xref: /netbsd-src/sys/dev/pci/ubsec.c (revision ce2c90c7c172d95d2402a5b3d96d8f8e6d138a21)
1 /*	$NetBSD: ubsec.c,v 1.10 2006/10/12 01:31:33 christos Exp $	*/
2 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.6 2003/01/23 21:06:43 sam Exp $ */
3 /*	$OpenBSD: ubsec.c,v 1.127 2003/06/04 14:04:58 jason Exp $	*/
4 
5 /*
6  * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
7  * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
8  * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
23  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
28  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  * Effort sponsored in part by the Defense Advanced Research Projects
32  * Agency (DARPA) and Air Force Research Laboratory, Air Force
33  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
34  *
35  */
36 
37 #undef UBSEC_DEBUG
38 
39 /*
40  * uBsec 5[56]01, bcm580xx, bcm582x hardware crypto accelerator
41  */
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/proc.h>
46 #include <sys/endian.h>
47 #ifdef __NetBSD__
48   #define letoh16 htole16
49   #define letoh32 htole32
50 #define UBSEC_NO_RNG		/* until statistically tested */
51 #endif
52 #include <sys/errno.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/mbuf.h>
56 #include <sys/device.h>
57 #include <sys/queue.h>
58 
59 #include <uvm/uvm_extern.h>
60 
61 #include <opencrypto/cryptodev.h>
62 #include <opencrypto/xform.h>
63 #ifdef __OpenBSD__
64  #include <dev/rndvar.h>
65  #include <sys/md5k.h>
66 #else
67  #include <sys/rnd.h>
68  #include <sys/md5.h>
69 #endif
70 #include <sys/sha1.h>
71 
72 #include <dev/pci/pcireg.h>
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcidevs.h>
75 
76 #include <dev/pci/ubsecreg.h>
77 #include <dev/pci/ubsecvar.h>
78 
79 /*
80  * Prototypes and count for the pci_device structure
81  */
82 static	int ubsec_probe(struct device *, struct cfdata *, void *);
83 static	void ubsec_attach(struct device *, struct device *, void *);
84 static	void ubsec_reset_board(struct ubsec_softc *);
85 static	void ubsec_init_board(struct ubsec_softc *);
86 static	void ubsec_init_pciregs(struct pci_attach_args *pa);
87 static	void ubsec_cleanchip(struct ubsec_softc *);
88 static	void ubsec_totalreset(struct ubsec_softc *);
89 static	int  ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
90 
91 #ifdef __OpenBSD__
92 struct cfattach ubsec_ca = {
93 	sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
94 };
95 
96 struct cfdriver ubsec_cd = {
97 	0, "ubsec", DV_DULL
98 };
99 #else
100 CFATTACH_DECL(ubsec, sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
101 	      NULL, NULL);
102 extern struct cfdriver ubsec_cd;
103 #endif
104 
105 /* patchable */
106 #ifdef	UBSEC_DEBUG
107 extern int ubsec_debug;
108 int ubsec_debug=1;
109 #endif
110 
111 static	int	ubsec_intr(void *);
112 static	int	ubsec_newsession(void*, u_int32_t *, struct cryptoini *);
113 static	int	ubsec_freesession(void*, u_int64_t);
114 static	int	ubsec_process(void*, struct cryptop *, int hint);
115 static	void	ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
116 static	void	ubsec_feed(struct ubsec_softc *);
117 static	void	ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
118 static	void	ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
119 static	void	ubsec_feed2(struct ubsec_softc *);
120 #ifndef UBSEC_NO_RNG
121 static	void	ubsec_rng(void *);
122 #endif /* UBSEC_NO_RNG */
123 static	int 	ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
124 				 struct ubsec_dma_alloc *, int);
125 static	void	ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
126 static	int	ubsec_dmamap_aligned(bus_dmamap_t);
127 
128 static	int	ubsec_kprocess(void*, struct cryptkop *, int);
129 static	int	ubsec_kprocess_modexp_sw(struct ubsec_softc *,
130 					 struct cryptkop *, int);
131 static	int	ubsec_kprocess_modexp_hw(struct ubsec_softc *,
132 					 struct cryptkop *, int);
133 static	int	ubsec_kprocess_rsapriv(struct ubsec_softc *,
134 				       struct cryptkop *, int);
135 static	void	ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
136 static	int	ubsec_ksigbits(struct crparam *);
137 static	void	ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
138 static	void	ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
139 
140 #ifdef UBSEC_DEBUG
141 static void	ubsec_dump_pb(volatile struct ubsec_pktbuf *);
142 static void	ubsec_dump_mcr(struct ubsec_mcr *);
143 static	void	ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *);
144 #endif
145 
146 #define	READ_REG(sc,r) \
147 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
148 
149 #define WRITE_REG(sc,reg,val) \
150 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
151 
152 #define	SWAP32(x) (x) = htole32(ntohl((x)))
153 #ifndef HTOLE32
154  #define	HTOLE32(x) (x) = htole32(x)
155 #endif
156 
157 struct ubsec_stats ubsecstats;
158 
159 /*
160  * ubsec_maxbatch controls the number of crypto ops to voluntarily
161  * collect into one submission to the hardware.  This batching happens
162  * when ops are dispatched from the crypto subsystem with a hint that
163  * more are to follow immediately.  These ops must also not be marked
164  * with a ``no delay'' flag.
165  */
166 static	int ubsec_maxbatch = 1;
167 #ifdef SYSCTL_INT
168 SYSCTL_INT(_kern, OID_AUTO, ubsec_maxbatch, CTLFLAG_RW, &ubsec_maxbatch,
169 	    0, "Broadcom driver: max ops to batch w/o interrupt");
170 #endif
171 
172 /*
173  * ubsec_maxaggr controls the number of crypto ops to submit to the
174  * hardware as a unit.  This aggregation reduces the number of interrupts
175  * to the host at the expense of increased latency (for all but the last
176  * operation).  For network traffic setting this to one yields the highest
177  * performance but at the expense of more interrupt processing.
178  */
179 static	int ubsec_maxaggr = 1;
180 #ifdef SYSCTL_INT
181 SYSCTL_INT(_kern, OID_AUTO, ubsec_maxaggr, CTLFLAG_RW, &ubsec_maxaggr,
182 	    0, "Broadcom driver: max ops to aggregate under one interrupt");
183 #endif
184 
185 static const struct ubsec_product {
186 	pci_vendor_id_t		ubsec_vendor;
187 	pci_product_id_t	ubsec_product;
188 	int			ubsec_flags;
189 	int			ubsec_statmask;
190 	const char		*ubsec_name;
191 } ubsec_products[] = {
192 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5501,
193 	  0,
194 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
195 	  "Bluesteel 5501"
196 	},
197 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5601,
198 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
199 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
200 	  "Bluesteel 5601"
201 	},
202 
203 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5801,
204 	  0,
205 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
206 	  "Broadcom BCM5801"
207 	},
208 
209 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5802,
210 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
211 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
212 	  "Broadcom BCM5802"
213 	},
214 
215 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5805,
216 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
217 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
218 	  "Broadcom BCM5805"
219 	},
220 
221 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5820,
222 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
223 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
224 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
225 	  "Broadcom BCM5820"
226 	},
227 
228 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5821,
229 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
230 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
231 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
232 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
233 	  "Broadcom BCM5821"
234 	},
235 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_SCA1K,
236 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
237 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
238 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
239 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
240 	  "Sun Crypto Accelerator 1000"
241 	},
242 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_5821,
243 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
244 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
245 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
246 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
247 	  "Broadcom BCM5821 (Sun)"
248 	},
249 
250 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5822,
251 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
252 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
253 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
254 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
255 	  "Broadcom BCM5822"
256 	},
257 
258 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5823,
259 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
260 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
261 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
262 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
263 	  "Broadcom BCM5823"
264 	},
265 
266 	{ 0,			0,
267 	  0,
268 	  0,
269 	  NULL
270 	}
271 };
272 
273 static const struct ubsec_product *
274 ubsec_lookup(const struct pci_attach_args *pa)
275 {
276 	const struct ubsec_product *up;
277 
278 	for (up = ubsec_products; up->ubsec_name != NULL; up++) {
279 		if (PCI_VENDOR(pa->pa_id) == up->ubsec_vendor &&
280 		    PCI_PRODUCT(pa->pa_id) == up->ubsec_product)
281 			return (up);
282 	}
283 	return (NULL);
284 }
285 
286 static int
287 ubsec_probe(struct device *parent __unused, struct cfdata *match __unused,
288     void *aux)
289 {
290 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
291 
292 	if (ubsec_lookup(pa) != NULL)
293 		return (1);
294 
295 	return (0);
296 }
297 
298 static void
299 ubsec_attach(struct device *parent __unused, struct device *self, void *aux)
300 {
301 	struct ubsec_softc *sc = (struct ubsec_softc *)self;
302 	struct pci_attach_args *pa = aux;
303 	const struct ubsec_product *up;
304 	pci_chipset_tag_t pc = pa->pa_pc;
305 	pci_intr_handle_t ih;
306 	const char *intrstr = NULL;
307 	struct ubsec_dma *dmap;
308 	u_int32_t cmd, i;
309 
310 	up = ubsec_lookup(pa);
311 	if (up == NULL) {
312 		printf("\n");
313 		panic("ubsec_attach: impossible");
314 	}
315 
316 	aprint_naive(": Crypto processor\n");
317 	aprint_normal(": %s, rev. %d\n", up->ubsec_name,
318 	    PCI_REVISION(pa->pa_class));
319 
320 	SIMPLEQ_INIT(&sc->sc_queue);
321 	SIMPLEQ_INIT(&sc->sc_qchip);
322 	SIMPLEQ_INIT(&sc->sc_queue2);
323 	SIMPLEQ_INIT(&sc->sc_qchip2);
324 	SIMPLEQ_INIT(&sc->sc_q2free);
325 
326 	sc->sc_flags = up->ubsec_flags;
327 	sc->sc_statmask = up->ubsec_statmask;
328 
329 	cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
330 	cmd |= PCI_COMMAND_MASTER_ENABLE;
331 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd);
332 
333 	if (pci_mapreg_map(pa, BS_BAR, PCI_MAPREG_TYPE_MEM, 0,
334 	    &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
335 		aprint_error("%s: can't find mem space",
336 		    sc->sc_dv.dv_xname);
337 		return;
338 	}
339 
340 	sc->sc_dmat = pa->pa_dmat;
341 
342 	if (pci_intr_map(pa, &ih)) {
343 		aprint_error("%s: couldn't map interrupt\n",
344 		    sc->sc_dv.dv_xname);
345 		return;
346 	}
347 	intrstr = pci_intr_string(pc, ih);
348 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ubsec_intr, sc);
349 	if (sc->sc_ih == NULL) {
350 		aprint_error("%s: couldn't establish interrupt",
351 		    sc->sc_dv.dv_xname);
352 		if (intrstr != NULL)
353 			aprint_normal(" at %s", intrstr);
354 		aprint_normal("\n");
355 		return;
356 	}
357 	aprint_normal("%s: interrupting at %s\n", sc->sc_dv.dv_xname, intrstr);
358 
359 	sc->sc_cid = crypto_get_driverid(0);
360 	if (sc->sc_cid < 0) {
361 		aprint_error("%s: couldn't get crypto driver id\n",
362 		    sc->sc_dv.dv_xname);
363 		pci_intr_disestablish(pc, sc->sc_ih);
364 		return;
365 	}
366 
367 	SIMPLEQ_INIT(&sc->sc_freequeue);
368 	dmap = sc->sc_dmaa;
369 	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
370 		struct ubsec_q *q;
371 
372 		q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
373 		    M_DEVBUF, M_NOWAIT);
374 		if (q == NULL) {
375 			aprint_error("%s: can't allocate queue buffers\n",
376 			    sc->sc_dv.dv_xname);
377 			break;
378 		}
379 
380 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
381 		    &dmap->d_alloc, 0)) {
382 			aprint_error("%s: can't allocate dma buffers\n",
383 			    sc->sc_dv.dv_xname);
384 			free(q, M_DEVBUF);
385 			break;
386 		}
387 		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
388 
389 		q->q_dma = dmap;
390 		sc->sc_queuea[i] = q;
391 
392 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
393 	}
394 
395 	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
396 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
397 	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
398 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
399 	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0,
400 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
401 	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0,
402 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
403 
404 	/*
405 	 * Reset Broadcom chip
406 	 */
407 	ubsec_reset_board(sc);
408 
409 	/*
410 	 * Init Broadcom specific PCI settings
411 	 */
412 	ubsec_init_pciregs(pa);
413 
414 	/*
415 	 * Init Broadcom chip
416 	 */
417 	ubsec_init_board(sc);
418 
419 #ifndef UBSEC_NO_RNG
420 	if (sc->sc_flags & UBS_FLAGS_RNG) {
421 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
422 
423 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
424 		    &sc->sc_rng.rng_q.q_mcr, 0))
425 			goto skip_rng;
426 
427 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
428 		    &sc->sc_rng.rng_q.q_ctx, 0)) {
429 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
430 			goto skip_rng;
431 		}
432 
433 		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
434 		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
435 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
436 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
437 			goto skip_rng;
438 		}
439 
440 		if (hz >= 100)
441 			sc->sc_rnghz = hz / 100;
442 		else
443 			sc->sc_rnghz = 1;
444 #ifdef __OpenBSD__
445 		timeout_set(&sc->sc_rngto, ubsec_rng, sc);
446 		timeout_add(&sc->sc_rngto, sc->sc_rnghz);
447 #else
448 		callout_init(&sc->sc_rngto);
449 		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
450 #endif
451  skip_rng:
452 		if (sc->sc_rnghz)
453 			aprint_normal("%s: random number generator enabled\n",
454 			    sc->sc_dv.dv_xname);
455 		else
456 			aprint_error("%s: WARNING: random number generator "
457 			    "disabled\n", sc->sc_dv.dv_xname);
458 	}
459 #endif /* UBSEC_NO_RNG */
460 
461 	if (sc->sc_flags & UBS_FLAGS_KEY) {
462 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
463 
464 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
465 				 ubsec_kprocess, sc);
466 #if 0
467 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
468 				 ubsec_kprocess, sc);
469 #endif
470 	}
471 }
472 
473 /*
474  * UBSEC Interrupt routine
475  */
476 static int
477 ubsec_intr(void *arg)
478 {
479 	struct ubsec_softc *sc = arg;
480 	volatile u_int32_t stat;
481 	struct ubsec_q *q;
482 	struct ubsec_dma *dmap;
483 	int npkts = 0, i;
484 
485 	stat = READ_REG(sc, BS_STAT);
486 	stat &= sc->sc_statmask;
487 	if (stat == 0) {
488 		return (0);
489 	}
490 
491 	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
492 
493 	/*
494 	 * Check to see if we have any packets waiting for us
495 	 */
496 	if ((stat & BS_STAT_MCR1_DONE)) {
497 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
498 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
499 			dmap = q->q_dma;
500 
501 			if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
502 				break;
503 
504 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
505 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
506 
507 			npkts = q->q_nstacked_mcrs;
508 			sc->sc_nqchip -= 1+npkts;
509 			/*
510 			 * search for further sc_qchip ubsec_q's that share
511 			 * the same MCR, and complete them too, they must be
512 			 * at the top.
513 			 */
514 			for (i = 0; i < npkts; i++) {
515 				if(q->q_stacked_mcr[i])
516 					ubsec_callback(sc, q->q_stacked_mcr[i]);
517 				else
518 					break;
519 			}
520 			ubsec_callback(sc, q);
521 		}
522 
523 		/*
524 		 * Don't send any more packet to chip if there has been
525 		 * a DMAERR.
526 		 */
527 		if (!(stat & BS_STAT_DMAERR))
528 			ubsec_feed(sc);
529 	}
530 
531 	/*
532 	 * Check to see if we have any key setups/rng's waiting for us
533 	 */
534 	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
535 	    (stat & BS_STAT_MCR2_DONE)) {
536 		struct ubsec_q2 *q2;
537 		struct ubsec_mcr *mcr;
538 
539 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
540 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
541 
542 			bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
543 			    0, q2->q_mcr.dma_map->dm_mapsize,
544 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
545 
546 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
547 			if ((mcr->mcr_flags & htole16(UBS_MCR_DONE)) == 0) {
548 				bus_dmamap_sync(sc->sc_dmat,
549 				    q2->q_mcr.dma_map, 0,
550 				    q2->q_mcr.dma_map->dm_mapsize,
551 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
552 				break;
553 			}
554 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
555 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, /*q2,*/ q_next);
556 			ubsec_callback2(sc, q2);
557 			/*
558 			 * Don't send any more packet to chip if there has been
559 			 * a DMAERR.
560 			 */
561 			if (!(stat & BS_STAT_DMAERR))
562 				ubsec_feed2(sc);
563 		}
564 	}
565 
566 	/*
567 	 * Check to see if we got any DMA Error
568 	 */
569 	if (stat & BS_STAT_DMAERR) {
570 #ifdef UBSEC_DEBUG
571 		if (ubsec_debug) {
572 			volatile u_int32_t a = READ_REG(sc, BS_ERR);
573 
574 			printf("%s: dmaerr %s@%08x\n", sc->sc_dv.dv_xname,
575 			    (a & BS_ERR_READ) ? "read" : "write",
576 			       a & BS_ERR_ADDR);
577 		}
578 #endif /* UBSEC_DEBUG */
579 		ubsecstats.hst_dmaerr++;
580 		ubsec_totalreset(sc);
581 		ubsec_feed(sc);
582 	}
583 
584 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
585 		int wkeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
586 #ifdef UBSEC_DEBUG
587 		if (ubsec_debug)
588 			printf("%s: wakeup crypto (%x)\n", sc->sc_dv.dv_xname,
589 				sc->sc_needwakeup);
590 #endif /* UBSEC_DEBUG */
591 		sc->sc_needwakeup &= ~wkeup;
592 		crypto_unblock(sc->sc_cid, wkeup);
593 	}
594 	return (1);
595 }
596 
597 /*
598  * ubsec_feed() - aggregate and post requests to chip
599  * OpenBSD comments:
600  *		  It is assumed that the caller set splnet()
601  */
602 static void
603 ubsec_feed(struct ubsec_softc *sc)
604 {
605 	struct ubsec_q *q, *q2;
606 	int npkts, i;
607 	void *v;
608 	u_int32_t stat;
609 #ifdef UBSEC_DEBUG
610 	static int max;
611 #endif /* UBSEC_DEBUG */
612 
613 	npkts = sc->sc_nqueue;
614 	if (npkts > ubsecstats.hst_maxqueue)
615 		ubsecstats.hst_maxqueue = npkts;
616 	if (npkts < 2)
617 		goto feed1;
618 
619 	/*
620 	 * Decide how many ops to combine in a single MCR.  We cannot
621 	 * aggregate more than UBS_MAX_AGGR because this is the number
622 	 * of slots defined in the data structure.  Otherwise we clamp
623 	 * based on the tunable parameter ubsec_maxaggr.  Note that
624 	 * aggregation can happen in two ways: either by batching ops
625 	 * from above or because the h/w backs up and throttles us.
626 	 * Aggregating ops reduces the number of interrupts to the host
627 	 * but also (potentially) increases the latency for processing
628 	 * completed ops as we only get an interrupt when all aggregated
629 	 * ops have completed.
630 	 */
631 	if (npkts > UBS_MAX_AGGR)
632 		npkts = UBS_MAX_AGGR;
633 	if (npkts > ubsec_maxaggr)
634 		npkts = ubsec_maxaggr;
635 	if (npkts > ubsecstats.hst_maxbatch)
636 		ubsecstats.hst_maxbatch = npkts;
637 	if (npkts < 2)
638 		goto feed1;
639 	ubsecstats.hst_totbatch += npkts-1;
640 
641 	if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
642 		if (stat & BS_STAT_DMAERR) {
643 			ubsec_totalreset(sc);
644 			ubsecstats.hst_dmaerr++;
645 		} else {
646 			ubsecstats.hst_mcr1full++;
647 		}
648 		return;
649 	}
650 
651 #ifdef UBSEC_DEBUG
652 	if (ubsec_debug)
653 	    printf("merging %d records\n", npkts);
654 	/* XXX temporary aggregation statistics reporting code */
655 	if (max < npkts) {
656 		max = npkts;
657 		printf("%s: new max aggregate %d\n", sc->sc_dv.dv_xname, max);
658 	}
659 #endif /* UBSEC_DEBUG */
660 
661 	q = SIMPLEQ_FIRST(&sc->sc_queue);
662 	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
663 	--sc->sc_nqueue;
664 
665 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
666 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
667 	if (q->q_dst_map != NULL)
668 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
669 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
670 
671 	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
672 
673 	for (i = 0; i < q->q_nstacked_mcrs; i++) {
674 		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
675 		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
676 		    0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
677 		if (q2->q_dst_map != NULL)
678 			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
679 			    0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
680 		q2= SIMPLEQ_FIRST(&sc->sc_queue);
681 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q2,*/ q_next);
682 		--sc->sc_nqueue;
683 
684 		v = ((void *)&q2->q_dma->d_dma->d_mcr);
685 		v = (char*)v + (sizeof(struct ubsec_mcr) -
686 				 sizeof(struct ubsec_mcr_add));
687 		bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add));
688 		q->q_stacked_mcr[i] = q2;
689 	}
690 	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
691 	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
692 	sc->sc_nqchip += npkts;
693 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
694 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
695 	bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
696 	    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
697 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
698 	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
699 	    offsetof(struct ubsec_dmachunk, d_mcr));
700 	return;
701 
702 feed1:
703 	while (!SIMPLEQ_EMPTY(&sc->sc_queue)) {
704 		if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
705 			if (stat & BS_STAT_DMAERR) {
706 				ubsec_totalreset(sc);
707 				ubsecstats.hst_dmaerr++;
708 			} else {
709 				ubsecstats.hst_mcr1full++;
710 			}
711 			break;
712 		}
713 
714 		q = SIMPLEQ_FIRST(&sc->sc_queue);
715 
716 		bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
717 		    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
718 		if (q->q_dst_map != NULL)
719 			bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
720 			    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
721 		bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
722 		    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
723 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
724 
725 		WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
726 		    offsetof(struct ubsec_dmachunk, d_mcr));
727 #ifdef UBSEC_DEBUG
728 		if (ubsec_debug)
729 			printf("feed: q->chip %p %08x stat %08x\n",
730  		    	       q, (u_int32_t)q->q_dma->d_alloc.dma_paddr,
731 			       stat);
732 #endif /* UBSEC_DEBUG */
733 		q = SIMPLEQ_FIRST(&sc->sc_queue);
734 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
735 		--sc->sc_nqueue;
736 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
737 		sc->sc_nqchip++;
738 	}
739 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
740 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
741 }
742 
743 /*
744  * Allocate a new 'session' and return an encoded session id.  'sidp'
745  * contains our registration id, and should contain an encoded session
746  * id on successful allocation.
747  */
748 static int
749 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
750 {
751 	struct cryptoini *c, *encini = NULL, *macini = NULL;
752 	struct ubsec_softc *sc;
753 	struct ubsec_session *ses = NULL;
754 	MD5_CTX md5ctx;
755 	SHA1_CTX sha1ctx;
756 	int i, sesn;
757 
758 	sc = arg;
759 	KASSERT(sc != NULL /*, ("ubsec_newsession: null softc")*/);
760 
761 	if (sidp == NULL || cri == NULL || sc == NULL)
762 		return (EINVAL);
763 
764 	for (c = cri; c != NULL; c = c->cri_next) {
765 		if (c->cri_alg == CRYPTO_MD5_HMAC ||
766 		    c->cri_alg == CRYPTO_SHA1_HMAC) {
767 			if (macini)
768 				return (EINVAL);
769 			macini = c;
770 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
771 		    c->cri_alg == CRYPTO_3DES_CBC) {
772 			if (encini)
773 				return (EINVAL);
774 			encini = c;
775 		} else
776 			return (EINVAL);
777 	}
778 	if (encini == NULL && macini == NULL)
779 		return (EINVAL);
780 
781 	if (sc->sc_sessions == NULL) {
782 		ses = sc->sc_sessions = (struct ubsec_session *)malloc(
783 		    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
784 		if (ses == NULL)
785 			return (ENOMEM);
786 		sesn = 0;
787 		sc->sc_nsessions = 1;
788 	} else {
789 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
790 			if (sc->sc_sessions[sesn].ses_used == 0) {
791 				ses = &sc->sc_sessions[sesn];
792 				break;
793 			}
794 		}
795 
796 		if (ses == NULL) {
797 			sesn = sc->sc_nsessions;
798 			ses = (struct ubsec_session *)malloc((sesn + 1) *
799 			    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
800 			if (ses == NULL)
801 				return (ENOMEM);
802 			bcopy(sc->sc_sessions, ses, sesn *
803 			    sizeof(struct ubsec_session));
804 			bzero(sc->sc_sessions, sesn *
805 			    sizeof(struct ubsec_session));
806 			free(sc->sc_sessions, M_DEVBUF);
807 			sc->sc_sessions = ses;
808 			ses = &sc->sc_sessions[sesn];
809 			sc->sc_nsessions++;
810 		}
811 	}
812 
813 	bzero(ses, sizeof(struct ubsec_session));
814 	ses->ses_used = 1;
815 	if (encini) {
816 		/* get an IV, network byte order */
817 #ifdef __NetBSD__
818 		rnd_extract_data(ses->ses_iv,
819 		    sizeof(ses->ses_iv), RND_EXTRACT_ANY);
820 #else
821 		get_random_bytes(ses->ses_iv, sizeof(ses->ses_iv));
822 #endif
823 
824 		/* Go ahead and compute key in ubsec's byte order */
825 		if (encini->cri_alg == CRYPTO_DES_CBC) {
826 			bcopy(encini->cri_key, &ses->ses_deskey[0], 8);
827 			bcopy(encini->cri_key, &ses->ses_deskey[2], 8);
828 			bcopy(encini->cri_key, &ses->ses_deskey[4], 8);
829 		} else
830 			bcopy(encini->cri_key, ses->ses_deskey, 24);
831 
832 		SWAP32(ses->ses_deskey[0]);
833 		SWAP32(ses->ses_deskey[1]);
834 		SWAP32(ses->ses_deskey[2]);
835 		SWAP32(ses->ses_deskey[3]);
836 		SWAP32(ses->ses_deskey[4]);
837 		SWAP32(ses->ses_deskey[5]);
838 	}
839 
840 	if (macini) {
841 		for (i = 0; i < macini->cri_klen / 8; i++)
842 			macini->cri_key[i] ^= HMAC_IPAD_VAL;
843 
844 		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
845 			MD5Init(&md5ctx);
846 			MD5Update(&md5ctx, macini->cri_key,
847 			    macini->cri_klen / 8);
848 			MD5Update(&md5ctx, hmac_ipad_buffer,
849 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
850 			bcopy(md5ctx.state, ses->ses_hminner,
851 			    sizeof(md5ctx.state));
852 		} else {
853 			SHA1Init(&sha1ctx);
854 			SHA1Update(&sha1ctx, macini->cri_key,
855 			    macini->cri_klen / 8);
856 			SHA1Update(&sha1ctx, hmac_ipad_buffer,
857 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
858 			bcopy(sha1ctx.state, ses->ses_hminner,
859 			    sizeof(sha1ctx.state));
860 		}
861 
862 		for (i = 0; i < macini->cri_klen / 8; i++)
863 			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
864 
865 		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
866 			MD5Init(&md5ctx);
867 			MD5Update(&md5ctx, macini->cri_key,
868 			    macini->cri_klen / 8);
869 			MD5Update(&md5ctx, hmac_opad_buffer,
870 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
871 			bcopy(md5ctx.state, ses->ses_hmouter,
872 			    sizeof(md5ctx.state));
873 		} else {
874 			SHA1Init(&sha1ctx);
875 			SHA1Update(&sha1ctx, macini->cri_key,
876 			    macini->cri_klen / 8);
877 			SHA1Update(&sha1ctx, hmac_opad_buffer,
878 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
879 			bcopy(sha1ctx.state, ses->ses_hmouter,
880 			    sizeof(sha1ctx.state));
881 		}
882 
883 		for (i = 0; i < macini->cri_klen / 8; i++)
884 			macini->cri_key[i] ^= HMAC_OPAD_VAL;
885 	}
886 
887 	*sidp = UBSEC_SID(device_unit(&sc->sc_dv), sesn);
888 	return (0);
889 }
890 
891 /*
892  * Deallocate a session.
893  */
894 static int
895 ubsec_freesession(void *arg, u_int64_t tid)
896 {
897 	struct ubsec_softc *sc;
898 	int session;
899 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
900 
901 	sc = arg;
902 	KASSERT(sc != NULL /*, ("ubsec_freesession: null softc")*/);
903 
904 	session = UBSEC_SESSION(sid);
905 	if (session >= sc->sc_nsessions)
906 		return (EINVAL);
907 
908 	bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
909 	return (0);
910 }
911 
912 #ifdef __FreeBSD__ /* Ugly gratuitous changes to bus_dma */
913 static void
914 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
915 {
916 	struct ubsec_operand *op = arg;
917 
918 	KASSERT(nsegs <= UBS_MAX_SCATTER
919 		/*, ("Too many DMA segments returned when mapping operand")*/);
920 #ifdef UBSEC_DEBUG
921 	if (ubsec_debug)
922 		printf("ubsec_op_cb: mapsize %u nsegs %d\n",
923 			(u_int) mapsize, nsegs);
924 #endif
925 	op->mapsize = mapsize;
926 	op->nsegs = nsegs;
927 	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
928 }
929 #endif
930 
931 static int
932 ubsec_process(void *arg, struct cryptop *crp, int hint)
933 {
934 	struct ubsec_q *q = NULL;
935 #ifdef	__OpenBSD__
936 	int card;
937 #endif
938 	int err = 0, i, j, s, nicealign;
939 	struct ubsec_softc *sc;
940 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
941 	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
942 	int sskip, dskip, stheend, dtheend;
943 	int16_t coffset;
944 	struct ubsec_session *ses;
945 	struct ubsec_pktctx ctx;
946 	struct ubsec_dma *dmap = NULL;
947 
948 	sc = arg;
949 	KASSERT(sc != NULL /*, ("ubsec_process: null softc")*/);
950 
951 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
952 		ubsecstats.hst_invalid++;
953 		return (EINVAL);
954 	}
955 	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
956 		ubsecstats.hst_badsession++;
957 		return (EINVAL);
958 	}
959 
960 	s = splnet();
961 
962 	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
963 		ubsecstats.hst_queuefull++;
964 		sc->sc_needwakeup |= CRYPTO_SYMQ;
965 		splx(s);
966 		return(ERESTART);
967 	}
968 
969 	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
970 	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, /*q,*/ q_next);
971 	splx(s);
972 
973 	dmap = q->q_dma; /* Save dma pointer */
974 	bzero(q, sizeof(struct ubsec_q));
975 	bzero(&ctx, sizeof(ctx));
976 
977 	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
978 	q->q_dma = dmap;
979 	ses = &sc->sc_sessions[q->q_sesn];
980 
981 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
982 		q->q_src_m = (struct mbuf *)crp->crp_buf;
983 		q->q_dst_m = (struct mbuf *)crp->crp_buf;
984 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
985 		q->q_src_io = (struct uio *)crp->crp_buf;
986 		q->q_dst_io = (struct uio *)crp->crp_buf;
987 	} else {
988 		ubsecstats.hst_badflags++;
989 		err = EINVAL;
990 		goto errout;	/* XXX we don't handle contiguous blocks! */
991 	}
992 
993 	bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr));
994 
995 	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
996 	dmap->d_dma->d_mcr.mcr_flags = 0;
997 	q->q_crp = crp;
998 
999 	crd1 = crp->crp_desc;
1000 	if (crd1 == NULL) {
1001 		ubsecstats.hst_nodesc++;
1002 		err = EINVAL;
1003 		goto errout;
1004 	}
1005 	crd2 = crd1->crd_next;
1006 
1007 	if (crd2 == NULL) {
1008 		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
1009 		    crd1->crd_alg == CRYPTO_SHA1_HMAC) {
1010 			maccrd = crd1;
1011 			enccrd = NULL;
1012 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1013 		    crd1->crd_alg == CRYPTO_3DES_CBC) {
1014 			maccrd = NULL;
1015 			enccrd = crd1;
1016 		} else {
1017 			ubsecstats.hst_badalg++;
1018 			err = EINVAL;
1019 			goto errout;
1020 		}
1021 	} else {
1022 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
1023 		    crd1->crd_alg == CRYPTO_SHA1_HMAC) &&
1024 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
1025 			crd2->crd_alg == CRYPTO_3DES_CBC) &&
1026 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1027 			maccrd = crd1;
1028 			enccrd = crd2;
1029 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1030 		    crd1->crd_alg == CRYPTO_3DES_CBC) &&
1031 		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
1032 			crd2->crd_alg == CRYPTO_SHA1_HMAC) &&
1033 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
1034 			enccrd = crd1;
1035 			maccrd = crd2;
1036 		} else {
1037 			/*
1038 			 * We cannot order the ubsec as requested
1039 			 */
1040 			ubsecstats.hst_badalg++;
1041 			err = EINVAL;
1042 			goto errout;
1043 		}
1044 	}
1045 
1046 	if (enccrd) {
1047 		encoffset = enccrd->crd_skip;
1048 		ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1049 
1050 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1051 			q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1052 
1053 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1054 				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1055 			else {
1056 				ctx.pc_iv[0] = ses->ses_iv[0];
1057 				ctx.pc_iv[1] = ses->ses_iv[1];
1058 			}
1059 
1060 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1061 				if (crp->crp_flags & CRYPTO_F_IMBUF)
1062 					m_copyback(q->q_src_m,
1063 					    enccrd->crd_inject,
1064 					    8, (caddr_t)ctx.pc_iv);
1065 				else if (crp->crp_flags & CRYPTO_F_IOV)
1066 					cuio_copyback(q->q_src_io,
1067 					    enccrd->crd_inject,
1068 					    8, (caddr_t)ctx.pc_iv);
1069 			}
1070 		} else {
1071 			ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1072 
1073 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1074 				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1075 			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1076 				m_copydata(q->q_src_m, enccrd->crd_inject,
1077 				    8, (caddr_t)ctx.pc_iv);
1078 			else if (crp->crp_flags & CRYPTO_F_IOV)
1079 				cuio_copydata(q->q_src_io,
1080 				    enccrd->crd_inject, 8,
1081 				    (caddr_t)ctx.pc_iv);
1082 		}
1083 
1084 		ctx.pc_deskey[0] = ses->ses_deskey[0];
1085 		ctx.pc_deskey[1] = ses->ses_deskey[1];
1086 		ctx.pc_deskey[2] = ses->ses_deskey[2];
1087 		ctx.pc_deskey[3] = ses->ses_deskey[3];
1088 		ctx.pc_deskey[4] = ses->ses_deskey[4];
1089 		ctx.pc_deskey[5] = ses->ses_deskey[5];
1090 		SWAP32(ctx.pc_iv[0]);
1091 		SWAP32(ctx.pc_iv[1]);
1092 	}
1093 
1094 	if (maccrd) {
1095 		macoffset = maccrd->crd_skip;
1096 
1097 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC)
1098 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1099 		else
1100 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1101 
1102 		for (i = 0; i < 5; i++) {
1103 			ctx.pc_hminner[i] = ses->ses_hminner[i];
1104 			ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1105 
1106 			HTOLE32(ctx.pc_hminner[i]);
1107 			HTOLE32(ctx.pc_hmouter[i]);
1108 		}
1109 	}
1110 
1111 	if (enccrd && maccrd) {
1112 		/*
1113 		 * ubsec cannot handle packets where the end of encryption
1114 		 * and authentication are not the same, or where the
1115 		 * encrypted part begins before the authenticated part.
1116 		 */
1117 		if ((encoffset + enccrd->crd_len) !=
1118 		    (macoffset + maccrd->crd_len)) {
1119 			ubsecstats.hst_lenmismatch++;
1120 			err = EINVAL;
1121 			goto errout;
1122 		}
1123 		if (enccrd->crd_skip < maccrd->crd_skip) {
1124 			ubsecstats.hst_skipmismatch++;
1125 			err = EINVAL;
1126 			goto errout;
1127 		}
1128 		sskip = maccrd->crd_skip;
1129 		cpskip = dskip = enccrd->crd_skip;
1130 		stheend = maccrd->crd_len;
1131 		dtheend = enccrd->crd_len;
1132 		coffset = enccrd->crd_skip - maccrd->crd_skip;
1133 		cpoffset = cpskip + dtheend;
1134 #ifdef UBSEC_DEBUG
1135 		if (ubsec_debug) {
1136 			printf("mac: skip %d, len %d, inject %d\n",
1137 			       maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1138 			printf("enc: skip %d, len %d, inject %d\n",
1139 			       enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1140 			printf("src: skip %d, len %d\n", sskip, stheend);
1141 			printf("dst: skip %d, len %d\n", dskip, dtheend);
1142 			printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1143 			       coffset, stheend, cpskip, cpoffset);
1144 		}
1145 #endif
1146 	} else {
1147 		cpskip = dskip = sskip = macoffset + encoffset;
1148 		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1149 		cpoffset = cpskip + dtheend;
1150 		coffset = 0;
1151 	}
1152 	ctx.pc_offset = htole16(coffset >> 2);
1153 
1154 	/* XXX FIXME: jonathan asks, what the heck's that 0xfff0?  */
1155 	if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
1156 		0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
1157 		err = ENOMEM;
1158 		goto errout;
1159 	}
1160 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1161 		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1162 		    q->q_src_m, BUS_DMA_NOWAIT) != 0) {
1163 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1164 			q->q_src_map = NULL;
1165 			ubsecstats.hst_noload++;
1166 			err = ENOMEM;
1167 			goto errout;
1168 		}
1169 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1170 		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1171 		    q->q_src_io, BUS_DMA_NOWAIT) != 0) {
1172 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1173 			q->q_src_map = NULL;
1174 			ubsecstats.hst_noload++;
1175 			err = ENOMEM;
1176 			goto errout;
1177 		}
1178 	}
1179 	nicealign = ubsec_dmamap_aligned(q->q_src_map);
1180 
1181 	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1182 
1183 #ifdef UBSEC_DEBUG
1184 	if (ubsec_debug)
1185 		printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1186 #endif
1187 	for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) {
1188 		struct ubsec_pktbuf *pb;
1189 		bus_size_t packl = q->q_src_map->dm_segs[i].ds_len;
1190 		bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr;
1191 
1192 		if (sskip >= packl) {
1193 			sskip -= packl;
1194 			continue;
1195 		}
1196 
1197 		packl -= sskip;
1198 		packp += sskip;
1199 		sskip = 0;
1200 
1201 		if (packl > 0xfffc) {
1202 			err = EIO;
1203 			goto errout;
1204 		}
1205 
1206 		if (j == 0)
1207 			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1208 		else
1209 			pb = &dmap->d_dma->d_sbuf[j - 1];
1210 
1211 		pb->pb_addr = htole32(packp);
1212 
1213 		if (stheend) {
1214 			if (packl > stheend) {
1215 				pb->pb_len = htole32(stheend);
1216 				stheend = 0;
1217 			} else {
1218 				pb->pb_len = htole32(packl);
1219 				stheend -= packl;
1220 			}
1221 		} else
1222 			pb->pb_len = htole32(packl);
1223 
1224 		if ((i + 1) == q->q_src_map->dm_nsegs)
1225 			pb->pb_next = 0;
1226 		else
1227 			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1228 			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1229 		j++;
1230 	}
1231 
1232 	if (enccrd == NULL && maccrd != NULL) {
1233 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1234 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1235 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1236 		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1237 #ifdef UBSEC_DEBUG
1238 		if (ubsec_debug)
1239 			printf("opkt: %x %x %x\n",
1240 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1241 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1242 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1243 
1244 #endif
1245 	} else {
1246 		if (crp->crp_flags & CRYPTO_F_IOV) {
1247 			if (!nicealign) {
1248 				ubsecstats.hst_iovmisaligned++;
1249 				err = EINVAL;
1250 				goto errout;
1251 			}
1252 			/* XXX: ``what the heck's that'' 0xfff0? */
1253 			if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1254 			    UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1255 			    &q->q_dst_map) != 0) {
1256 				ubsecstats.hst_nomap++;
1257 				err = ENOMEM;
1258 				goto errout;
1259 			}
1260 			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1261 			    q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
1262 				bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1263 				q->q_dst_map = NULL;
1264 				ubsecstats.hst_noload++;
1265 				err = ENOMEM;
1266 				goto errout;
1267 			}
1268 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1269 			if (nicealign) {
1270 				q->q_dst_m = q->q_src_m;
1271 				q->q_dst_map = q->q_src_map;
1272 			} else {
1273 				int totlen, len;
1274 				struct mbuf *m, *top, **mp;
1275 
1276 				ubsecstats.hst_unaligned++;
1277 				totlen = q->q_src_map->dm_mapsize;
1278 				if (q->q_src_m->m_flags & M_PKTHDR) {
1279 					len = MHLEN;
1280 					MGETHDR(m, M_DONTWAIT, MT_DATA);
1281 					/*XXX FIXME: m_dup_pkthdr */
1282 					if (m && 1 /*!m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)*/) {
1283 						m_free(m);
1284 						m = NULL;
1285 					}
1286 				} else {
1287 					len = MLEN;
1288 					MGET(m, M_DONTWAIT, MT_DATA);
1289 				}
1290 				if (m == NULL) {
1291 					ubsecstats.hst_nombuf++;
1292 					err = sc->sc_nqueue ? ERESTART : ENOMEM;
1293 					goto errout;
1294 				}
1295 				if (len == MHLEN)
1296 				  /*XXX was M_DUP_PKTHDR*/
1297 				  M_COPY_PKTHDR(m, q->q_src_m);
1298 				if (totlen >= MINCLSIZE) {
1299 					MCLGET(m, M_DONTWAIT);
1300 					if ((m->m_flags & M_EXT) == 0) {
1301 						m_free(m);
1302 						ubsecstats.hst_nomcl++;
1303 						err = sc->sc_nqueue ? ERESTART : ENOMEM;
1304 						goto errout;
1305 					}
1306 					len = MCLBYTES;
1307 				}
1308 				m->m_len = len;
1309 				top = NULL;
1310 				mp = &top;
1311 
1312 				while (totlen > 0) {
1313 					if (top) {
1314 						MGET(m, M_DONTWAIT, MT_DATA);
1315 						if (m == NULL) {
1316 							m_freem(top);
1317 							ubsecstats.hst_nombuf++;
1318 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1319 							goto errout;
1320 						}
1321 						len = MLEN;
1322 					}
1323 					if (top && totlen >= MINCLSIZE) {
1324 						MCLGET(m, M_DONTWAIT);
1325 						if ((m->m_flags & M_EXT) == 0) {
1326 							*mp = m;
1327 							m_freem(top);
1328 							ubsecstats.hst_nomcl++;
1329 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1330 							goto errout;
1331 						}
1332 						len = MCLBYTES;
1333 					}
1334 					m->m_len = len = min(totlen, len);
1335 					totlen -= len;
1336 					*mp = m;
1337 					mp = &m->m_next;
1338 				}
1339 				q->q_dst_m = top;
1340 				ubsec_mcopy(q->q_src_m, q->q_dst_m,
1341 				    cpskip, cpoffset);
1342 				/* XXX again, what the heck is that 0xfff0? */
1343 				if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1344 				    UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1345 				    &q->q_dst_map) != 0) {
1346 					ubsecstats.hst_nomap++;
1347 					err = ENOMEM;
1348 					goto errout;
1349 				}
1350 				if (bus_dmamap_load_mbuf(sc->sc_dmat,
1351 				    q->q_dst_map, q->q_dst_m,
1352 				    BUS_DMA_NOWAIT) != 0) {
1353 					bus_dmamap_destroy(sc->sc_dmat,
1354 					q->q_dst_map);
1355 					q->q_dst_map = NULL;
1356 					ubsecstats.hst_noload++;
1357 					err = ENOMEM;
1358 					goto errout;
1359 				}
1360 			}
1361 		} else {
1362 			ubsecstats.hst_badflags++;
1363 			err = EINVAL;
1364 			goto errout;
1365 		}
1366 
1367 #ifdef UBSEC_DEBUG
1368 		if (ubsec_debug)
1369 			printf("dst skip: %d\n", dskip);
1370 #endif
1371 		for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) {
1372 			struct ubsec_pktbuf *pb;
1373 			bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len;
1374 			bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr;
1375 
1376 			if (dskip >= packl) {
1377 				dskip -= packl;
1378 				continue;
1379 			}
1380 
1381 			packl -= dskip;
1382 			packp += dskip;
1383 			dskip = 0;
1384 
1385 			if (packl > 0xfffc) {
1386 				err = EIO;
1387 				goto errout;
1388 			}
1389 
1390 			if (j == 0)
1391 				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1392 			else
1393 				pb = &dmap->d_dma->d_dbuf[j - 1];
1394 
1395 			pb->pb_addr = htole32(packp);
1396 
1397 			if (dtheend) {
1398 				if (packl > dtheend) {
1399 					pb->pb_len = htole32(dtheend);
1400 					dtheend = 0;
1401 				} else {
1402 					pb->pb_len = htole32(packl);
1403 					dtheend -= packl;
1404 				}
1405 			} else
1406 				pb->pb_len = htole32(packl);
1407 
1408 			if ((i + 1) == q->q_dst_map->dm_nsegs) {
1409 				if (maccrd)
1410 					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1411 					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1412 				else
1413 					pb->pb_next = 0;
1414 			} else
1415 				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1416 				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1417 			j++;
1418 		}
1419 	}
1420 
1421 	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1422 	    offsetof(struct ubsec_dmachunk, d_ctx));
1423 
1424 	if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1425 		struct ubsec_pktctx_long *ctxl;
1426 
1427 		ctxl = (struct ubsec_pktctx_long *)(dmap->d_alloc.dma_vaddr +
1428 		    offsetof(struct ubsec_dmachunk, d_ctx));
1429 
1430 		/* transform small context into long context */
1431 		ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
1432 		ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
1433 		ctxl->pc_flags = ctx.pc_flags;
1434 		ctxl->pc_offset = ctx.pc_offset;
1435 		for (i = 0; i < 6; i++)
1436 			ctxl->pc_deskey[i] = ctx.pc_deskey[i];
1437 		for (i = 0; i < 5; i++)
1438 			ctxl->pc_hminner[i] = ctx.pc_hminner[i];
1439 		for (i = 0; i < 5; i++)
1440 			ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
1441 		ctxl->pc_iv[0] = ctx.pc_iv[0];
1442 		ctxl->pc_iv[1] = ctx.pc_iv[1];
1443 	} else
1444 		bcopy(&ctx, dmap->d_alloc.dma_vaddr +
1445 		    offsetof(struct ubsec_dmachunk, d_ctx),
1446 		    sizeof(struct ubsec_pktctx));
1447 
1448 	s = splnet();
1449 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1450 	sc->sc_nqueue++;
1451 	ubsecstats.hst_ipackets++;
1452 	ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize;
1453 	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch)
1454 		ubsec_feed(sc);
1455 	splx(s);
1456 	return (0);
1457 
1458 errout:
1459 	if (q != NULL) {
1460 		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1461 			m_freem(q->q_dst_m);
1462 
1463 		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1464 			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1465 			bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1466 		}
1467 		if (q->q_src_map != NULL) {
1468 			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1469 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1470 		}
1471 
1472 		s = splnet();
1473 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1474 		splx(s);
1475 	}
1476 #if 0 /* jonathan says: this openbsd code seems to be subsumed elsewhere */
1477 	if (err == EINVAL)
1478 		ubsecstats.hst_invalid++;
1479 	else
1480 		ubsecstats.hst_nomem++;
1481 #endif
1482 	if (err != ERESTART) {
1483 		crp->crp_etype = err;
1484 		crypto_done(crp);
1485 	} else {
1486 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1487 	}
1488 	return (err);
1489 }
1490 
1491 static void
1492 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1493 {
1494 	struct cryptop *crp = (struct cryptop *)q->q_crp;
1495 	struct cryptodesc *crd;
1496 	struct ubsec_dma *dmap = q->q_dma;
1497 
1498 	ubsecstats.hst_opackets++;
1499 	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1500 
1501 	bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
1502 	    dmap->d_alloc.dma_map->dm_mapsize,
1503 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1504 	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1505 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1506 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1507 		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1508 		bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1509 	}
1510 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
1511 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1512 	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1513 	bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1514 
1515 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1516 		m_freem(q->q_src_m);
1517 		crp->crp_buf = (caddr_t)q->q_dst_m;
1518 	}
1519 
1520 	/* copy out IV for future use */
1521 	if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1522 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1523 			if (crd->crd_alg != CRYPTO_DES_CBC &&
1524 			    crd->crd_alg != CRYPTO_3DES_CBC)
1525 				continue;
1526 			if (crp->crp_flags & CRYPTO_F_IMBUF)
1527 				m_copydata((struct mbuf *)crp->crp_buf,
1528 				    crd->crd_skip + crd->crd_len - 8, 8,
1529 				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1530 			else if (crp->crp_flags & CRYPTO_F_IOV) {
1531 				cuio_copydata((struct uio *)crp->crp_buf,
1532 				    crd->crd_skip + crd->crd_len - 8, 8,
1533 				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1534 			}
1535 			break;
1536 		}
1537 	}
1538 
1539 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1540 		if (crd->crd_alg != CRYPTO_MD5_HMAC &&
1541 		    crd->crd_alg != CRYPTO_SHA1_HMAC)
1542 			continue;
1543 		if (crp->crp_flags & CRYPTO_F_IMBUF)
1544 			m_copyback((struct mbuf *)crp->crp_buf,
1545 			    crd->crd_inject, 12,
1546 			    (caddr_t)dmap->d_dma->d_macbuf);
1547 		else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1548 			bcopy((caddr_t)dmap->d_dma->d_macbuf,
1549 			    crp->crp_mac, 12);
1550 		break;
1551 	}
1552 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1553 	crypto_done(crp);
1554 }
1555 
1556 static void
1557 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1558 {
1559 	int i, j, dlen, slen;
1560 	caddr_t dptr, sptr;
1561 
1562 	j = 0;
1563 	sptr = srcm->m_data;
1564 	slen = srcm->m_len;
1565 	dptr = dstm->m_data;
1566 	dlen = dstm->m_len;
1567 
1568 	while (1) {
1569 		for (i = 0; i < min(slen, dlen); i++) {
1570 			if (j < hoffset || j >= toffset)
1571 				*dptr++ = *sptr++;
1572 			slen--;
1573 			dlen--;
1574 			j++;
1575 		}
1576 		if (slen == 0) {
1577 			srcm = srcm->m_next;
1578 			if (srcm == NULL)
1579 				return;
1580 			sptr = srcm->m_data;
1581 			slen = srcm->m_len;
1582 		}
1583 		if (dlen == 0) {
1584 			dstm = dstm->m_next;
1585 			if (dstm == NULL)
1586 				return;
1587 			dptr = dstm->m_data;
1588 			dlen = dstm->m_len;
1589 		}
1590 	}
1591 }
1592 
1593 /*
1594  * feed the key generator, must be called at splnet() or higher.
1595  */
1596 static void
1597 ubsec_feed2(struct ubsec_softc *sc)
1598 {
1599 	struct ubsec_q2 *q;
1600 
1601 	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1602 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1603 			break;
1604 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1605 
1606 		bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1607 		    q->q_mcr.dma_map->dm_mapsize,
1608 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1609 		bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1610 		    q->q_ctx.dma_map->dm_mapsize,
1611 		    BUS_DMASYNC_PREWRITE);
1612 
1613 		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1614 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1615 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, /*q,*/ q_next);
1616 		--sc->sc_nqueue2;
1617 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1618 	}
1619 }
1620 
1621 /*
1622  * Callback for handling random numbers
1623  */
1624 static void
1625 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
1626 {
1627 	struct cryptkop *krp;
1628 	struct ubsec_ctx_keyop *ctx;
1629 
1630 	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
1631 	bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1632 	    q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1633 
1634 	switch (q->q_type) {
1635 #ifndef UBSEC_NO_RNG
1636 	case UBS_CTXOP_RNGSHA1:
1637 	case UBS_CTXOP_RNGBYPASS: {
1638 		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
1639 		u_int32_t *p;
1640 		int i;
1641 
1642 		bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
1643 		    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1644 		p = (u_int32_t *)rng->rng_buf.dma_vaddr;
1645 #ifndef __NetBSD__
1646 		for (i = 0; i < UBSEC_RNG_BUFSIZ; p++, i++)
1647 			add_true_randomness(letoh32(*p));
1648 		rng->rng_used = 0;
1649 #else
1650 		/* XXX NetBSD rnd subsystem too weak */
1651 		i = 0; (void)i;	/* shut off gcc warnings */
1652 #endif
1653 #ifdef __OpenBSD__
1654 		timeout_add(&sc->sc_rngto, sc->sc_rnghz);
1655 #else
1656 		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1657 #endif
1658 		break;
1659 	}
1660 #endif
1661 	case UBS_CTXOP_MODEXP: {
1662 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1663 		u_int rlen, clen;
1664 
1665 		krp = me->me_krp;
1666 		rlen = (me->me_modbits + 7) / 8;
1667 		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
1668 
1669 		bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
1670 		    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1671 		bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
1672 		    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1673 		bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
1674 		    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1675 		bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
1676 		    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1677 
1678 		if (clen < rlen)
1679 			krp->krp_status = E2BIG;
1680 		else {
1681 			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
1682 				bzero(krp->krp_param[krp->krp_iparams].crp_p,
1683 				    (krp->krp_param[krp->krp_iparams].crp_nbits
1684 					+ 7) / 8);
1685 				bcopy(me->me_C.dma_vaddr,
1686 				    krp->krp_param[krp->krp_iparams].crp_p,
1687 				    (me->me_modbits + 7) / 8);
1688 			} else
1689 				ubsec_kshift_l(me->me_shiftbits,
1690 				    me->me_C.dma_vaddr, me->me_normbits,
1691 				    krp->krp_param[krp->krp_iparams].crp_p,
1692 				    krp->krp_param[krp->krp_iparams].crp_nbits);
1693 		}
1694 
1695 		crypto_kdone(krp);
1696 
1697 		/* bzero all potentially sensitive data */
1698 		bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
1699 		bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
1700 		bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
1701 		bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
1702 
1703 		/* Can't free here, so put us on the free list. */
1704 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
1705 		break;
1706 	}
1707 	case UBS_CTXOP_RSAPRIV: {
1708 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1709 		u_int len;
1710 
1711 		krp = rp->rpr_krp;
1712 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0,
1713 		    rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1714 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0,
1715 		    rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1716 
1717 		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
1718 		bcopy(rp->rpr_msgout.dma_vaddr,
1719 		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
1720 
1721 		crypto_kdone(krp);
1722 
1723 		bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
1724 		bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
1725 		bzero(rp->rpr_q.q_ctx.dma_vaddr, rp->rpr_q.q_ctx.dma_size);
1726 
1727 		/* Can't free here, so put us on the free list. */
1728 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
1729 		break;
1730 	}
1731 	default:
1732 		printf("%s: unknown ctx op: %x\n", sc->sc_dv.dv_xname,
1733 		    letoh16(ctx->ctx_op));
1734 		break;
1735 	}
1736 }
1737 
1738 #ifndef UBSEC_NO_RNG
1739 static void
1740 ubsec_rng(void *vsc)
1741 {
1742 	struct ubsec_softc *sc = vsc;
1743 	struct ubsec_q2_rng *rng = &sc->sc_rng;
1744 	struct ubsec_mcr *mcr;
1745 	struct ubsec_ctx_rngbypass *ctx;
1746 	int s;
1747 
1748 	s = splnet();
1749 	if (rng->rng_used) {
1750 		splx(s);
1751 		return;
1752 	}
1753 	sc->sc_nqueue2++;
1754 	if (sc->sc_nqueue2 >= UBS_MAX_NQUEUE)
1755 		goto out;
1756 
1757 	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
1758 	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
1759 
1760 	mcr->mcr_pkts = htole16(1);
1761 	mcr->mcr_flags = 0;
1762 	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
1763 	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
1764 	mcr->mcr_ipktbuf.pb_len = 0;
1765 	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
1766 	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
1767 	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
1768 	    UBS_PKTBUF_LEN);
1769 	mcr->mcr_opktbuf.pb_next = 0;
1770 
1771 	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
1772 	ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1);
1773 	rng->rng_q.q_type = UBS_CTXOP_RNGSHA1;
1774 
1775 	bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
1776 	    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1777 
1778 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
1779 	rng->rng_used = 1;
1780 	ubsec_feed2(sc);
1781 	ubsecstats.hst_rng++;
1782 	splx(s);
1783 
1784 	return;
1785 
1786 out:
1787 	/*
1788 	 * Something weird happened, generate our own call back.
1789 	 */
1790 	sc->sc_nqueue2--;
1791 	splx(s);
1792 #ifdef __OpenBSD__
1793 	timeout_add(&sc->sc_rngto, sc->sc_rnghz);
1794 #else
1795 	callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1796 #endif
1797 }
1798 #endif /* UBSEC_NO_RNG */
1799 
1800 static int
1801 ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size,
1802 		 struct ubsec_dma_alloc *dma,int mapflags)
1803 {
1804 	int r;
1805 
1806 	if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
1807 	    &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0)
1808 		goto fail_0;
1809 
1810 	if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg,
1811 	    size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0)
1812 		goto fail_1;
1813 
1814 	if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1815 	    BUS_DMA_NOWAIT, &dma->dma_map)) != 0)
1816 		goto fail_2;
1817 
1818 	if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
1819 	    size, NULL, BUS_DMA_NOWAIT)) != 0)
1820 		goto fail_3;
1821 
1822 	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
1823 	dma->dma_size = size;
1824 	return (0);
1825 
1826 fail_3:
1827 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
1828 fail_2:
1829 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
1830 fail_1:
1831 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
1832 fail_0:
1833 	dma->dma_map = NULL;
1834 	return (r);
1835 }
1836 
1837 static void
1838 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
1839 {
1840 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
1841 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
1842 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
1843 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
1844 }
1845 
1846 /*
1847  * Resets the board.  Values in the regesters are left as is
1848  * from the reset (i.e. initial values are assigned elsewhere).
1849  */
1850 static void
1851 ubsec_reset_board(struct ubsec_softc *sc)
1852 {
1853     volatile u_int32_t ctrl;
1854 
1855     ctrl = READ_REG(sc, BS_CTRL);
1856     ctrl |= BS_CTRL_RESET;
1857     WRITE_REG(sc, BS_CTRL, ctrl);
1858 
1859     /*
1860      * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
1861      */
1862     DELAY(10);
1863 }
1864 
1865 /*
1866  * Init Broadcom registers
1867  */
1868 static void
1869 ubsec_init_board(struct ubsec_softc *sc)
1870 {
1871 	u_int32_t ctrl;
1872 
1873 	ctrl = READ_REG(sc, BS_CTRL);
1874 	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
1875 	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
1876 
1877 	/*
1878 	 * XXX: Sam Leffler's code has (UBS_FLAGS_KEY|UBS_FLAGS_RNG)).
1879 	 * anyone got hw docs?
1880 	 */
1881 	if (sc->sc_flags & UBS_FLAGS_KEY)
1882 		ctrl |= BS_CTRL_MCR2INT;
1883 	else
1884 		ctrl &= ~BS_CTRL_MCR2INT;
1885 
1886 	if (sc->sc_flags & UBS_FLAGS_HWNORM)
1887 		ctrl &= ~BS_CTRL_SWNORM;
1888 
1889 	WRITE_REG(sc, BS_CTRL, ctrl);
1890 }
1891 
1892 /*
1893  * Init Broadcom PCI registers
1894  */
1895 static void
1896 ubsec_init_pciregs(struct pci_attach_args *pa)
1897 {
1898 	pci_chipset_tag_t pc = pa->pa_pc;
1899 	u_int32_t misc;
1900 
1901 	/*
1902 	 * This will set the cache line size to 1, this will
1903 	 * force the BCM58xx chip just to do burst read/writes.
1904 	 * Cache line read/writes are to slow
1905 	 */
1906 	misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG);
1907 	misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT))
1908 	    | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT);
1909 	pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc);
1910 }
1911 
1912 /*
1913  * Clean up after a chip crash.
1914  * It is assumed that the caller in splnet()
1915  */
1916 static void
1917 ubsec_cleanchip(struct ubsec_softc *sc)
1918 {
1919 	struct ubsec_q *q;
1920 
1921 	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
1922 		q = SIMPLEQ_FIRST(&sc->sc_qchip);
1923 		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
1924 		ubsec_free_q(sc, q);
1925 	}
1926 	sc->sc_nqchip = 0;
1927 }
1928 
1929 /*
1930  * free a ubsec_q
1931  * It is assumed that the caller is within splnet()
1932  */
1933 static int
1934 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
1935 {
1936 	struct ubsec_q *q2;
1937 	struct cryptop *crp;
1938 	int npkts;
1939 	int i;
1940 
1941 	npkts = q->q_nstacked_mcrs;
1942 
1943 	for (i = 0; i < npkts; i++) {
1944 		if(q->q_stacked_mcr[i]) {
1945 			q2 = q->q_stacked_mcr[i];
1946 
1947 			if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
1948 				m_freem(q2->q_dst_m);
1949 
1950 			crp = (struct cryptop *)q2->q_crp;
1951 
1952 			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
1953 
1954 			crp->crp_etype = EFAULT;
1955 			crypto_done(crp);
1956 		} else {
1957 			break;
1958 		}
1959 	}
1960 
1961 	/*
1962 	 * Free header MCR
1963 	 */
1964 	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1965 		m_freem(q->q_dst_m);
1966 
1967 	crp = (struct cryptop *)q->q_crp;
1968 
1969 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1970 
1971 	crp->crp_etype = EFAULT;
1972 	crypto_done(crp);
1973 	return(0);
1974 }
1975 
1976 /*
1977  * Routine to reset the chip and clean up.
1978  * It is assumed that the caller is in splnet()
1979  */
1980 static void
1981 ubsec_totalreset(struct ubsec_softc *sc)
1982 {
1983 	ubsec_reset_board(sc);
1984 	ubsec_init_board(sc);
1985 	ubsec_cleanchip(sc);
1986 }
1987 
1988 static int
1989 ubsec_dmamap_aligned(bus_dmamap_t map)
1990 {
1991 	int i;
1992 
1993 	for (i = 0; i < map->dm_nsegs; i++) {
1994 		if (map->dm_segs[i].ds_addr & 3)
1995 			return (0);
1996 		if ((i != (map->dm_nsegs - 1)) &&
1997 		    (map->dm_segs[i].ds_len & 3))
1998 			return (0);
1999 	}
2000 	return (1);
2001 }
2002 
2003 #ifdef __OpenBSD__
2004 struct ubsec_softc *
2005 ubsec_kfind(struct cryptkop *krp)
2006 {
2007 	struct ubsec_softc *sc;
2008 	int i;
2009 
2010 	for (i = 0; i < ubsec_cd.cd_ndevs; i++) {
2011 		sc = ubsec_cd.cd_devs[i];
2012 		if (sc == NULL)
2013 			continue;
2014 		if (sc->sc_cid == krp->krp_hid)
2015 			return (sc);
2016 	}
2017 	return (NULL);
2018 }
2019 #endif
2020 
2021 static void
2022 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2023 {
2024 	switch (q->q_type) {
2025 	case UBS_CTXOP_MODEXP: {
2026 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2027 
2028 		ubsec_dma_free(sc, &me->me_q.q_mcr);
2029 		ubsec_dma_free(sc, &me->me_q.q_ctx);
2030 		ubsec_dma_free(sc, &me->me_M);
2031 		ubsec_dma_free(sc, &me->me_E);
2032 		ubsec_dma_free(sc, &me->me_C);
2033 		ubsec_dma_free(sc, &me->me_epb);
2034 		free(me, M_DEVBUF);
2035 		break;
2036 	}
2037 	case UBS_CTXOP_RSAPRIV: {
2038 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2039 
2040 		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2041 		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2042 		ubsec_dma_free(sc, &rp->rpr_msgin);
2043 		ubsec_dma_free(sc, &rp->rpr_msgout);
2044 		free(rp, M_DEVBUF);
2045 		break;
2046 	}
2047 	default:
2048 		printf("%s: invalid kfree 0x%x\n", sc->sc_dv.dv_xname,
2049 		    q->q_type);
2050 		break;
2051 	}
2052 }
2053 
2054 static int
2055 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2056 {
2057 	struct ubsec_softc *sc;
2058 	int r;
2059 
2060 	if (krp == NULL || krp->krp_callback == NULL)
2061 		return (EINVAL);
2062 #ifdef __OpenBSD__
2063 	if ((sc = ubsec_kfind(krp)) == NULL)
2064 		return (EINVAL);
2065 #else
2066 	sc = arg;
2067 	KASSERT(sc != NULL /*, ("ubsec_kprocess: null softc")*/);
2068 #endif
2069 
2070 	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2071 		struct ubsec_q2 *q;
2072 
2073 		q = SIMPLEQ_FIRST(&sc->sc_q2free);
2074 		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, /*q,*/ q_next);
2075 		ubsec_kfree(sc, q);
2076 	}
2077 
2078 	switch (krp->krp_op) {
2079 	case CRK_MOD_EXP:
2080 		if (sc->sc_flags & UBS_FLAGS_HWNORM)
2081 			r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2082 		else
2083 			r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2084 		break;
2085 	case CRK_MOD_EXP_CRT:
2086 		r = ubsec_kprocess_rsapriv(sc, krp, hint);
2087 		break;
2088 	default:
2089 		printf("%s: kprocess: invalid op 0x%x\n",
2090 		    sc->sc_dv.dv_xname, krp->krp_op);
2091 		krp->krp_status = EOPNOTSUPP;
2092 		crypto_kdone(krp);
2093 		r = 0;
2094 	}
2095 	return (r);
2096 }
2097 
2098 /*
2099  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2100  */
2101 static int
2102 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp,
2103 			 int hint __unused)
2104 {
2105 	struct ubsec_q2_modexp *me;
2106 	struct ubsec_mcr *mcr;
2107 	struct ubsec_ctx_modexp *ctx;
2108 	struct ubsec_pktbuf *epb;
2109 	int s, err = 0;
2110 	u_int nbits, normbits, mbits, shiftbits, ebits;
2111 
2112 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2113 	if (me == NULL) {
2114 		err = ENOMEM;
2115 		goto errout;
2116 	}
2117 	bzero(me, sizeof *me);
2118 	me->me_krp = krp;
2119 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2120 
2121 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2122 	if (nbits <= 512)
2123 		normbits = 512;
2124 	else if (nbits <= 768)
2125 		normbits = 768;
2126 	else if (nbits <= 1024)
2127 		normbits = 1024;
2128 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2129 		normbits = 1536;
2130 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2131 		normbits = 2048;
2132 	else {
2133 		err = E2BIG;
2134 		goto errout;
2135 	}
2136 
2137 	shiftbits = normbits - nbits;
2138 
2139 	me->me_modbits = nbits;
2140 	me->me_shiftbits = shiftbits;
2141 	me->me_normbits = normbits;
2142 
2143 	/* Sanity check: result bits must be >= true modulus bits. */
2144 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2145 		err = ERANGE;
2146 		goto errout;
2147 	}
2148 
2149 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2150 	    &me->me_q.q_mcr, 0)) {
2151 		err = ENOMEM;
2152 		goto errout;
2153 	}
2154 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2155 
2156 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2157 	    &me->me_q.q_ctx, 0)) {
2158 		err = ENOMEM;
2159 		goto errout;
2160 	}
2161 
2162 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2163 	if (mbits > nbits) {
2164 		err = E2BIG;
2165 		goto errout;
2166 	}
2167 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2168 		err = ENOMEM;
2169 		goto errout;
2170 	}
2171 	ubsec_kshift_r(shiftbits,
2172 	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2173 	    me->me_M.dma_vaddr, normbits);
2174 
2175 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2176 		err = ENOMEM;
2177 		goto errout;
2178 	}
2179 	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2180 
2181 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2182 	if (ebits > nbits) {
2183 		err = E2BIG;
2184 		goto errout;
2185 	}
2186 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2187 		err = ENOMEM;
2188 		goto errout;
2189 	}
2190 	ubsec_kshift_r(shiftbits,
2191 	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2192 	    me->me_E.dma_vaddr, normbits);
2193 
2194 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2195 	    &me->me_epb, 0)) {
2196 		err = ENOMEM;
2197 		goto errout;
2198 	}
2199 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2200 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2201 	epb->pb_next = 0;
2202 	epb->pb_len = htole32(normbits / 8);
2203 
2204 #ifdef UBSEC_DEBUG
2205 	if (ubsec_debug) {
2206 		printf("Epb ");
2207 		ubsec_dump_pb(epb);
2208 	}
2209 #endif
2210 
2211 	mcr->mcr_pkts = htole16(1);
2212 	mcr->mcr_flags = 0;
2213 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2214 	mcr->mcr_reserved = 0;
2215 	mcr->mcr_pktlen = 0;
2216 
2217 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2218 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2219 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2220 
2221 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2222 	mcr->mcr_opktbuf.pb_next = 0;
2223 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2224 
2225 #ifdef DIAGNOSTIC
2226 	/* Misaligned output buffer will hang the chip. */
2227 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2228 		panic("%s: modexp invalid addr 0x%x",
2229 		    sc->sc_dv.dv_xname, letoh32(mcr->mcr_opktbuf.pb_addr));
2230 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2231 		panic("%s: modexp invalid len 0x%x",
2232 		    sc->sc_dv.dv_xname, letoh32(mcr->mcr_opktbuf.pb_len));
2233 #endif
2234 
2235 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2236 	bzero(ctx, sizeof(*ctx));
2237 	ubsec_kshift_r(shiftbits,
2238 	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2239 	    ctx->me_N, normbits);
2240 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2241 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2242 	ctx->me_E_len = htole16(nbits);
2243 	ctx->me_N_len = htole16(nbits);
2244 
2245 #ifdef UBSEC_DEBUG
2246 	if (ubsec_debug) {
2247 		ubsec_dump_mcr(mcr);
2248 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2249 	}
2250 #endif
2251 
2252 	/*
2253 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2254 	 * everything else.
2255 	 */
2256 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2257 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2258 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2259 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2260 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2261 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2262 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2263 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2264 
2265 	/* Enqueue and we're done... */
2266 	s = splnet();
2267 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2268 	ubsec_feed2(sc);
2269 	ubsecstats.hst_modexp++;
2270 	splx(s);
2271 
2272 	return (0);
2273 
2274 errout:
2275 	if (me != NULL) {
2276 		if (me->me_q.q_mcr.dma_map != NULL)
2277 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2278 		if (me->me_q.q_ctx.dma_map != NULL) {
2279 			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2280 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2281 		}
2282 		if (me->me_M.dma_map != NULL) {
2283 			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2284 			ubsec_dma_free(sc, &me->me_M);
2285 		}
2286 		if (me->me_E.dma_map != NULL) {
2287 			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2288 			ubsec_dma_free(sc, &me->me_E);
2289 		}
2290 		if (me->me_C.dma_map != NULL) {
2291 			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2292 			ubsec_dma_free(sc, &me->me_C);
2293 		}
2294 		if (me->me_epb.dma_map != NULL)
2295 			ubsec_dma_free(sc, &me->me_epb);
2296 		free(me, M_DEVBUF);
2297 	}
2298 	krp->krp_status = err;
2299 	crypto_kdone(krp);
2300 	return (0);
2301 }
2302 
2303 /*
2304  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2305  */
2306 static int
2307 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp,
2308 			 int hint __unused)
2309 {
2310 	struct ubsec_q2_modexp *me;
2311 	struct ubsec_mcr *mcr;
2312 	struct ubsec_ctx_modexp *ctx;
2313 	struct ubsec_pktbuf *epb;
2314 	int s, err = 0;
2315 	u_int nbits, normbits, mbits, shiftbits, ebits;
2316 
2317 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2318 	if (me == NULL) {
2319 		err = ENOMEM;
2320 		goto errout;
2321 	}
2322 	bzero(me, sizeof *me);
2323 	me->me_krp = krp;
2324 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2325 
2326 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2327 	if (nbits <= 512)
2328 		normbits = 512;
2329 	else if (nbits <= 768)
2330 		normbits = 768;
2331 	else if (nbits <= 1024)
2332 		normbits = 1024;
2333 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2334 		normbits = 1536;
2335 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2336 		normbits = 2048;
2337 	else {
2338 		err = E2BIG;
2339 		goto errout;
2340 	}
2341 
2342 	shiftbits = normbits - nbits;
2343 
2344 	/* XXX ??? */
2345 	me->me_modbits = nbits;
2346 	me->me_shiftbits = shiftbits;
2347 	me->me_normbits = normbits;
2348 
2349 	/* Sanity check: result bits must be >= true modulus bits. */
2350 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2351 		err = ERANGE;
2352 		goto errout;
2353 	}
2354 
2355 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2356 	    &me->me_q.q_mcr, 0)) {
2357 		err = ENOMEM;
2358 		goto errout;
2359 	}
2360 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2361 
2362 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2363 	    &me->me_q.q_ctx, 0)) {
2364 		err = ENOMEM;
2365 		goto errout;
2366 	}
2367 
2368 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2369 	if (mbits > nbits) {
2370 		err = E2BIG;
2371 		goto errout;
2372 	}
2373 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2374 		err = ENOMEM;
2375 		goto errout;
2376 	}
2377 	bzero(me->me_M.dma_vaddr, normbits / 8);
2378 	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2379 	    me->me_M.dma_vaddr, (mbits + 7) / 8);
2380 
2381 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2382 		err = ENOMEM;
2383 		goto errout;
2384 	}
2385 	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2386 
2387 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2388 	if (ebits > nbits) {
2389 		err = E2BIG;
2390 		goto errout;
2391 	}
2392 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2393 		err = ENOMEM;
2394 		goto errout;
2395 	}
2396 	bzero(me->me_E.dma_vaddr, normbits / 8);
2397 	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2398 	    me->me_E.dma_vaddr, (ebits + 7) / 8);
2399 
2400 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2401 	    &me->me_epb, 0)) {
2402 		err = ENOMEM;
2403 		goto errout;
2404 	}
2405 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2406 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2407 	epb->pb_next = 0;
2408 	epb->pb_len = htole32((ebits + 7) / 8);
2409 
2410 #ifdef UBSEC_DEBUG
2411 	if (ubsec_debug) {
2412 		printf("Epb ");
2413 		ubsec_dump_pb(epb);
2414 	}
2415 #endif
2416 
2417 	mcr->mcr_pkts = htole16(1);
2418 	mcr->mcr_flags = 0;
2419 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2420 	mcr->mcr_reserved = 0;
2421 	mcr->mcr_pktlen = 0;
2422 
2423 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2424 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2425 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2426 
2427 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2428 	mcr->mcr_opktbuf.pb_next = 0;
2429 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2430 
2431 #ifdef DIAGNOSTIC
2432 	/* Misaligned output buffer will hang the chip. */
2433 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2434 		panic("%s: modexp invalid addr 0x%x",
2435 		    sc->sc_dv.dv_xname, letoh32(mcr->mcr_opktbuf.pb_addr));
2436 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2437 		panic("%s: modexp invalid len 0x%x",
2438 		    sc->sc_dv.dv_xname, letoh32(mcr->mcr_opktbuf.pb_len));
2439 #endif
2440 
2441 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2442 	bzero(ctx, sizeof(*ctx));
2443 	bcopy(krp->krp_param[UBS_MODEXP_PAR_N].crp_p, ctx->me_N,
2444 	    (nbits + 7) / 8);
2445 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2446 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2447 	ctx->me_E_len = htole16(ebits);
2448 	ctx->me_N_len = htole16(nbits);
2449 
2450 #ifdef UBSEC_DEBUG
2451 	if (ubsec_debug) {
2452 		ubsec_dump_mcr(mcr);
2453 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2454 	}
2455 #endif
2456 
2457 	/*
2458 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2459 	 * everything else.
2460 	 */
2461 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2462 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2463 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2464 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2465 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2466 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2467 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2468 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2469 
2470 	/* Enqueue and we're done... */
2471 	s = splnet();
2472 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2473 	ubsec_feed2(sc);
2474 	splx(s);
2475 
2476 	return (0);
2477 
2478 errout:
2479 	if (me != NULL) {
2480 		if (me->me_q.q_mcr.dma_map != NULL)
2481 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2482 		if (me->me_q.q_ctx.dma_map != NULL) {
2483 			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2484 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2485 		}
2486 		if (me->me_M.dma_map != NULL) {
2487 			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2488 			ubsec_dma_free(sc, &me->me_M);
2489 		}
2490 		if (me->me_E.dma_map != NULL) {
2491 			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2492 			ubsec_dma_free(sc, &me->me_E);
2493 		}
2494 		if (me->me_C.dma_map != NULL) {
2495 			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2496 			ubsec_dma_free(sc, &me->me_C);
2497 		}
2498 		if (me->me_epb.dma_map != NULL)
2499 			ubsec_dma_free(sc, &me->me_epb);
2500 		free(me, M_DEVBUF);
2501 	}
2502 	krp->krp_status = err;
2503 	crypto_kdone(krp);
2504 	return (0);
2505 }
2506 
2507 static int
2508 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp,
2509 		       int hint __unused)
2510 {
2511 	struct ubsec_q2_rsapriv *rp = NULL;
2512 	struct ubsec_mcr *mcr;
2513 	struct ubsec_ctx_rsapriv *ctx;
2514 	int s, err = 0;
2515 	u_int padlen, msglen;
2516 
2517 	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2518 	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2519 	if (msglen > padlen)
2520 		padlen = msglen;
2521 
2522 	if (padlen <= 256)
2523 		padlen = 256;
2524 	else if (padlen <= 384)
2525 		padlen = 384;
2526 	else if (padlen <= 512)
2527 		padlen = 512;
2528 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2529 		padlen = 768;
2530 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2531 		padlen = 1024;
2532 	else {
2533 		err = E2BIG;
2534 		goto errout;
2535 	}
2536 
2537 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2538 		err = E2BIG;
2539 		goto errout;
2540 	}
2541 
2542 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2543 		err = E2BIG;
2544 		goto errout;
2545 	}
2546 
2547 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2548 		err = E2BIG;
2549 		goto errout;
2550 	}
2551 
2552 	rp = (struct ubsec_q2_rsapriv *)malloc(sizeof *rp, M_DEVBUF, M_NOWAIT);
2553 	if (rp == NULL)
2554 		return (ENOMEM);
2555 	bzero(rp, sizeof *rp);
2556 	rp->rpr_krp = krp;
2557 	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2558 
2559 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2560 	    &rp->rpr_q.q_mcr, 0)) {
2561 		err = ENOMEM;
2562 		goto errout;
2563 	}
2564 	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2565 
2566 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2567 	    &rp->rpr_q.q_ctx, 0)) {
2568 		err = ENOMEM;
2569 		goto errout;
2570 	}
2571 	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
2572 	bzero(ctx, sizeof *ctx);
2573 
2574 	/* Copy in p */
2575 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
2576 	    &ctx->rpr_buf[0 * (padlen / 8)],
2577 	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
2578 
2579 	/* Copy in q */
2580 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
2581 	    &ctx->rpr_buf[1 * (padlen / 8)],
2582 	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
2583 
2584 	/* Copy in dp */
2585 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
2586 	    &ctx->rpr_buf[2 * (padlen / 8)],
2587 	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
2588 
2589 	/* Copy in dq */
2590 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
2591 	    &ctx->rpr_buf[3 * (padlen / 8)],
2592 	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
2593 
2594 	/* Copy in pinv */
2595 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
2596 	    &ctx->rpr_buf[4 * (padlen / 8)],
2597 	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
2598 
2599 	msglen = padlen * 2;
2600 
2601 	/* Copy in input message (aligned buffer/length). */
2602 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
2603 		/* Is this likely? */
2604 		err = E2BIG;
2605 		goto errout;
2606 	}
2607 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
2608 		err = ENOMEM;
2609 		goto errout;
2610 	}
2611 	bzero(rp->rpr_msgin.dma_vaddr, (msglen + 7) / 8);
2612 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
2613 	    rp->rpr_msgin.dma_vaddr,
2614 	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
2615 
2616 	/* Prepare space for output message (aligned buffer/length). */
2617 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
2618 		/* Is this likely? */
2619 		err = E2BIG;
2620 		goto errout;
2621 	}
2622 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
2623 		err = ENOMEM;
2624 		goto errout;
2625 	}
2626 	bzero(rp->rpr_msgout.dma_vaddr, (msglen + 7) / 8);
2627 
2628 	mcr->mcr_pkts = htole16(1);
2629 	mcr->mcr_flags = 0;
2630 	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
2631 	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
2632 	mcr->mcr_ipktbuf.pb_next = 0;
2633 	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
2634 	mcr->mcr_reserved = 0;
2635 	mcr->mcr_pktlen = htole16(msglen);
2636 	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
2637 	mcr->mcr_opktbuf.pb_next = 0;
2638 	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
2639 
2640 #ifdef DIAGNOSTIC
2641 	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
2642 		panic("%s: rsapriv: invalid msgin 0x%lx(0x%lx)",
2643 		    sc->sc_dv.dv_xname, (u_long) rp->rpr_msgin.dma_paddr,
2644 		    (u_long) rp->rpr_msgin.dma_size);
2645 	}
2646 	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
2647 		panic("%s: rsapriv: invalid msgout 0x%lx(0x%lx)",
2648 		    sc->sc_dv.dv_xname, (u_long) rp->rpr_msgout.dma_paddr,
2649 		    (u_long) rp->rpr_msgout.dma_size);
2650 	}
2651 #endif
2652 
2653 	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
2654 	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
2655 	ctx->rpr_q_len = htole16(padlen);
2656 	ctx->rpr_p_len = htole16(padlen);
2657 
2658 	/*
2659 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2660 	 * everything else.
2661 	 */
2662 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map,
2663 	    0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2664 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map,
2665 	    0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2666 
2667 	/* Enqueue and we're done... */
2668 	s = splnet();
2669 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
2670 	ubsec_feed2(sc);
2671 	ubsecstats.hst_modexpcrt++;
2672 	splx(s);
2673 	return (0);
2674 
2675 errout:
2676 	if (rp != NULL) {
2677 		if (rp->rpr_q.q_mcr.dma_map != NULL)
2678 			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2679 		if (rp->rpr_msgin.dma_map != NULL) {
2680 			bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
2681 			ubsec_dma_free(sc, &rp->rpr_msgin);
2682 		}
2683 		if (rp->rpr_msgout.dma_map != NULL) {
2684 			bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
2685 			ubsec_dma_free(sc, &rp->rpr_msgout);
2686 		}
2687 		free(rp, M_DEVBUF);
2688 	}
2689 	krp->krp_status = err;
2690 	crypto_kdone(krp);
2691 	return (0);
2692 }
2693 
2694 #ifdef UBSEC_DEBUG
2695 static void
2696 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
2697 {
2698 	printf("addr 0x%x (0x%x) next 0x%x\n",
2699 	    pb->pb_addr, pb->pb_len, pb->pb_next);
2700 }
2701 
2702 static void
2703 ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *c)
2704 {
2705 	printf("CTX (0x%x):\n", c->ctx_len);
2706 	switch (letoh16(c->ctx_op)) {
2707 	case UBS_CTXOP_RNGBYPASS:
2708 	case UBS_CTXOP_RNGSHA1:
2709 		break;
2710 	case UBS_CTXOP_MODEXP:
2711 	{
2712 		struct ubsec_ctx_modexp *cx = (void *)c;
2713 		int i, len;
2714 
2715 		printf(" Elen %u, Nlen %u\n",
2716 		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
2717 		len = (cx->me_N_len + 7)/8;
2718 		for (i = 0; i < len; i++)
2719 			printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
2720 		printf("\n");
2721 		break;
2722 	}
2723 	default:
2724 		printf("unknown context: %x\n", c->ctx_op);
2725 	}
2726 	printf("END CTX\n");
2727 }
2728 
2729 static void
2730 ubsec_dump_mcr(struct ubsec_mcr *mcr)
2731 {
2732 	volatile struct ubsec_mcr_add *ma;
2733 	int i;
2734 
2735 	printf("MCR:\n");
2736 	printf(" pkts: %u, flags 0x%x\n",
2737 	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
2738 	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
2739 	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
2740 		printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
2741 		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
2742 		    letoh16(ma->mcr_reserved));
2743 		printf(" %d: ipkt ", i);
2744 		ubsec_dump_pb(&ma->mcr_ipktbuf);
2745 		printf(" %d: opkt ", i);
2746 		ubsec_dump_pb(&ma->mcr_opktbuf);
2747 		ma++;
2748 	}
2749 	printf("END MCR\n");
2750 }
2751 #endif /* UBSEC_DEBUG */
2752 
2753 /*
2754  * Return the number of significant bits of a big number.
2755  */
2756 static int
2757 ubsec_ksigbits(struct crparam *cr)
2758 {
2759 	u_int plen = (cr->crp_nbits + 7) / 8;
2760 	int i, sig = plen * 8;
2761 	u_int8_t c, *p = cr->crp_p;
2762 
2763 	for (i = plen - 1; i >= 0; i--) {
2764 		c = p[i];
2765 		if (c != 0) {
2766 			while ((c & 0x80) == 0) {
2767 				sig--;
2768 				c <<= 1;
2769 			}
2770 			break;
2771 		}
2772 		sig -= 8;
2773 	}
2774 	return (sig);
2775 }
2776 
2777 static void
2778 ubsec_kshift_r(u_int shiftbits, u_int8_t *src, u_int srcbits,
2779     u_int8_t *dst, u_int dstbits)
2780 {
2781 	u_int slen, dlen;
2782 	int i, si, di, n;
2783 
2784 	slen = (srcbits + 7) / 8;
2785 	dlen = (dstbits + 7) / 8;
2786 
2787 	for (i = 0; i < slen; i++)
2788 		dst[i] = src[i];
2789 	for (i = 0; i < dlen - slen; i++)
2790 		dst[slen + i] = 0;
2791 
2792 	n = shiftbits / 8;
2793 	if (n != 0) {
2794 		si = dlen - n - 1;
2795 		di = dlen - 1;
2796 		while (si >= 0)
2797 			dst[di--] = dst[si--];
2798 		while (di >= 0)
2799 			dst[di--] = 0;
2800 	}
2801 
2802 	n = shiftbits % 8;
2803 	if (n != 0) {
2804 		for (i = dlen - 1; i > 0; i--)
2805 			dst[i] = (dst[i] << n) |
2806 			    (dst[i - 1] >> (8 - n));
2807 		dst[0] = dst[0] << n;
2808 	}
2809 }
2810 
2811 static void
2812 ubsec_kshift_l(u_int shiftbits, u_int8_t *src, u_int srcbits,
2813     u_int8_t *dst, u_int dstbits)
2814 {
2815 	int slen, dlen, i, n;
2816 
2817 	slen = (srcbits + 7) / 8;
2818 	dlen = (dstbits + 7) / 8;
2819 
2820 	n = shiftbits / 8;
2821 	for (i = 0; i < slen; i++)
2822 		dst[i] = src[i + n];
2823 	for (i = 0; i < dlen - slen; i++)
2824 		dst[slen + i] = 0;
2825 
2826 	n = shiftbits % 8;
2827 	if (n != 0) {
2828 		for (i = 0; i < (dlen - 1); i++)
2829 			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
2830 		dst[dlen - 1] = dst[dlen - 1] >> n;
2831 	}
2832 }
2833