xref: /netbsd-src/sys/dev/pci/ubsec.c (revision e6c7e151de239c49d2e38720a061ed9d1fa99309)
1 /*	$NetBSD: ubsec.c,v 1.48 2020/03/16 21:20:09 pgoyette Exp $	*/
2 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.6 2003/01/23 21:06:43 sam Exp $ */
3 /*	$OpenBSD: ubsec.c,v 1.143 2009/03/27 13:31:30 reyk Exp$	*/
4 
5 /*
6  * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
7  * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
8  * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
23  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
28  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  * Effort sponsored in part by the Defense Advanced Research Projects
32  * Agency (DARPA) and Air Force Research Laboratory, Air Force
33  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
34  *
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: ubsec.c,v 1.48 2020/03/16 21:20:09 pgoyette Exp $");
39 
40 #undef UBSEC_DEBUG
41 
42 /*
43  * uBsec 5[56]01, 58xx hardware crypto accelerator
44  */
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/proc.h>
49 #include <sys/endian.h>
50 #ifdef __NetBSD__
51   #define UBSEC_NO_RNG	/* hangs on attach */
52   #define letoh16 htole16
53   #define letoh32 htole32
54 #endif
55 #include <sys/errno.h>
56 #include <sys/malloc.h>
57 #include <sys/kernel.h>
58 #include <sys/mbuf.h>
59 #include <sys/device.h>
60 #include <sys/module.h>
61 #include <sys/queue.h>
62 #include <sys/sysctl.h>
63 
64 #include <opencrypto/cryptodev.h>
65 #include <opencrypto/xform.h>
66 #ifdef __OpenBSD__
67  #include <dev/rndvar.h>
68  #include <sys/md5k.h>
69 #else
70  #include <sys/cprng.h>
71  #include <sys/md5.h>
72  #include <sys/rndpool.h>
73  #include <sys/rndsource.h>
74 #endif
75 #include <sys/sha1.h>
76 
77 #include <dev/pci/pcireg.h>
78 #include <dev/pci/pcivar.h>
79 #include <dev/pci/pcidevs.h>
80 
81 #include <dev/pci/ubsecreg.h>
82 #include <dev/pci/ubsecvar.h>
83 
84 /*
85  * Prototypes and count for the pci_device structure
86  */
87 static	int  ubsec_probe(device_t, cfdata_t, void *);
88 static	void ubsec_attach(device_t, device_t, void *);
89 static	int  ubsec_detach(device_t, int);
90 static	void ubsec_reset_board(struct ubsec_softc *);
91 static	void ubsec_init_board(struct ubsec_softc *);
92 static	void ubsec_init_pciregs(struct pci_attach_args *pa);
93 static	void ubsec_cleanchip(struct ubsec_softc *);
94 static	void ubsec_totalreset(struct ubsec_softc *);
95 static	int  ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
96 
97 #ifdef __OpenBSD__
98 struct cfattach ubsec_ca = {
99 	sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
100 };
101 
102 struct cfdriver ubsec_cd = {
103 	0, "ubsec", DV_DULL
104 };
105 #else
106 CFATTACH_DECL_NEW(ubsec, sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
107 	      ubsec_detach, NULL);
108 extern struct cfdriver ubsec_cd;
109 #endif
110 
111 /* patchable */
112 #ifdef	UBSEC_DEBUG
113 extern int ubsec_debug;
114 int ubsec_debug=1;
115 #endif
116 
117 static	int	ubsec_intr(void *);
118 static	int	ubsec_newsession(void*, u_int32_t *, struct cryptoini *);
119 static	int	ubsec_freesession(void*, u_int64_t);
120 static	int	ubsec_process(void*, struct cryptop *, int hint);
121 static	void	ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
122 static	void	ubsec_feed(struct ubsec_softc *);
123 static	void	ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
124 static	void	ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
125 static	void	ubsec_feed2(struct ubsec_softc *);
126 static	void	ubsec_feed4(struct ubsec_softc *);
127 #ifndef UBSEC_NO_RNG
128 static  void	ubsec_rng(void *);
129 static  void	ubsec_rng_locked(void *);
130 static  void	ubsec_rng_get(size_t, void *);
131 #endif /* UBSEC_NO_RNG */
132 static	int 	ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
133 				 struct ubsec_dma_alloc *, int);
134 static	void	ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
135 static	int	ubsec_dmamap_aligned(bus_dmamap_t);
136 
137 static	int	ubsec_kprocess(void*, struct cryptkop *, int);
138 static	int	ubsec_kprocess_modexp_sw(struct ubsec_softc *,
139 					 struct cryptkop *, int);
140 static	int	ubsec_kprocess_modexp_hw(struct ubsec_softc *,
141 					 struct cryptkop *, int);
142 static	int	ubsec_kprocess_rsapriv(struct ubsec_softc *,
143 				       struct cryptkop *, int);
144 static	void	ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
145 static	int	ubsec_ksigbits(struct crparam *);
146 static	void	ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
147 static	void	ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
148 
149 #ifdef UBSEC_DEBUG
150 static void	ubsec_dump_pb(volatile struct ubsec_pktbuf *);
151 static void	ubsec_dump_mcr(struct ubsec_mcr *);
152 static	void	ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *);
153 #endif
154 
155 #define	READ_REG(sc,r) \
156 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
157 
158 #define WRITE_REG(sc,reg,val) \
159 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
160 
161 #define	SWAP32(x) (x) = htole32(ntohl((x)))
162 #ifndef HTOLE32
163  #define	HTOLE32(x) (x) = htole32(x)
164 #endif
165 
166 struct ubsec_stats ubsecstats;
167 
168 /*
169  * ubsec_maxbatch controls the number of crypto ops to voluntarily
170  * collect into one submission to the hardware.  This batching happens
171  * when ops are dispatched from the crypto subsystem with a hint that
172  * more are to follow immediately.  These ops must also not be marked
173  * with a ``no delay'' flag.
174  */
175 static	int ubsec_maxbatch = 1;
176 
177 /*
178  * ubsec_maxaggr controls the number of crypto ops to submit to the
179  * hardware as a unit.  This aggregation reduces the number of interrupts
180  * to the host at the expense of increased latency (for all but the last
181  * operation).  For network traffic setting this to one yields the highest
182  * performance but at the expense of more interrupt processing.
183  */
184 static	int ubsec_maxaggr = 1;
185 
186 static const struct ubsec_product {
187 	pci_vendor_id_t		ubsec_vendor;
188 	pci_product_id_t	ubsec_product;
189 	int			ubsec_flags;
190 	int			ubsec_statmask;
191 	int			ubsec_maxaggr;
192 	const char		*ubsec_name;
193 } ubsec_products[] = {
194 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5501,
195 	  0,
196 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
197 	  UBS_MIN_AGGR,
198 	  "Bluesteel 5501"
199 	},
200 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5601,
201 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
202 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
203 	  UBS_MIN_AGGR,
204 	  "Bluesteel 5601"
205 	},
206 
207 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5801,
208 	  0,
209 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
210 	  UBS_MIN_AGGR,
211 	  "Broadcom BCM5801"
212 	},
213 
214 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5802,
215 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
216 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
217 	  UBS_MIN_AGGR,
218 	  "Broadcom BCM5802"
219 	},
220 
221 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5805,
222 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
223 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
224 	  UBS_MIN_AGGR,
225 	  "Broadcom BCM5805"
226 	},
227 
228 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5820,
229 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
230 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
231 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
232 	  UBS_MIN_AGGR,
233 	  "Broadcom BCM5820"
234 	},
235 
236 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5821,
237 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
238 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
239 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
240 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
241 	  UBS_MIN_AGGR,
242 	  "Broadcom BCM5821"
243 	},
244 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_SCA1K,
245 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
246 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
247 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
248 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
249 	  UBS_MIN_AGGR,
250 	  "Sun Crypto Accelerator 1000"
251 	},
252 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_5821,
253 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
254 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
255 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
256 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
257 	  UBS_MIN_AGGR,
258 	  "Broadcom BCM5821 (Sun)"
259 	},
260 
261 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5822,
262 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
263 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
264 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
265 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
266 	  UBS_MIN_AGGR,
267 	  "Broadcom BCM5822"
268 	},
269 
270 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5823,
271 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
272 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
273 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
274 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
275 	  UBS_MIN_AGGR,
276 	  "Broadcom BCM5823"
277 	},
278 
279 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5825,
280 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
281 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
282 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
283 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
284 	  UBS_MIN_AGGR,
285 	  "Broadcom BCM5825"
286 	},
287 
288 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5860,
289 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
290 	      UBS_FLAGS_LONGCTX |
291 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
292 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
293 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
294 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
295 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
296 	  UBS_MAX_AGGR,
297 	  "Broadcom BCM5860"
298 	},
299 
300 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5861,
301 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
302 	      UBS_FLAGS_LONGCTX |
303 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
304 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
305 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
306 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
307 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
308 	  UBS_MAX_AGGR,
309 	  "Broadcom BCM5861"
310 	},
311 
312 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5862,
313 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
314 	      UBS_FLAGS_LONGCTX |
315 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
316 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
317 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
318 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
319 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
320 	  UBS_MAX_AGGR,
321 	  "Broadcom BCM5862"
322 	},
323 
324 	{ 0,			0,
325 	  0,
326 	  0,
327 	  0,
328 	  NULL
329 	}
330 };
331 
332 static const struct ubsec_product *
333 ubsec_lookup(const struct pci_attach_args *pa)
334 {
335 	const struct ubsec_product *up;
336 
337 	for (up = ubsec_products; up->ubsec_name != NULL; up++) {
338 		if (PCI_VENDOR(pa->pa_id) == up->ubsec_vendor &&
339 		    PCI_PRODUCT(pa->pa_id) == up->ubsec_product)
340 			return (up);
341 	}
342 	return (NULL);
343 }
344 
345 static int
346 ubsec_probe(device_t parent, cfdata_t match, void *aux)
347 {
348 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
349 
350 	if (ubsec_lookup(pa) != NULL)
351 		return (1);
352 
353 	return (0);
354 }
355 
356 static void
357 ubsec_attach(device_t parent, device_t self, void *aux)
358 {
359 	struct ubsec_softc *sc = device_private(self);
360 	struct pci_attach_args *pa = aux;
361 	const struct ubsec_product *up;
362 	pci_chipset_tag_t pc = pa->pa_pc;
363 	pci_intr_handle_t ih;
364 	const char *intrstr = NULL;
365 	pcireg_t memtype;
366 	struct ubsec_dma *dmap;
367 	u_int32_t cmd, i;
368 	char intrbuf[PCI_INTRSTR_LEN];
369 
370 	sc->sc_dev = self;
371 	sc->sc_pct = pc;
372 
373 	up = ubsec_lookup(pa);
374 	if (up == NULL) {
375 		printf("\n");
376 		panic("ubsec_attach: impossible");
377 	}
378 
379 	pci_aprint_devinfo_fancy(pa, "Crypto processor", up->ubsec_name, 1);
380 
381 	SIMPLEQ_INIT(&sc->sc_queue);
382 	SIMPLEQ_INIT(&sc->sc_qchip);
383 	SIMPLEQ_INIT(&sc->sc_queue2);
384 	SIMPLEQ_INIT(&sc->sc_qchip2);
385 	SIMPLEQ_INIT(&sc->sc_queue4);
386 	SIMPLEQ_INIT(&sc->sc_qchip4);
387 	SIMPLEQ_INIT(&sc->sc_q2free);
388 
389 	sc->sc_flags = up->ubsec_flags;
390 	sc->sc_statmask = up->ubsec_statmask;
391 	sc->sc_maxaggr = up->ubsec_maxaggr;
392 
393 	cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
394 	cmd |= PCI_COMMAND_MASTER_ENABLE;
395 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd);
396 
397 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BS_BAR);
398 	if (pci_mapreg_map(pa, BS_BAR, memtype, 0,
399 	    &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize)) {
400 		aprint_error_dev(self, "can't find mem space");
401 		return;
402 	}
403 
404 	sc->sc_dmat = pa->pa_dmat;
405 
406 	if (pci_intr_map(pa, &ih)) {
407 		aprint_error_dev(self, "couldn't map interrupt\n");
408 		return;
409 	}
410 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
411 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, ubsec_intr, sc,
412 	    device_xname(self));
413 	if (sc->sc_ih == NULL) {
414 		aprint_error_dev(self, "couldn't establish interrupt");
415 		if (intrstr != NULL)
416 			aprint_error(" at %s", intrstr);
417 		aprint_error("\n");
418 		return;
419 	}
420 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
421 
422 	sc->sc_cid = crypto_get_driverid(0);
423 	if (sc->sc_cid < 0) {
424 		aprint_error_dev(self, "couldn't get crypto driver id\n");
425 		pci_intr_disestablish(pc, sc->sc_ih);
426 		return;
427 	}
428 
429 	sc->sc_rng_need = RND_POOLBITS / NBBY;
430 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_VM);
431 
432 	SIMPLEQ_INIT(&sc->sc_freequeue);
433 	dmap = sc->sc_dmaa;
434 	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
435 		struct ubsec_q *q;
436 
437 		q = malloc(sizeof(struct ubsec_q), M_DEVBUF, M_ZERO|M_WAITOK);
438 
439 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
440 		    &dmap->d_alloc, 0)) {
441 			aprint_error_dev(self, "can't allocate dma buffers\n");
442 			free(q, M_DEVBUF);
443 			break;
444 		}
445 		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
446 
447 		q->q_dma = dmap;
448 		sc->sc_queuea[i] = q;
449 
450 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
451 	}
452 
453 	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
454 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
455 	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
456 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
457 	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC_96, 0, 0,
458 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
459 	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC_96, 0, 0,
460 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
461 	if (sc->sc_flags & UBS_FLAGS_AES) {
462 		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
463 		    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
464 	}
465 
466 	/*
467 	 * Reset Broadcom chip
468 	 */
469 	ubsec_reset_board(sc);
470 
471 	/*
472 	 * Init Broadcom specific PCI settings
473 	 */
474 	ubsec_init_pciregs(pa);
475 
476 	/*
477 	 * Init Broadcom chip
478 	 */
479 	ubsec_init_board(sc);
480 
481 #ifndef UBSEC_NO_RNG
482 	if (sc->sc_flags & UBS_FLAGS_RNG) {
483 		if (sc->sc_flags & UBS_FLAGS_RNG4)
484 			sc->sc_statmask |= BS_STAT_MCR4_DONE;
485 		else
486 			sc->sc_statmask |= BS_STAT_MCR2_DONE;
487 
488 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
489 		    &sc->sc_rng.rng_q.q_mcr, 0))
490 			goto skip_rng;
491 
492 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
493 		    &sc->sc_rng.rng_q.q_ctx, 0)) {
494 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
495 			goto skip_rng;
496 		}
497 
498 		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
499 		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
500 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
501 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
502 			goto skip_rng;
503 		}
504 
505 		rndsource_setcb(&sc->sc_rnd_source, ubsec_rng_get, sc);
506 		rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
507 				  RND_TYPE_RNG,
508 				  RND_FLAG_COLLECT_VALUE|RND_FLAG_HASCB);
509 		if (hz >= 100)
510 			sc->sc_rnghz = hz / 100;
511 		else
512 			sc->sc_rnghz = 1;
513 #ifdef __OpenBSD__
514 		timeout_set(&sc->sc_rngto, ubsec_rng, sc);
515 		timeout_add(&sc->sc_rngto, sc->sc_rnghz);
516 #else
517 		callout_init(&sc->sc_rngto, 0);
518 		callout_setfunc(&sc->sc_rngto, ubsec_rng, sc);
519 		callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
520 #endif
521  skip_rng:
522 		if (sc->sc_rnghz)
523 			aprint_normal_dev(self,
524 			    "random number generator enabled\n");
525 		else
526 			aprint_error_dev(self,
527 			    "WARNING: random number generator disabled\n");
528 	}
529 #endif /* UBSEC_NO_RNG */
530 
531 	if (sc->sc_flags & UBS_FLAGS_KEY) {
532 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
533 
534 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
535 				 ubsec_kprocess, sc);
536 #if 0
537 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
538 				 ubsec_kprocess, sc);
539 #endif
540 	}
541 }
542 
543 static int
544 ubsec_detach(device_t self, int flags)
545 {
546 	struct ubsec_softc *sc = device_private(self);
547 	struct ubsec_q *q, *qtmp;
548 	volatile u_int32_t ctrl;
549 
550 	/* disable interrupts */
551 	/* XXX wait/abort current ops? where is DMAERR enabled? */
552 	ctrl = READ_REG(sc, BS_CTRL);
553 
554 	ctrl &= ~(BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR);
555 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
556 		ctrl &= ~BS_CTRL_MCR4INT;
557 
558 	WRITE_REG(sc, BS_CTRL, ctrl);
559 
560 #ifndef UBSEC_NO_RNG
561 	if (sc->sc_flags & UBS_FLAGS_RNG) {
562 		callout_halt(&sc->sc_rngto, NULL);
563 		ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
564 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
565 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
566 		rnd_detach_source(&sc->sc_rnd_source);
567 	}
568 #endif /* UBSEC_NO_RNG */
569 
570 	crypto_unregister_all(sc->sc_cid);
571 
572 	mutex_spin_enter(&sc->sc_mtx);
573 
574 	ubsec_totalreset(sc);  /* XXX leaves the chip running */
575 
576 	SIMPLEQ_FOREACH_SAFE(q, &sc->sc_freequeue, q_next, qtmp) {
577 		ubsec_dma_free(sc, &q->q_dma->d_alloc);
578 		if (q->q_src_map != NULL)
579 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
580 		if (q->q_cached_dst_map != NULL)
581 			bus_dmamap_destroy(sc->sc_dmat, q->q_cached_dst_map);
582 		free(q, M_DEVBUF);
583 	}
584 
585 	mutex_spin_exit(&sc->sc_mtx);
586 
587 	if (sc->sc_ih != NULL) {
588 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
589 		sc->sc_ih = NULL;
590 	}
591 
592 	if (sc->sc_memsize != 0) {
593 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize);
594 		sc->sc_memsize = 0;
595 	}
596 
597 	return 0;
598 }
599 
600 MODULE(MODULE_CLASS_DRIVER, ubsec, "pci,opencrypto");
601 
602 #ifdef _MODULE
603 #include "ioconf.c"
604 #endif
605 
606 static int
607 ubsec_modcmd(modcmd_t cmd, void *data)
608 {
609 	int error = 0;
610 
611 	switch (cmd) {
612 	case MODULE_CMD_INIT:
613 #ifdef _MODULE
614 		error = config_init_component(cfdriver_ioconf_ubsec,
615 		    cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
616 #endif
617 		return error;
618 	case MODULE_CMD_FINI:
619 #ifdef _MODULE
620 		error = config_fini_component(cfdriver_ioconf_ubsec,
621 		    cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
622 #endif
623 		return error;
624 	default:
625 		return ENOTTY;
626 	}
627 }
628 
629 SYSCTL_SETUP(ubsec_sysctl_init, "ubsec sysctl")
630 {
631 	const struct sysctlnode *node = NULL;
632 
633 	sysctl_createv(clog, 0, NULL, &node,
634 		CTLFLAG_PERMANENT,
635 		CTLTYPE_NODE, "ubsec",
636 		SYSCTL_DESCR("ubsec opetions"),
637 		NULL, 0, NULL, 0,
638 		CTL_HW, CTL_CREATE, CTL_EOL);
639 	sysctl_createv(clog, 0, &node, NULL,
640 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
641 		CTLTYPE_INT, "maxbatch",
642 		SYSCTL_DESCR("max ops to batch w/o interrupt"),
643 		NULL, 0, &ubsec_maxbatch, 0,
644 		CTL_CREATE, CTL_EOL);
645 	sysctl_createv(clog, 0, &node, NULL,
646 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
647 		CTLTYPE_INT, "maxaggr",
648 		SYSCTL_DESCR("max ops to aggregate under one interrupt"),
649 		NULL, 0, &ubsec_maxaggr, 0,
650 		CTL_CREATE, CTL_EOL);
651 
652 	return;
653 }
654 
655 /*
656  * UBSEC Interrupt routine
657  */
658 static int
659 ubsec_intr(void *arg)
660 {
661 	struct ubsec_softc *sc = arg;
662 	volatile u_int32_t stat;
663 	struct ubsec_q *q;
664 	struct ubsec_dma *dmap;
665 	int flags;
666 	int npkts = 0, i;
667 
668 	mutex_spin_enter(&sc->sc_mtx);
669 	stat = READ_REG(sc, BS_STAT);
670 	stat &= sc->sc_statmask;
671 	if (stat == 0) {
672 		mutex_spin_exit(&sc->sc_mtx);
673 		return (0);
674 	}
675 
676 	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
677 
678 	/*
679 	 * Check to see if we have any packets waiting for us
680 	 */
681 	if ((stat & BS_STAT_MCR1_DONE)) {
682 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
683 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
684 			dmap = q->q_dma;
685 
686 			if ((dmap->d_dma->d_mcr.mcr_flags
687 			    & htole16(UBS_MCR_DONE)) == 0)
688 				break;
689 
690 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
691 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
692 
693 			npkts = q->q_nstacked_mcrs;
694 			sc->sc_nqchip -= 1+npkts;
695 			/*
696 			 * search for further sc_qchip ubsec_q's that share
697 			 * the same MCR, and complete them too, they must be
698 			 * at the top.
699 			 */
700 			for (i = 0; i < npkts; i++) {
701 				if(q->q_stacked_mcr[i])
702 					ubsec_callback(sc, q->q_stacked_mcr[i]);
703 				else
704 					break;
705 			}
706 			ubsec_callback(sc, q);
707 		}
708 
709 		/*
710 		 * Don't send any more packet to chip if there has been
711 		 * a DMAERR.
712 		 */
713 		if (!(stat & BS_STAT_DMAERR))
714 			ubsec_feed(sc);
715 	}
716 
717 	/*
718 	 * Check to see if we have any key setups/rng's waiting for us
719 	 */
720 	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
721 	    (stat & BS_STAT_MCR2_DONE)) {
722 		struct ubsec_q2 *q2;
723 		struct ubsec_mcr *mcr;
724 
725 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
726 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
727 
728 			bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
729 			    0, q2->q_mcr.dma_map->dm_mapsize,
730 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
731 
732 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
733 
734 			/* A bug in new devices requires to swap this field */
735 			if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
736 				flags = htole16(mcr->mcr_flags);
737 			else
738 				flags = mcr->mcr_flags;
739 			if ((flags & htole16(UBS_MCR_DONE)) == 0) {
740 				bus_dmamap_sync(sc->sc_dmat,
741 				    q2->q_mcr.dma_map, 0,
742 				    q2->q_mcr.dma_map->dm_mapsize,
743 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
744 				break;
745 			}
746 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
747 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, /*q2,*/ q_next);
748 			ubsec_callback2(sc, q2);
749 			/*
750 			 * Don't send any more packet to chip if there has been
751 			 * a DMAERR.
752 			 */
753 			if (!(stat & BS_STAT_DMAERR))
754 				ubsec_feed2(sc);
755 		}
756 	}
757 	if ((sc->sc_flags & UBS_FLAGS_RNG4) && (stat & BS_STAT_MCR4_DONE)) {
758 		struct ubsec_q2 *q2;
759 		struct ubsec_mcr *mcr;
760 
761 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip4)) {
762 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip4);
763 
764 			bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
765 			    0, q2->q_mcr.dma_map->dm_mapsize,
766 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
767 
768 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
769 
770 			/* A bug in new devices requires to swap this field */
771 			flags = htole16(mcr->mcr_flags);
772 
773 			if ((flags & htole16(UBS_MCR_DONE)) == 0) {
774 				bus_dmamap_sync(sc->sc_dmat,
775 				    q2->q_mcr.dma_map, 0,
776 				    q2->q_mcr.dma_map->dm_mapsize,
777 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
778 				break;
779 			}
780 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip4, q_next);
781 			ubsec_callback2(sc, q2);
782 			/*
783 			 * Don't send any more packet to chip if there has been
784 			 * a DMAERR.
785 			 */
786 			if (!(stat & BS_STAT_DMAERR))
787 				ubsec_feed4(sc);
788 		}
789 	}
790 
791 	/*
792 	 * Check to see if we got any DMA Error
793 	 */
794 	if (stat & BS_STAT_DMAERR) {
795 #ifdef UBSEC_DEBUG
796 		if (ubsec_debug) {
797 			volatile u_int32_t a = READ_REG(sc, BS_ERR);
798 
799 			printf("%s: dmaerr %s@%08x\n", device_xname(sc->sc_dev),
800 			    (a & BS_ERR_READ) ? "read" : "write",
801 			       a & BS_ERR_ADDR);
802 		}
803 #endif /* UBSEC_DEBUG */
804 		ubsecstats.hst_dmaerr++;
805 		ubsec_totalreset(sc);
806 		ubsec_feed(sc);
807 	}
808 
809 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
810 		int wkeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
811 #ifdef UBSEC_DEBUG
812 		if (ubsec_debug)
813 			printf("%s: wakeup crypto (%x)\n",
814 			    device_xname(sc->sc_dev), sc->sc_needwakeup);
815 #endif /* UBSEC_DEBUG */
816 		sc->sc_needwakeup &= ~wkeup;
817 		crypto_unblock(sc->sc_cid, wkeup);
818 	}
819 	mutex_spin_exit(&sc->sc_mtx);
820 	return (1);
821 }
822 
823 /*
824  * ubsec_feed() - aggregate and post requests to chip
825  * OpenBSD comments:
826  *		  It is assumed that the caller set splnet()
827  */
828 static void
829 ubsec_feed(struct ubsec_softc *sc)
830 {
831 	struct ubsec_q *q, *q2;
832 	int npkts, i;
833 	void *v;
834 	u_int32_t stat;
835 #ifdef UBSEC_DEBUG
836 	static int max;
837 #endif /* UBSEC_DEBUG */
838 
839 	npkts = sc->sc_nqueue;
840 	if (npkts > ubsecstats.hst_maxqueue)
841 		ubsecstats.hst_maxqueue = npkts;
842 	if (npkts < 2)
843 		goto feed1;
844 
845 	/*
846 	 * Decide how many ops to combine in a single MCR.  We cannot
847 	 * aggregate more than UBS_MAX_AGGR because this is the number
848 	 * of slots defined in the data structure.  Otherwise we clamp
849 	 * based on the tunable parameter ubsec_maxaggr.  Note that
850 	 * aggregation can happen in two ways: either by batching ops
851 	 * from above or because the h/w backs up and throttles us.
852 	 * Aggregating ops reduces the number of interrupts to the host
853 	 * but also (potentially) increases the latency for processing
854 	 * completed ops as we only get an interrupt when all aggregated
855 	 * ops have completed.
856 	 */
857 	if (npkts > sc->sc_maxaggr)
858 		npkts = sc->sc_maxaggr;
859 	if (npkts > ubsec_maxaggr)
860 		npkts = ubsec_maxaggr;
861 	if (npkts > ubsecstats.hst_maxbatch)
862 		ubsecstats.hst_maxbatch = npkts;
863 	if (npkts < 2)
864 		goto feed1;
865 	ubsecstats.hst_totbatch += npkts-1;
866 
867 	if ((stat = READ_REG(sc, BS_STAT))
868 	    & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
869 		if (stat & BS_STAT_DMAERR) {
870 			ubsec_totalreset(sc);
871 			ubsecstats.hst_dmaerr++;
872 		} else {
873 			ubsecstats.hst_mcr1full++;
874 		}
875 		return;
876 	}
877 
878 #ifdef UBSEC_DEBUG
879 	if (ubsec_debug)
880 	    printf("merging %d records\n", npkts);
881 	/* XXX temporary aggregation statistics reporting code */
882 	if (max < npkts) {
883 		max = npkts;
884 		printf("%s: new max aggregate %d\n", device_xname(sc->sc_dev),
885 		    max);
886 	}
887 #endif /* UBSEC_DEBUG */
888 
889 	q = SIMPLEQ_FIRST(&sc->sc_queue);
890 	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
891 	--sc->sc_nqueue;
892 
893 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
894 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
895 	if (q->q_dst_map != NULL)
896 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
897 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
898 
899 	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
900 
901 	for (i = 0; i < q->q_nstacked_mcrs; i++) {
902 		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
903 		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
904 		    0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
905 		if (q2->q_dst_map != NULL)
906 			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
907 			    0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
908 		q2= SIMPLEQ_FIRST(&sc->sc_queue);
909 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q2,*/ q_next);
910 		--sc->sc_nqueue;
911 
912 		v = ((void *)&q2->q_dma->d_dma->d_mcr);
913 		v = (char*)v + (sizeof(struct ubsec_mcr) -
914 				 sizeof(struct ubsec_mcr_add));
915 		memcpy(&q->q_dma->d_dma->d_mcradd[i], v,
916 		    sizeof(struct ubsec_mcr_add));
917 		q->q_stacked_mcr[i] = q2;
918 	}
919 	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
920 	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
921 	sc->sc_nqchip += npkts;
922 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
923 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
924 	bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
925 	    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
926 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
927 	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
928 	    offsetof(struct ubsec_dmachunk, d_mcr));
929 	return;
930 
931 feed1:
932 	while (!SIMPLEQ_EMPTY(&sc->sc_queue)) {
933 		if ((stat = READ_REG(sc, BS_STAT))
934 		    & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
935 			if (stat & BS_STAT_DMAERR) {
936 				ubsec_totalreset(sc);
937 				ubsecstats.hst_dmaerr++;
938 			} else {
939 				ubsecstats.hst_mcr1full++;
940 			}
941 			break;
942 		}
943 
944 		q = SIMPLEQ_FIRST(&sc->sc_queue);
945 
946 		bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
947 		    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
948 		if (q->q_dst_map != NULL)
949 			bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
950 			    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
951 		bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
952 		    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
953 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
954 
955 		WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
956 		    offsetof(struct ubsec_dmachunk, d_mcr));
957 #ifdef UBSEC_DEBUG
958 		if (ubsec_debug)
959 			printf("feed: q->chip %p %08x stat %08x\n",
960  		    	       q, (u_int32_t)q->q_dma->d_alloc.dma_paddr,
961 			       stat);
962 #endif /* UBSEC_DEBUG */
963 		q = SIMPLEQ_FIRST(&sc->sc_queue);
964 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
965 		--sc->sc_nqueue;
966 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
967 		sc->sc_nqchip++;
968 	}
969 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
970 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
971 }
972 
973 /*
974  * Allocate a new 'session' and return an encoded session id.  'sidp'
975  * contains our registration id, and should contain an encoded session
976  * id on successful allocation.
977  */
978 static int
979 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
980 {
981 	struct cryptoini *c, *encini = NULL, *macini = NULL;
982 	struct ubsec_softc *sc;
983 	struct ubsec_session *ses = NULL;
984 	MD5_CTX md5ctx;
985 	SHA1_CTX sha1ctx;
986 	int i, sesn;
987 
988 	sc = arg;
989 	KASSERT(sc != NULL /*, ("ubsec_newsession: null softc")*/);
990 
991 	if (sidp == NULL || cri == NULL || sc == NULL)
992 		return (EINVAL);
993 
994 	for (c = cri; c != NULL; c = c->cri_next) {
995 		if (c->cri_alg == CRYPTO_MD5_HMAC_96 ||
996 		    c->cri_alg == CRYPTO_SHA1_HMAC_96) {
997 			if (macini)
998 				return (EINVAL);
999 			macini = c;
1000 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
1001 		    c->cri_alg == CRYPTO_3DES_CBC ||
1002 		    c->cri_alg == CRYPTO_AES_CBC) {
1003 			if (encini)
1004 				return (EINVAL);
1005 			encini = c;
1006 		} else
1007 			return (EINVAL);
1008 	}
1009 	if (encini == NULL && macini == NULL)
1010 		return (EINVAL);
1011 
1012 	if (encini && encini->cri_alg == CRYPTO_AES_CBC) {
1013 		switch (encini->cri_klen) {
1014 		case 128:
1015 		case 192:
1016 		case 256:
1017 			break;
1018 		default:
1019 			return (EINVAL);
1020 		}
1021 	}
1022 
1023 	if (sc->sc_sessions == NULL) {
1024 		ses = sc->sc_sessions = (struct ubsec_session *)malloc(
1025 		    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
1026 		if (ses == NULL)
1027 			return (ENOMEM);
1028 		sesn = 0;
1029 		sc->sc_nsessions = 1;
1030 	} else {
1031 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
1032 			if (sc->sc_sessions[sesn].ses_used == 0) {
1033 				ses = &sc->sc_sessions[sesn];
1034 				break;
1035 			}
1036 		}
1037 
1038 		if (ses == NULL) {
1039 			sesn = sc->sc_nsessions;
1040 			ses = (struct ubsec_session *)malloc((sesn + 1) *
1041 			    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
1042 			if (ses == NULL)
1043 				return (ENOMEM);
1044 			memcpy(ses, sc->sc_sessions, sesn *
1045 			    sizeof(struct ubsec_session));
1046 			memset(sc->sc_sessions, 0, sesn *
1047 			    sizeof(struct ubsec_session));
1048 			free(sc->sc_sessions, M_DEVBUF);
1049 			sc->sc_sessions = ses;
1050 			ses = &sc->sc_sessions[sesn];
1051 			sc->sc_nsessions++;
1052 		}
1053 	}
1054 
1055 	memset(ses, 0, sizeof(struct ubsec_session));
1056 	ses->ses_used = 1;
1057 	if (encini) {
1058 		/* get an IV, network byte order */
1059 #ifdef __NetBSD__
1060 		cprng_fast(ses->ses_iv, sizeof(ses->ses_iv));
1061 #else
1062 		get_random_bytes(ses->ses_iv, sizeof(ses->ses_iv));
1063 #endif
1064 
1065 		/* Go ahead and compute key in ubsec's byte order */
1066 		if (encini->cri_alg == CRYPTO_AES_CBC) {
1067 			memcpy(ses->ses_key, encini->cri_key,
1068 			    encini->cri_klen / 8);
1069 		}
1070 		if (encini->cri_alg == CRYPTO_DES_CBC) {
1071 			memcpy(&ses->ses_key[0], encini->cri_key, 8);
1072 			memcpy(&ses->ses_key[2], encini->cri_key, 8);
1073 			memcpy(&ses->ses_key[4], encini->cri_key, 8);
1074 		} else
1075 			memcpy(ses->ses_key, encini->cri_key, 24);
1076 
1077 		SWAP32(ses->ses_key[0]);
1078 		SWAP32(ses->ses_key[1]);
1079 		SWAP32(ses->ses_key[2]);
1080 		SWAP32(ses->ses_key[3]);
1081 		SWAP32(ses->ses_key[4]);
1082 		SWAP32(ses->ses_key[5]);
1083 	}
1084 
1085 	if (macini) {
1086 		for (i = 0; i < macini->cri_klen / 8; i++)
1087 			macini->cri_key[i] ^= HMAC_IPAD_VAL;
1088 
1089 		if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
1090 			MD5Init(&md5ctx);
1091 			MD5Update(&md5ctx, macini->cri_key,
1092 			    macini->cri_klen / 8);
1093 			MD5Update(&md5ctx, hmac_ipad_buffer,
1094 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1095 			memcpy(ses->ses_hminner, md5ctx.state,
1096 			    sizeof(md5ctx.state));
1097 		} else {
1098 			SHA1Init(&sha1ctx);
1099 			SHA1Update(&sha1ctx, macini->cri_key,
1100 			    macini->cri_klen / 8);
1101 			SHA1Update(&sha1ctx, hmac_ipad_buffer,
1102 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1103 			memcpy(ses->ses_hminner, sha1ctx.state,
1104 			    sizeof(sha1ctx.state));
1105 		}
1106 
1107 		for (i = 0; i < macini->cri_klen / 8; i++)
1108 			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
1109 
1110 		if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
1111 			MD5Init(&md5ctx);
1112 			MD5Update(&md5ctx, macini->cri_key,
1113 			    macini->cri_klen / 8);
1114 			MD5Update(&md5ctx, hmac_opad_buffer,
1115 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1116 			memcpy(ses->ses_hmouter, md5ctx.state,
1117 			    sizeof(md5ctx.state));
1118 		} else {
1119 			SHA1Init(&sha1ctx);
1120 			SHA1Update(&sha1ctx, macini->cri_key,
1121 			    macini->cri_klen / 8);
1122 			SHA1Update(&sha1ctx, hmac_opad_buffer,
1123 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1124 			memcpy(ses->ses_hmouter, sha1ctx.state,
1125 			    sizeof(sha1ctx.state));
1126 		}
1127 
1128 		for (i = 0; i < macini->cri_klen / 8; i++)
1129 			macini->cri_key[i] ^= HMAC_OPAD_VAL;
1130 	}
1131 
1132 	*sidp = UBSEC_SID(device_unit(sc->sc_dev), sesn);
1133 	return (0);
1134 }
1135 
1136 /*
1137  * Deallocate a session.
1138  */
1139 static int
1140 ubsec_freesession(void *arg, u_int64_t tid)
1141 {
1142 	struct ubsec_softc *sc;
1143 	int session;
1144 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
1145 
1146 	sc = arg;
1147 	KASSERT(sc != NULL /*, ("ubsec_freesession: null softc")*/);
1148 
1149 	session = UBSEC_SESSION(sid);
1150 	if (session >= sc->sc_nsessions)
1151 		return (EINVAL);
1152 
1153 	memset(&sc->sc_sessions[session], 0, sizeof(sc->sc_sessions[session]));
1154 	return (0);
1155 }
1156 
1157 #ifdef __FreeBSD__ /* Ugly gratuitous changes to bus_dma */
1158 static void
1159 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize,
1160     int error)
1161 {
1162 	struct ubsec_operand *op = arg;
1163 
1164 	KASSERT(nsegs <= UBS_MAX_SCATTER
1165 		/*, ("Too many DMA segments returned when mapping operand")*/);
1166 #ifdef UBSEC_DEBUG
1167 	if (ubsec_debug)
1168 		printf("ubsec_op_cb: mapsize %u nsegs %d\n",
1169 			(u_int) mapsize, nsegs);
1170 #endif
1171 	op->mapsize = mapsize;
1172 	op->nsegs = nsegs;
1173 	memcpy(op->segs, seg, nsegs * sizeof (seg[0]));
1174 }
1175 #endif
1176 
1177 static int
1178 ubsec_process(void *arg, struct cryptop *crp, int hint)
1179 {
1180 	struct ubsec_q *q = NULL;
1181 #ifdef	__OpenBSD__
1182 	int card;
1183 #endif
1184 	int err = 0, i, j, nicealign;
1185 	struct ubsec_softc *sc;
1186 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1187 	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1188 	int sskip, dskip, stheend, dtheend;
1189 	int16_t coffset;
1190 	struct ubsec_session *ses, key;
1191 	struct ubsec_dma *dmap = NULL;
1192 	u_int16_t flags = 0;
1193 	int ivlen = 0, keylen = 0;
1194 
1195 	sc = arg;
1196 	KASSERT(sc != NULL /*, ("ubsec_process: null softc")*/);
1197 
1198 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
1199 		ubsecstats.hst_invalid++;
1200 		return (EINVAL);
1201 	}
1202 	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
1203 		ubsecstats.hst_badsession++;
1204 		return (EINVAL);
1205 	}
1206 
1207 	mutex_spin_enter(&sc->sc_mtx);
1208 
1209 	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1210 		ubsecstats.hst_queuefull++;
1211 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1212 		mutex_spin_exit(&sc->sc_mtx);
1213 		return(ERESTART);
1214 	}
1215 
1216 	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
1217 	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, /*q,*/ q_next);
1218 	mutex_spin_exit(&sc->sc_mtx);
1219 
1220 	dmap = q->q_dma; /* Save dma pointer */
1221 	/* don't lose the cached dmamaps q_src_map and q_cached_dst_map */
1222 	memset(q, 0, offsetof(struct ubsec_q, q_src_map));
1223 	memset(&key, 0, sizeof(key));
1224 
1225 	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1226 	q->q_dma = dmap;
1227 	ses = &sc->sc_sessions[q->q_sesn];
1228 
1229 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1230 		q->q_src_m = (struct mbuf *)crp->crp_buf;
1231 		q->q_dst_m = (struct mbuf *)crp->crp_buf;
1232 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1233 		q->q_src_io = (struct uio *)crp->crp_buf;
1234 		q->q_dst_io = (struct uio *)crp->crp_buf;
1235 	} else {
1236 		ubsecstats.hst_badflags++;
1237 		err = EINVAL;
1238 		goto errout;	/* XXX we don't handle contiguous blocks! */
1239 	}
1240 
1241 	memset(&dmap->d_dma->d_mcr, 0, sizeof(struct ubsec_mcr));
1242 
1243 	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1244 	dmap->d_dma->d_mcr.mcr_flags = 0;
1245 	q->q_crp = crp;
1246 
1247 	crd1 = crp->crp_desc;
1248 	if (crd1 == NULL) {
1249 		ubsecstats.hst_nodesc++;
1250 		err = EINVAL;
1251 		goto errout;
1252 	}
1253 	crd2 = crd1->crd_next;
1254 
1255 	if (crd2 == NULL) {
1256 		if (crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
1257 		    crd1->crd_alg == CRYPTO_SHA1_HMAC_96) {
1258 			maccrd = crd1;
1259 			enccrd = NULL;
1260 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1261 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
1262 		    crd1->crd_alg == CRYPTO_AES_CBC) {
1263 			maccrd = NULL;
1264 			enccrd = crd1;
1265 		} else {
1266 			ubsecstats.hst_badalg++;
1267 			err = EINVAL;
1268 			goto errout;
1269 		}
1270 	} else {
1271 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
1272 		    crd1->crd_alg == CRYPTO_SHA1_HMAC_96) &&
1273 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
1274 		    crd2->crd_alg == CRYPTO_3DES_CBC ||
1275 		    crd2->crd_alg == CRYPTO_AES_CBC) &&
1276 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1277 			maccrd = crd1;
1278 			enccrd = crd2;
1279 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1280 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
1281 		    crd1->crd_alg == CRYPTO_AES_CBC) &&
1282 		    (crd2->crd_alg == CRYPTO_MD5_HMAC_96 ||
1283 		    crd2->crd_alg == CRYPTO_SHA1_HMAC_96) &&
1284 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
1285 			enccrd = crd1;
1286 			maccrd = crd2;
1287 		} else {
1288 			/*
1289 			 * We cannot order the ubsec as requested
1290 			 */
1291 			ubsecstats.hst_badalg++;
1292 			err = EINVAL;
1293 			goto errout;
1294 		}
1295 	}
1296 
1297 	if (enccrd) {
1298 		if (enccrd->crd_alg == CRYPTO_AES_CBC) {
1299 			if ((sc->sc_flags & UBS_FLAGS_AES) == 0) {
1300 				/*
1301 				 * We cannot order the ubsec as requested
1302 				 */
1303 				ubsecstats.hst_badalg++;
1304 				err = EINVAL;
1305 				goto errout;
1306 			}
1307 			flags |= htole16(UBS_PKTCTX_ENC_AES);
1308 			switch (enccrd->crd_klen) {
1309 			case 128:
1310 			case 192:
1311 			case 256:
1312 				keylen = enccrd->crd_klen / 8;
1313 				break;
1314 			default:
1315 				err = EINVAL;
1316 				goto errout;
1317 			}
1318 			ivlen = 16;
1319 		} else {
1320 			flags |= htole16(UBS_PKTCTX_ENC_3DES);
1321 			ivlen = 8;
1322 			keylen = 24;
1323 		}
1324 
1325 		encoffset = enccrd->crd_skip;
1326 
1327 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1328 			q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1329 
1330 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1331 				memcpy(key.ses_iv, enccrd->crd_iv, ivlen);
1332 			else {
1333 				for (i = 0; i < (ivlen / 4); i++)
1334 					key.ses_iv[i] = ses->ses_iv[i];
1335 			}
1336 
1337 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1338 				if (crp->crp_flags & CRYPTO_F_IMBUF)
1339 					m_copyback(q->q_src_m,
1340 					    enccrd->crd_inject,
1341 					    ivlen, (void *)key.ses_iv);
1342 				else if (crp->crp_flags & CRYPTO_F_IOV)
1343 					cuio_copyback(q->q_src_io,
1344 					    enccrd->crd_inject,
1345 					    ivlen, (void *)key.ses_iv);
1346 			}
1347 		} else {
1348 			flags |= htole16(UBS_PKTCTX_INBOUND);
1349 
1350 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1351 				memcpy(key.ses_iv, enccrd->crd_iv, ivlen);
1352 			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1353 				m_copydata(q->q_src_m, enccrd->crd_inject,
1354 				    ivlen, (void *)key.ses_iv);
1355 			else if (crp->crp_flags & CRYPTO_F_IOV)
1356 				cuio_copydata(q->q_src_io,
1357 				    enccrd->crd_inject, 8,
1358 				    (void *)key.ses_iv);
1359 		}
1360 
1361 		for (i = 0; i < (keylen / 4); i++)
1362 			key.ses_key[i] = ses->ses_key[i];
1363 		for (i = 0; i < (ivlen / 4); i++)
1364 			SWAP32(key.ses_iv[i]);
1365 	}
1366 
1367 	if (maccrd) {
1368 		macoffset = maccrd->crd_skip;
1369 
1370 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC_96)
1371 			flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1372 		else
1373 			flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1374 
1375 		for (i = 0; i < 5; i++) {
1376 			key.ses_hminner[i] = ses->ses_hminner[i];
1377 			key.ses_hmouter[i] = ses->ses_hmouter[i];
1378 
1379 			HTOLE32(key.ses_hminner[i]);
1380 			HTOLE32(key.ses_hmouter[i]);
1381 		}
1382 	}
1383 
1384 	if (enccrd && maccrd) {
1385 		/*
1386 		 * ubsec cannot handle packets where the end of encryption
1387 		 * and authentication are not the same, or where the
1388 		 * encrypted part begins before the authenticated part.
1389 		 */
1390 		if ((encoffset + enccrd->crd_len) !=
1391 		    (macoffset + maccrd->crd_len)) {
1392 			ubsecstats.hst_lenmismatch++;
1393 			err = EINVAL;
1394 			goto errout;
1395 		}
1396 		if (enccrd->crd_skip < maccrd->crd_skip) {
1397 			ubsecstats.hst_skipmismatch++;
1398 			err = EINVAL;
1399 			goto errout;
1400 		}
1401 		sskip = maccrd->crd_skip;
1402 		cpskip = dskip = enccrd->crd_skip;
1403 		stheend = maccrd->crd_len;
1404 		dtheend = enccrd->crd_len;
1405 		coffset = enccrd->crd_skip - maccrd->crd_skip;
1406 		cpoffset = cpskip + dtheend;
1407 #ifdef UBSEC_DEBUG
1408 		if (ubsec_debug) {
1409 			printf("mac: skip %d, len %d, inject %d\n",
1410 			    maccrd->crd_skip, maccrd->crd_len,
1411 			    maccrd->crd_inject);
1412 			printf("enc: skip %d, len %d, inject %d\n",
1413 			    enccrd->crd_skip, enccrd->crd_len,
1414 			    enccrd->crd_inject);
1415 			printf("src: skip %d, len %d\n", sskip, stheend);
1416 			printf("dst: skip %d, len %d\n", dskip, dtheend);
1417 			printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1418 			       coffset, stheend, cpskip, cpoffset);
1419 		}
1420 #endif
1421 	} else {
1422 		cpskip = dskip = sskip = macoffset + encoffset;
1423 		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1424 		cpoffset = cpskip + dtheend;
1425 		coffset = 0;
1426 	}
1427 
1428 	if (q->q_src_map == NULL) {
1429 		/* XXX FIXME: jonathan asks, what the heck's that 0xfff0?  */
1430 		if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
1431 			0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
1432 			err = ENOMEM;
1433 			goto errout;
1434 		}
1435 	}
1436 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1437 		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1438 		    q->q_src_m, BUS_DMA_NOWAIT) != 0) {
1439 			ubsecstats.hst_noload++;
1440 			err = ENOMEM;
1441 			goto errout;
1442 		}
1443 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1444 		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1445 		    q->q_src_io, BUS_DMA_NOWAIT) != 0) {
1446 			ubsecstats.hst_noload++;
1447 			err = ENOMEM;
1448 			goto errout;
1449 		}
1450 	}
1451 	nicealign = ubsec_dmamap_aligned(q->q_src_map);
1452 
1453 	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1454 
1455 #ifdef UBSEC_DEBUG
1456 	if (ubsec_debug)
1457 		printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1458 #endif
1459 	for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) {
1460 		struct ubsec_pktbuf *pb;
1461 		bus_size_t packl = q->q_src_map->dm_segs[i].ds_len;
1462 		bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr;
1463 
1464 		if (sskip >= packl) {
1465 			sskip -= packl;
1466 			continue;
1467 		}
1468 
1469 		packl -= sskip;
1470 		packp += sskip;
1471 		sskip = 0;
1472 
1473 		if (packl > 0xfffc) {
1474 			err = EIO;
1475 			goto errout;
1476 		}
1477 
1478 		if (j == 0)
1479 			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1480 		else
1481 			pb = &dmap->d_dma->d_sbuf[j - 1];
1482 
1483 		pb->pb_addr = htole32(packp);
1484 
1485 		if (stheend) {
1486 			if (packl > stheend) {
1487 				pb->pb_len = htole32(stheend);
1488 				stheend = 0;
1489 			} else {
1490 				pb->pb_len = htole32(packl);
1491 				stheend -= packl;
1492 			}
1493 		} else
1494 			pb->pb_len = htole32(packl);
1495 
1496 		if ((i + 1) == q->q_src_map->dm_nsegs)
1497 			pb->pb_next = 0;
1498 		else
1499 			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1500 			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1501 		j++;
1502 	}
1503 
1504 	if (enccrd == NULL && maccrd != NULL) {
1505 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1506 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1507 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1508 		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1509 #ifdef UBSEC_DEBUG
1510 		if (ubsec_debug)
1511 			printf("opkt: %x %x %x\n",
1512 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1513 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1514 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1515 
1516 #endif
1517 	} else {
1518 		if (crp->crp_flags & CRYPTO_F_IOV) {
1519 			if (!nicealign) {
1520 				ubsecstats.hst_iovmisaligned++;
1521 				err = EINVAL;
1522 				goto errout;
1523 			}
1524 			if (q->q_dst_map == NULL) {
1525 				if (q->q_cached_dst_map == NULL) {
1526 					/*
1527 					 * XXX: ``what the heck's that''
1528 					 * 0xfff0?
1529 					 */
1530 					if (bus_dmamap_create(sc->sc_dmat,
1531 					    0xfff0, UBS_MAX_SCATTER, 0xfff0, 0,
1532 					    BUS_DMA_NOWAIT,
1533 					    &q->q_cached_dst_map) != 0) {
1534 						ubsecstats.hst_nomap++;
1535 						err = ENOMEM;
1536 						goto errout;
1537 					}
1538 				}
1539 				q->q_dst_map = q->q_cached_dst_map;
1540 			}
1541 			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1542 			    q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
1543 				ubsecstats.hst_noload++;
1544 				err = ENOMEM;
1545 				goto errout;
1546 			}
1547 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1548 			if (nicealign) {
1549 				q->q_dst_m = q->q_src_m;
1550 				q->q_dst_map = q->q_src_map;
1551 			} else {
1552 				int totlen, len;
1553 				struct mbuf *m, *top, **mp;
1554 
1555 				ubsecstats.hst_unaligned++;
1556 				totlen = q->q_src_map->dm_mapsize;
1557 				if (q->q_src_m->m_flags & M_PKTHDR) {
1558 					len = MHLEN;
1559 					MGETHDR(m, M_DONTWAIT, MT_DATA);
1560 					/*XXX FIXME: m_dup_pkthdr */
1561 					if (m && 1 /*!m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)*/) {
1562 						m_free(m);
1563 						m = NULL;
1564 					}
1565 				} else {
1566 					len = MLEN;
1567 					MGET(m, M_DONTWAIT, MT_DATA);
1568 				}
1569 				if (m == NULL) {
1570 					ubsecstats.hst_nombuf++;
1571 					err = sc->sc_nqueue ? ERESTART : ENOMEM;
1572 					goto errout;
1573 				}
1574 				if (len == MHLEN)
1575 				  /*XXX was M_DUP_PKTHDR*/
1576 				  m_copy_pkthdr(m, q->q_src_m);
1577 				if (totlen >= MINCLSIZE) {
1578 					MCLGET(m, M_DONTWAIT);
1579 					if ((m->m_flags & M_EXT) == 0) {
1580 						m_free(m);
1581 						ubsecstats.hst_nomcl++;
1582 						err = sc->sc_nqueue
1583 						    ? ERESTART : ENOMEM;
1584 						goto errout;
1585 					}
1586 					len = MCLBYTES;
1587 				}
1588 				m->m_len = len;
1589 				top = NULL;
1590 				mp = &top;
1591 
1592 				while (totlen > 0) {
1593 					if (top) {
1594 						MGET(m, M_DONTWAIT, MT_DATA);
1595 						if (m == NULL) {
1596 							m_freem(top);
1597 							ubsecstats.hst_nombuf++;
1598 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1599 							goto errout;
1600 						}
1601 						len = MLEN;
1602 					}
1603 					if (top && totlen >= MINCLSIZE) {
1604 						MCLGET(m, M_DONTWAIT);
1605 						if ((m->m_flags & M_EXT) == 0) {
1606 							*mp = m;
1607 							m_freem(top);
1608 							ubsecstats.hst_nomcl++;
1609 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1610 							goto errout;
1611 						}
1612 						len = MCLBYTES;
1613 					}
1614 					m->m_len = len = uimin(totlen, len);
1615 					totlen -= len;
1616 					*mp = m;
1617 					mp = &m->m_next;
1618 				}
1619 				q->q_dst_m = top;
1620 				ubsec_mcopy(q->q_src_m, q->q_dst_m,
1621 				    cpskip, cpoffset);
1622 				if (q->q_dst_map == NULL) {
1623 					if (q->q_cached_dst_map == NULL) {
1624 						/* XXX again, what the heck is that 0xfff0? */
1625 						if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1626 						    UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1627 						    &q->q_cached_dst_map) != 0) {
1628 							ubsecstats.hst_nomap++;
1629 							err = ENOMEM;
1630 							goto errout;
1631 						}
1632 					}
1633 					q->q_dst_map = q->q_cached_dst_map;
1634 				}
1635 				if (bus_dmamap_load_mbuf(sc->sc_dmat,
1636 				    q->q_dst_map, q->q_dst_m,
1637 				    BUS_DMA_NOWAIT) != 0) {
1638 					ubsecstats.hst_noload++;
1639 					err = ENOMEM;
1640 					goto errout;
1641 				}
1642 			}
1643 		} else {
1644 			ubsecstats.hst_badflags++;
1645 			err = EINVAL;
1646 			goto errout;
1647 		}
1648 
1649 #ifdef UBSEC_DEBUG
1650 		if (ubsec_debug)
1651 			printf("dst skip: %d\n", dskip);
1652 #endif
1653 		for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) {
1654 			struct ubsec_pktbuf *pb;
1655 			bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len;
1656 			bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr;
1657 
1658 			if (dskip >= packl) {
1659 				dskip -= packl;
1660 				continue;
1661 			}
1662 
1663 			packl -= dskip;
1664 			packp += dskip;
1665 			dskip = 0;
1666 
1667 			if (packl > 0xfffc) {
1668 				err = EIO;
1669 				goto errout;
1670 			}
1671 
1672 			if (j == 0)
1673 				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1674 			else
1675 				pb = &dmap->d_dma->d_dbuf[j - 1];
1676 
1677 			pb->pb_addr = htole32(packp);
1678 
1679 			if (dtheend) {
1680 				if (packl > dtheend) {
1681 					pb->pb_len = htole32(dtheend);
1682 					dtheend = 0;
1683 				} else {
1684 					pb->pb_len = htole32(packl);
1685 					dtheend -= packl;
1686 				}
1687 			} else
1688 				pb->pb_len = htole32(packl);
1689 
1690 			if ((i + 1) == q->q_dst_map->dm_nsegs) {
1691 				if (maccrd)
1692 					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1693 					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1694 				else
1695 					pb->pb_next = 0;
1696 			} else
1697 				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1698 				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1699 			j++;
1700 		}
1701 	}
1702 
1703 	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1704 	    offsetof(struct ubsec_dmachunk, d_ctx));
1705 
1706 	if (enccrd && enccrd->crd_alg == CRYPTO_AES_CBC) {
1707 		struct ubsec_pktctx_aes128	*aes128;
1708 		struct ubsec_pktctx_aes192	*aes192;
1709 		struct ubsec_pktctx_aes256	*aes256;
1710 		struct ubsec_pktctx_hdr		*ph;
1711 		u_int8_t			*ctx;
1712 
1713 		ctx = (u_int8_t *)(dmap->d_alloc.dma_vaddr) +
1714 		    offsetof(struct ubsec_dmachunk, d_ctx);
1715 
1716 		ph = (struct ubsec_pktctx_hdr *)ctx;
1717 		ph->ph_type = htole16(UBS_PKTCTX_TYPE_IPSEC_AES);
1718 		ph->ph_flags = flags;
1719 		ph->ph_offset = htole16(coffset >> 2);
1720 
1721 		switch (enccrd->crd_klen) {
1722 		case 128:
1723 			aes128 = (struct ubsec_pktctx_aes128 *)ctx;
1724  			ph->ph_len = htole16(sizeof(*aes128));
1725 			ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_128);
1726 			for (i = 0; i < 4; i++)
1727 				aes128->pc_aeskey[i] = key.ses_key[i];
1728 			for (i = 0; i < 5; i++)
1729 				aes128->pc_hminner[i] = key.ses_hminner[i];
1730 			for (i = 0; i < 5; i++)
1731 				aes128->pc_hmouter[i] = key.ses_hmouter[i];
1732 			for (i = 0; i < 4; i++)
1733 				aes128->pc_iv[i] = key.ses_iv[i];
1734 			break;
1735 		case 192:
1736 			aes192 = (struct ubsec_pktctx_aes192 *)ctx;
1737 			ph->ph_len = htole16(sizeof(*aes192));
1738 			ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_192);
1739 			for (i = 0; i < 6; i++)
1740 				aes192->pc_aeskey[i] = key.ses_key[i];
1741 			for (i = 0; i < 5; i++)
1742 				aes192->pc_hminner[i] = key.ses_hminner[i];
1743 			for (i = 0; i < 5; i++)
1744 				aes192->pc_hmouter[i] = key.ses_hmouter[i];
1745 			for (i = 0; i < 4; i++)
1746 				aes192->pc_iv[i] = key.ses_iv[i];
1747 			break;
1748 		case 256:
1749 			aes256 = (struct ubsec_pktctx_aes256 *)ctx;
1750 			ph->ph_len = htole16(sizeof(*aes256));
1751 			ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_256);
1752 			for (i = 0; i < 8; i++)
1753 				aes256->pc_aeskey[i] = key.ses_key[i];
1754 			for (i = 0; i < 5; i++)
1755 				aes256->pc_hminner[i] = key.ses_hminner[i];
1756 			for (i = 0; i < 5; i++)
1757 				aes256->pc_hmouter[i] = key.ses_hmouter[i];
1758 			for (i = 0; i < 4; i++)
1759 				aes256->pc_iv[i] = key.ses_iv[i];
1760 			break;
1761 		}
1762 	} else if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1763 		struct ubsec_pktctx_3des	*ctx;
1764 		struct ubsec_pktctx_hdr		*ph;
1765 
1766 		ctx = (struct ubsec_pktctx_3des *)
1767 		    ((u_int8_t *)(dmap->d_alloc.dma_vaddr) +
1768 		    offsetof(struct ubsec_dmachunk, d_ctx));
1769 
1770 		ph = (struct ubsec_pktctx_hdr *)ctx;
1771 		ph->ph_len = htole16(sizeof(*ctx));
1772 		ph->ph_type = htole16(UBS_PKTCTX_TYPE_IPSEC_3DES);
1773 		ph->ph_flags = flags;
1774 		ph->ph_offset = htole16(coffset >> 2);
1775 
1776 		for (i = 0; i < 6; i++)
1777 			ctx->pc_deskey[i] = key.ses_key[i];
1778 		for (i = 0; i < 5; i++)
1779 			ctx->pc_hminner[i] = key.ses_hminner[i];
1780 		for (i = 0; i < 5; i++)
1781 			ctx->pc_hmouter[i] = key.ses_hmouter[i];
1782 		for (i = 0; i < 2; i++)
1783 			ctx->pc_iv[i] = key.ses_iv[i];
1784 	} else {
1785 		struct ubsec_pktctx *ctx = (struct ubsec_pktctx *)
1786 		    ((u_int8_t *)dmap->d_alloc.dma_vaddr +
1787 		    offsetof(struct ubsec_dmachunk, d_ctx));
1788 
1789 		ctx->pc_flags = flags;
1790 		ctx->pc_offset = htole16(coffset >> 2);
1791 		for (i = 0; i < 6; i++)
1792 			ctx->pc_deskey[i] = key.ses_key[i];
1793 		for (i = 0; i < 5; i++)
1794 			ctx->pc_hminner[i] = key.ses_hminner[i];
1795 		for (i = 0; i < 5; i++)
1796 			ctx->pc_hmouter[i] = key.ses_hmouter[i];
1797 		for (i = 0; i < 2; i++)
1798 			ctx->pc_iv[i] = key.ses_iv[i];
1799 	}
1800 
1801 	mutex_spin_enter(&sc->sc_mtx);
1802 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1803 	sc->sc_nqueue++;
1804 	ubsecstats.hst_ipackets++;
1805 	ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize;
1806 	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch)
1807 		ubsec_feed(sc);
1808 	mutex_spin_exit(&sc->sc_mtx);
1809 	return (0);
1810 
1811 errout:
1812 	if (q != NULL) {
1813 		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1814 			m_freem(q->q_dst_m);
1815 
1816 		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1817 			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1818 		}
1819 		if (q->q_src_map != NULL) {
1820 			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1821 		}
1822 
1823 		mutex_spin_enter(&sc->sc_mtx);
1824 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1825 		mutex_spin_exit(&sc->sc_mtx);
1826 	}
1827 #if 0 /* jonathan says: this openbsd code seems to be subsumed elsewhere */
1828 	if (err == EINVAL)
1829 		ubsecstats.hst_invalid++;
1830 	else
1831 		ubsecstats.hst_nomem++;
1832 #endif
1833 	if (err != ERESTART) {
1834 		crp->crp_etype = err;
1835 		crypto_done(crp);
1836 	} else {
1837 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1838 	}
1839 	return (err);
1840 }
1841 
1842 static void
1843 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1844 {
1845 	struct cryptop *crp = (struct cryptop *)q->q_crp;
1846 	struct cryptodesc *crd;
1847 	struct ubsec_dma *dmap = q->q_dma;
1848 
1849 	ubsecstats.hst_opackets++;
1850 	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1851 
1852 	bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
1853 	    dmap->d_alloc.dma_map->dm_mapsize,
1854 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1855 	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1856 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1857 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1858 		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1859 	}
1860 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
1861 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1862 	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1863 
1864 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1865 		m_freem(q->q_src_m);
1866 		crp->crp_buf = (void *)q->q_dst_m;
1867 	}
1868 
1869 	/* copy out IV for future use */
1870 	if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1871 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1872 			if (crd->crd_alg != CRYPTO_DES_CBC &&
1873 			    crd->crd_alg != CRYPTO_3DES_CBC &&
1874 			    crd->crd_alg != CRYPTO_AES_CBC)
1875 				continue;
1876 			if (crp->crp_flags & CRYPTO_F_IMBUF)
1877 				m_copydata((struct mbuf *)crp->crp_buf,
1878 				    crd->crd_skip + crd->crd_len - 8, 8,
1879 				    (void *)sc->sc_sessions[q->q_sesn].ses_iv);
1880 			else if (crp->crp_flags & CRYPTO_F_IOV) {
1881 				cuio_copydata((struct uio *)crp->crp_buf,
1882 				    crd->crd_skip + crd->crd_len - 8, 8,
1883 				    (void *)sc->sc_sessions[q->q_sesn].ses_iv);
1884 			}
1885 			break;
1886 		}
1887 	}
1888 
1889 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1890 		if (crd->crd_alg != CRYPTO_MD5_HMAC_96 &&
1891 		    crd->crd_alg != CRYPTO_SHA1_HMAC_96)
1892 			continue;
1893 		if (crp->crp_flags & CRYPTO_F_IMBUF)
1894 			m_copyback((struct mbuf *)crp->crp_buf,
1895 			    crd->crd_inject, 12,
1896 			    (void *)dmap->d_dma->d_macbuf);
1897 		else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1898 			bcopy((void *)dmap->d_dma->d_macbuf,
1899 			    crp->crp_mac, 12);
1900 		break;
1901 	}
1902 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1903 	crypto_done(crp);
1904 }
1905 
1906 static void
1907 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1908 {
1909 	int i, j, dlen, slen;
1910 	char *dptr, *sptr;
1911 
1912 	j = 0;
1913 	sptr = srcm->m_data;
1914 	slen = srcm->m_len;
1915 	dptr = dstm->m_data;
1916 	dlen = dstm->m_len;
1917 
1918 	while (1) {
1919 		for (i = 0; i < uimin(slen, dlen); i++) {
1920 			if (j < hoffset || j >= toffset)
1921 				*dptr++ = *sptr++;
1922 			slen--;
1923 			dlen--;
1924 			j++;
1925 		}
1926 		if (slen == 0) {
1927 			srcm = srcm->m_next;
1928 			if (srcm == NULL)
1929 				return;
1930 			sptr = srcm->m_data;
1931 			slen = srcm->m_len;
1932 		}
1933 		if (dlen == 0) {
1934 			dstm = dstm->m_next;
1935 			if (dstm == NULL)
1936 				return;
1937 			dptr = dstm->m_data;
1938 			dlen = dstm->m_len;
1939 		}
1940 	}
1941 }
1942 
1943 /*
1944  * feed the key generator, must be called at splnet() or higher.
1945  */
1946 static void
1947 ubsec_feed2(struct ubsec_softc *sc)
1948 {
1949 	struct ubsec_q2 *q;
1950 
1951 	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1952 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1953 			break;
1954 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1955 
1956 		bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1957 		    q->q_mcr.dma_map->dm_mapsize,
1958 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1959 		bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1960 		    q->q_ctx.dma_map->dm_mapsize,
1961 		    BUS_DMASYNC_PREWRITE);
1962 
1963 		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1964 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1965 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, /*q,*/ q_next);
1966 		--sc->sc_nqueue2;
1967 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1968 	}
1969 }
1970 
1971 /*
1972  * feed the RNG (used instead of ubsec_feed2() on 5827+ devices)
1973  */
1974 void
1975 ubsec_feed4(struct ubsec_softc *sc)
1976 {
1977 	struct ubsec_q2 *q;
1978 
1979 	while (!SIMPLEQ_EMPTY(&sc->sc_queue4)) {
1980 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR4_FULL)
1981 			break;
1982 		q = SIMPLEQ_FIRST(&sc->sc_queue4);
1983 
1984 		bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1985 		    q->q_mcr.dma_map->dm_mapsize,
1986 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1987 		bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1988 		    q->q_ctx.dma_map->dm_mapsize,
1989 		    BUS_DMASYNC_PREWRITE);
1990 
1991 		WRITE_REG(sc, BS_MCR4, q->q_mcr.dma_paddr);
1992 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue4, q_next);
1993 		--sc->sc_nqueue4;
1994 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip4, q, q_next);
1995 	}
1996 }
1997 
1998 /*
1999  * Callback for handling random numbers
2000  */
2001 static void
2002 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
2003 {
2004 	struct cryptkop *krp;
2005 	struct ubsec_ctx_keyop *ctx;
2006 
2007 	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
2008 	bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
2009 	    q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2010 
2011 	switch (q->q_type) {
2012 #ifndef UBSEC_NO_RNG
2013 	case UBS_CTXOP_RNGSHA1:
2014 	case UBS_CTXOP_RNGBYPASS: {
2015 		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
2016 		u_int32_t *p;
2017 		int i;
2018 
2019 		bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
2020 		    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2021 		p = (u_int32_t *)rng->rng_buf.dma_vaddr;
2022 #ifndef __NetBSD__
2023 		for (i = 0; i < UBSEC_RNG_BUFSIZ; p++, i++)
2024 			add_true_randomness(letoh32(*p));
2025 #else
2026 		i = UBSEC_RNG_BUFSIZ * sizeof(u_int32_t);
2027 		rnd_add_data(&sc->sc_rnd_source, (char *)p, i, i * NBBY);
2028 		sc->sc_rng_need -= i;
2029 #endif
2030 		rng->rng_used = 0;
2031 #ifdef __OpenBSD__
2032 		timeout_add(&sc->sc_rngto, sc->sc_rnghz);
2033 #else
2034 		if (sc->sc_rng_need > 0) {
2035 			callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
2036 		}
2037 #endif
2038 		break;
2039 	}
2040 #endif
2041 	case UBS_CTXOP_MODEXP: {
2042 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2043 		u_int rlen, clen;
2044 
2045 		krp = me->me_krp;
2046 		rlen = (me->me_modbits + 7) / 8;
2047 		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
2048 
2049 		bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2050 		    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2051 		bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2052 		    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2053 		bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2054 		    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2055 		bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2056 		    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2057 
2058 		if (clen < rlen)
2059 			krp->krp_status = E2BIG;
2060 		else {
2061 			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
2062 				memset(krp->krp_param[krp->krp_iparams].crp_p, 0,
2063 				    (krp->krp_param[krp->krp_iparams].crp_nbits
2064 					+ 7) / 8);
2065 				bcopy(me->me_C.dma_vaddr,
2066 				    krp->krp_param[krp->krp_iparams].crp_p,
2067 				    (me->me_modbits + 7) / 8);
2068 			} else
2069 				ubsec_kshift_l(me->me_shiftbits,
2070 				    me->me_C.dma_vaddr, me->me_normbits,
2071 				    krp->krp_param[krp->krp_iparams].crp_p,
2072 				    krp->krp_param[krp->krp_iparams].crp_nbits);
2073 		}
2074 
2075 		crypto_kdone(krp);
2076 
2077 		/* bzero all potentially sensitive data */
2078 		memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2079 		memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2080 		memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2081 		memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
2082 
2083 		/* Can't free here, so put us on the free list. */
2084 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
2085 		break;
2086 	}
2087 	case UBS_CTXOP_RSAPRIV: {
2088 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2089 		u_int len;
2090 
2091 		krp = rp->rpr_krp;
2092 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0,
2093 		    rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2094 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0,
2095 		    rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2096 
2097 		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7)
2098 		    / 8;
2099 		bcopy(rp->rpr_msgout.dma_vaddr,
2100 		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
2101 
2102 		crypto_kdone(krp);
2103 
2104 		memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
2105 		memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
2106 		memset(rp->rpr_q.q_ctx.dma_vaddr, 0, rp->rpr_q.q_ctx.dma_size);
2107 
2108 		/* Can't free here, so put us on the free list. */
2109 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
2110 		break;
2111 	}
2112 	default:
2113 		printf("%s: unknown ctx op: %x\n", device_xname(sc->sc_dev),
2114 		    letoh16(ctx->ctx_op));
2115 		break;
2116 	}
2117 }
2118 
2119 #ifndef UBSEC_NO_RNG
2120 
2121 static void
2122 ubsec_rng_get(size_t bytes, void *vsc)
2123 {
2124 	struct ubsec_softc *sc = vsc;
2125 
2126 	mutex_spin_enter(&sc->sc_mtx);
2127 	sc->sc_rng_need = bytes;
2128 	ubsec_rng_locked(sc);
2129 	mutex_spin_exit(&sc->sc_mtx);
2130 
2131 }
2132 
2133 static void
2134 ubsec_rng(void *vsc)
2135 {
2136 	struct ubsec_softc *sc = vsc;
2137 	mutex_spin_enter(&sc->sc_mtx);
2138 	ubsec_rng_locked(sc);
2139 	mutex_spin_exit(&sc->sc_mtx);
2140 }
2141 
2142 static void
2143 ubsec_rng_locked(void *vsc)
2144 {
2145 	struct ubsec_softc *sc = vsc;
2146 	struct ubsec_q2_rng *rng = &sc->sc_rng;
2147 	struct ubsec_mcr *mcr;
2148 	struct ubsec_ctx_rngbypass *ctx;
2149 	int *nqueue;
2150 
2151 	/* Caller is responsible to lock and release sc_mtx. */
2152 	KASSERT(mutex_owned(&sc->sc_mtx));
2153 
2154 	if (rng->rng_used) {
2155 		return;
2156 	}
2157 
2158 	if (sc->sc_rng_need < 1) {
2159 		callout_stop(&sc->sc_rngto);
2160 		return;
2161 	}
2162 
2163 	if (sc->sc_flags & UBS_FLAGS_RNG4)
2164 		nqueue = &sc->sc_nqueue4;
2165 	else
2166 		nqueue = &sc->sc_nqueue2;
2167 
2168 	(*nqueue)++;
2169 	if (*nqueue >= UBS_MAX_NQUEUE)
2170  		goto out;
2171 
2172 	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
2173 	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
2174 
2175 	mcr->mcr_pkts = htole16(1);
2176 	mcr->mcr_flags = 0;
2177 	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
2178 	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
2179 	mcr->mcr_ipktbuf.pb_len = 0;
2180 	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
2181 	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
2182 	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
2183 	    UBS_PKTBUF_LEN);
2184 	mcr->mcr_opktbuf.pb_next = 0;
2185 
2186 	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
2187 	ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1);
2188 	rng->rng_q.q_type = UBS_CTXOP_RNGSHA1;
2189 
2190 	bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
2191 	    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2192 
2193 	if (sc->sc_flags & UBS_FLAGS_RNG4) {
2194 		SIMPLEQ_INSERT_TAIL(&sc->sc_queue4, &rng->rng_q, q_next);
2195 		ubsec_feed4(sc);
2196 	} else {
2197 		SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
2198 		ubsec_feed2(sc);
2199 	}
2200 	rng->rng_used = 1;
2201 	ubsecstats.hst_rng++;
2202 
2203 	return;
2204 
2205 out:
2206 	/*
2207 	 * Something weird happened, generate our own call back.
2208 	 */
2209 	(*nqueue)--;
2210 #ifdef __OpenBSD__
2211 	timeout_add(&sc->sc_rngto, sc->sc_rnghz);
2212 #else
2213 	callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
2214 #endif
2215 }
2216 #endif /* UBSEC_NO_RNG */
2217 
2218 static int
2219 ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size,
2220 		 struct ubsec_dma_alloc *dma,int mapflags)
2221 {
2222 	int r;
2223 
2224 	if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
2225 	    &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0)
2226 		goto fail_0;
2227 
2228 	if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg,
2229 	    size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0)
2230 		goto fail_1;
2231 
2232 	if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
2233 	    BUS_DMA_NOWAIT, &dma->dma_map)) != 0)
2234 		goto fail_2;
2235 
2236 	if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
2237 	    size, NULL, BUS_DMA_NOWAIT)) != 0)
2238 		goto fail_3;
2239 
2240 	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
2241 	dma->dma_size = size;
2242 	return (0);
2243 
2244 fail_3:
2245 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
2246 fail_2:
2247 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
2248 fail_1:
2249 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
2250 fail_0:
2251 	dma->dma_map = NULL;
2252 	return (r);
2253 }
2254 
2255 static void
2256 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
2257 {
2258 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
2259 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
2260 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
2261 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
2262 }
2263 
2264 /*
2265  * Resets the board.  Values in the regesters are left as is
2266  * from the reset (i.e. initial values are assigned elsewhere).
2267  */
2268 static void
2269 ubsec_reset_board(struct ubsec_softc *sc)
2270 {
2271 	volatile u_int32_t ctrl;
2272 
2273 	ctrl = READ_REG(sc, BS_CTRL);
2274 	ctrl |= BS_CTRL_RESET;
2275 	WRITE_REG(sc, BS_CTRL, ctrl);
2276 
2277 	/*
2278 	* Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
2279 	*/
2280 	DELAY(10);
2281 
2282 	/* Enable RNG and interrupts on newer devices */
2283 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
2284 #ifndef UBSEC_NO_RNG
2285 		WRITE_REG(sc, BS_CFG, BS_CFG_RNG);
2286 #endif
2287 		WRITE_REG(sc, BS_INT, BS_INT_DMAINT);
2288 	}
2289 }
2290 
2291 /*
2292  * Init Broadcom registers
2293  */
2294 static void
2295 ubsec_init_board(struct ubsec_softc *sc)
2296 {
2297 	u_int32_t ctrl;
2298 
2299 	ctrl = READ_REG(sc, BS_CTRL);
2300 	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
2301 	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
2302 
2303 	/*
2304 	 * XXX: Sam Leffler's code has (UBS_FLAGS_KEY|UBS_FLAGS_RNG)).
2305 	 * anyone got hw docs?
2306 	 */
2307 	if (sc->sc_flags & UBS_FLAGS_KEY)
2308 		ctrl |= BS_CTRL_MCR2INT;
2309 	else
2310 		ctrl &= ~BS_CTRL_MCR2INT;
2311 
2312 	if (sc->sc_flags & UBS_FLAGS_HWNORM)
2313 		ctrl &= ~BS_CTRL_SWNORM;
2314 
2315 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
2316 		ctrl |= BS_CTRL_BSIZE240;
2317 		ctrl &= ~BS_CTRL_MCR3INT; /* MCR3 is reserved for SSL */
2318 
2319 		if (sc->sc_flags & UBS_FLAGS_RNG4)
2320 			ctrl |= BS_CTRL_MCR4INT;
2321 		else
2322 			ctrl &= ~BS_CTRL_MCR4INT;
2323 	}
2324 
2325 	WRITE_REG(sc, BS_CTRL, ctrl);
2326 }
2327 
2328 /*
2329  * Init Broadcom PCI registers
2330  */
2331 static void
2332 ubsec_init_pciregs(struct pci_attach_args *pa)
2333 {
2334 	pci_chipset_tag_t pc = pa->pa_pc;
2335 	u_int32_t misc;
2336 
2337 	/*
2338 	 * This will set the cache line size to 1, this will
2339 	 * force the BCM58xx chip just to do burst read/writes.
2340 	 * Cache line read/writes are to slow
2341 	 */
2342 	misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG);
2343 	misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT))
2344 	    | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT);
2345 	pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc);
2346 }
2347 
2348 /*
2349  * Clean up after a chip crash.
2350  * It is assumed that the caller in splnet()
2351  */
2352 static void
2353 ubsec_cleanchip(struct ubsec_softc *sc)
2354 {
2355 	struct ubsec_q *q;
2356 
2357 	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
2358 		q = SIMPLEQ_FIRST(&sc->sc_qchip);
2359 		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
2360 		ubsec_free_q(sc, q);
2361 	}
2362 	sc->sc_nqchip = 0;
2363 }
2364 
2365 /*
2366  * free a ubsec_q
2367  * It is assumed that the caller is within splnet()
2368  */
2369 static int
2370 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
2371 {
2372 	struct ubsec_q *q2;
2373 	struct cryptop *crp;
2374 	int npkts;
2375 	int i;
2376 
2377 	npkts = q->q_nstacked_mcrs;
2378 
2379 	for (i = 0; i < npkts; i++) {
2380 		if(q->q_stacked_mcr[i]) {
2381 			q2 = q->q_stacked_mcr[i];
2382 
2383 			if ((q2->q_dst_m != NULL)
2384 			    && (q2->q_src_m != q2->q_dst_m))
2385 				m_freem(q2->q_dst_m);
2386 
2387 			crp = (struct cryptop *)q2->q_crp;
2388 
2389 			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2390 
2391 			crp->crp_etype = EFAULT;
2392 			crypto_done(crp);
2393 		} else {
2394 			break;
2395 		}
2396 	}
2397 
2398 	/*
2399 	 * Free header MCR
2400 	 */
2401 	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2402 		m_freem(q->q_dst_m);
2403 
2404 	crp = (struct cryptop *)q->q_crp;
2405 
2406 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2407 
2408 	crp->crp_etype = EFAULT;
2409 	crypto_done(crp);
2410 	return(0);
2411 }
2412 
2413 /*
2414  * Routine to reset the chip and clean up.
2415  * It is assumed that the caller is in splnet()
2416  */
2417 static void
2418 ubsec_totalreset(struct ubsec_softc *sc)
2419 {
2420 	ubsec_reset_board(sc);
2421 	ubsec_init_board(sc);
2422 	ubsec_cleanchip(sc);
2423 }
2424 
2425 static int
2426 ubsec_dmamap_aligned(bus_dmamap_t map)
2427 {
2428 	int i;
2429 
2430 	for (i = 0; i < map->dm_nsegs; i++) {
2431 		if (map->dm_segs[i].ds_addr & 3)
2432 			return (0);
2433 		if ((i != (map->dm_nsegs - 1)) &&
2434 		    (map->dm_segs[i].ds_len & 3))
2435 			return (0);
2436 	}
2437 	return (1);
2438 }
2439 
2440 #ifdef __OpenBSD__
2441 struct ubsec_softc *
2442 ubsec_kfind(struct cryptkop *krp)
2443 {
2444 	struct ubsec_softc *sc;
2445 	int i;
2446 
2447 	for (i = 0; i < ubsec_cd.cd_ndevs; i++) {
2448 		sc = ubsec_cd.cd_devs[i];
2449 		if (sc == NULL)
2450 			continue;
2451 		if (sc->sc_cid == krp->krp_hid)
2452 			return (sc);
2453 	}
2454 	return (NULL);
2455 }
2456 #endif
2457 
2458 static void
2459 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2460 {
2461 	switch (q->q_type) {
2462 	case UBS_CTXOP_MODEXP: {
2463 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2464 
2465 		ubsec_dma_free(sc, &me->me_q.q_mcr);
2466 		ubsec_dma_free(sc, &me->me_q.q_ctx);
2467 		ubsec_dma_free(sc, &me->me_M);
2468 		ubsec_dma_free(sc, &me->me_E);
2469 		ubsec_dma_free(sc, &me->me_C);
2470 		ubsec_dma_free(sc, &me->me_epb);
2471 		free(me, M_DEVBUF);
2472 		break;
2473 	}
2474 	case UBS_CTXOP_RSAPRIV: {
2475 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2476 
2477 		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2478 		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2479 		ubsec_dma_free(sc, &rp->rpr_msgin);
2480 		ubsec_dma_free(sc, &rp->rpr_msgout);
2481 		free(rp, M_DEVBUF);
2482 		break;
2483 	}
2484 	default:
2485 		printf("%s: invalid kfree 0x%x\n", device_xname(sc->sc_dev),
2486 		    q->q_type);
2487 		break;
2488 	}
2489 }
2490 
2491 static int
2492 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2493 {
2494 	struct ubsec_softc *sc;
2495 	int r;
2496 
2497 	if (krp == NULL || krp->krp_callback == NULL)
2498 		return (EINVAL);
2499 #ifdef __OpenBSD__
2500 	if ((sc = ubsec_kfind(krp)) == NULL)
2501 		return (EINVAL);
2502 #else
2503 	sc = arg;
2504 	KASSERT(sc != NULL /*, ("ubsec_kprocess: null softc")*/);
2505 #endif
2506 
2507 	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2508 		struct ubsec_q2 *q;
2509 
2510 		q = SIMPLEQ_FIRST(&sc->sc_q2free);
2511 		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, /*q,*/ q_next);
2512 		ubsec_kfree(sc, q);
2513 	}
2514 
2515 	switch (krp->krp_op) {
2516 	case CRK_MOD_EXP:
2517 		if (sc->sc_flags & UBS_FLAGS_HWNORM)
2518 			r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2519 		else
2520 			r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2521 		break;
2522 	case CRK_MOD_EXP_CRT:
2523 		r = ubsec_kprocess_rsapriv(sc, krp, hint);
2524 		break;
2525 	default:
2526 		printf("%s: kprocess: invalid op 0x%x\n",
2527 		    device_xname(sc->sc_dev), krp->krp_op);
2528 		krp->krp_status = EOPNOTSUPP;
2529 		crypto_kdone(krp);
2530 		r = 0;
2531 	}
2532 	return (r);
2533 }
2534 
2535 /*
2536  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2537  */
2538 static int
2539 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp,
2540 			 int hint)
2541 {
2542 	struct ubsec_q2_modexp *me;
2543 	struct ubsec_mcr *mcr;
2544 	struct ubsec_ctx_modexp *ctx;
2545 	struct ubsec_pktbuf *epb;
2546 	int err = 0;
2547 	u_int nbits, normbits, mbits, shiftbits, ebits;
2548 
2549 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2550 	if (me == NULL) {
2551 		err = ENOMEM;
2552 		goto errout;
2553 	}
2554 	memset(me, 0, sizeof *me);
2555 	me->me_krp = krp;
2556 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2557 
2558 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2559 	if (nbits <= 512)
2560 		normbits = 512;
2561 	else if (nbits <= 768)
2562 		normbits = 768;
2563 	else if (nbits <= 1024)
2564 		normbits = 1024;
2565 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2566 		normbits = 1536;
2567 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2568 		normbits = 2048;
2569 	else {
2570 		err = E2BIG;
2571 		goto errout;
2572 	}
2573 
2574 	shiftbits = normbits - nbits;
2575 
2576 	me->me_modbits = nbits;
2577 	me->me_shiftbits = shiftbits;
2578 	me->me_normbits = normbits;
2579 
2580 	/* Sanity check: result bits must be >= true modulus bits. */
2581 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2582 		err = ERANGE;
2583 		goto errout;
2584 	}
2585 
2586 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2587 	    &me->me_q.q_mcr, 0)) {
2588 		err = ENOMEM;
2589 		goto errout;
2590 	}
2591 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2592 
2593 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2594 	    &me->me_q.q_ctx, 0)) {
2595 		err = ENOMEM;
2596 		goto errout;
2597 	}
2598 
2599 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2600 	if (mbits > nbits) {
2601 		err = E2BIG;
2602 		goto errout;
2603 	}
2604 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2605 		err = ENOMEM;
2606 		goto errout;
2607 	}
2608 	ubsec_kshift_r(shiftbits,
2609 	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2610 	    me->me_M.dma_vaddr, normbits);
2611 
2612 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2613 		err = ENOMEM;
2614 		goto errout;
2615 	}
2616 	memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2617 
2618 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2619 	if (ebits > nbits) {
2620 		err = E2BIG;
2621 		goto errout;
2622 	}
2623 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2624 		err = ENOMEM;
2625 		goto errout;
2626 	}
2627 	ubsec_kshift_r(shiftbits,
2628 	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2629 	    me->me_E.dma_vaddr, normbits);
2630 
2631 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2632 	    &me->me_epb, 0)) {
2633 		err = ENOMEM;
2634 		goto errout;
2635 	}
2636 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2637 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2638 	epb->pb_next = 0;
2639 	epb->pb_len = htole32(normbits / 8);
2640 
2641 #ifdef UBSEC_DEBUG
2642 	if (ubsec_debug) {
2643 		printf("Epb ");
2644 		ubsec_dump_pb(epb);
2645 	}
2646 #endif
2647 
2648 	mcr->mcr_pkts = htole16(1);
2649 	mcr->mcr_flags = 0;
2650 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2651 	mcr->mcr_reserved = 0;
2652 	mcr->mcr_pktlen = 0;
2653 
2654 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2655 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2656 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2657 
2658 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2659 	mcr->mcr_opktbuf.pb_next = 0;
2660 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2661 
2662 #ifdef DIAGNOSTIC
2663 	/* Misaligned output buffer will hang the chip. */
2664 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2665 		panic("%s: modexp invalid addr 0x%x", device_xname(sc->sc_dev),
2666 		    letoh32(mcr->mcr_opktbuf.pb_addr));
2667 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2668 		panic("%s: modexp invalid len 0x%x",  device_xname(sc->sc_dev),
2669 		    letoh32(mcr->mcr_opktbuf.pb_len));
2670 #endif
2671 
2672 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2673 	memset(ctx, 0, sizeof(*ctx));
2674 	ubsec_kshift_r(shiftbits,
2675 	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2676 	    ctx->me_N, normbits);
2677 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2678 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2679 	ctx->me_E_len = htole16(nbits);
2680 	ctx->me_N_len = htole16(nbits);
2681 
2682 #ifdef UBSEC_DEBUG
2683 	if (ubsec_debug) {
2684 		ubsec_dump_mcr(mcr);
2685 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2686 	}
2687 #endif
2688 
2689 	/*
2690 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2691 	 * everything else.
2692 	 */
2693 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2694 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2695 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2696 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2697 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2698 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2699 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2700 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2701 
2702 	/* Enqueue and we're done... */
2703 	mutex_spin_enter(&sc->sc_mtx);
2704 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2705 	ubsec_feed2(sc);
2706 	ubsecstats.hst_modexp++;
2707 	mutex_spin_exit(&sc->sc_mtx);
2708 
2709 	return (0);
2710 
2711 errout:
2712 	if (me != NULL) {
2713 		if (me->me_q.q_mcr.dma_map != NULL)
2714 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2715 		if (me->me_q.q_ctx.dma_map != NULL) {
2716 			memset(me->me_q.q_ctx.dma_vaddr, 0,
2717 			    me->me_q.q_ctx.dma_size);
2718 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2719 		}
2720 		if (me->me_M.dma_map != NULL) {
2721 			memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2722 			ubsec_dma_free(sc, &me->me_M);
2723 		}
2724 		if (me->me_E.dma_map != NULL) {
2725 			memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2726 			ubsec_dma_free(sc, &me->me_E);
2727 		}
2728 		if (me->me_C.dma_map != NULL) {
2729 			memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2730 			ubsec_dma_free(sc, &me->me_C);
2731 		}
2732 		if (me->me_epb.dma_map != NULL)
2733 			ubsec_dma_free(sc, &me->me_epb);
2734 		free(me, M_DEVBUF);
2735 	}
2736 	krp->krp_status = err;
2737 	crypto_kdone(krp);
2738 	return (0);
2739 }
2740 
2741 /*
2742  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2743  */
2744 static int
2745 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp,
2746 			 int hint)
2747 {
2748 	struct ubsec_q2_modexp *me;
2749 	struct ubsec_mcr *mcr;
2750 	struct ubsec_ctx_modexp *ctx;
2751 	struct ubsec_pktbuf *epb;
2752 	int err = 0;
2753 	u_int nbits, normbits, mbits, shiftbits, ebits;
2754 
2755 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2756 	if (me == NULL) {
2757 		err = ENOMEM;
2758 		goto errout;
2759 	}
2760 	memset(me, 0, sizeof *me);
2761 	me->me_krp = krp;
2762 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2763 
2764 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2765 	if (nbits <= 512)
2766 		normbits = 512;
2767 	else if (nbits <= 768)
2768 		normbits = 768;
2769 	else if (nbits <= 1024)
2770 		normbits = 1024;
2771 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2772 		normbits = 1536;
2773 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2774 		normbits = 2048;
2775 	else {
2776 		err = E2BIG;
2777 		goto errout;
2778 	}
2779 
2780 	shiftbits = normbits - nbits;
2781 
2782 	/* XXX ??? */
2783 	me->me_modbits = nbits;
2784 	me->me_shiftbits = shiftbits;
2785 	me->me_normbits = normbits;
2786 
2787 	/* Sanity check: result bits must be >= true modulus bits. */
2788 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2789 		err = ERANGE;
2790 		goto errout;
2791 	}
2792 
2793 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2794 	    &me->me_q.q_mcr, 0)) {
2795 		err = ENOMEM;
2796 		goto errout;
2797 	}
2798 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2799 
2800 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2801 	    &me->me_q.q_ctx, 0)) {
2802 		err = ENOMEM;
2803 		goto errout;
2804 	}
2805 
2806 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2807 	if (mbits > nbits) {
2808 		err = E2BIG;
2809 		goto errout;
2810 	}
2811 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2812 		err = ENOMEM;
2813 		goto errout;
2814 	}
2815 	memset(me->me_M.dma_vaddr, 0, normbits / 8);
2816 	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2817 	    me->me_M.dma_vaddr, (mbits + 7) / 8);
2818 
2819 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2820 		err = ENOMEM;
2821 		goto errout;
2822 	}
2823 	memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2824 
2825 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2826 	if (ebits > nbits) {
2827 		err = E2BIG;
2828 		goto errout;
2829 	}
2830 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2831 		err = ENOMEM;
2832 		goto errout;
2833 	}
2834 	memset(me->me_E.dma_vaddr, 0, normbits / 8);
2835 	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2836 	    me->me_E.dma_vaddr, (ebits + 7) / 8);
2837 
2838 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2839 	    &me->me_epb, 0)) {
2840 		err = ENOMEM;
2841 		goto errout;
2842 	}
2843 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2844 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2845 	epb->pb_next = 0;
2846 	epb->pb_len = htole32((ebits + 7) / 8);
2847 
2848 #ifdef UBSEC_DEBUG
2849 	if (ubsec_debug) {
2850 		printf("Epb ");
2851 		ubsec_dump_pb(epb);
2852 	}
2853 #endif
2854 
2855 	mcr->mcr_pkts = htole16(1);
2856 	mcr->mcr_flags = 0;
2857 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2858 	mcr->mcr_reserved = 0;
2859 	mcr->mcr_pktlen = 0;
2860 
2861 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2862 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2863 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2864 
2865 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2866 	mcr->mcr_opktbuf.pb_next = 0;
2867 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2868 
2869 #ifdef DIAGNOSTIC
2870 	/* Misaligned output buffer will hang the chip. */
2871 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2872 		panic("%s: modexp invalid addr 0x%x", device_xname(sc->sc_dev),
2873 		    letoh32(mcr->mcr_opktbuf.pb_addr));
2874 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2875 		panic("%s: modexp invalid len 0x%x", device_xname(sc->sc_dev),
2876 		    letoh32(mcr->mcr_opktbuf.pb_len));
2877 #endif
2878 
2879 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2880 	memset(ctx, 0, sizeof(*ctx));
2881 	memcpy(ctx->me_N, krp->krp_param[UBS_MODEXP_PAR_N].crp_p,
2882 	    (nbits + 7) / 8);
2883 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2884 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2885 	ctx->me_E_len = htole16(ebits);
2886 	ctx->me_N_len = htole16(nbits);
2887 
2888 #ifdef UBSEC_DEBUG
2889 	if (ubsec_debug) {
2890 		ubsec_dump_mcr(mcr);
2891 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2892 	}
2893 #endif
2894 
2895 	/*
2896 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2897 	 * everything else.
2898 	 */
2899 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2900 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2901 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2902 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2903 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2904 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2905 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2906 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2907 
2908 	/* Enqueue and we're done... */
2909 	mutex_spin_enter(&sc->sc_mtx);
2910 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2911 	ubsec_feed2(sc);
2912 	mutex_spin_exit(&sc->sc_mtx);
2913 
2914 	return (0);
2915 
2916 errout:
2917 	if (me != NULL) {
2918 		if (me->me_q.q_mcr.dma_map != NULL)
2919 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2920 		if (me->me_q.q_ctx.dma_map != NULL) {
2921 			memset(me->me_q.q_ctx.dma_vaddr, 0,
2922 			    me->me_q.q_ctx.dma_size);
2923 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2924 		}
2925 		if (me->me_M.dma_map != NULL) {
2926 			memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2927 			ubsec_dma_free(sc, &me->me_M);
2928 		}
2929 		if (me->me_E.dma_map != NULL) {
2930 			memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2931 			ubsec_dma_free(sc, &me->me_E);
2932 		}
2933 		if (me->me_C.dma_map != NULL) {
2934 			memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2935 			ubsec_dma_free(sc, &me->me_C);
2936 		}
2937 		if (me->me_epb.dma_map != NULL)
2938 			ubsec_dma_free(sc, &me->me_epb);
2939 		free(me, M_DEVBUF);
2940 	}
2941 	krp->krp_status = err;
2942 	crypto_kdone(krp);
2943 	return (0);
2944 }
2945 
2946 static int
2947 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp,
2948 		       int hint)
2949 {
2950 	struct ubsec_q2_rsapriv *rp = NULL;
2951 	struct ubsec_mcr *mcr;
2952 	struct ubsec_ctx_rsapriv *ctx;
2953 	int err = 0;
2954 	u_int padlen, msglen;
2955 
2956 	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2957 	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2958 	if (msglen > padlen)
2959 		padlen = msglen;
2960 
2961 	if (padlen <= 256)
2962 		padlen = 256;
2963 	else if (padlen <= 384)
2964 		padlen = 384;
2965 	else if (padlen <= 512)
2966 		padlen = 512;
2967 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2968 		padlen = 768;
2969 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2970 		padlen = 1024;
2971 	else {
2972 		err = E2BIG;
2973 		goto errout;
2974 	}
2975 
2976 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2977 		err = E2BIG;
2978 		goto errout;
2979 	}
2980 
2981 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2982 		err = E2BIG;
2983 		goto errout;
2984 	}
2985 
2986 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2987 		err = E2BIG;
2988 		goto errout;
2989 	}
2990 
2991 	rp = malloc(sizeof *rp, M_DEVBUF, M_NOWAIT|M_ZERO);
2992 	if (rp == NULL)
2993 		return (ENOMEM);
2994 	rp->rpr_krp = krp;
2995 	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2996 
2997 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2998 	    &rp->rpr_q.q_mcr, 0)) {
2999 		err = ENOMEM;
3000 		goto errout;
3001 	}
3002 	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
3003 
3004 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
3005 	    &rp->rpr_q.q_ctx, 0)) {
3006 		err = ENOMEM;
3007 		goto errout;
3008 	}
3009 	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
3010 	memset(ctx, 0, sizeof *ctx);
3011 
3012 	/* Copy in p */
3013 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
3014 	    &ctx->rpr_buf[0 * (padlen / 8)],
3015 	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
3016 
3017 	/* Copy in q */
3018 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
3019 	    &ctx->rpr_buf[1 * (padlen / 8)],
3020 	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
3021 
3022 	/* Copy in dp */
3023 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
3024 	    &ctx->rpr_buf[2 * (padlen / 8)],
3025 	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
3026 
3027 	/* Copy in dq */
3028 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
3029 	    &ctx->rpr_buf[3 * (padlen / 8)],
3030 	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
3031 
3032 	/* Copy in pinv */
3033 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
3034 	    &ctx->rpr_buf[4 * (padlen / 8)],
3035 	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
3036 
3037 	msglen = padlen * 2;
3038 
3039 	/* Copy in input message (aligned buffer/length). */
3040 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
3041 		/* Is this likely? */
3042 		err = E2BIG;
3043 		goto errout;
3044 	}
3045 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
3046 		err = ENOMEM;
3047 		goto errout;
3048 	}
3049 	memset(rp->rpr_msgin.dma_vaddr, 0, (msglen + 7) / 8);
3050 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
3051 	    rp->rpr_msgin.dma_vaddr,
3052 	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
3053 
3054 	/* Prepare space for output message (aligned buffer/length). */
3055 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
3056 		/* Is this likely? */
3057 		err = E2BIG;
3058 		goto errout;
3059 	}
3060 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
3061 		err = ENOMEM;
3062 		goto errout;
3063 	}
3064 	memset(rp->rpr_msgout.dma_vaddr, 0, (msglen + 7) / 8);
3065 
3066 	mcr->mcr_pkts = htole16(1);
3067 	mcr->mcr_flags = 0;
3068 	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
3069 	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
3070 	mcr->mcr_ipktbuf.pb_next = 0;
3071 	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
3072 	mcr->mcr_reserved = 0;
3073 	mcr->mcr_pktlen = htole16(msglen);
3074 	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
3075 	mcr->mcr_opktbuf.pb_next = 0;
3076 	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
3077 
3078 #ifdef DIAGNOSTIC
3079 	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
3080 		panic("%s: rsapriv: invalid msgin 0x%lx(0x%lx)",
3081 		    device_xname(sc->sc_dev), (u_long) rp->rpr_msgin.dma_paddr,
3082 		    (u_long) rp->rpr_msgin.dma_size);
3083 	}
3084 	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
3085 		panic("%s: rsapriv: invalid msgout 0x%lx(0x%lx)",
3086 		    device_xname(sc->sc_dev), (u_long) rp->rpr_msgout.dma_paddr,
3087 		    (u_long) rp->rpr_msgout.dma_size);
3088 	}
3089 #endif
3090 
3091 	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
3092 	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
3093 	ctx->rpr_q_len = htole16(padlen);
3094 	ctx->rpr_p_len = htole16(padlen);
3095 
3096 	/*
3097 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
3098 	 * everything else.
3099 	 */
3100 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map,
3101 	    0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
3102 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map,
3103 	    0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
3104 
3105 	/* Enqueue and we're done... */
3106 	mutex_spin_enter(&sc->sc_mtx);
3107 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
3108 	ubsec_feed2(sc);
3109 	ubsecstats.hst_modexpcrt++;
3110 	mutex_spin_exit(&sc->sc_mtx);
3111 	return (0);
3112 
3113 errout:
3114 	if (rp != NULL) {
3115 		if (rp->rpr_q.q_mcr.dma_map != NULL)
3116 			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
3117 		if (rp->rpr_msgin.dma_map != NULL) {
3118 			memset(rp->rpr_msgin.dma_vaddr, 0,
3119 			    rp->rpr_msgin.dma_size);
3120 			ubsec_dma_free(sc, &rp->rpr_msgin);
3121 		}
3122 		if (rp->rpr_msgout.dma_map != NULL) {
3123 			memset(rp->rpr_msgout.dma_vaddr, 0,
3124 			    rp->rpr_msgout.dma_size);
3125 			ubsec_dma_free(sc, &rp->rpr_msgout);
3126 		}
3127 		free(rp, M_DEVBUF);
3128 	}
3129 	krp->krp_status = err;
3130 	crypto_kdone(krp);
3131 	return (0);
3132 }
3133 
3134 #ifdef UBSEC_DEBUG
3135 static void
3136 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
3137 {
3138 	printf("addr 0x%x (0x%x) next 0x%x\n",
3139 	    pb->pb_addr, pb->pb_len, pb->pb_next);
3140 }
3141 
3142 static void
3143 ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *c)
3144 {
3145 	printf("CTX (0x%x):\n", c->ctx_len);
3146 	switch (letoh16(c->ctx_op)) {
3147 	case UBS_CTXOP_RNGBYPASS:
3148 	case UBS_CTXOP_RNGSHA1:
3149 		break;
3150 	case UBS_CTXOP_MODEXP:
3151 	{
3152 		struct ubsec_ctx_modexp *cx = (void *)c;
3153 		int i, len;
3154 
3155 		printf(" Elen %u, Nlen %u\n",
3156 		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
3157 		len = (cx->me_N_len + 7)/8;
3158 		for (i = 0; i < len; i++)
3159 			printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
3160 		printf("\n");
3161 		break;
3162 	}
3163 	default:
3164 		printf("unknown context: %x\n", c->ctx_op);
3165 	}
3166 	printf("END CTX\n");
3167 }
3168 
3169 static void
3170 ubsec_dump_mcr(struct ubsec_mcr *mcr)
3171 {
3172 	volatile struct ubsec_mcr_add *ma;
3173 	int i;
3174 
3175 	printf("MCR:\n");
3176 	printf(" pkts: %u, flags 0x%x\n",
3177 	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
3178 	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
3179 	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
3180 		printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
3181 		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
3182 		    letoh16(ma->mcr_reserved));
3183 		printf(" %d: ipkt ", i);
3184 		ubsec_dump_pb(&ma->mcr_ipktbuf);
3185 		printf(" %d: opkt ", i);
3186 		ubsec_dump_pb(&ma->mcr_opktbuf);
3187 		ma++;
3188 	}
3189 	printf("END MCR\n");
3190 }
3191 #endif /* UBSEC_DEBUG */
3192 
3193 /*
3194  * Return the number of significant bits of a big number.
3195  */
3196 static int
3197 ubsec_ksigbits(struct crparam *cr)
3198 {
3199 	u_int plen = (cr->crp_nbits + 7) / 8;
3200 	int i, sig = plen * 8;
3201 	u_int8_t c, *p = cr->crp_p;
3202 
3203 	for (i = plen - 1; i >= 0; i--) {
3204 		c = p[i];
3205 		if (c != 0) {
3206 			while ((c & 0x80) == 0) {
3207 				sig--;
3208 				c <<= 1;
3209 			}
3210 			break;
3211 		}
3212 		sig -= 8;
3213 	}
3214 	return (sig);
3215 }
3216 
3217 static void
3218 ubsec_kshift_r(u_int shiftbits, u_int8_t *src, u_int srcbits,
3219     u_int8_t *dst, u_int dstbits)
3220 {
3221 	u_int slen, dlen;
3222 	int i, si, di, n;
3223 
3224 	slen = (srcbits + 7) / 8;
3225 	dlen = (dstbits + 7) / 8;
3226 
3227 	for (i = 0; i < slen; i++)
3228 		dst[i] = src[i];
3229 	for (i = 0; i < dlen - slen; i++)
3230 		dst[slen + i] = 0;
3231 
3232 	n = shiftbits / 8;
3233 	if (n != 0) {
3234 		si = dlen - n - 1;
3235 		di = dlen - 1;
3236 		while (si >= 0)
3237 			dst[di--] = dst[si--];
3238 		while (di >= 0)
3239 			dst[di--] = 0;
3240 	}
3241 
3242 	n = shiftbits % 8;
3243 	if (n != 0) {
3244 		for (i = dlen - 1; i > 0; i--)
3245 			dst[i] = (dst[i] << n) |
3246 			    (dst[i - 1] >> (8 - n));
3247 		dst[0] = dst[0] << n;
3248 	}
3249 }
3250 
3251 static void
3252 ubsec_kshift_l(u_int shiftbits, u_int8_t *src, u_int srcbits,
3253     u_int8_t *dst, u_int dstbits)
3254 {
3255 	int slen, dlen, i, n;
3256 
3257 	slen = (srcbits + 7) / 8;
3258 	dlen = (dstbits + 7) / 8;
3259 
3260 	n = shiftbits / 8;
3261 	for (i = 0; i < slen; i++)
3262 		dst[i] = src[i + n];
3263 	for (i = 0; i < dlen - slen; i++)
3264 		dst[slen + i] = 0;
3265 
3266 	n = shiftbits % 8;
3267 	if (n != 0) {
3268 		for (i = 0; i < (dlen - 1); i++)
3269 			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
3270 		dst[dlen - 1] = dst[dlen - 1] >> n;
3271 	}
3272 }
3273