xref: /netbsd-src/sys/dev/pci/virtio.c (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /*	$NetBSD: virtio.c,v 1.53 2021/10/28 01:36:43 yamaguchi Exp $	*/
2 
3 /*
4  * Copyright (c) 2020 The NetBSD Foundation, Inc.
5  * Copyright (c) 2012 Stefan Fritsch, Alexander Fiveg.
6  * Copyright (c) 2010 Minoura Makoto.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: virtio.c,v 1.53 2021/10/28 01:36:43 yamaguchi Exp $");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/atomic.h>
37 #include <sys/bus.h>
38 #include <sys/device.h>
39 #include <sys/kmem.h>
40 #include <sys/module.h>
41 
42 #define VIRTIO_PRIVATE
43 
44 #include <dev/pci/virtioreg.h> /* XXX: move to non-pci */
45 #include <dev/pci/virtiovar.h> /* XXX: move to non-pci */
46 
47 #define MINSEG_INDIRECT		2 /* use indirect if nsegs >= this value */
48 
49 /* incomplete list */
50 static const char *virtio_device_name[] = {
51 	"unknown (0)",			/*  0 */
52 	"network",			/*  1 */
53 	"block",			/*  2 */
54 	"console",			/*  3 */
55 	"entropy",			/*  4 */
56 	"memory balloon",		/*  5 */
57 	"I/O memory",			/*  6 */
58 	"remote processor messaging",	/*  7 */
59 	"SCSI",				/*  8 */
60 	"9P transport",			/*  9 */
61 };
62 #define NDEVNAMES	__arraycount(virtio_device_name)
63 
64 static void	virtio_init_vq(struct virtio_softc *,
65 		    struct virtqueue *, const bool);
66 
67 void
68 virtio_set_status(struct virtio_softc *sc, int status)
69 {
70 	sc->sc_ops->set_status(sc, status);
71 }
72 
73 /*
74  * Reset the device.
75  */
76 /*
77  * To reset the device to a known state, do following:
78  *	virtio_reset(sc);	     // this will stop the device activity
79  *	<dequeue finished requests>; // virtio_dequeue() still can be called
80  *	<revoke pending requests in the vqs if any>;
81  *	virtio_reinit_start(sc);     // dequeue prohibitted
82  *	newfeatures = virtio_negotiate_features(sc, requestedfeatures);
83  *	<some other initialization>;
84  *	virtio_reinit_end(sc);	     // device activated; enqueue allowed
85  * Once attached, feature negotiation can only be allowed after virtio_reset.
86  */
87 void
88 virtio_reset(struct virtio_softc *sc)
89 {
90 	virtio_device_reset(sc);
91 }
92 
93 int
94 virtio_reinit_start(struct virtio_softc *sc)
95 {
96 	int i, r;
97 
98 	virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_ACK);
99 	virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_DRIVER);
100 	for (i = 0; i < sc->sc_nvqs; i++) {
101 		int n;
102 		struct virtqueue *vq = &sc->sc_vqs[i];
103 		n = sc->sc_ops->read_queue_size(sc, vq->vq_index);
104 		if (n == 0)	/* vq disappeared */
105 			continue;
106 		if (n != vq->vq_num) {
107 			panic("%s: virtqueue size changed, vq index %d\n",
108 			      device_xname(sc->sc_dev),
109 			      vq->vq_index);
110 		}
111 		virtio_init_vq(sc, vq, true);
112 		sc->sc_ops->setup_queue(sc, vq->vq_index,
113 		    vq->vq_dmamap->dm_segs[0].ds_addr);
114 	}
115 
116 	r = sc->sc_ops->setup_interrupts(sc, 1);
117 	if (r != 0)
118 		goto fail;
119 
120 	return 0;
121 
122 fail:
123 	virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_FAILED);
124 
125 	return 1;
126 }
127 
128 void
129 virtio_reinit_end(struct virtio_softc *sc)
130 {
131 	virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_DRIVER_OK);
132 }
133 
134 /*
135  * Feature negotiation.
136  */
137 void
138 virtio_negotiate_features(struct virtio_softc *sc, uint64_t guest_features)
139 {
140 	if (!(device_cfdata(sc->sc_dev)->cf_flags & 1) &&
141 	    !(device_cfdata(sc->sc_child)->cf_flags & 1)) /* XXX */
142 		guest_features |= VIRTIO_F_RING_INDIRECT_DESC;
143 	sc->sc_ops->neg_features(sc, guest_features);
144 	if (sc->sc_active_features & VIRTIO_F_RING_INDIRECT_DESC)
145 		sc->sc_indirect = true;
146 	else
147 		sc->sc_indirect = false;
148 }
149 
150 
151 /*
152  * Device configuration registers readers/writers
153  */
154 #if 0
155 #define DPRINTFR(n, fmt, val, index, num) \
156 	printf("\n%s (", n); \
157 	for (int i = 0; i < num; i++) \
158 		printf("%02x ", bus_space_read_1(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index+i)); \
159 	printf(") -> "); printf(fmt, val); printf("\n");
160 #define DPRINTFR2(n, fmt, val_s, val_n) \
161 	printf("%s ", n); \
162 	printf("\n        stream "); printf(fmt, val_s); printf(" norm "); printf(fmt, val_n); printf("\n");
163 #else
164 #define DPRINTFR(n, fmt, val, index, num)
165 #define DPRINTFR2(n, fmt, val_s, val_n)
166 #endif
167 
168 
169 uint8_t
170 virtio_read_device_config_1(struct virtio_softc *sc, int index) {
171 	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
172 	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
173 	uint8_t val;
174 
175 	val = bus_space_read_1(iot, ioh, index);
176 
177 	DPRINTFR("read_1", "%02x", val, index, 1);
178 	return val;
179 }
180 
181 uint16_t
182 virtio_read_device_config_2(struct virtio_softc *sc, int index) {
183 	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
184 	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
185 	uint16_t val;
186 
187 	val = bus_space_read_2(iot, ioh, index);
188 	if (BYTE_ORDER != sc->sc_bus_endian)
189 		val = bswap16(val);
190 
191 	DPRINTFR("read_2", "%04x", val, index, 2);
192 	DPRINTFR2("read_2", "%04x",
193 		bus_space_read_stream_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index),
194 		bus_space_read_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index));
195 	return val;
196 }
197 
198 uint32_t
199 virtio_read_device_config_4(struct virtio_softc *sc, int index) {
200 	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
201 	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
202 	uint32_t val;
203 
204 	val = bus_space_read_4(iot, ioh, index);
205 	if (BYTE_ORDER != sc->sc_bus_endian)
206 		val = bswap32(val);
207 
208 	DPRINTFR("read_4", "%08x", val, index, 4);
209 	DPRINTFR2("read_4", "%08x",
210 		bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index),
211 		bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index));
212 	return val;
213 }
214 
215 /*
216  * The Virtio spec explicitly tells that reading and writing 8 bytes are not
217  * considered atomic and no triggers may be connected to reading or writing
218  * it. We access it using two 32 reads. See virtio spec 4.1.3.1.
219  */
220 uint64_t
221 virtio_read_device_config_8(struct virtio_softc *sc, int index) {
222 	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
223 	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
224 	union {
225 		uint64_t u64;
226 		uint32_t l[2];
227 	} v;
228 	uint64_t val;
229 
230 	v.l[0] = bus_space_read_4(iot, ioh, index);
231 	v.l[1] = bus_space_read_4(iot, ioh, index + 4);
232 	if (sc->sc_bus_endian != sc->sc_struct_endian) {
233 		v.l[0] = bswap32(v.l[0]);
234 		v.l[1] = bswap32(v.l[1]);
235 	}
236 	val = v.u64;
237 
238 	if (BYTE_ORDER != sc->sc_struct_endian)
239 		val = bswap64(val);
240 
241 	DPRINTFR("read_8", "%08lx", val, index, 8);
242 	DPRINTFR2("read_8 low ", "%08x",
243 		bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index),
244 		bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index));
245 	DPRINTFR2("read_8 high ", "%08x",
246 		bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index + 4),
247 		bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, index + 4));
248 	return val;
249 }
250 
251 /*
252  * In the older virtio spec, device config registers are host endian. On newer
253  * they are little endian. Some newer devices however explicitly specify their
254  * register to always be little endian. These fuctions cater for these.
255  */
256 uint16_t
257 virtio_read_device_config_le_2(struct virtio_softc *sc, int index) {
258 	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
259 	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
260 	uint16_t val;
261 
262 	val = bus_space_read_2(iot, ioh, index);
263 	if (sc->sc_bus_endian != LITTLE_ENDIAN)
264 		val = bswap16(val);
265 
266 	DPRINTFR("read_le_2", "%04x", val, index, 2);
267 	DPRINTFR2("read_le_2", "%04x",
268 		bus_space_read_stream_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0),
269 		bus_space_read_2(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0));
270 	return val;
271 }
272 
273 uint32_t
274 virtio_read_device_config_le_4(struct virtio_softc *sc, int index) {
275 	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
276 	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
277 	uint32_t val;
278 
279 	val = bus_space_read_4(iot, ioh, index);
280 	if (sc->sc_bus_endian != LITTLE_ENDIAN)
281 		val = bswap32(val);
282 
283 	DPRINTFR("read_le_4", "%08x", val, index, 4);
284 	DPRINTFR2("read_le_4", "%08x",
285 		bus_space_read_stream_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0),
286 		bus_space_read_4(sc->sc_devcfg_iot, sc->sc_devcfg_ioh, 0));
287 	return val;
288 }
289 
290 void
291 virtio_write_device_config_1(struct virtio_softc *sc, int index, uint8_t value)
292 {
293 	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
294 	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
295 
296 	bus_space_write_1(iot, ioh, index, value);
297 }
298 
299 void
300 virtio_write_device_config_2(struct virtio_softc *sc, int index, uint16_t value)
301 {
302 	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
303 	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
304 
305 	if (BYTE_ORDER != sc->sc_bus_endian)
306 		value = bswap16(value);
307 	bus_space_write_2(iot, ioh, index, value);
308 }
309 
310 void
311 virtio_write_device_config_4(struct virtio_softc *sc, int index, uint32_t value)
312 {
313 	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
314 	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
315 
316 	if (BYTE_ORDER != sc->sc_bus_endian)
317 		value = bswap32(value);
318 	bus_space_write_4(iot, ioh, index, value);
319 }
320 
321 /*
322  * The Virtio spec explicitly tells that reading and writing 8 bytes are not
323  * considered atomic and no triggers may be connected to reading or writing
324  * it. We access it using two 32 bit writes. For good measure it is stated to
325  * always write lsb first just in case of a hypervisor bug. See See virtio
326  * spec 4.1.3.1.
327  */
328 void
329 virtio_write_device_config_8(struct virtio_softc *sc, int index, uint64_t value)
330 {
331 	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
332 	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
333 	union {
334 		uint64_t u64;
335 		uint32_t l[2];
336 	} v;
337 
338 	if (BYTE_ORDER != sc->sc_struct_endian)
339 		value = bswap64(value);
340 
341 	v.u64 = value;
342 	if (sc->sc_bus_endian != sc->sc_struct_endian) {
343 		v.l[0] = bswap32(v.l[0]);
344 		v.l[1] = bswap32(v.l[1]);
345 	}
346 
347 	if (sc->sc_struct_endian == LITTLE_ENDIAN) {
348 		bus_space_write_4(iot, ioh, index,     v.l[0]);
349 		bus_space_write_4(iot, ioh, index + 4, v.l[1]);
350 	} else {
351 		bus_space_write_4(iot, ioh, index + 4, v.l[1]);
352 		bus_space_write_4(iot, ioh, index,     v.l[0]);
353 	}
354 }
355 
356 /*
357  * In the older virtio spec, device config registers are host endian. On newer
358  * they are little endian. Some newer devices however explicitly specify their
359  * register to always be little endian. These fuctions cater for these.
360  */
361 void
362 virtio_write_device_config_le_2(struct virtio_softc *sc, int index, uint16_t value)
363 {
364 	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
365 	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
366 
367 	if (sc->sc_bus_endian != LITTLE_ENDIAN)
368 		value = bswap16(value);
369 	bus_space_write_2(iot, ioh, index, value);
370 }
371 
372 void
373 virtio_write_device_config_le_4(struct virtio_softc *sc, int index, uint32_t value)
374 {
375 	bus_space_tag_t	   iot = sc->sc_devcfg_iot;
376 	bus_space_handle_t ioh = sc->sc_devcfg_ioh;
377 
378 	if (sc->sc_bus_endian != LITTLE_ENDIAN)
379 		value = bswap32(value);
380 	bus_space_write_4(iot, ioh, index, value);
381 }
382 
383 
384 /*
385  * data structures endian helpers
386  */
387 uint16_t virtio_rw16(struct virtio_softc *sc, uint16_t val)
388 {
389 	KASSERT(sc);
390 	return BYTE_ORDER != sc->sc_struct_endian ? bswap16(val) : val;
391 }
392 
393 uint32_t virtio_rw32(struct virtio_softc *sc, uint32_t val)
394 {
395 	KASSERT(sc);
396 	return BYTE_ORDER != sc->sc_struct_endian ? bswap32(val) : val;
397 }
398 
399 uint64_t virtio_rw64(struct virtio_softc *sc, uint64_t val)
400 {
401 	KASSERT(sc);
402 	return BYTE_ORDER != sc->sc_struct_endian ? bswap64(val) : val;
403 }
404 
405 
406 /*
407  * Interrupt handler.
408  */
409 static void
410 virtio_soft_intr(void *arg)
411 {
412 	struct virtio_softc *sc = arg;
413 
414 	KASSERT(sc->sc_intrhand != NULL);
415 
416 	(sc->sc_intrhand)(sc);
417 }
418 
419 /*
420  * dmamap sync operations for a virtqueue.
421  */
422 static inline void
423 vq_sync_descs(struct virtio_softc *sc, struct virtqueue *vq, int ops)
424 {
425 	/* availoffset == sizeof(vring_desc)*vq_num */
426 	bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap, 0, vq->vq_availoffset,
427 			ops);
428 }
429 
430 static inline void
431 vq_sync_aring(struct virtio_softc *sc, struct virtqueue *vq, int ops)
432 {
433 	uint16_t hdrlen = offsetof(struct vring_avail, ring);
434 	if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX)
435 		hdrlen += sizeof(uint16_t);
436 
437 	bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
438 			vq->vq_availoffset,
439 			hdrlen + sc->sc_nvqs * sizeof(uint16_t),
440 			ops);
441 }
442 
443 static inline void
444 vq_sync_uring(struct virtio_softc *sc, struct virtqueue *vq, int ops)
445 {
446 	uint16_t hdrlen = offsetof(struct vring_used, ring);
447 	if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX)
448 		hdrlen += sizeof(uint16_t);
449 
450 	bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
451 			vq->vq_usedoffset,
452 			hdrlen + sc->sc_nvqs * sizeof(struct vring_used_elem),
453 			ops);
454 }
455 
456 static inline void
457 vq_sync_indirect(struct virtio_softc *sc, struct virtqueue *vq, int slot,
458 		     int ops)
459 {
460 	int offset = vq->vq_indirectoffset
461 		      + sizeof(struct vring_desc) * vq->vq_maxnsegs * slot;
462 
463 	bus_dmamap_sync(sc->sc_dmat, vq->vq_dmamap,
464 			offset, sizeof(struct vring_desc) * vq->vq_maxnsegs,
465 			ops);
466 }
467 
468 /*
469  * Can be used as sc_intrhand.
470  */
471 /*
472  * Scan vq, bus_dmamap_sync for the vqs (not for the payload),
473  * and calls (*vq_done)() if some entries are consumed.
474  */
475 bool
476 virtio_vq_is_enqueued(struct virtio_softc *sc, struct virtqueue *vq)
477 {
478 
479 	if (vq->vq_queued) {
480 		vq->vq_queued = 0;
481 		vq_sync_aring(sc, vq, BUS_DMASYNC_POSTWRITE);
482 	}
483 	vq_sync_uring(sc, vq, BUS_DMASYNC_POSTREAD);
484 	membar_consumer();
485 
486 	return (vq->vq_used_idx != virtio_rw16(sc, vq->vq_used->idx)) ? 1 : 0;
487 }
488 
489 int
490 virtio_vq_intr(struct virtio_softc *sc)
491 {
492 	struct virtqueue *vq;
493 	int i, r = 0;
494 
495 	for (i = 0; i < sc->sc_nvqs; i++) {
496 		vq = &sc->sc_vqs[i];
497 		if (virtio_vq_is_enqueued(sc, vq) == 1) {
498 			if (vq->vq_done)
499 				r |= (vq->vq_done)(vq);
500 		}
501 	}
502 
503 	return r;
504 }
505 
506 int
507 virtio_vq_intrhand(struct virtio_softc *sc)
508 {
509 	struct virtqueue *vq;
510 	int i, r = 0;
511 
512 	for (i = 0; i < sc->sc_nvqs; i++) {
513 		vq = &sc->sc_vqs[i];
514 		r |= (vq->vq_intrhand)(vq->vq_intrhand_arg);
515 	}
516 
517 	return r;
518 }
519 
520 
521 /*
522  * Increase the event index in order to delay interrupts.
523  */
524 int
525 virtio_postpone_intr(struct virtio_softc *sc, struct virtqueue *vq,
526 		uint16_t nslots)
527 {
528 	uint16_t	idx, nused;
529 
530 	idx = vq->vq_used_idx + nslots;
531 
532 	/* set the new event index: avail_ring->used_event = idx */
533 	*vq->vq_used_event = virtio_rw16(sc, idx);
534 	membar_producer();
535 
536 	vq_sync_aring(vq->vq_owner, vq, BUS_DMASYNC_PREWRITE);
537 	vq->vq_queued++;
538 
539 	nused = (uint16_t)
540 		(virtio_rw16(sc, vq->vq_used->idx) - vq->vq_used_idx);
541 	KASSERT(nused <= vq->vq_num);
542 
543 	return nslots < nused;
544 }
545 
546 /*
547  * Postpone interrupt until 3/4 of the available descriptors have been
548  * consumed.
549  */
550 int
551 virtio_postpone_intr_smart(struct virtio_softc *sc, struct virtqueue *vq)
552 {
553 	uint16_t	nslots;
554 
555 	nslots = (uint16_t)
556 		(virtio_rw16(sc, vq->vq_avail->idx) - vq->vq_used_idx) * 3 / 4;
557 
558 	return virtio_postpone_intr(sc, vq, nslots);
559 }
560 
561 /*
562  * Postpone interrupt until all of the available descriptors have been
563  * consumed.
564  */
565 int
566 virtio_postpone_intr_far(struct virtio_softc *sc, struct virtqueue *vq)
567 {
568 	uint16_t	nslots;
569 
570 	nslots = (uint16_t)
571 		(virtio_rw16(sc, vq->vq_avail->idx) - vq->vq_used_idx);
572 
573 	return virtio_postpone_intr(sc, vq, nslots);
574 }
575 
576 /*
577  * Start/stop vq interrupt.  No guarantee.
578  */
579 void
580 virtio_stop_vq_intr(struct virtio_softc *sc, struct virtqueue *vq)
581 {
582 	if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) {
583 		/*
584 		 * No way to disable the interrupt completely with
585 		 * RingEventIdx. Instead advance used_event by half the
586 		 * possible value. This won't happen soon and is far enough in
587 		 * the past to not trigger a spurios interrupt.
588 		 */
589 		*vq->vq_used_event = virtio_rw16(sc, vq->vq_used_idx + 0x8000);
590 	} else {
591 		vq->vq_avail->flags |= virtio_rw16(sc, VRING_AVAIL_F_NO_INTERRUPT);
592 	}
593 	vq_sync_aring(sc, vq, BUS_DMASYNC_PREWRITE);
594 	vq->vq_queued++;
595 }
596 
597 int
598 virtio_start_vq_intr(struct virtio_softc *sc, struct virtqueue *vq)
599 {
600 	if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) {
601 		/*
602 		 * If event index feature is negotiated, enabling interrupts
603 		 * is done through setting the latest consumed index in the
604 		 * used_event field
605 		 */
606 		*vq->vq_used_event = virtio_rw16(sc, vq->vq_used_idx);
607 	} else {
608 		vq->vq_avail->flags &= ~virtio_rw16(sc, VRING_AVAIL_F_NO_INTERRUPT);
609 	}
610 	vq_sync_aring(sc, vq, BUS_DMASYNC_PREWRITE);
611 	vq->vq_queued++;
612 
613 	return vq->vq_used_idx != virtio_rw16(sc, vq->vq_used->idx);
614 }
615 
616 /*
617  * Initialize vq structure.
618  */
619 static void
620 virtio_init_vq(struct virtio_softc *sc, struct virtqueue *vq,
621     const bool reinit)
622 {
623 	int i, j;
624 	int vq_size = vq->vq_num;
625 
626 	memset(vq->vq_vaddr, 0, vq->vq_bytesize);
627 
628 	/* build the indirect descriptor chain */
629 	if (vq->vq_indirect != NULL) {
630 		struct vring_desc *vd;
631 
632 		for (i = 0; i < vq_size; i++) {
633 			vd = vq->vq_indirect;
634 			vd += vq->vq_maxnsegs * i;
635 			for (j = 0; j < vq->vq_maxnsegs-1; j++) {
636 				vd[j].next = virtio_rw16(sc, j + 1);
637 			}
638 		}
639 	}
640 
641 	/* free slot management */
642 	SIMPLEQ_INIT(&vq->vq_freelist);
643 	for (i = 0; i < vq_size; i++) {
644 		SIMPLEQ_INSERT_TAIL(&vq->vq_freelist,
645 				    &vq->vq_entries[i], qe_list);
646 		vq->vq_entries[i].qe_index = i;
647 	}
648 	if (!reinit)
649 		mutex_init(&vq->vq_freelist_lock, MUTEX_SPIN, sc->sc_ipl);
650 
651 	/* enqueue/dequeue status */
652 	vq->vq_avail_idx = 0;
653 	vq->vq_used_idx = 0;
654 	vq->vq_queued = 0;
655 	if (!reinit) {
656 		mutex_init(&vq->vq_aring_lock, MUTEX_SPIN, sc->sc_ipl);
657 		mutex_init(&vq->vq_uring_lock, MUTEX_SPIN, sc->sc_ipl);
658 	}
659 	vq_sync_aring(sc, vq, BUS_DMASYNC_PREWRITE);
660 	vq_sync_uring(sc, vq, BUS_DMASYNC_PREREAD);
661 	vq->vq_queued++;
662 }
663 
664 /*
665  * Allocate/free a vq.
666  */
667 int
668 virtio_alloc_vq(struct virtio_softc *sc, struct virtqueue *vq, int index,
669     int maxsegsize, int maxnsegs, const char *name)
670 {
671 	int vq_size, allocsize1, allocsize2, allocsize3, allocsize = 0;
672 	int rsegs, r, hdrlen;
673 #define VIRTQUEUE_ALIGN(n)	(((n)+(VIRTIO_PAGE_SIZE-1))&	\
674 				 ~(VIRTIO_PAGE_SIZE-1))
675 
676 	/* Make sure callers allocate vqs in order */
677 	KASSERT(sc->sc_nvqs == index);
678 
679 	memset(vq, 0, sizeof(*vq));
680 
681 	vq_size = sc->sc_ops->read_queue_size(sc, index);
682 	if (vq_size == 0) {
683 		aprint_error_dev(sc->sc_dev,
684 				 "virtqueue not exist, index %d for %s\n",
685 				 index, name);
686 		goto err;
687 	}
688 
689 	hdrlen = sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX ? 3 : 2;
690 
691 	/* allocsize1: descriptor table + avail ring + pad */
692 	allocsize1 = VIRTQUEUE_ALIGN(sizeof(struct vring_desc)*vq_size
693 			     + sizeof(uint16_t)*(hdrlen + vq_size));
694 	/* allocsize2: used ring + pad */
695 	allocsize2 = VIRTQUEUE_ALIGN(sizeof(uint16_t) * hdrlen
696 			     + sizeof(struct vring_used_elem)*vq_size);
697 	/* allocsize3: indirect table */
698 	if (sc->sc_indirect && maxnsegs >= MINSEG_INDIRECT)
699 		allocsize3 = sizeof(struct vring_desc) * maxnsegs * vq_size;
700 	else
701 		allocsize3 = 0;
702 	allocsize = allocsize1 + allocsize2 + allocsize3;
703 
704 	/* alloc and map the memory */
705 	r = bus_dmamem_alloc(sc->sc_dmat, allocsize, VIRTIO_PAGE_SIZE, 0,
706 			     &vq->vq_segs[0], 1, &rsegs, BUS_DMA_WAITOK);
707 	if (r != 0) {
708 		aprint_error_dev(sc->sc_dev,
709 				 "virtqueue %d for %s allocation failed, "
710 				 "error code %d\n", index, name, r);
711 		goto err;
712 	}
713 	r = bus_dmamem_map(sc->sc_dmat, &vq->vq_segs[0], rsegs, allocsize,
714 			   &vq->vq_vaddr, BUS_DMA_WAITOK);
715 	if (r != 0) {
716 		aprint_error_dev(sc->sc_dev,
717 				 "virtqueue %d for %s map failed, "
718 				 "error code %d\n", index, name, r);
719 		goto err;
720 	}
721 	r = bus_dmamap_create(sc->sc_dmat, allocsize, 1, allocsize, 0,
722 			      BUS_DMA_WAITOK, &vq->vq_dmamap);
723 	if (r != 0) {
724 		aprint_error_dev(sc->sc_dev,
725 				 "virtqueue %d for %s dmamap creation failed, "
726 				 "error code %d\n", index, name, r);
727 		goto err;
728 	}
729 	r = bus_dmamap_load(sc->sc_dmat, vq->vq_dmamap,
730 			    vq->vq_vaddr, allocsize, NULL, BUS_DMA_WAITOK);
731 	if (r != 0) {
732 		aprint_error_dev(sc->sc_dev,
733 				 "virtqueue %d for %s dmamap load failed, "
734 				 "error code %d\n", index, name, r);
735 		goto err;
736 	}
737 
738 	/* remember addresses and offsets for later use */
739 	vq->vq_owner = sc;
740 	vq->vq_num = vq_size;
741 	vq->vq_index = index;
742 	vq->vq_desc = vq->vq_vaddr;
743 	vq->vq_availoffset = sizeof(struct vring_desc)*vq_size;
744 	vq->vq_avail = (void*)(((char*)vq->vq_desc) + vq->vq_availoffset);
745 	vq->vq_used_event = (uint16_t *) ((char *)vq->vq_avail +
746 		 offsetof(struct vring_avail, ring[vq->vq_num]));
747 	vq->vq_usedoffset = allocsize1;
748 	vq->vq_used = (void*)(((char*)vq->vq_desc) + vq->vq_usedoffset);
749 	vq->vq_avail_event = (uint16_t *)((char *)vq->vq_used +
750 		 offsetof(struct vring_used, ring[vq->vq_num]));
751 
752 	if (allocsize3 > 0) {
753 		vq->vq_indirectoffset = allocsize1 + allocsize2;
754 		vq->vq_indirect = (void*)(((char*)vq->vq_desc)
755 					  + vq->vq_indirectoffset);
756 	}
757 	vq->vq_bytesize = allocsize;
758 	vq->vq_maxsegsize = maxsegsize;
759 	vq->vq_maxnsegs = maxnsegs;
760 
761 	/* free slot management */
762 	vq->vq_entries = kmem_zalloc(sizeof(struct vq_entry)*vq_size,
763 				     KM_SLEEP);
764 	virtio_init_vq(sc, vq, false);
765 
766 	/* set the vq address */
767 	sc->sc_ops->setup_queue(sc, index,
768 	    vq->vq_dmamap->dm_segs[0].ds_addr);
769 
770 	aprint_verbose_dev(sc->sc_dev,
771 			   "allocated %u byte for virtqueue %d for %s, "
772 			   "size %d\n", allocsize, index, name, vq_size);
773 	if (allocsize3 > 0)
774 		aprint_verbose_dev(sc->sc_dev,
775 				   "using %d byte (%d entries) "
776 				   "indirect descriptors\n",
777 				   allocsize3, maxnsegs * vq_size);
778 
779 	sc->sc_nvqs++;
780 
781 	return 0;
782 
783 err:
784 	sc->sc_ops->setup_queue(sc, index, 0);
785 	if (vq->vq_dmamap)
786 		bus_dmamap_destroy(sc->sc_dmat, vq->vq_dmamap);
787 	if (vq->vq_vaddr)
788 		bus_dmamem_unmap(sc->sc_dmat, vq->vq_vaddr, allocsize);
789 	if (vq->vq_segs[0].ds_addr)
790 		bus_dmamem_free(sc->sc_dmat, &vq->vq_segs[0], 1);
791 	memset(vq, 0, sizeof(*vq));
792 
793 	return -1;
794 }
795 
796 int
797 virtio_free_vq(struct virtio_softc *sc, struct virtqueue *vq)
798 {
799 	struct vq_entry *qe;
800 	int i = 0;
801 
802 	/* device must be already deactivated */
803 	/* confirm the vq is empty */
804 	SIMPLEQ_FOREACH(qe, &vq->vq_freelist, qe_list) {
805 		i++;
806 	}
807 	if (i != vq->vq_num) {
808 		printf("%s: freeing non-empty vq, index %d\n",
809 		       device_xname(sc->sc_dev), vq->vq_index);
810 		return EBUSY;
811 	}
812 
813 	/* tell device that there's no virtqueue any longer */
814 	sc->sc_ops->setup_queue(sc, vq->vq_index, 0);
815 
816 	kmem_free(vq->vq_entries, sizeof(*vq->vq_entries) * vq->vq_num);
817 	bus_dmamap_unload(sc->sc_dmat, vq->vq_dmamap);
818 	bus_dmamap_destroy(sc->sc_dmat, vq->vq_dmamap);
819 	bus_dmamem_unmap(sc->sc_dmat, vq->vq_vaddr, vq->vq_bytesize);
820 	bus_dmamem_free(sc->sc_dmat, &vq->vq_segs[0], 1);
821 	mutex_destroy(&vq->vq_freelist_lock);
822 	mutex_destroy(&vq->vq_uring_lock);
823 	mutex_destroy(&vq->vq_aring_lock);
824 	memset(vq, 0, sizeof(*vq));
825 
826 	sc->sc_nvqs--;
827 
828 	return 0;
829 }
830 
831 /*
832  * Free descriptor management.
833  */
834 static struct vq_entry *
835 vq_alloc_entry(struct virtqueue *vq)
836 {
837 	struct vq_entry *qe;
838 
839 	mutex_enter(&vq->vq_freelist_lock);
840 	if (SIMPLEQ_EMPTY(&vq->vq_freelist)) {
841 		mutex_exit(&vq->vq_freelist_lock);
842 		return NULL;
843 	}
844 	qe = SIMPLEQ_FIRST(&vq->vq_freelist);
845 	SIMPLEQ_REMOVE_HEAD(&vq->vq_freelist, qe_list);
846 	mutex_exit(&vq->vq_freelist_lock);
847 
848 	return qe;
849 }
850 
851 static void
852 vq_free_entry(struct virtqueue *vq, struct vq_entry *qe)
853 {
854 	mutex_enter(&vq->vq_freelist_lock);
855 	SIMPLEQ_INSERT_TAIL(&vq->vq_freelist, qe, qe_list);
856 	mutex_exit(&vq->vq_freelist_lock);
857 
858 	return;
859 }
860 
861 /*
862  * Enqueue several dmamaps as a single request.
863  */
864 /*
865  * Typical usage:
866  *  <queue size> number of followings are stored in arrays
867  *  - command blocks (in dmamem) should be pre-allocated and mapped
868  *  - dmamaps for command blocks should be pre-allocated and loaded
869  *  - dmamaps for payload should be pre-allocated
870  *      r = virtio_enqueue_prep(sc, vq, &slot);		// allocate a slot
871  *	if (r)		// currently 0 or EAGAIN
872  *	  return r;
873  *	r = bus_dmamap_load(dmat, dmamap_payload[slot], data, count, ..);
874  *	if (r) {
875  *	  virtio_enqueue_abort(sc, vq, slot);
876  *	  return r;
877  *	}
878  *	r = virtio_enqueue_reserve(sc, vq, slot,
879  *				   dmamap_payload[slot]->dm_nsegs+1);
880  *							// ^ +1 for command
881  *	if (r) {	// currently 0 or EAGAIN
882  *	  bus_dmamap_unload(dmat, dmamap_payload[slot]);
883  *	  return r;					// do not call abort()
884  *	}
885  *	<setup and prepare commands>
886  *	bus_dmamap_sync(dmat, dmamap_cmd[slot],... BUS_DMASYNC_PREWRITE);
887  *	bus_dmamap_sync(dmat, dmamap_payload[slot],...);
888  *	virtio_enqueue(sc, vq, slot, dmamap_cmd[slot], false);
889  *	virtio_enqueue(sc, vq, slot, dmamap_payload[slot], iswrite);
890  *	virtio_enqueue_commit(sc, vq, slot, true);
891  */
892 
893 /*
894  * enqueue_prep: allocate a slot number
895  */
896 int
897 virtio_enqueue_prep(struct virtio_softc *sc, struct virtqueue *vq, int *slotp)
898 {
899 	struct vq_entry *qe1;
900 
901 	KASSERT(slotp != NULL);
902 
903 	qe1 = vq_alloc_entry(vq);
904 	if (qe1 == NULL)
905 		return EAGAIN;
906 	/* next slot is not allocated yet */
907 	qe1->qe_next = -1;
908 	*slotp = qe1->qe_index;
909 
910 	return 0;
911 }
912 
913 /*
914  * enqueue_reserve: allocate remaining slots and build the descriptor chain.
915  */
916 int
917 virtio_enqueue_reserve(struct virtio_softc *sc, struct virtqueue *vq,
918 		       int slot, int nsegs)
919 {
920 	int indirect;
921 	struct vq_entry *qe1 = &vq->vq_entries[slot];
922 
923 	KASSERT(qe1->qe_next == -1);
924 	KASSERT(1 <= nsegs && nsegs <= vq->vq_num);
925 
926 	if ((vq->vq_indirect != NULL) &&
927 	    (nsegs >= MINSEG_INDIRECT) &&
928 	    (nsegs <= vq->vq_maxnsegs))
929 		indirect = 1;
930 	else
931 		indirect = 0;
932 	qe1->qe_indirect = indirect;
933 
934 	if (indirect) {
935 		struct vring_desc *vd;
936 		uint64_t addr;
937 		int i;
938 
939 		vd = &vq->vq_desc[qe1->qe_index];
940 		addr = vq->vq_dmamap->dm_segs[0].ds_addr
941 			+ vq->vq_indirectoffset;
942 		addr += sizeof(struct vring_desc)
943 			* vq->vq_maxnsegs * qe1->qe_index;
944 		vd->addr  = virtio_rw64(sc, addr);
945 		vd->len   = virtio_rw32(sc, sizeof(struct vring_desc) * nsegs);
946 		vd->flags = virtio_rw16(sc, VRING_DESC_F_INDIRECT);
947 
948 		vd = vq->vq_indirect;
949 		vd += vq->vq_maxnsegs * qe1->qe_index;
950 		qe1->qe_desc_base = vd;
951 
952 		for (i = 0; i < nsegs-1; i++) {
953 			vd[i].flags = virtio_rw16(sc, VRING_DESC_F_NEXT);
954 		}
955 		vd[i].flags  = virtio_rw16(sc, 0);
956 		qe1->qe_next = 0;
957 
958 		return 0;
959 	} else {
960 		struct vring_desc *vd;
961 		struct vq_entry *qe;
962 		int i, s;
963 
964 		vd = &vq->vq_desc[0];
965 		qe1->qe_desc_base = vd;
966 		qe1->qe_next = qe1->qe_index;
967 		s = slot;
968 		for (i = 0; i < nsegs - 1; i++) {
969 			qe = vq_alloc_entry(vq);
970 			if (qe == NULL) {
971 				vd[s].flags = virtio_rw16(sc, 0);
972 				virtio_enqueue_abort(sc, vq, slot);
973 				return EAGAIN;
974 			}
975 			vd[s].flags = virtio_rw16(sc, VRING_DESC_F_NEXT);
976 			vd[s].next  = virtio_rw16(sc, qe->qe_index);
977 			s = qe->qe_index;
978 		}
979 		vd[s].flags = virtio_rw16(sc, 0);
980 
981 		return 0;
982 	}
983 }
984 
985 /*
986  * enqueue: enqueue a single dmamap.
987  */
988 int
989 virtio_enqueue(struct virtio_softc *sc, struct virtqueue *vq, int slot,
990 	       bus_dmamap_t dmamap, bool write)
991 {
992 	struct vq_entry *qe1 = &vq->vq_entries[slot];
993 	struct vring_desc *vd = qe1->qe_desc_base;
994 	int i;
995 	int s = qe1->qe_next;
996 
997 	KASSERT(s >= 0);
998 	KASSERT(dmamap->dm_nsegs > 0);
999 
1000 	for (i = 0; i < dmamap->dm_nsegs; i++) {
1001 		vd[s].addr = virtio_rw64(sc, dmamap->dm_segs[i].ds_addr);
1002 		vd[s].len  = virtio_rw32(sc, dmamap->dm_segs[i].ds_len);
1003 		if (!write)
1004 			vd[s].flags |= virtio_rw16(sc, VRING_DESC_F_WRITE);
1005 		s = virtio_rw16(sc, vd[s].next);
1006 	}
1007 	qe1->qe_next = s;
1008 
1009 	return 0;
1010 }
1011 
1012 int
1013 virtio_enqueue_p(struct virtio_softc *sc, struct virtqueue *vq, int slot,
1014 		 bus_dmamap_t dmamap, bus_addr_t start, bus_size_t len,
1015 		 bool write)
1016 {
1017 	struct vq_entry *qe1 = &vq->vq_entries[slot];
1018 	struct vring_desc *vd = qe1->qe_desc_base;
1019 	int s = qe1->qe_next;
1020 
1021 	KASSERT(s >= 0);
1022 	KASSERT(dmamap->dm_nsegs == 1); /* XXX */
1023 	KASSERT((dmamap->dm_segs[0].ds_len > start) &&
1024 		(dmamap->dm_segs[0].ds_len >= start + len));
1025 
1026 	vd[s].addr = virtio_rw64(sc, dmamap->dm_segs[0].ds_addr + start);
1027 	vd[s].len  = virtio_rw32(sc, len);
1028 	if (!write)
1029 		vd[s].flags |= virtio_rw16(sc, VRING_DESC_F_WRITE);
1030 	qe1->qe_next = virtio_rw16(sc, vd[s].next);
1031 
1032 	return 0;
1033 }
1034 
1035 /*
1036  * enqueue_commit: add it to the aring.
1037  */
1038 int
1039 virtio_enqueue_commit(struct virtio_softc *sc, struct virtqueue *vq, int slot,
1040 		      bool notifynow)
1041 {
1042 	struct vq_entry *qe1;
1043 
1044 	if (slot < 0) {
1045 		mutex_enter(&vq->vq_aring_lock);
1046 		goto notify;
1047 	}
1048 	vq_sync_descs(sc, vq, BUS_DMASYNC_PREWRITE);
1049 	qe1 = &vq->vq_entries[slot];
1050 	if (qe1->qe_indirect)
1051 		vq_sync_indirect(sc, vq, slot, BUS_DMASYNC_PREWRITE);
1052 	mutex_enter(&vq->vq_aring_lock);
1053 	vq->vq_avail->ring[(vq->vq_avail_idx++) % vq->vq_num] =
1054 		virtio_rw16(sc, slot);
1055 
1056 notify:
1057 	if (notifynow) {
1058 		uint16_t o, n, t;
1059 		uint16_t flags;
1060 		o = virtio_rw16(sc, vq->vq_avail->idx);
1061 		n = vq->vq_avail_idx;
1062 
1063 		/* publish avail idx */
1064 		membar_producer();
1065 		vq->vq_avail->idx = virtio_rw16(sc, vq->vq_avail_idx);
1066 		vq_sync_aring(sc, vq, BUS_DMASYNC_PREWRITE);
1067 		vq->vq_queued++;
1068 
1069 		membar_consumer();
1070 		vq_sync_uring(sc, vq, BUS_DMASYNC_PREREAD);
1071 		if (sc->sc_active_features & VIRTIO_F_RING_EVENT_IDX) {
1072 			t = virtio_rw16(sc, *vq->vq_avail_event) + 1;
1073 			if ((uint16_t) (n - t) < (uint16_t) (n - o))
1074 				sc->sc_ops->kick(sc, vq->vq_index);
1075 		} else {
1076 			flags = virtio_rw16(sc, vq->vq_used->flags);
1077 			if (!(flags & VRING_USED_F_NO_NOTIFY))
1078 				sc->sc_ops->kick(sc, vq->vq_index);
1079 		}
1080 		vq_sync_uring(sc, vq, BUS_DMASYNC_POSTREAD);
1081 		vq_sync_aring(sc, vq, BUS_DMASYNC_POSTWRITE);
1082 	}
1083 	mutex_exit(&vq->vq_aring_lock);
1084 
1085 	return 0;
1086 }
1087 
1088 /*
1089  * enqueue_abort: rollback.
1090  */
1091 int
1092 virtio_enqueue_abort(struct virtio_softc *sc, struct virtqueue *vq, int slot)
1093 {
1094 	struct vq_entry *qe = &vq->vq_entries[slot];
1095 	struct vring_desc *vd;
1096 	int s;
1097 
1098 	if (qe->qe_next < 0) {
1099 		vq_free_entry(vq, qe);
1100 		return 0;
1101 	}
1102 
1103 	s = slot;
1104 	vd = &vq->vq_desc[0];
1105 	while (virtio_rw16(sc, vd[s].flags) & VRING_DESC_F_NEXT) {
1106 		s = virtio_rw16(sc, vd[s].next);
1107 		vq_free_entry(vq, qe);
1108 		qe = &vq->vq_entries[s];
1109 	}
1110 	vq_free_entry(vq, qe);
1111 	return 0;
1112 }
1113 
1114 /*
1115  * Dequeue a request.
1116  */
1117 /*
1118  * dequeue: dequeue a request from uring; dmamap_sync for uring is
1119  *	    already done in the interrupt handler.
1120  */
1121 int
1122 virtio_dequeue(struct virtio_softc *sc, struct virtqueue *vq,
1123 	       int *slotp, int *lenp)
1124 {
1125 	uint16_t slot, usedidx;
1126 	struct vq_entry *qe;
1127 
1128 	if (vq->vq_used_idx == virtio_rw16(sc, vq->vq_used->idx))
1129 		return ENOENT;
1130 	mutex_enter(&vq->vq_uring_lock);
1131 	usedidx = vq->vq_used_idx++;
1132 	mutex_exit(&vq->vq_uring_lock);
1133 	usedidx %= vq->vq_num;
1134 	slot = virtio_rw32(sc, vq->vq_used->ring[usedidx].id);
1135 	qe = &vq->vq_entries[slot];
1136 
1137 	if (qe->qe_indirect)
1138 		vq_sync_indirect(sc, vq, slot, BUS_DMASYNC_POSTWRITE);
1139 
1140 	if (slotp)
1141 		*slotp = slot;
1142 	if (lenp)
1143 		*lenp = virtio_rw32(sc, vq->vq_used->ring[usedidx].len);
1144 
1145 	return 0;
1146 }
1147 
1148 /*
1149  * dequeue_commit: complete dequeue; the slot is recycled for future use.
1150  *                 if you forget to call this the slot will be leaked.
1151  */
1152 int
1153 virtio_dequeue_commit(struct virtio_softc *sc, struct virtqueue *vq, int slot)
1154 {
1155 	struct vq_entry *qe = &vq->vq_entries[slot];
1156 	struct vring_desc *vd = &vq->vq_desc[0];
1157 	int s = slot;
1158 
1159 	while (virtio_rw16(sc, vd[s].flags) & VRING_DESC_F_NEXT) {
1160 		s = virtio_rw16(sc, vd[s].next);
1161 		vq_free_entry(vq, qe);
1162 		qe = &vq->vq_entries[s];
1163 	}
1164 	vq_free_entry(vq, qe);
1165 
1166 	return 0;
1167 }
1168 
1169 /*
1170  * Attach a child, fill all the members.
1171  */
1172 void
1173 virtio_child_attach_start(struct virtio_softc *sc, device_t child, int ipl,
1174 		    struct virtqueue *vqs,
1175 		    virtio_callback config_change,
1176 		    virtio_callback intr_hand,
1177 		    int req_flags, int req_features, const char *feat_bits)
1178 {
1179 	char buf[1024];
1180 
1181 	sc->sc_child = child;
1182 	sc->sc_ipl = ipl;
1183 	sc->sc_vqs = vqs;
1184 	sc->sc_config_change = config_change;
1185 	sc->sc_intrhand = intr_hand;
1186 	sc->sc_flags = req_flags;
1187 
1188 	virtio_negotiate_features(sc, req_features);
1189 	snprintb(buf, sizeof(buf), feat_bits, sc->sc_active_features);
1190 	aprint_normal(": features: %s\n", buf);
1191 	aprint_naive("\n");
1192 }
1193 
1194 void
1195 virtio_child_attach_set_vqs(struct virtio_softc *sc,
1196     struct virtqueue *vqs, int nvq_pairs)
1197 {
1198 
1199 	KASSERT(nvq_pairs == 1 ||
1200 	    (sc->sc_flags & VIRTIO_F_INTR_SOFTINT) == 0);
1201 	if (nvq_pairs > 1)
1202 		sc->sc_child_mq = true;
1203 
1204 	sc->sc_vqs = vqs;
1205 }
1206 
1207 int
1208 virtio_child_attach_finish(struct virtio_softc *sc)
1209 {
1210 	int r;
1211 
1212 	sc->sc_finished_called = true;
1213 	r = sc->sc_ops->alloc_interrupts(sc);
1214 	if (r != 0) {
1215 		aprint_error_dev(sc->sc_dev, "failed to allocate interrupts\n");
1216 		goto fail;
1217 	}
1218 
1219 	r = sc->sc_ops->setup_interrupts(sc, 0);
1220 	if (r != 0) {
1221 		aprint_error_dev(sc->sc_dev, "failed to setup interrupts\n");
1222 		goto fail;
1223 	}
1224 
1225 	KASSERT(sc->sc_soft_ih == NULL);
1226 	if (sc->sc_flags & VIRTIO_F_INTR_SOFTINT) {
1227 		u_int flags = SOFTINT_NET;
1228 		if (sc->sc_flags & VIRTIO_F_INTR_MPSAFE)
1229 			flags |= SOFTINT_MPSAFE;
1230 
1231 		sc->sc_soft_ih = softint_establish(flags, virtio_soft_intr, sc);
1232 		if (sc->sc_soft_ih == NULL) {
1233 			sc->sc_ops->free_interrupts(sc);
1234 			aprint_error_dev(sc->sc_dev,
1235 			    "failed to establish soft interrupt\n");
1236 			goto fail;
1237 		}
1238 	}
1239 
1240 	virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_DRIVER_OK);
1241 	return 0;
1242 
1243 fail:
1244 	if (sc->sc_soft_ih) {
1245 		softint_disestablish(sc->sc_soft_ih);
1246 		sc->sc_soft_ih = NULL;
1247 	}
1248 
1249 	sc->sc_ops->free_interrupts(sc);
1250 
1251 	virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_FAILED);
1252 	return 1;
1253 }
1254 
1255 void
1256 virtio_child_detach(struct virtio_softc *sc)
1257 {
1258 	sc->sc_child = NULL;
1259 	sc->sc_vqs = NULL;
1260 
1261 	virtio_device_reset(sc);
1262 
1263 	sc->sc_ops->free_interrupts(sc);
1264 
1265 	if (sc->sc_soft_ih) {
1266 		softint_disestablish(sc->sc_soft_ih);
1267 		sc->sc_soft_ih = NULL;
1268 	}
1269 }
1270 
1271 void
1272 virtio_child_attach_failed(struct virtio_softc *sc)
1273 {
1274 	virtio_child_detach(sc);
1275 
1276 	virtio_set_status(sc, VIRTIO_CONFIG_DEVICE_STATUS_FAILED);
1277 
1278 	sc->sc_child = VIRTIO_CHILD_FAILED;
1279 }
1280 
1281 bus_dma_tag_t
1282 virtio_dmat(struct virtio_softc *sc)
1283 {
1284 	return sc->sc_dmat;
1285 }
1286 
1287 device_t
1288 virtio_child(struct virtio_softc *sc)
1289 {
1290 	return sc->sc_child;
1291 }
1292 
1293 int
1294 virtio_intrhand(struct virtio_softc *sc)
1295 {
1296 	return (sc->sc_intrhand)(sc);
1297 }
1298 
1299 uint64_t
1300 virtio_features(struct virtio_softc *sc)
1301 {
1302 	return sc->sc_active_features;
1303 }
1304 
1305 int
1306 virtio_attach_failed(struct virtio_softc *sc)
1307 {
1308 	device_t self = sc->sc_dev;
1309 
1310 	/* no error if its not connected, but its failed */
1311 	if (sc->sc_childdevid == 0)
1312 		return 1;
1313 
1314 	if (sc->sc_child == NULL) {
1315 		aprint_error_dev(self,
1316 			"no matching child driver; not configured\n");
1317 		return 1;
1318 	}
1319 
1320 	if (sc->sc_child == VIRTIO_CHILD_FAILED) {
1321 		aprint_error_dev(self, "virtio configuration failed\n");
1322 		return 1;
1323 	}
1324 
1325 	/* sanity check */
1326 	if (!sc->sc_finished_called) {
1327 		aprint_error_dev(self, "virtio internal error, child driver "
1328 			"signaled OK but didn't initialize interrupts\n");
1329 		return 1;
1330 	}
1331 
1332 	return 0;
1333 }
1334 
1335 void
1336 virtio_print_device_type(device_t self, int id, int revision)
1337 {
1338 	aprint_normal_dev(self, "%s device (rev. 0x%02x)\n",
1339 		  (id < NDEVNAMES ? virtio_device_name[id] : "Unknown"),
1340 		  revision);
1341 }
1342 
1343 
1344 MODULE(MODULE_CLASS_DRIVER, virtio, NULL);
1345 
1346 #ifdef _MODULE
1347 #include "ioconf.c"
1348 #endif
1349 
1350 static int
1351 virtio_modcmd(modcmd_t cmd, void *opaque)
1352 {
1353 	int error = 0;
1354 
1355 #ifdef _MODULE
1356 	switch (cmd) {
1357 	case MODULE_CMD_INIT:
1358 		error = config_init_component(cfdriver_ioconf_virtio,
1359 		    cfattach_ioconf_virtio, cfdata_ioconf_virtio);
1360 		break;
1361 	case MODULE_CMD_FINI:
1362 		error = config_fini_component(cfdriver_ioconf_virtio,
1363 		    cfattach_ioconf_virtio, cfdata_ioconf_virtio);
1364 		break;
1365 	default:
1366 		error = ENOTTY;
1367 		break;
1368 	}
1369 #endif
1370 
1371 	return error;
1372 }
1373