
313  * it. We access it using two 32 bit writes. For good measure it is stated to
314  * always write lsb first just in case of a hypervisor bug. See See virtio
315  * spec 4.1.3.1.
316  */
317 void
318 virtio_write_device_config_8(struct virtio_softc *sc, int index, uint64_t value)
319 {
320 	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
321 	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
322 	union {
323 		uint64_t u64;
324 		uint32_t l[2];
325 	} v;
326 
327 	if (BYTE_ORDER != sc->sc_struct_endian)
328 		value = bswap64(value);
329 
330 	v.u64 = value;
331 	if (sc->sc_bus_endian != sc->sc_struct_endian) {
332 		v.l[0] = bswap32(v.l[0]);
333 		v.l[1] = bswap32(v.l[1]);
334 	}
335 
336 	if (sc->sc_struct_endian == LITTLE_ENDIAN) {
337 		bus_space_write_4(iot, ioh, index,     v.l[0]);
338 		bus_space_write_4(iot, ioh, index + 4, v.l[1]);
339 	} else {
340 		bus_space_write_4(iot, ioh, index + 4, v.l[1]);
341 		bus_space_write_4(iot, ioh, index,     v.l[0]);
342 	}
343 }
344 
345 /*
346  * In the older virtio spec, device config registers are host endian. On newer
347  * they are little endian. Some newer devices however explicitly specify their
348  * register to always be little endian. These fuctions cater for these.
349  */
350 void
351 virtio_write_device_config_le_2(struct virtio_softc *sc, int index, uint16_t value)
352 {
353 	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
354 	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
355 
356 	if (sc->sc_bus_endian != LITTLE_ENDIAN)
357 		value = bswap16(value);
358 	bus_space_write_2(iot, ioh, index, value);
359 }
360 
361 void
362 virtio_write_device_config_le_4(struct virtio_softc *sc, int index, uint32_t value)
363 {
364 	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
365 	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
366 
367 	if (sc->sc_bus_endian != LITTLE_ENDIAN)
368 		value = bswap32(value);
369 	bus_space_write_4(iot, ioh, index, value);
370 }
371 
372 
373 /*
374  * data structures endian helpers
375  */
376 uint16_t virtio_rw16(struct virtio_softc *sc, uint16_t val)
377 {
378 	KASSERT(sc);
379 	return BYTE_ORDER != sc->sc_struct_endian ? bswap16(val) : val;
380 }
381 
382 uint32_t virtio_rw32(struct virtio_softc *sc, uint32_t val)
383 {
384 	KASSERT(sc);
385 	return BYTE_ORDER != sc->sc_struct_endian ? bswap32(val) : val;
386 }
387 
388 uint64_t virtio_rw64(struct virtio_softc *sc, uint64_t val)
389 {
390 	KASSERT(sc);
391 	return BYTE_ORDER != sc->sc_struct_endian ? bswap64(val) : val;
392 }
393 
394 
395 /*
396  * Interrupt handler.
397  */
398 static void
399 virtio_soft_intr(void *arg)
400 {
401 	struct virtio_softc *sc = arg;
402 
403 	KASSERT(sc->sc_intrhand != NULL);
404 
405 	(sc->sc_intrhand)(sc);
406 }
407 
408 /*
409  * dmamap sync operations for a virtqueue.
410  */
411 static inline void
412 vq_sync_descs(struct virtio_softc *sc, struct virtqueue *vq, int ops)
413 {
414 	/* availoffset == sizeof(vring_desc)*vq_num */
415 	bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap, 0, vq->vq_availoffset,
416 			ops);
417 }
418 
419 static inline void
420 vq_sync_aring(struct virtio_softc *sc, struct virtqueue *vq, int ops)
421 {
422 	uint16_t hdrlen = offsetof(struct vring_avail, ring);
423 	if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX)
424 		hdrlen += sizeof(uint16_t);
425 
426 	bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
427 			vq->vq_availoffset,
428 			hdrlen + sc->sc_nvqs * sizeof(uint16_t),
429 			ops);
430 }
431 
432 static inline void
433 vq_sync_uring(struct virtio_softc *sc, struct virtqueue *vq, int ops)
434 {
435 	uint16_t hdrlen = offsetof(struct vring_used, ring);
436 	if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX)
437 		hdrlen += sizeof(uint16_t);
438 
439 	bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
440 			vq->vq_usedoffset,
441 			hdrlen + sc->sc_nvqs * sizeof(struct vring_used_elem),
442 			ops);
443 }
444 
445 static inline void
446 vq_sync_indirect(struct virtio_softc *sc, struct virtqueue *vq, int slot,
447 		     int ops)
448 {
449 	int offset = vq->vq_indirectoffset
450 		      + sizeof(struct vring_desc) * vq->vq_maxnsegs * slot;
451 
452 	bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
453 			offset, sizeof(struct vring_desc) * vq->vq_maxnsegs,
454 			ops);
455 }
456 
457 /*
458  * Can be used as sc_intrhand.
459  */
460 /*
461  * Scan vq, bus_dmamap_sync for the vqs (not for the payload),
462  * and calls (*vq_done)() if some entries are consumed.
463  */
464 bool
465 virtio_vq_is_enqueued(struct virtio_softc *sc, struct virtqueue *vq)
466 {
467 
468 	if (vq->vq_queued) {
469 		vq->vq_queued = 0;
470 		vq_sync_aring(sc, vq, BUS_DMASYNC_POSTWRITE);
471 	}
472 	vq_sync_uring(sc, vq, BUS_DMASYNC_POSTREAD);
473 	membar_consumer();
474 
475 	return (vq->vq_used_idx != virtio_rw16(sc, vq->vq_used->idx)) ? 1 : 0;
476 }
477 
478 int
479 virtio_vq_intr(struct virtio_softc *sc)
480 {
481 	struct virtqueue *vq;
482 	int i, r = 0;
483 
484 	for (i = 0; i < sc->sc_nvqs; i++) {
485 		vq = &sc->sc_vqs[i];
486 		if (virtio_vq_is_enqueued(sc, vq) == 1) {
487 			if (vq->vq_done)
488 				r |= (vq->vq_done)(vq);
489 		}
490 	}
491 
492 	return r;
493 }
494 
495 int
496 virtio_vq_intrhand(struct virtio_softc *sc)
497 {
498 	struct virtqueue *vq;
499 	int i, r = 0;
500 
501 	for (i = 0; i < sc->sc_nvqs; i++) {
502 		vq = &sc->sc_vqs[i];
503 		r |= (vq->vq_intrhand)(vq->vq_intrhand_arg);
504 	}
505 
506 	return r;
507 }
508 
509 
510 /*
511  * Increase the event index in order to delay interrupts.
512  */
513 int
514 virtio_postpone_intr(struct virtio_softc *sc, struct virtqueue *vq,
515 		uint16_t nslots)
516 {
517 	uint16_t	idx, nused;
518 
519 	idx = vq->vq_used_idx + nslots;
520 
521 	/* set the new event index: avail_ring->used_event = idx */
522 	*vq->vq_used_event = virtio_rw16(sc, idx);
523 	membar_producer();
524 
525 	vq_sync_aring(vq->vq_owner, vq, BUS_DMASYNC_PREWRITE);
526 	vq->vq_queued++;
527 
528 	nused = (uint16_t)
529 		(virtio_rw16(sc, vq->vq_used->idx) - vq->vq_used_idx);
530 	KASSERT(nused <= vq->vq_num);
531 
532 	return nslots < nused;
533 }
534 
535 /*
536  * Postpone interrupt until 3/4 of the available descriptors have been
537  * consumed.
538  */
539 int
540 virtio_postpone_intr_smart(struct virtio_softc *sc, struct virtqueue *vq)
541 {
542 	uint16_t	nslots;
543 
544 	nslots = (uint16_t)
545 		(virtio_rw16(sc, vq->vq_avail->idx) - vq->vq_used_idx) * 3 / 4;
546 
547 	return virtio_postpone_intr(sc, vq, nslots);
548 }
549 
550 /*
551  * Postpone interrupt until all of the available descriptors have been
552  * consumed.
553  */
554 int
555 virtio_postpone_intr_far(struct virtio_softc *sc, struct virtqueue *vq)
556 {
557 	uint16_t	nslots;
558 
559 	nslots = (uint16_t)
560 		(virtio_rw16(sc, vq->vq_avail->idx) - vq->vq_used_idx);
561 
562 	return virtio_postpone_intr(sc, vq, nslots);
563 }
564 
565 /*
566  * Start/stop vq interrupt.  No guarantee.
567  */
568 void
569 virtio_stop_vq_intr(struct virtio_softc *sc, struct virtqueue *vq)
570 {
571 	if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) {
572 		/*
573 		 * No way to disable the interrupt completely with
574 		 * RingEventIdx. Instead advance used_event by half the
575 		 * possible value. This won't happen soon and is far enough in
576 		 * the past to not trigger a spurios interrupt.
577 		 */
578 		*vq->vq_used_event = virtio_rw16(sc, vq->vq_used_idx + 0x8000);
579 	} else {
580 		vq->vq_avail->flags |= virtio_rw16(sc, VRING_AVAIL_F_NO_INTERRUPT);
581 	}
582 	vq_sync_aring(sc, vq, BUS_DMASYNC_PREWRITE);
583 	vq->vq_queued++;
584 }
585 
586 int
587 virtio_start_vq_intr(struct virtio_softc *sc, struct virtqueue *vq)
588 {
589 	if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) {
590 		/*
591 		 * If event index feature is negotiated, enabling interrupts
592 		 * is done through setting the latest consumed index in the
593 		 * used_event field
594 		 */
595 		*vq->vq_used_event = virtio_rw16(sc, vq->vq_used_idx);
596 	} else {
597 		vq->vq_avail->flags &= ~virtio_rw16(sc, VRING_AVAIL_F_NO_INTERRUPT);
598 	}
599 	vq_sync_aring(sc, vq, BUS_DMASYNC_PREWRITE);
600 	vq->vq_queued++;
601 
602 	return vq->vq_used_idx != virtio_rw16(sc, vq->vq_used->idx);
603 }
604 
605 /*
606  * Initialize vq structure.
607  */
608 static void
609 virtio_init_vq(struct virtio_softc *sc, struct virtqueue *vq,
610     const bool reinit)
611 {
612 	int i, j;
613 	int vq_size = vq->vq_num;
614 
615 	memset(vq->vq_vaddr, 0, vq->vq_bytesize);
616 
617 	/* build the indirect descriptor chain */
618 	if (vq->vq_indirect != NULL) {
619 		struct vring_desc *vd;
620 
621 		for (i = 0; i < vq_size; i++) {
622 			vd = vq->vq_indirect;
623 			vd += vq->vq_maxnsegs * i;
624 			for (j = 0; j < vq->vq_maxnsegs-1; j++) {
625 				vd[j].next = virtio_rw16(sc, j + 1);
626 			}
627 		}
628 	}
629 
630 	/* free slot management */
631 	SIMPLEQ_INIT(&vq->vq_freelist);
632 	for (i = 0; i < vq_size; i++) {
633 		SIMPLEQ_INSERT_TAIL(&vq->vq_freelist,
634 				    &vq->vq_entries[i], qe_list);
635 		vq->vq_entries[i].qe_index = i;
636 	}
637 	if (!reinit)
638 		mutex_init(&vq->vq_freelist_lock, MUTEX_SPIN, sc->sc_ipl);
639 
640 	/* enqueue/dequeue status */
641 	vq->vq_avail_idx = 0;
642 	vq->vq_used_idx = 0;
643 	vq->vq_queued = 0;
644 	if (!reinit) {
645 		mutex_init(&vq->vq_aring_lock, MUTEX_SPIN, sc->sc_ipl);
646 		mutex_init(&vq->vq_uring_lock, MUTEX_SPIN, sc->sc_ipl);
647 	}
648 	vq_sync_aring(sc, vq, BUS_DMASYNC_PREWRITE);
649 	vq_sync_uring(sc, vq, BUS_DMASYNC_PREREAD);
650 	vq->vq_queued++;
651 }
652 
653 /*
654  * Allocate/free a vq.
655  */
656 int
657 virtio_alloc_vq(struct virtio_softc *sc, struct virtqueue *vq, int index,
658     int maxsegsize, int maxnsegs, const char *name)
659 {
660 	int vq_size, allocsize1, allocsize2, allocsize3, allocsize = 0;
661 	int rsegs, r, hdrlen;
662 #define VIRTQUEUE_ALIGN(n)	(((n)+(VIRTIO_PAGE_SIZE-1))&	\
663 				 ~(VIRTIO_PAGE_SIZE-1))
664 
665 	/* Make sure callers allocate vqs in order */
666 	KASSERT(sc->sc_nvqs == index);
667 
668 	memset(vq, 0, sizeof(*vq));
669 
670 	vq_size = sc->sc_ops->read_queue_size(sc, index);
671 	if (vq_size == 0) {
672 		aprint_error_dev(sc->sc_dev,
673 				 "virtqueue not exist, index %d for %s\n",
674 				 index, name);
675 		goto err;
676 	}
677 
678 	hdrlen = sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX ? 3 : 2;
679 
680 	/* allocsize1: descriptor table + avail ring + pad */
681 	allocsize1 = VIRTQUEUE_ALIGN(sizeof(struct vring_desc)*vq_size
682 			     + sizeof(uint16_t)*(hdrlen + vq_size));
683 	/* allocsize2: used ring + pad */
684 	allocsize2 = VIRTQUEUE_ALIGN(sizeof(uint16_t) * hdrlen
685 			     + sizeof(struct vring_used_elem)*vq_size);
686 	/* allocsize3: indirect table */
687 	if (sc->sc_indirect && maxnsegs >= MINSEG_INDIRECT)
688 		allocsize3 = sizeof(struct vring_desc) * maxnsegs * vq_size;
689 	else
690 		allocsize3 = 0;
691 	allocsize = allocsize1 + allocsize2 + allocsize3;
692 
693 	/* alloc and map the memory */
694 	r = bus_dmamem_alloc(sc->sc_dmat, allocsize, VIRTIO_PAGE_SIZE, 0,
695 			     &vq->vq_segs[0], 1, &rsegs, BUS_DMA_WAITOK);
696 	if (r != 0) {
697 		aprint_error_dev(sc->sc_dev,
698 				 "virtqueue %d for %s allocation failed, "
699 				 "error code %d\n", index, name, r);
700 		goto err;
701 	}
702 	r = bus_dmamem_map(sc->sc_dmat, &vq->vq_segs[0], rsegs, allocsize,
703 			   &vq->vq_vaddr, BUS_DMA_WAITOK);
704 	if (r != 0) {
705 		aprint_error_dev(sc->sc_dev,
706 				 "virtqueue %d for %s map failed, "
707 				 "error code %d\n", index, name, r);
708 		goto err;
709 	}
710 	r = bus_dmamap_create(sc->sc_dmat, allocsize, 1, allocsize, 0,
711 			      BUS_DMA_WAITOK, &vq->vq_dmamap);
712 	if (r != 0) {
713 		aprint_error_dev(sc->sc_dev,
714 				 "virtqueue %d for %s dmamap creation failed, "
715 				 "error code %d\n", index, name, r);
716 		goto err;
717 	}
718 	r = bus_dmamap_load(sc->sc_dmat, vq->vq_dmamap,
719 			    vq->vq_vaddr, allocsize, NULL, BUS_DMA_WAITOK);
720 	if (r != 0) {
721 		aprint_error_dev(sc->sc_dev,
722 				 "virtqueue %d for %s dmamap load failed, "
723 				 "error code %d\n", index, name, r);
724 		goto err;
725 	}
726 
727 	/* remember addresses and offsets for later use */
728 	vq->vq_owner = sc;
729 	vq->vq_num = vq_size;
730 	vq->vq_index = index;
731 	vq->vq_desc = vq->vq_vaddr;
732 	vq->vq_availoffset = sizeof(struct vring_desc)*vq_size;
733 	vq->vq_avail = (void*)(((char*)vq->vq_desc) + vq->vq_availoffset);
734 	vq->vq_used_event = (uint16_t *) ((char *)vq->vq_avail +
735 		 offsetof(struct vring_avail, ring[vq->vq_num]));
736 	vq->vq_usedoffset = allocsize1;
737 	vq->vq_used = (void*)(((char*)vq->vq_desc) + vq->vq_usedoffset);
738 	vq->vq_avail_event = (uint16_t *)((char *)vq->vq_used +
739 		 offsetof(struct vring_used, ring[vq->vq_num]));
740 
741 	if (allocsize3 > 0) {
742 		vq->vq_indirectoffset = allocsize1 + allocsize2;
743 		vq->vq_indirect = (void*)(((char*)vq->vq_desc)
744 					  + vq->vq_indirectoffset);
745 	}
746 	vq->vq_bytesize = allocsize;
747 	vq->vq_maxsegsize = maxsegsize;
748 	vq->vq_maxnsegs = maxnsegs;
749 
750 	/* free slot management */
751 	vq->vq_entries = kmem_zalloc(sizeof(struct vq_entry)*vq_size,
752 				     KM_SLEEP);
753 	virtio_init_vq(sc, vq, false);
754 
755 	/* set the vq address */
756 	sc->sc_ops->setup_queue(sc, index,
757 	    vq->vq_dmamap->dm_segs[0].ds_addr);
758 
759 	aprint_verbose_dev(sc->sc_dev,
760 			   "allocated %u byte for virtqueue %d for %s, "
761 			   "size %d\n", allocsize, index, name, vq_size);
762 	if (allocsize3 > 0)
763 		aprint_verbose_dev(sc->sc_dev,
764 				   "using %d byte (%d entries) "
765 				   "indirect descriptors\n",
766 				   allocsize3, maxnsegs * vq_size);
767 
768 	sc->sc_nvqs++;
769 
770 	return 0;
771 
772 err:
773 	sc->sc_ops->setup_queue(sc, index, 0);
774 	if (vq->vq_dmamap)
775 		bus_dmamap_destroy(sc->sc_dmat, vq->vq_dmamap);
776 	if (vq->vq_vaddr)
777 		bus_dmamem_unmap(sc->sc_dmat, vq->vq_vaddr, allocsize);
778 	if (vq->vq_segs[0].ds_addr)
779 		bus_dmamem_free(sc->sc_dmat, &vq->vq_segs[0], 1);
780 	memset(vq, 0, sizeof(*vq));
781 
782 	return -1;
783 }
784 
785 int
786 virtio_free_vq(struct virtio_softc *sc, struct virtqueue *vq)
787 {
788 	struct vq_entry *qe;
789 	int i = 0;
790 
791 	/* device must be already deactivated */
792 	/* confirm the vq is empty */
793 	SIMPLEQ_FOREACH(qe, &vq->vq_freelist, qe_list) {
794 		i++;
795 	}
796 	if (i != vq->vq_num) {
797 		printf("%s: freeing non-empty vq, index %d\n",
798 		       device_xname(sc->sc_dev), vq->vq_index);
799 		return EBUSY;
800 	}
801 
802 	/* tell device that there's no virtqueue any longer */
803 	sc->sc_ops->setup_queue(sc, vq->vq_index, 0);
804 
805 	kmem_free(vq->vq_entries, sizeof(*vq->vq_entries) * vq->vq_num);
806 	bus_dmamap_unload(sc->sc_dmat, vq->vq_dmamap);
807 	bus_dmamap_destroy(sc->sc_dmat, vq->vq_dmamap);
808 	bus_dmamem_unmap(sc->sc_dmat, vq->vq_vaddr, vq->vq_bytesize);
809 	bus_dmamem_free(sc->sc_dmat, &vq->vq_segs[0], 1);
810 	mutex_destroy(&vq->vq_freelist_lock);
811 	mutex_destroy(&vq->vq_uring_lock);
812 	mutex_destroy(&vq->vq_aring_lock);
813 	memset(vq, 0, sizeof(*vq));
814 
815 	sc->sc_nvqs--;
816 
817 	return 0;
818 }
819 
820 /*
821  * Free descriptor management.
822  */
823 static struct vq_entry *
824 vq_alloc_entry(struct virtqueue *vq)
825 {
826 	struct vq_entry *qe;
827 
828 	mutex_enter(&vq->vq_freelist_lock);
829 	if (SIMPLEQ_EMPTY(&vq->vq_freelist)) {
830 		mutex_exit(&vq->vq_freelist_lock);
831 		return NULL;
832 	}
833 	qe = SIMPLEQ_FIRST(&vq->vq_freelist);
834 	SIMPLEQ_REMOVE_HEAD(&vq->vq_freelist, qe_list);
835 	mutex_exit(&vq->vq_freelist_lock);
836 
837 	return qe;
838 }
839 
840 static void
841 vq_free_entry(struct virtqueue *vq, struct vq_entry *qe)
842 {
843 	mutex_enter(&vq->vq_freelist_lock);
844 	SIMPLEQ_INSERT_TAIL(&vq->vq_freelist, qe, qe_list);
845 	mutex_exit(&vq->vq_freelist_lock);
846 
847 	return;
848 }
849 
850 /*
851  * Enqueue several dmamaps as a single request.
852  */
853 /*
854  * Typical usage:
855  *  <queue size> number of followings are stored in arrays
856  *  - command blocks (in dmamem) should be pre-allocated and mapped
857  *  - dmamaps for command blocks should be pre-allocated and loaded
858  *  - dmamaps for payload should be pre-allocated
859  *      r = virtio_enqueue_prep(sc, vq, &slot);		// allocate a slot
860  *	if (r)		// currently 0 or EAGAIN
861  *	  return r;
862  *	r = bus_dmamap_load(dmat, dmamap_payload[slot], data, count, ..);
863  *	if (r) {
864  *	  virtio_enqueue_abort(sc, vq, slot);
865  *	  return r;
866  *	}
867  *	r = virtio_enqueue_reserve(sc, vq, slot,
868  *				   dmamap_payload[slot]->dm_nsegs+1);
869  *							// ^ +1 for command
870  *	if (r) {	// currently 0 or EAGAIN
871  *	  bus_dmamap_unload(dmat, dmamap_payload[slot]);
872  *	  return r;					// do not call abort()
873  *	}
874  *	<setup and prepare commands>
875  *	bus_dmamap_sync(dmat, dmamap_cmd[slot],... BUS_DMASYNC_PREWRITE);
876  *	bus_dmamap_sync(dmat, dmamap_payload[slot],...);
877  *	virtio_enqueue(sc, vq, slot, dmamap_cmd[slot], false);
878  *	virtio_enqueue(sc, vq, slot, dmamap_payload[slot], iswrite);
879  *	virtio_enqueue_commit(sc, vq, slot, true);
880  */
881 
882 /*
883  * enqueue_prep: allocate a slot number
884  */
885 int
886 virtio_enqueue_prep(struct virtio_softc *sc, struct virtqueue *vq, int *slotp)
887 {
888 	struct vq_entry *qe1;
889 
890 	KASSERT(slotp != NULL);
891 
892 	qe1 = vq_alloc_entry(vq);
893 	if (qe1 == NULL)
894 		return EAGAIN;
895 	/* next slot is not allocated yet */
896 	qe1->qe_next = -1;
897 	*slotp = qe1->qe_index;
898 
899 	return 0;
900 }
901 
902 /*
903  * enqueue_reserve: allocate remaining slots and build the descriptor chain.
904  */
905 int
906 virtio_enqueue_reserve(struct virtio_softc *sc, struct virtqueue *vq,
907 		       int slot, int nsegs)
908 {
909 	int indirect;
910 	struct vq_entry *qe1 = &vq->vq_entries[slot];
911 
912 	KASSERT(qe1->qe_next == -1);
913 	KASSERT(1 <= nsegs && nsegs <= vq->vq_num);
914 
915 	if ((vq->vq_indirect != NULL) &&
916 	    (nsegs >= MINSEG_INDIRECT) &&
917 	    (nsegs <= vq->vq_maxnsegs))
918 		indirect = 1;
919 	else
920 		indirect = 0;
921 	qe1->qe_indirect = indirect;
922 
923 	if (indirect) {
924 		struct vring_desc *vd;
925 		uint64_t addr;
926 		int i;
927 
928 		vd = &vq->vq_desc[qe1->qe_index];
929 		addr = vq->vq_dmamap->dm_segs[0].ds_addr
930 			+ vq->vq_indirectoffset;
931 		addr += sizeof(struct vring_desc)
932 			* vq->vq_maxnsegs * qe1->qe_index;
933 		vd->addr  = virtio_rw64(sc, addr);
934 		vd->len   = virtio_rw32(sc, sizeof(struct vring_desc) * nsegs);
935 		vd->flags = virtio_rw16(sc, VRING_DESC_F_INDIRECT);
936 
937 		vd = vq->vq_indirect;
938 		vd += vq->vq_maxnsegs * qe1->qe_index;
939 		qe1->qe_desc_base = vd;
940 
941 		for (i = 0; i < nsegs-1; i++) {
942 			vd[i].flags = virtio_rw16(sc, VRING_DESC_F_NEXT);
943 		}
944 		vd[i].flags  = virtio_rw16(sc, 0);
945 		qe1->qe_next = 0;
946 
947 		return 0;
948 	} else {
949 		struct vring_desc *vd;
950 		struct vq_entry *qe;
951 		int i, s;
952 
953 		vd = &vq->vq_desc[0];
954 		qe1->qe_desc_base = vd;
955 		qe1->qe_next = qe1->qe_index;
956 		s = slot;
957 		for (i = 0; i < nsegs - 1; i++) {
958 			qe = vq_alloc_entry(vq);
959 			if (qe == NULL) {
960 				vd[s].flags = virtio_rw16(sc, 0);
961 				virtio_enqueue_abort(sc, vq, slot);
962 				return EAGAIN;
963 			}
964 			vd[s].flags = virtio_rw16(sc, VRING_DESC_F_NEXT);
965 			vd[s].next  = virtio_rw16(sc, qe->qe_index);
966 			s = qe->qe_index;
967 		}
968 		vd[s].flags = virtio_rw16(sc, 0);
969 
970 		return 0;
971 	}
972 }
973 
974 /*
975  * enqueue: enqueue a single dmamap.
976  */
977 int
978 virtio_enqueue(struct virtio_softc *sc, struct virtqueue *vq, int slot,
979 	       bus_dmamap_t dmamap, bool write)
980 {
981 	struct vq_entry *qe1 = &vq->vq_entries[slot];
982 	struct vring_desc *vd = qe1->qe_desc_base;
983 	int i;
984 	int s = qe1->qe_next;
985 
986 	KASSERT(s >= 0);
987 	KASSERT(dmamap->dm_nsegs > 0);
988 
989 	for (i = 0; i < dmamap->dm_nsegs; i++) {
990 		vd[s].addr = virtio_rw64(sc, dmamap->dm_segs[i].ds_addr);
991 		vd[s].len  = virtio_rw32(sc, dmamap->dm_segs[i].ds_len);
992 		if (!write)
993 			vd[s].flags |= virtio_rw16(sc, VRING_DESC_F_WRITE);
994 		s = virtio_rw16(sc, vd[s].next);
995 	}
996 	qe1->qe_next = s;
997 
998 	return 0;
999 }
1000 
1001 int
1002 virtio_enqueue_p(struct virtio_softc *sc, struct virtqueue *vq, int slot,
1003 		 bus_dmamap_t dmamap, bus_addr_t start, bus_size_t len,
1004 		 bool write)
1005 {
1006 	struct vq_entry *qe1 = &vq->vq_entries[slot];
1007 	struct vring_desc *vd = qe1->qe_desc_base;
1008 	int s = qe1->qe_next;
1009 
1010 	KASSERT(s >= 0);
1011 	KASSERT(dmamap->dm_nsegs == 1); /* XXX */
1012 	KASSERT((dmamap->dm_segs[0].ds_len > start) &&
1013 		(dmamap->dm_segs[0].ds_len >= start + len));
1014 
1015 	vd[s].addr = virtio_rw64(sc, dmamap->dm_segs[0].ds_addr + start);
1016 	vd[s].len  = virtio_rw32(sc, len);
1017 	if (!write)
1018 		vd[s].flags |= virtio_rw16(sc, VRING_DESC_F_WRITE);
1019 	qe1->qe_next = virtio_rw16(sc, vd[s].next);
1020 
1021 	return 0;
1022 }
1023 
1024 /*
1025  * enqueue_commit: add it to the aring.
1026  */
1027 int
1028 virtio_enqueue_commit(struct virtio_softc *sc, struct virtqueue *vq, int slot,
1029 		      bool notifynow)
1030 {
1031 	struct vq_entry *qe1;
1032 
1033 	if (slot < 0) {
1034 		mutex_enter(&vq->vq_aring_lock);
1035 		goto notify;
1036 	}
1037 	vq_sync_descs(sc, vq, BUS_DMASYNC_PREWRITE);
1038 	qe1 = &vq->vq_entries[slot];
1039 	if (qe1->qe_indirect)
1040 		vq_sync_indirect(sc, vq, slot, BUS_DMASYNC_PREWRITE);
1041 	mutex_enter(&vq->vq_aring_lock);
1042 	vq->vq_avail->ring[(vq->vq_avail_idx++) % vq->vq_num] =
1043 		virtio_rw16(sc, slot);
1044 
1045 notify:
1046 	if (notifynow) {
1047 		uint16_t o, n, t;
1048 		uint16_t flags;
1049 		o = virtio_rw16(sc, vq->vq_avail->idx);
1050 		n = vq->vq_avail_idx;
1051 
1052 		/* publish avail idx */
1053 		membar_producer();
1054 		vq->vq_avail->idx = virtio_rw16(sc, vq->vq_avail_idx);
1055 		vq_sync_aring(sc, vq, BUS_DMASYNC_PREWRITE);
1056 		vq->vq_queued++;
1057 
1058 		membar_consumer();
1059 		vq_sync_uring(sc, vq, BUS_DMASYNC_PREREAD);
1060 		if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) {
1061 			t = virtio_rw16(sc, *vq->vq_avail_event) + 1;
1062 			if ((uint16_t) (n - t) < (uint16_t) (n - o))
1063 				sc->sc_ops->kick(sc, vq->vq_index);
1064 		} else {
1065 			flags = virtio_rw16(sc, vq->vq_used->flags);
1066 			if (!(flags & VRING_USED_F_NO_NOTIFY))
1067 				sc->sc_ops->kick(sc, vq->vq_index);
1068 		}
1069 		vq_sync_uring(sc, vq, BUS_DMASYNC_POSTREAD);
1070 		vq_sync_aring(sc, vq, BUS_DMASYNC_POSTWRITE);
1071 	}
1072 	mutex_exit(&vq->vq_aring_lock);
1073 
1074 	return 0;
1075 }
1076 
1077 /*
1078  * enqueue_abort: rollback.
1079  */
1080 int
1081 virtio_enqueue_abort(struct virtio_softc *sc, struct virtqueue *vq, int slot)
1082 {
1083 	struct vq_entry *qe = &vq->vq_entries[slot];
1084 	struct vring_desc *vd;
1085 	int s;
1086 
1087 	if (qe->qe_next < 0) {
1088 		vq_free_entry(vq, qe);
1089 		return 0;
1090 	}
1091 
1092 	s = slot;
1093 	vd = &vq->vq_desc[0];
1094 	while (virtio_rw16(sc, vd[s].flags) & VRING_DESC_F_NEXT) {
1095 		s = virtio_rw16(sc, vd[s].next);
1096 		vq_free_entry(vq, qe);
1097 		qe = &vq->vq_entries[s];
1098 	}
1099 	vq_free_entry(vq, qe);
1100 	return 0;
1101 }
1102 
1103 /*
1104  * Dequeue a request.
1105  */
1106 /*
1107  * dequeue: dequeue a request from uring; dmamap_sync for uring is
1108  *	    already done in the interrupt handler.
1109  */
1110 int
1111 virtio_dequeue(struct virtio_softc *sc, struct virtqueue *vq,
1112 	       int *slotp, int *lenp)
1113 {
1114 	uint16_t slot, usedidx;
1115 	struct vq_entry *qe;
1116 
1117 	if (vq->vq_used_idx == virtio_rw16(sc, vq->vq_used->idx))
1118 		return ENOENT;
1119 	mutex_enter(&vq->vq_uring_lock);
1120 	usedidx = vq->vq_used_idx++;
1121 	mutex_exit(&vq->vq_uring_lock);
1122 	usedidx %= vq->vq_num;
1123 	slot = virtio_rw32(sc, vq->vq_used->ring[usedidx].id);
1124 	qe = &vq->vq_entries[slot];
1125 
1126 	if (qe->qe_indirect)
1127 		vq_sync_indirect(sc, vq, slot, BUS_DMASYNC_POSTWRITE);
1128 
1129 	if (slotp)
1130 		*slotp = slot;
1131 	if (lenp)
1132 		*lenp = virtio_rw32(sc, vq->vq_used->ring[usedidx].len);
1133 
1134 	return 0;
1135 }
1136 
1137 /*
1138  * dequeue_commit: complete dequeue; the slot is recycled for future use.
1139  *                 if you forget to call this the slot will be leaked.
1140  */
1141 int
1142 virtio_dequeue_commit(struct virtio_softc *sc, struct virtqueue *vq, int slot)
1143 {
1144 	struct vq_entry *qe = &vq->vq_entries[slot];
1145 	struct vring_desc *vd = &vq->vq_desc[0];
1146 	int s = slot;
1147 
1148 	while (virtio_rw16(sc, vd[s].flags) & VRING_DESC_F_NEXT) {
1149 		s = virtio_rw16(sc, vd[s].next);
1150 		vq_free_entry(vq, qe);
1151 		qe = &vq->vq_entries[s];
1152 	}
1153 	vq_free_entry(vq, qe);
1154 
1155 	return 0;
1156 }
1157 
1158 /*
1159  * Attach a child, fill all the members.
1160  */
1161 void
1162 virtio_child_attach_start(struct virtio_softc *sc, device_t child, int ipl,
1163 		    struct virtqueue *vqs,
1164 		    virtio_callback config_change,
1165 		    virtio_callback intr_hand,
1166 		    int req_flags, int req_features, const char *feat_bits)
1167 {
1168 	char buf[1024];
1169 
1170 	sc->sc_child = child;
1171 	sc->sc_ipl = ipl;
1172 	sc->sc_vqs = vqs;
1173 	sc->sc_config_change = config_change;
1174 	sc->sc_intrhand = intr_hand;
1175 	sc->sc_flags = req_flags;
1176 
1177 	virtio_negotiate_features(sc, req_features);
1178 	snprintb(buf, sizeof(buf), feat_bits, sc->sc_active_features);
1179 	aprint_normal(": features: %s\n", buf);
1180 	aprint_naive("\n");
1181 }
1182 
1183 void
1184 virtio_child_attach_set_vqs(struct virtio_softc *sc,
1185     struct virtqueue *vqs, int nvq_pairs)
1186 {
1187 
1188 	KASSERT(nvq_pairs == 1 ||
1189 	    (sc->sc_flags & VIRTIO_F_INTR_SOFTINT) == 0);
1190 	if (nvq_pairs > 1)
1191 		sc->sc_child_mq = true;
1192 
1193 	sc->sc_vqs = vqs;
1194 }
1195 
1196 int
1197 virtio_child_attach_finish(struct virtio_softc *sc)
1198 {
1199 	int r;
1200 
1201 	sc->sc_finished_called = true;
1202 	r = sc->sc_ops->setup_interrupts(sc);
1203 	if (r != 0) {
1204 		aprint_error_dev(sc->sc_dev, "failed to setup interrupts\n");
1205 		goto fail;
1206 	}
1207 
1208 	KASSERT(sc->sc_soft_ih == NULL);
1209 	if (sc->sc_flags & VIRTIO_F_INTR_SOFTINT) {
1210 		u_int flags = SOFTINT_NET;
1211 		if (sc->sc_flags & VIRTIO_F_INTR_MPSAFE)
1212 			flags |= SOFTINT_MPSAFE;
1213 
1214 		sc->sc_soft_ih = softint_establish(flags, virtio_soft_intr, sc);
1215 		if (sc->sc_soft_ih == NULL) {
1216 			sc->sc_ops->free_interrupts(sc);
1217 			aprint_error_dev(sc->sc_dev,
1218 			    "failed to establish soft interrupt\n");
1219 			goto fail;
1220 		}
1221 	}
1222 
1223 	virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_DRIVER_OK);
1224 	return 0;
1225 
1226 fail:
1227 	if (sc->sc_soft_ih) {
1228 		softint_disestablish(sc->sc_soft_ih);
1229 		sc->sc_soft_ih = NULL;
1230 	}
1231 
1232 	virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_FAILED);
1233 	return 1;
1234 }
1235 
1236 void
1237 virtio_child_detach(struct virtio_softc *sc)
1238 {
1239 	sc->sc_child = NULL;
1240 	sc->sc_vqs = NULL;
1241 
1242 	virtio_device_reset(sc);
1243 
1244 	sc->sc_ops->free_interrupts(sc);
1245 
1246 	if (sc->sc_soft_ih) {
1247 		softint_disestablish(sc->sc_soft_ih);
1248 		sc->sc_soft_ih = NULL;
1249 	}
1250 }
1251 
1252 void
1253 virtio_child_attach_failed(struct virtio_softc *sc)
1254 {
1255 	virtio_child_detach(sc);
1256 
1257 	virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_FAILED);
1258 
1259 	sc->sc_child = VIRTIO_CHILD_FAILED;
1260 }
1261 
1262 bus_dma_tag_t
1263 virtio_dmat(struct virtio_softc *sc)
1264 {
1265 	return sc->sc_dmat;
1266 }
1267 
1268 device_t
1269 virtio_child(struct virtio_softc *sc)
1270 {
1271 	return sc->sc_child;
1272 }
1273 
1274 int
1275 virtio_intrhand(struct virtio_softc *sc)
1276 {
1277 	return (sc->sc_intrhand)(sc);
1278 }
1279 
1280 uint64_t
1281 virtio_features(struct virtio_softc *sc)
1282 {
1283 	return sc->sc_active_features;
1284 }
1285 
1286 int
1287 virtio_attach_failed(struct virtio_softc *sc)
1288 {
1289 	device_t self = sc->sc_dev;
1290 
1291 	/* no error if its not connected, but its failed */
1292 	if (sc->sc_childdevid == 0)
1293 		return 1;
1294 
1295 	if (sc->sc_child == NULL) {
1296 		aprint_error_dev(self,
1297 			"no matching child driver; not configured\n");
1298 		return 1;
1299 	}
1300 
1301 	if (sc->sc_child == VIRTIO_CHILD_FAILED) {
1302 		aprint_error_dev(self, "virtio configuration failed\n");
1303 		return 1;
1304 	}
1305 
1306 	/* sanity check */
1307 	if (!sc->sc_finished_called) {
1308 		aprint_error_dev(self, "virtio internal error, child driver "
1309 			"signaled OK but didn't initialize interrupts\n");
1310 		return 1;
1311 	}
1312 
1313 	return 0;
1314 }
1315 
1316 void
1317 virtio_print_device_type(device_t self, int id, int revision)
1318 {
1319 	aprint_normal_dev(self, "%s device (rev. 0x%02x)\n",
1320 		  (id < NDEVNAMES ? virtio_device_name[id] : "Unknown"),
1321 		  revision);
1322 }
1323 
1324 
1325 MODULE(MODULE_CLASS_DRIVER, virtio, NULL);
1326 
1327 #ifdef _MODULE
1328 #include "ioconf.c"
1329 #endif
1330 
1331 static int
1332 virtio_modcmd(modcmd_t cmd, void *opaque)
1333 {
1334 	int error = 0;
1335 
1336 #ifdef _MODULE
1337 	switch (cmd) {
1338 	case MODULE_CMD_INIT:
1339 		error = config_init_component(cfdriver_ioconf_virtio,
1340 		    cfattach_ioconf_virtio, cfdata_ioconf_virtio);
1341 		break;
1342 	case MODULE_CMD_FINI:
1343 		error = config_fini_component(cfdriver_ioconf_virtio,
1344 		    cfattach_ioconf_virtio, cfdata_ioconf_virtio);
1345 		break;
1346 	default:
1347 		error = ENOTTY;
1348 		break;
1349 	}
1350 #endif
1351 
1352 	return error;
1353 }
1354