xref: /netbsd-src/sys/dev/pci/ubsec.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: ubsec.c,v 1.40 2014/04/19 12:29:24 bad Exp $	*/
2 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.6 2003/01/23 21:06:43 sam Exp $ */
3 /*	$OpenBSD: ubsec.c,v 1.143 2009/03/27 13:31:30 reyk Exp$	*/
4 
5 /*
6  * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
7  * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
8  * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
23  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
28  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  * Effort sponsored in part by the Defense Advanced Research Projects
32  * Agency (DARPA) and Air Force Research Laboratory, Air Force
33  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
34  *
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: ubsec.c,v 1.40 2014/04/19 12:29:24 bad Exp $");
39 
40 #undef UBSEC_DEBUG
41 
42 /*
43  * uBsec 5[56]01, 58xx hardware crypto accelerator
44  */
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/proc.h>
49 #include <sys/endian.h>
50 #ifdef __NetBSD__
51   #define UBSEC_NO_RNG	/* hangs on attach */
52   #define letoh16 htole16
53   #define letoh32 htole32
54 #endif
55 #include <sys/errno.h>
56 #include <sys/malloc.h>
57 #include <sys/kernel.h>
58 #include <sys/mbuf.h>
59 #include <sys/device.h>
60 #include <sys/module.h>
61 #include <sys/queue.h>
62 #include <sys/sysctl.h>
63 
64 #include <opencrypto/cryptodev.h>
65 #include <opencrypto/xform.h>
66 #ifdef __OpenBSD__
67  #include <dev/rndvar.h>
68  #include <sys/md5k.h>
69 #else
70  #include <sys/cprng.h>
71  #include <sys/md5.h>
72 #endif
73 #include <sys/sha1.h>
74 
75 #include <dev/pci/pcireg.h>
76 #include <dev/pci/pcivar.h>
77 #include <dev/pci/pcidevs.h>
78 
79 #include <dev/pci/ubsecreg.h>
80 #include <dev/pci/ubsecvar.h>
81 
82 /*
83  * Prototypes and count for the pci_device structure
84  */
85 static	int ubsec_probe(device_t, cfdata_t, void *);
86 static	void ubsec_attach(device_t, device_t, void *);
87 static	int  ubsec_detach(device_t, int);
88 static	int  ubsec_sysctl_init(void);
89 static	void ubsec_reset_board(struct ubsec_softc *);
90 static	void ubsec_init_board(struct ubsec_softc *);
91 static	void ubsec_init_pciregs(struct pci_attach_args *pa);
92 static	void ubsec_cleanchip(struct ubsec_softc *);
93 static	void ubsec_totalreset(struct ubsec_softc *);
94 static	int  ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
95 
96 #ifdef __OpenBSD__
97 struct cfattach ubsec_ca = {
98 	sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
99 };
100 
101 struct cfdriver ubsec_cd = {
102 	0, "ubsec", DV_DULL
103 };
104 #else
105 CFATTACH_DECL_NEW(ubsec, sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
106 	      ubsec_detach, NULL);
107 extern struct cfdriver ubsec_cd;
108 #endif
109 
110 /* patchable */
111 #ifdef	UBSEC_DEBUG
112 extern int ubsec_debug;
113 int ubsec_debug=1;
114 #endif
115 
116 static	int	ubsec_intr(void *);
117 static	int	ubsec_newsession(void*, u_int32_t *, struct cryptoini *);
118 static	int	ubsec_freesession(void*, u_int64_t);
119 static	int	ubsec_process(void*, struct cryptop *, int hint);
120 static	void	ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
121 static	void	ubsec_feed(struct ubsec_softc *);
122 static	void	ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
123 static	void	ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
124 static	void	ubsec_feed2(struct ubsec_softc *);
125 static	void	ubsec_feed4(struct ubsec_softc *);
126 #ifndef UBSEC_NO_RNG
127 static  void	ubsec_rng(void *);
128 static  void	ubsec_rng_locked(void *);
129 static  void	ubsec_rng_get(size_t, void *);
130 #endif /* UBSEC_NO_RNG */
131 static	int 	ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
132 				 struct ubsec_dma_alloc *, int);
133 static	void	ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
134 static	int	ubsec_dmamap_aligned(bus_dmamap_t);
135 
136 static	int	ubsec_kprocess(void*, struct cryptkop *, int);
137 static	int	ubsec_kprocess_modexp_sw(struct ubsec_softc *,
138 					 struct cryptkop *, int);
139 static	int	ubsec_kprocess_modexp_hw(struct ubsec_softc *,
140 					 struct cryptkop *, int);
141 static	int	ubsec_kprocess_rsapriv(struct ubsec_softc *,
142 				       struct cryptkop *, int);
143 static	void	ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
144 static	int	ubsec_ksigbits(struct crparam *);
145 static	void	ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
146 static	void	ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
147 
148 #ifdef UBSEC_DEBUG
149 static void	ubsec_dump_pb(volatile struct ubsec_pktbuf *);
150 static void	ubsec_dump_mcr(struct ubsec_mcr *);
151 static	void	ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *);
152 #endif
153 
154 #define	READ_REG(sc,r) \
155 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
156 
157 #define WRITE_REG(sc,reg,val) \
158 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
159 
160 #define	SWAP32(x) (x) = htole32(ntohl((x)))
161 #ifndef HTOLE32
162  #define	HTOLE32(x) (x) = htole32(x)
163 #endif
164 
165 struct ubsec_stats ubsecstats;
166 
167 static struct sysctllog *ubsec_sysctllog;
168 
169 /*
170  * ubsec_maxbatch controls the number of crypto ops to voluntarily
171  * collect into one submission to the hardware.  This batching happens
172  * when ops are dispatched from the crypto subsystem with a hint that
173  * more are to follow immediately.  These ops must also not be marked
174  * with a ``no delay'' flag.
175  */
176 static	int ubsec_maxbatch = 1;
177 
178 /*
179  * ubsec_maxaggr controls the number of crypto ops to submit to the
180  * hardware as a unit.  This aggregation reduces the number of interrupts
181  * to the host at the expense of increased latency (for all but the last
182  * operation).  For network traffic setting this to one yields the highest
183  * performance but at the expense of more interrupt processing.
184  */
185 static	int ubsec_maxaggr = 1;
186 
187 static const struct ubsec_product {
188 	pci_vendor_id_t		ubsec_vendor;
189 	pci_product_id_t	ubsec_product;
190 	int			ubsec_flags;
191 	int			ubsec_statmask;
192 	int			ubsec_maxaggr;
193 	const char		*ubsec_name;
194 } ubsec_products[] = {
195 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5501,
196 	  0,
197 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
198 	  UBS_MIN_AGGR,
199 	  "Bluesteel 5501"
200 	},
201 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5601,
202 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
203 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
204 	  UBS_MIN_AGGR,
205 	  "Bluesteel 5601"
206 	},
207 
208 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5801,
209 	  0,
210 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
211 	  UBS_MIN_AGGR,
212 	  "Broadcom BCM5801"
213 	},
214 
215 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5802,
216 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
217 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
218 	  UBS_MIN_AGGR,
219 	  "Broadcom BCM5802"
220 	},
221 
222 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5805,
223 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
224 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
225 	  UBS_MIN_AGGR,
226 	  "Broadcom BCM5805"
227 	},
228 
229 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5820,
230 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
231 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
232 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
233 	  UBS_MIN_AGGR,
234 	  "Broadcom BCM5820"
235 	},
236 
237 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5821,
238 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
239 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
240 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
241 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
242 	  UBS_MIN_AGGR,
243 	  "Broadcom BCM5821"
244 	},
245 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_SCA1K,
246 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
247 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
248 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
249 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
250 	  UBS_MIN_AGGR,
251 	  "Sun Crypto Accelerator 1000"
252 	},
253 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_5821,
254 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
255 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
256 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
257 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
258 	  UBS_MIN_AGGR,
259 	  "Broadcom BCM5821 (Sun)"
260 	},
261 
262 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5822,
263 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
264 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
265 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
266 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
267 	  UBS_MIN_AGGR,
268 	  "Broadcom BCM5822"
269 	},
270 
271 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5823,
272 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
273 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
274 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
275 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
276 	  UBS_MIN_AGGR,
277 	  "Broadcom BCM5823"
278 	},
279 
280 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5825,
281 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
282 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
283 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
284 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
285 	  UBS_MIN_AGGR,
286 	  "Broadcom BCM5825"
287 	},
288 
289 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5860,
290 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
291 	      UBS_FLAGS_LONGCTX |
292 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
293 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
294 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
295 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
296 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
297 	  UBS_MAX_AGGR,
298 	  "Broadcom BCM5860"
299 	},
300 
301 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5861,
302 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
303 	      UBS_FLAGS_LONGCTX |
304 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
305 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
306 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
307 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
308 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
309 	  UBS_MAX_AGGR,
310 	  "Broadcom BCM5861"
311 	},
312 
313 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5862,
314 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
315 	      UBS_FLAGS_LONGCTX |
316 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
317 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
318 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
319 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
320 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
321 	  UBS_MAX_AGGR,
322 	  "Broadcom BCM5862"
323 	},
324 
325 	{ 0,			0,
326 	  0,
327 	  0,
328 	  0,
329 	  NULL
330 	}
331 };
332 
333 static const struct ubsec_product *
334 ubsec_lookup(const struct pci_attach_args *pa)
335 {
336 	const struct ubsec_product *up;
337 
338 	for (up = ubsec_products; up->ubsec_name != NULL; up++) {
339 		if (PCI_VENDOR(pa->pa_id) == up->ubsec_vendor &&
340 		    PCI_PRODUCT(pa->pa_id) == up->ubsec_product)
341 			return (up);
342 	}
343 	return (NULL);
344 }
345 
346 static int
347 ubsec_probe(device_t parent, cfdata_t match, void *aux)
348 {
349 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
350 
351 	if (ubsec_lookup(pa) != NULL)
352 		return (1);
353 
354 	return (0);
355 }
356 
357 static void
358 ubsec_attach(device_t parent, device_t self, void *aux)
359 {
360 	struct ubsec_softc *sc = device_private(self);
361 	struct pci_attach_args *pa = aux;
362 	const struct ubsec_product *up;
363 	pci_chipset_tag_t pc = pa->pa_pc;
364 	pci_intr_handle_t ih;
365 	const char *intrstr = NULL;
366 	pcireg_t memtype;
367 	struct ubsec_dma *dmap;
368 	u_int32_t cmd, i;
369 	char intrbuf[PCI_INTRSTR_LEN];
370 
371 	sc->sc_dev = self;
372 	sc->sc_pct = pc;
373 
374 	up = ubsec_lookup(pa);
375 	if (up == NULL) {
376 		printf("\n");
377 		panic("ubsec_attach: impossible");
378 	}
379 
380 	pci_aprint_devinfo_fancy(pa, "Crypto processor", up->ubsec_name, 1);
381 
382 	SIMPLEQ_INIT(&sc->sc_queue);
383 	SIMPLEQ_INIT(&sc->sc_qchip);
384 	SIMPLEQ_INIT(&sc->sc_queue2);
385 	SIMPLEQ_INIT(&sc->sc_qchip2);
386 	SIMPLEQ_INIT(&sc->sc_queue4);
387 	SIMPLEQ_INIT(&sc->sc_qchip4);
388 	SIMPLEQ_INIT(&sc->sc_q2free);
389 
390 	sc->sc_flags = up->ubsec_flags;
391 	sc->sc_statmask = up->ubsec_statmask;
392 	sc->sc_maxaggr = up->ubsec_maxaggr;
393 
394 	cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
395 	cmd |= PCI_COMMAND_MASTER_ENABLE;
396 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd);
397 
398 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BS_BAR);
399 	if (pci_mapreg_map(pa, BS_BAR, memtype, 0,
400 	    &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize)) {
401 		aprint_error_dev(self, "can't find mem space");
402 		return;
403 	}
404 
405 	sc->sc_dmat = pa->pa_dmat;
406 
407 	if (pci_intr_map(pa, &ih)) {
408 		aprint_error_dev(self, "couldn't map interrupt\n");
409 		return;
410 	}
411 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
412 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ubsec_intr, sc);
413 	if (sc->sc_ih == NULL) {
414 		aprint_error_dev(self, "couldn't establish interrupt");
415 		if (intrstr != NULL)
416 			aprint_error(" at %s", intrstr);
417 		aprint_error("\n");
418 		return;
419 	}
420 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
421 
422 	sc->sc_cid = crypto_get_driverid(0);
423 	if (sc->sc_cid < 0) {
424 		aprint_error_dev(self, "couldn't get crypto driver id\n");
425 		pci_intr_disestablish(pc, sc->sc_ih);
426 		return;
427 	}
428 
429 	sc->sc_rng_need = RND_POOLBITS / NBBY;
430 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_VM);
431 
432 	SIMPLEQ_INIT(&sc->sc_freequeue);
433 	dmap = sc->sc_dmaa;
434 	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
435 		struct ubsec_q *q;
436 
437 		q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
438 		    M_DEVBUF, M_ZERO|M_NOWAIT);
439 		if (q == NULL) {
440 			aprint_error_dev(self, "can't allocate queue buffers\n");
441 			break;
442 		}
443 
444 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
445 		    &dmap->d_alloc, 0)) {
446 			aprint_error_dev(self, "can't allocate dma buffers\n");
447 			free(q, M_DEVBUF);
448 			break;
449 		}
450 		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
451 
452 		q->q_dma = dmap;
453 		sc->sc_queuea[i] = q;
454 
455 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
456 	}
457 
458 	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
459 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
460 	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
461 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
462 	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC_96, 0, 0,
463 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
464 	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC_96, 0, 0,
465 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
466 	if (sc->sc_flags & UBS_FLAGS_AES) {
467 		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
468 		    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
469 	}
470 
471 	/*
472 	 * Reset Broadcom chip
473 	 */
474 	ubsec_reset_board(sc);
475 
476 	/*
477 	 * Init Broadcom specific PCI settings
478 	 */
479 	ubsec_init_pciregs(pa);
480 
481 	/*
482 	 * Init Broadcom chip
483 	 */
484 	ubsec_init_board(sc);
485 
486 #ifndef UBSEC_NO_RNG
487 	if (sc->sc_flags & UBS_FLAGS_RNG) {
488 		if (sc->sc_flags & UBS_FLAGS_RNG4)
489 			sc->sc_statmask |= BS_STAT_MCR4_DONE;
490 		else
491 			sc->sc_statmask |= BS_STAT_MCR2_DONE;
492 
493 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
494 		    &sc->sc_rng.rng_q.q_mcr, 0))
495 			goto skip_rng;
496 
497 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
498 		    &sc->sc_rng.rng_q.q_ctx, 0)) {
499 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
500 			goto skip_rng;
501 		}
502 
503 		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
504 		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
505 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
506 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
507 			goto skip_rng;
508 		}
509 
510 		rndsource_setcb(&sc->sc_rnd_source, ubsec_rng_get, sc);
511 		rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
512 				  RND_TYPE_RNG,
513 				  RND_FLAG_NO_ESTIMATE|RND_FLAG_HASCB);
514 		if (hz >= 100)
515 			sc->sc_rnghz = hz / 100;
516 		else
517 			sc->sc_rnghz = 1;
518 #ifdef __OpenBSD__
519 		timeout_set(&sc->sc_rngto, ubsec_rng, sc);
520 		timeout_add(&sc->sc_rngto, sc->sc_rnghz);
521 #else
522 		callout_init(&sc->sc_rngto, 0);
523 		callout_setfunc(&sc->sc_rngto, ubsec_rng, sc);
524 		callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
525 #endif
526  skip_rng:
527 		if (sc->sc_rnghz)
528 			aprint_normal_dev(self, "random number generator enabled\n");
529 		else
530 			aprint_error_dev(self, "WARNING: random number generator "
531 			    "disabled\n");
532 	}
533 #endif /* UBSEC_NO_RNG */
534 
535 	if (sc->sc_flags & UBS_FLAGS_KEY) {
536 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
537 
538 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
539 				 ubsec_kprocess, sc);
540 #if 0
541 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
542 				 ubsec_kprocess, sc);
543 #endif
544 	}
545 }
546 
547 static int
548 ubsec_detach(device_t self, int flags)
549 {
550 	struct ubsec_softc *sc = device_private(self);
551 	struct ubsec_q *q, *qtmp;
552 	volatile u_int32_t ctrl;
553 
554 	/* disable interrupts */
555 	/* XXX wait/abort current ops? where is DMAERR enabled? */
556 	ctrl = READ_REG(sc, BS_CTRL);
557 
558 	ctrl &= ~(BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR);
559 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
560 		ctrl &= ~BS_CTRL_MCR4INT;
561 
562 	WRITE_REG(sc, BS_CTRL, ctrl);
563 
564 #ifndef UBSEC_NO_RNG
565 	if (sc->sc_flags & UBS_FLAGS_RNG) {
566 		callout_halt(&sc->sc_rngto, NULL);
567 		ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
568 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
569 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
570 		rnd_detach_source(&sc->sc_rnd_source);
571 	}
572 #endif /* UBSEC_NO_RNG */
573 
574 	crypto_unregister_all(sc->sc_cid);
575 
576 	mutex_spin_enter(&sc->sc_mtx);
577 
578 	ubsec_totalreset(sc);  /* XXX leaves the chip running */
579 
580 	SIMPLEQ_FOREACH_SAFE(q, &sc->sc_freequeue, q_next, qtmp) {
581 		ubsec_dma_free(sc, &q->q_dma->d_alloc);
582 		if (q->q_src_map != NULL)
583 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
584 		if (q->q_cached_dst_map != NULL)
585 			bus_dmamap_destroy(sc->sc_dmat, q->q_cached_dst_map);
586 		free(q, M_DEVBUF);
587 	}
588 
589 	mutex_spin_exit(&sc->sc_mtx);
590 
591 	if (sc->sc_ih != NULL) {
592 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
593 		sc->sc_ih = NULL;
594 	}
595 
596 	if (sc->sc_memsize != 0) {
597 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize);
598 		sc->sc_memsize = 0;
599 	}
600 
601 	return 0;
602 }
603 
604 MODULE(MODULE_CLASS_DRIVER, ubsec, "pci,opencrypto");
605 
606 #ifdef _MODULE
607 #include "ioconf.c"
608 #endif
609 
610 static int
611 ubsec_modcmd(modcmd_t cmd, void *data)
612 {
613 	int error = 0;
614 
615 	switch (cmd) {
616 	case MODULE_CMD_INIT:
617 #ifdef _MODULE
618 		error = config_init_component(cfdriver_ioconf_ubsec,
619 		    cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
620 #endif
621 		if (error == 0)
622 			error = ubsec_sysctl_init();
623 		return error;
624 	case MODULE_CMD_FINI:
625 		if (ubsec_sysctllog != NULL)
626 			sysctl_teardown(&ubsec_sysctllog);
627 #ifdef _MODULE
628 		error = config_fini_component(cfdriver_ioconf_ubsec,
629 		    cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
630 #endif
631 		return error;
632 	default:
633 		return ENOTTY;
634 	}
635 }
636 
637 static int
638 ubsec_sysctl_init(void)
639 {
640 	const struct sysctlnode *node = NULL;
641 
642 	ubsec_sysctllog = NULL;
643 
644 	sysctl_createv(&ubsec_sysctllog, 0, NULL, &node,
645 		CTLFLAG_PERMANENT,
646 		CTLTYPE_NODE, "ubsec",
647 		SYSCTL_DESCR("ubsec opetions"),
648 		NULL, 0, NULL, 0,
649 		CTL_HW, CTL_CREATE, CTL_EOL);
650 	sysctl_createv(&ubsec_sysctllog, 0, &node, NULL,
651 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
652 		CTLTYPE_INT, "maxbatch",
653 		SYSCTL_DESCR("max ops to batch w/o interrupt"),
654 		NULL, 0, &ubsec_maxbatch, 0,
655 		CTL_CREATE, CTL_EOL);
656 	sysctl_createv(&ubsec_sysctllog, 0, &node, NULL,
657 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
658 		CTLTYPE_INT, "maxaggr",
659 		SYSCTL_DESCR("max ops to aggregate under one interrupt"),
660 		NULL, 0, &ubsec_maxaggr, 0,
661 		CTL_CREATE, CTL_EOL);
662 
663 	return 0;
664 }
665 
666 /*
667  * UBSEC Interrupt routine
668  */
669 static int
670 ubsec_intr(void *arg)
671 {
672 	struct ubsec_softc *sc = arg;
673 	volatile u_int32_t stat;
674 	struct ubsec_q *q;
675 	struct ubsec_dma *dmap;
676 	int flags;
677 	int npkts = 0, i;
678 
679 	mutex_spin_enter(&sc->sc_mtx);
680 	stat = READ_REG(sc, BS_STAT);
681 	stat &= sc->sc_statmask;
682 	if (stat == 0) {
683 		mutex_spin_exit(&sc->sc_mtx);
684 		return (0);
685 	}
686 
687 	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
688 
689 	/*
690 	 * Check to see if we have any packets waiting for us
691 	 */
692 	if ((stat & BS_STAT_MCR1_DONE)) {
693 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
694 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
695 			dmap = q->q_dma;
696 
697 			if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
698 				break;
699 
700 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
701 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
702 
703 			npkts = q->q_nstacked_mcrs;
704 			sc->sc_nqchip -= 1+npkts;
705 			/*
706 			 * search for further sc_qchip ubsec_q's that share
707 			 * the same MCR, and complete them too, they must be
708 			 * at the top.
709 			 */
710 			for (i = 0; i < npkts; i++) {
711 				if(q->q_stacked_mcr[i])
712 					ubsec_callback(sc, q->q_stacked_mcr[i]);
713 				else
714 					break;
715 			}
716 			ubsec_callback(sc, q);
717 		}
718 
719 		/*
720 		 * Don't send any more packet to chip if there has been
721 		 * a DMAERR.
722 		 */
723 		if (!(stat & BS_STAT_DMAERR))
724 			ubsec_feed(sc);
725 	}
726 
727 	/*
728 	 * Check to see if we have any key setups/rng's waiting for us
729 	 */
730 	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
731 	    (stat & BS_STAT_MCR2_DONE)) {
732 		struct ubsec_q2 *q2;
733 		struct ubsec_mcr *mcr;
734 
735 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
736 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
737 
738 			bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
739 			    0, q2->q_mcr.dma_map->dm_mapsize,
740 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
741 
742 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
743 
744 			/* A bug in new devices requires to swap this field */
745 			if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
746 				flags = htole16(mcr->mcr_flags);
747 			else
748 				flags = mcr->mcr_flags;
749 			if ((flags & htole16(UBS_MCR_DONE)) == 0) {
750 				bus_dmamap_sync(sc->sc_dmat,
751 				    q2->q_mcr.dma_map, 0,
752 				    q2->q_mcr.dma_map->dm_mapsize,
753 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
754 				break;
755 			}
756 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
757 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, /*q2,*/ q_next);
758 			ubsec_callback2(sc, q2);
759 			/*
760 			 * Don't send any more packet to chip if there has been
761 			 * a DMAERR.
762 			 */
763 			if (!(stat & BS_STAT_DMAERR))
764 				ubsec_feed2(sc);
765 		}
766 	}
767 	if ((sc->sc_flags & UBS_FLAGS_RNG4) && (stat & BS_STAT_MCR4_DONE)) {
768 		struct ubsec_q2 *q2;
769 		struct ubsec_mcr *mcr;
770 
771 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip4)) {
772 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip4);
773 
774 			bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
775 			    0, q2->q_mcr.dma_map->dm_mapsize,
776 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
777 
778 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
779 
780 			/* A bug in new devices requires to swap this field */
781 			flags = htole16(mcr->mcr_flags);
782 
783 			if ((flags & htole16(UBS_MCR_DONE)) == 0) {
784 				bus_dmamap_sync(sc->sc_dmat,
785 				    q2->q_mcr.dma_map, 0,
786 				    q2->q_mcr.dma_map->dm_mapsize,
787 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
788 				break;
789 			}
790 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip4, q_next);
791 			ubsec_callback2(sc, q2);
792 			/*
793 			 * Don't send any more packet to chip if there has been
794 			 * a DMAERR.
795 			 */
796 			if (!(stat & BS_STAT_DMAERR))
797 				ubsec_feed4(sc);
798 		}
799 	}
800 
801 	/*
802 	 * Check to see if we got any DMA Error
803 	 */
804 	if (stat & BS_STAT_DMAERR) {
805 #ifdef UBSEC_DEBUG
806 		if (ubsec_debug) {
807 			volatile u_int32_t a = READ_REG(sc, BS_ERR);
808 
809 			printf("%s: dmaerr %s@%08x\n", device_xname(sc->sc_dev),
810 			    (a & BS_ERR_READ) ? "read" : "write",
811 			       a & BS_ERR_ADDR);
812 		}
813 #endif /* UBSEC_DEBUG */
814 		ubsecstats.hst_dmaerr++;
815 		ubsec_totalreset(sc);
816 		ubsec_feed(sc);
817 	}
818 
819 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
820 		int wkeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
821 #ifdef UBSEC_DEBUG
822 		if (ubsec_debug)
823 			printf("%s: wakeup crypto (%x)\n", device_xname(sc->sc_dev),
824 				sc->sc_needwakeup);
825 #endif /* UBSEC_DEBUG */
826 		sc->sc_needwakeup &= ~wkeup;
827 		crypto_unblock(sc->sc_cid, wkeup);
828 	}
829 	mutex_spin_exit(&sc->sc_mtx);
830 	return (1);
831 }
832 
833 /*
834  * ubsec_feed() - aggregate and post requests to chip
835  * OpenBSD comments:
836  *		  It is assumed that the caller set splnet()
837  */
838 static void
839 ubsec_feed(struct ubsec_softc *sc)
840 {
841 	struct ubsec_q *q, *q2;
842 	int npkts, i;
843 	void *v;
844 	u_int32_t stat;
845 #ifdef UBSEC_DEBUG
846 	static int max;
847 #endif /* UBSEC_DEBUG */
848 
849 	npkts = sc->sc_nqueue;
850 	if (npkts > ubsecstats.hst_maxqueue)
851 		ubsecstats.hst_maxqueue = npkts;
852 	if (npkts < 2)
853 		goto feed1;
854 
855 	/*
856 	 * Decide how many ops to combine in a single MCR.  We cannot
857 	 * aggregate more than UBS_MAX_AGGR because this is the number
858 	 * of slots defined in the data structure.  Otherwise we clamp
859 	 * based on the tunable parameter ubsec_maxaggr.  Note that
860 	 * aggregation can happen in two ways: either by batching ops
861 	 * from above or because the h/w backs up and throttles us.
862 	 * Aggregating ops reduces the number of interrupts to the host
863 	 * but also (potentially) increases the latency for processing
864 	 * completed ops as we only get an interrupt when all aggregated
865 	 * ops have completed.
866 	 */
867 	if (npkts > sc->sc_maxaggr)
868 		npkts = sc->sc_maxaggr;
869 	if (npkts > ubsec_maxaggr)
870 		npkts = ubsec_maxaggr;
871 	if (npkts > ubsecstats.hst_maxbatch)
872 		ubsecstats.hst_maxbatch = npkts;
873 	if (npkts < 2)
874 		goto feed1;
875 	ubsecstats.hst_totbatch += npkts-1;
876 
877 	if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
878 		if (stat & BS_STAT_DMAERR) {
879 			ubsec_totalreset(sc);
880 			ubsecstats.hst_dmaerr++;
881 		} else {
882 			ubsecstats.hst_mcr1full++;
883 		}
884 		return;
885 	}
886 
887 #ifdef UBSEC_DEBUG
888 	if (ubsec_debug)
889 	    printf("merging %d records\n", npkts);
890 	/* XXX temporary aggregation statistics reporting code */
891 	if (max < npkts) {
892 		max = npkts;
893 		printf("%s: new max aggregate %d\n", device_xname(sc->sc_dev), max);
894 	}
895 #endif /* UBSEC_DEBUG */
896 
897 	q = SIMPLEQ_FIRST(&sc->sc_queue);
898 	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
899 	--sc->sc_nqueue;
900 
901 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
902 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
903 	if (q->q_dst_map != NULL)
904 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
905 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
906 
907 	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
908 
909 	for (i = 0; i < q->q_nstacked_mcrs; i++) {
910 		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
911 		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
912 		    0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
913 		if (q2->q_dst_map != NULL)
914 			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
915 			    0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
916 		q2= SIMPLEQ_FIRST(&sc->sc_queue);
917 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q2,*/ q_next);
918 		--sc->sc_nqueue;
919 
920 		v = ((void *)&q2->q_dma->d_dma->d_mcr);
921 		v = (char*)v + (sizeof(struct ubsec_mcr) -
922 				 sizeof(struct ubsec_mcr_add));
923 		memcpy(&q->q_dma->d_dma->d_mcradd[i], v, sizeof(struct ubsec_mcr_add));
924 		q->q_stacked_mcr[i] = q2;
925 	}
926 	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
927 	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
928 	sc->sc_nqchip += npkts;
929 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
930 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
931 	bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
932 	    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
933 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
934 	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
935 	    offsetof(struct ubsec_dmachunk, d_mcr));
936 	return;
937 
938 feed1:
939 	while (!SIMPLEQ_EMPTY(&sc->sc_queue)) {
940 		if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
941 			if (stat & BS_STAT_DMAERR) {
942 				ubsec_totalreset(sc);
943 				ubsecstats.hst_dmaerr++;
944 			} else {
945 				ubsecstats.hst_mcr1full++;
946 			}
947 			break;
948 		}
949 
950 		q = SIMPLEQ_FIRST(&sc->sc_queue);
951 
952 		bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
953 		    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
954 		if (q->q_dst_map != NULL)
955 			bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
956 			    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
957 		bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
958 		    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
959 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
960 
961 		WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
962 		    offsetof(struct ubsec_dmachunk, d_mcr));
963 #ifdef UBSEC_DEBUG
964 		if (ubsec_debug)
965 			printf("feed: q->chip %p %08x stat %08x\n",
966  		    	       q, (u_int32_t)q->q_dma->d_alloc.dma_paddr,
967 			       stat);
968 #endif /* UBSEC_DEBUG */
969 		q = SIMPLEQ_FIRST(&sc->sc_queue);
970 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
971 		--sc->sc_nqueue;
972 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
973 		sc->sc_nqchip++;
974 	}
975 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
976 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
977 }
978 
979 /*
980  * Allocate a new 'session' and return an encoded session id.  'sidp'
981  * contains our registration id, and should contain an encoded session
982  * id on successful allocation.
983  */
984 static int
985 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
986 {
987 	struct cryptoini *c, *encini = NULL, *macini = NULL;
988 	struct ubsec_softc *sc;
989 	struct ubsec_session *ses = NULL;
990 	MD5_CTX md5ctx;
991 	SHA1_CTX sha1ctx;
992 	int i, sesn;
993 
994 	sc = arg;
995 	KASSERT(sc != NULL /*, ("ubsec_newsession: null softc")*/);
996 
997 	if (sidp == NULL || cri == NULL || sc == NULL)
998 		return (EINVAL);
999 
1000 	for (c = cri; c != NULL; c = c->cri_next) {
1001 		if (c->cri_alg == CRYPTO_MD5_HMAC_96 ||
1002 		    c->cri_alg == CRYPTO_SHA1_HMAC_96) {
1003 			if (macini)
1004 				return (EINVAL);
1005 			macini = c;
1006 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
1007 		    c->cri_alg == CRYPTO_3DES_CBC ||
1008 		    c->cri_alg == CRYPTO_AES_CBC) {
1009 			if (encini)
1010 				return (EINVAL);
1011 			encini = c;
1012 		} else
1013 			return (EINVAL);
1014 	}
1015 	if (encini == NULL && macini == NULL)
1016 		return (EINVAL);
1017 
1018 	if (encini && encini->cri_alg == CRYPTO_AES_CBC) {
1019 		switch (encini->cri_klen) {
1020 		case 128:
1021 		case 192:
1022 		case 256:
1023 			break;
1024 		default:
1025 			return (EINVAL);
1026 		}
1027 	}
1028 
1029 	if (sc->sc_sessions == NULL) {
1030 		ses = sc->sc_sessions = (struct ubsec_session *)malloc(
1031 		    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
1032 		if (ses == NULL)
1033 			return (ENOMEM);
1034 		sesn = 0;
1035 		sc->sc_nsessions = 1;
1036 	} else {
1037 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
1038 			if (sc->sc_sessions[sesn].ses_used == 0) {
1039 				ses = &sc->sc_sessions[sesn];
1040 				break;
1041 			}
1042 		}
1043 
1044 		if (ses == NULL) {
1045 			sesn = sc->sc_nsessions;
1046 			ses = (struct ubsec_session *)malloc((sesn + 1) *
1047 			    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
1048 			if (ses == NULL)
1049 				return (ENOMEM);
1050 			memcpy(ses, sc->sc_sessions, sesn *
1051 			    sizeof(struct ubsec_session));
1052 			memset(sc->sc_sessions, 0, sesn *
1053 			    sizeof(struct ubsec_session));
1054 			free(sc->sc_sessions, M_DEVBUF);
1055 			sc->sc_sessions = ses;
1056 			ses = &sc->sc_sessions[sesn];
1057 			sc->sc_nsessions++;
1058 		}
1059 	}
1060 
1061 	memset(ses, 0, sizeof(struct ubsec_session));
1062 	ses->ses_used = 1;
1063 	if (encini) {
1064 		/* get an IV, network byte order */
1065 #ifdef __NetBSD__
1066 		cprng_fast(ses->ses_iv, sizeof(ses->ses_iv));
1067 #else
1068 		get_random_bytes(ses->ses_iv, sizeof(ses->ses_iv));
1069 #endif
1070 
1071 		/* Go ahead and compute key in ubsec's byte order */
1072 		if (encini->cri_alg == CRYPTO_AES_CBC) {
1073 			memcpy(ses->ses_key, encini->cri_key,
1074 			    encini->cri_klen / 8);
1075 		}
1076 		if (encini->cri_alg == CRYPTO_DES_CBC) {
1077 			memcpy(&ses->ses_key[0], encini->cri_key, 8);
1078 			memcpy(&ses->ses_key[2], encini->cri_key, 8);
1079 			memcpy(&ses->ses_key[4], encini->cri_key, 8);
1080 		} else
1081 			memcpy(ses->ses_key, encini->cri_key, 24);
1082 
1083 		SWAP32(ses->ses_key[0]);
1084 		SWAP32(ses->ses_key[1]);
1085 		SWAP32(ses->ses_key[2]);
1086 		SWAP32(ses->ses_key[3]);
1087 		SWAP32(ses->ses_key[4]);
1088 		SWAP32(ses->ses_key[5]);
1089 	}
1090 
1091 	if (macini) {
1092 		for (i = 0; i < macini->cri_klen / 8; i++)
1093 			macini->cri_key[i] ^= HMAC_IPAD_VAL;
1094 
1095 		if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
1096 			MD5Init(&md5ctx);
1097 			MD5Update(&md5ctx, macini->cri_key,
1098 			    macini->cri_klen / 8);
1099 			MD5Update(&md5ctx, hmac_ipad_buffer,
1100 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1101 			memcpy(ses->ses_hminner, md5ctx.state,
1102 			    sizeof(md5ctx.state));
1103 		} else {
1104 			SHA1Init(&sha1ctx);
1105 			SHA1Update(&sha1ctx, macini->cri_key,
1106 			    macini->cri_klen / 8);
1107 			SHA1Update(&sha1ctx, hmac_ipad_buffer,
1108 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1109 			memcpy(ses->ses_hminner, sha1ctx.state,
1110 			    sizeof(sha1ctx.state));
1111 		}
1112 
1113 		for (i = 0; i < macini->cri_klen / 8; i++)
1114 			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
1115 
1116 		if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
1117 			MD5Init(&md5ctx);
1118 			MD5Update(&md5ctx, macini->cri_key,
1119 			    macini->cri_klen / 8);
1120 			MD5Update(&md5ctx, hmac_opad_buffer,
1121 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1122 			memcpy(ses->ses_hmouter, md5ctx.state,
1123 			    sizeof(md5ctx.state));
1124 		} else {
1125 			SHA1Init(&sha1ctx);
1126 			SHA1Update(&sha1ctx, macini->cri_key,
1127 			    macini->cri_klen / 8);
1128 			SHA1Update(&sha1ctx, hmac_opad_buffer,
1129 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1130 			memcpy(ses->ses_hmouter, sha1ctx.state,
1131 			    sizeof(sha1ctx.state));
1132 		}
1133 
1134 		for (i = 0; i < macini->cri_klen / 8; i++)
1135 			macini->cri_key[i] ^= HMAC_OPAD_VAL;
1136 	}
1137 
1138 	*sidp = UBSEC_SID(device_unit(sc->sc_dev), sesn);
1139 	return (0);
1140 }
1141 
1142 /*
1143  * Deallocate a session.
1144  */
1145 static int
1146 ubsec_freesession(void *arg, u_int64_t tid)
1147 {
1148 	struct ubsec_softc *sc;
1149 	int session;
1150 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
1151 
1152 	sc = arg;
1153 	KASSERT(sc != NULL /*, ("ubsec_freesession: null softc")*/);
1154 
1155 	session = UBSEC_SESSION(sid);
1156 	if (session >= sc->sc_nsessions)
1157 		return (EINVAL);
1158 
1159 	memset(&sc->sc_sessions[session], 0, sizeof(sc->sc_sessions[session]));
1160 	return (0);
1161 }
1162 
1163 #ifdef __FreeBSD__ /* Ugly gratuitous changes to bus_dma */
1164 static void
1165 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
1166 {
1167 	struct ubsec_operand *op = arg;
1168 
1169 	KASSERT(nsegs <= UBS_MAX_SCATTER
1170 		/*, ("Too many DMA segments returned when mapping operand")*/);
1171 #ifdef UBSEC_DEBUG
1172 	if (ubsec_debug)
1173 		printf("ubsec_op_cb: mapsize %u nsegs %d\n",
1174 			(u_int) mapsize, nsegs);
1175 #endif
1176 	op->mapsize = mapsize;
1177 	op->nsegs = nsegs;
1178 	memcpy(op->segs, seg, nsegs * sizeof (seg[0]));
1179 }
1180 #endif
1181 
1182 static int
1183 ubsec_process(void *arg, struct cryptop *crp, int hint)
1184 {
1185 	struct ubsec_q *q = NULL;
1186 #ifdef	__OpenBSD__
1187 	int card;
1188 #endif
1189 	int err = 0, i, j, nicealign;
1190 	struct ubsec_softc *sc;
1191 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1192 	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1193 	int sskip, dskip, stheend, dtheend;
1194 	int16_t coffset;
1195 	struct ubsec_session *ses, key;
1196 	struct ubsec_dma *dmap = NULL;
1197 	u_int16_t flags = 0;
1198 	int ivlen = 0, keylen = 0;
1199 
1200 	sc = arg;
1201 	KASSERT(sc != NULL /*, ("ubsec_process: null softc")*/);
1202 
1203 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
1204 		ubsecstats.hst_invalid++;
1205 		return (EINVAL);
1206 	}
1207 	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
1208 		ubsecstats.hst_badsession++;
1209 		return (EINVAL);
1210 	}
1211 
1212 	mutex_spin_enter(&sc->sc_mtx);
1213 
1214 	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1215 		ubsecstats.hst_queuefull++;
1216 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1217 		mutex_spin_exit(&sc->sc_mtx);
1218 		return(ERESTART);
1219 	}
1220 
1221 	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
1222 	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, /*q,*/ q_next);
1223 	mutex_spin_exit(&sc->sc_mtx);
1224 
1225 	dmap = q->q_dma; /* Save dma pointer */
1226 	/* don't lose the cached dmamaps q_src_map and q_cached_dst_map */
1227 	memset(q, 0, offsetof(struct ubsec_q, q_src_map));
1228 	memset(&key, 0, sizeof(key));
1229 
1230 	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1231 	q->q_dma = dmap;
1232 	ses = &sc->sc_sessions[q->q_sesn];
1233 
1234 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1235 		q->q_src_m = (struct mbuf *)crp->crp_buf;
1236 		q->q_dst_m = (struct mbuf *)crp->crp_buf;
1237 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1238 		q->q_src_io = (struct uio *)crp->crp_buf;
1239 		q->q_dst_io = (struct uio *)crp->crp_buf;
1240 	} else {
1241 		ubsecstats.hst_badflags++;
1242 		err = EINVAL;
1243 		goto errout;	/* XXX we don't handle contiguous blocks! */
1244 	}
1245 
1246 	memset(&dmap->d_dma->d_mcr, 0, sizeof(struct ubsec_mcr));
1247 
1248 	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1249 	dmap->d_dma->d_mcr.mcr_flags = 0;
1250 	q->q_crp = crp;
1251 
1252 	crd1 = crp->crp_desc;
1253 	if (crd1 == NULL) {
1254 		ubsecstats.hst_nodesc++;
1255 		err = EINVAL;
1256 		goto errout;
1257 	}
1258 	crd2 = crd1->crd_next;
1259 
1260 	if (crd2 == NULL) {
1261 		if (crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
1262 		    crd1->crd_alg == CRYPTO_SHA1_HMAC_96) {
1263 			maccrd = crd1;
1264 			enccrd = NULL;
1265 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1266 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
1267 		    crd1->crd_alg == CRYPTO_AES_CBC) {
1268 			maccrd = NULL;
1269 			enccrd = crd1;
1270 		} else {
1271 			ubsecstats.hst_badalg++;
1272 			err = EINVAL;
1273 			goto errout;
1274 		}
1275 	} else {
1276 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
1277 		    crd1->crd_alg == CRYPTO_SHA1_HMAC_96) &&
1278 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
1279 		    crd2->crd_alg == CRYPTO_3DES_CBC ||
1280 		    crd2->crd_alg == CRYPTO_AES_CBC) &&
1281 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1282 			maccrd = crd1;
1283 			enccrd = crd2;
1284 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1285 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
1286 		    crd1->crd_alg == CRYPTO_AES_CBC) &&
1287 		    (crd2->crd_alg == CRYPTO_MD5_HMAC_96 ||
1288 		    crd2->crd_alg == CRYPTO_SHA1_HMAC_96) &&
1289 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
1290 			enccrd = crd1;
1291 			maccrd = crd2;
1292 		} else {
1293 			/*
1294 			 * We cannot order the ubsec as requested
1295 			 */
1296 			ubsecstats.hst_badalg++;
1297 			err = EINVAL;
1298 			goto errout;
1299 		}
1300 	}
1301 
1302 	if (enccrd) {
1303 		if (enccrd->crd_alg == CRYPTO_AES_CBC) {
1304 			if ((sc->sc_flags & UBS_FLAGS_AES) == 0) {
1305 				/*
1306 				 * We cannot order the ubsec as requested
1307 				 */
1308 				ubsecstats.hst_badalg++;
1309 				err = EINVAL;
1310 				goto errout;
1311 			}
1312 			flags |= htole16(UBS_PKTCTX_ENC_AES);
1313 			switch (enccrd->crd_klen) {
1314 			case 128:
1315 			case 192:
1316 			case 256:
1317 				keylen = enccrd->crd_klen / 8;
1318 				break;
1319 			default:
1320 				err = EINVAL;
1321 				goto errout;
1322 			}
1323 			ivlen = 16;
1324 		} else {
1325 			flags |= htole16(UBS_PKTCTX_ENC_3DES);
1326 			ivlen = 8;
1327 			keylen = 24;
1328 		}
1329 
1330 		encoffset = enccrd->crd_skip;
1331 
1332 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1333 			q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1334 
1335 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1336 				memcpy(key.ses_iv, enccrd->crd_iv, ivlen);
1337 			else {
1338 				for (i = 0; i < (ivlen / 4); i++)
1339 					key.ses_iv[i] = ses->ses_iv[i];
1340 			}
1341 
1342 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1343 				if (crp->crp_flags & CRYPTO_F_IMBUF)
1344 					m_copyback(q->q_src_m,
1345 					    enccrd->crd_inject,
1346 					    ivlen, (void *)key.ses_iv);
1347 				else if (crp->crp_flags & CRYPTO_F_IOV)
1348 					cuio_copyback(q->q_src_io,
1349 					    enccrd->crd_inject,
1350 					    ivlen, (void *)key.ses_iv);
1351 			}
1352 		} else {
1353 			flags |= htole16(UBS_PKTCTX_INBOUND);
1354 
1355 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1356 				memcpy(key.ses_iv, enccrd->crd_iv, ivlen);
1357 			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1358 				m_copydata(q->q_src_m, enccrd->crd_inject,
1359 				    ivlen, (void *)key.ses_iv);
1360 			else if (crp->crp_flags & CRYPTO_F_IOV)
1361 				cuio_copydata(q->q_src_io,
1362 				    enccrd->crd_inject, 8,
1363 				    (void *)key.ses_iv);
1364 		}
1365 
1366 		for (i = 0; i < (keylen / 4); i++)
1367 			key.ses_key[i] = ses->ses_key[i];
1368 		for (i = 0; i < (ivlen / 4); i++)
1369 			SWAP32(key.ses_iv[i]);
1370 	}
1371 
1372 	if (maccrd) {
1373 		macoffset = maccrd->crd_skip;
1374 
1375 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC_96)
1376 			flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1377 		else
1378 			flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1379 
1380 		for (i = 0; i < 5; i++) {
1381 			key.ses_hminner[i] = ses->ses_hminner[i];
1382 			key.ses_hmouter[i] = ses->ses_hmouter[i];
1383 
1384 			HTOLE32(key.ses_hminner[i]);
1385 			HTOLE32(key.ses_hmouter[i]);
1386 		}
1387 	}
1388 
1389 	if (enccrd && maccrd) {
1390 		/*
1391 		 * ubsec cannot handle packets where the end of encryption
1392 		 * and authentication are not the same, or where the
1393 		 * encrypted part begins before the authenticated part.
1394 		 */
1395 		if ((encoffset + enccrd->crd_len) !=
1396 		    (macoffset + maccrd->crd_len)) {
1397 			ubsecstats.hst_lenmismatch++;
1398 			err = EINVAL;
1399 			goto errout;
1400 		}
1401 		if (enccrd->crd_skip < maccrd->crd_skip) {
1402 			ubsecstats.hst_skipmismatch++;
1403 			err = EINVAL;
1404 			goto errout;
1405 		}
1406 		sskip = maccrd->crd_skip;
1407 		cpskip = dskip = enccrd->crd_skip;
1408 		stheend = maccrd->crd_len;
1409 		dtheend = enccrd->crd_len;
1410 		coffset = enccrd->crd_skip - maccrd->crd_skip;
1411 		cpoffset = cpskip + dtheend;
1412 #ifdef UBSEC_DEBUG
1413 		if (ubsec_debug) {
1414 			printf("mac: skip %d, len %d, inject %d\n",
1415 			       maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1416 			printf("enc: skip %d, len %d, inject %d\n",
1417 			       enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1418 			printf("src: skip %d, len %d\n", sskip, stheend);
1419 			printf("dst: skip %d, len %d\n", dskip, dtheend);
1420 			printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1421 			       coffset, stheend, cpskip, cpoffset);
1422 		}
1423 #endif
1424 	} else {
1425 		cpskip = dskip = sskip = macoffset + encoffset;
1426 		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1427 		cpoffset = cpskip + dtheend;
1428 		coffset = 0;
1429 	}
1430 
1431 	if (q->q_src_map == NULL) {
1432 		/* XXX FIXME: jonathan asks, what the heck's that 0xfff0?  */
1433 		if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
1434 			0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
1435 			err = ENOMEM;
1436 			goto errout;
1437 		}
1438 	}
1439 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1440 		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1441 		    q->q_src_m, BUS_DMA_NOWAIT) != 0) {
1442 			ubsecstats.hst_noload++;
1443 			err = ENOMEM;
1444 			goto errout;
1445 		}
1446 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1447 		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1448 		    q->q_src_io, BUS_DMA_NOWAIT) != 0) {
1449 			ubsecstats.hst_noload++;
1450 			err = ENOMEM;
1451 			goto errout;
1452 		}
1453 	}
1454 	nicealign = ubsec_dmamap_aligned(q->q_src_map);
1455 
1456 	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1457 
1458 #ifdef UBSEC_DEBUG
1459 	if (ubsec_debug)
1460 		printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1461 #endif
1462 	for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) {
1463 		struct ubsec_pktbuf *pb;
1464 		bus_size_t packl = q->q_src_map->dm_segs[i].ds_len;
1465 		bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr;
1466 
1467 		if (sskip >= packl) {
1468 			sskip -= packl;
1469 			continue;
1470 		}
1471 
1472 		packl -= sskip;
1473 		packp += sskip;
1474 		sskip = 0;
1475 
1476 		if (packl > 0xfffc) {
1477 			err = EIO;
1478 			goto errout;
1479 		}
1480 
1481 		if (j == 0)
1482 			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1483 		else
1484 			pb = &dmap->d_dma->d_sbuf[j - 1];
1485 
1486 		pb->pb_addr = htole32(packp);
1487 
1488 		if (stheend) {
1489 			if (packl > stheend) {
1490 				pb->pb_len = htole32(stheend);
1491 				stheend = 0;
1492 			} else {
1493 				pb->pb_len = htole32(packl);
1494 				stheend -= packl;
1495 			}
1496 		} else
1497 			pb->pb_len = htole32(packl);
1498 
1499 		if ((i + 1) == q->q_src_map->dm_nsegs)
1500 			pb->pb_next = 0;
1501 		else
1502 			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1503 			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1504 		j++;
1505 	}
1506 
1507 	if (enccrd == NULL && maccrd != NULL) {
1508 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1509 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1510 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1511 		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1512 #ifdef UBSEC_DEBUG
1513 		if (ubsec_debug)
1514 			printf("opkt: %x %x %x\n",
1515 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1516 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1517 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1518 
1519 #endif
1520 	} else {
1521 		if (crp->crp_flags & CRYPTO_F_IOV) {
1522 			if (!nicealign) {
1523 				ubsecstats.hst_iovmisaligned++;
1524 				err = EINVAL;
1525 				goto errout;
1526 			}
1527 			if (q->q_dst_map == NULL) {
1528 				if (q->q_cached_dst_map == NULL) {
1529 					/* XXX: ``what the heck's that'' 0xfff0? */
1530 					if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1531 					    UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1532 					    &q->q_cached_dst_map) != 0) {
1533 						ubsecstats.hst_nomap++;
1534 						err = ENOMEM;
1535 						goto errout;
1536 					}
1537 				}
1538 				q->q_dst_map = q->q_cached_dst_map;
1539 			}
1540 			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1541 			    q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
1542 				ubsecstats.hst_noload++;
1543 				err = ENOMEM;
1544 				goto errout;
1545 			}
1546 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1547 			if (nicealign) {
1548 				q->q_dst_m = q->q_src_m;
1549 				q->q_dst_map = q->q_src_map;
1550 			} else {
1551 				int totlen, len;
1552 				struct mbuf *m, *top, **mp;
1553 
1554 				ubsecstats.hst_unaligned++;
1555 				totlen = q->q_src_map->dm_mapsize;
1556 				if (q->q_src_m->m_flags & M_PKTHDR) {
1557 					len = MHLEN;
1558 					MGETHDR(m, M_DONTWAIT, MT_DATA);
1559 					/*XXX FIXME: m_dup_pkthdr */
1560 					if (m && 1 /*!m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)*/) {
1561 						m_free(m);
1562 						m = NULL;
1563 					}
1564 				} else {
1565 					len = MLEN;
1566 					MGET(m, M_DONTWAIT, MT_DATA);
1567 				}
1568 				if (m == NULL) {
1569 					ubsecstats.hst_nombuf++;
1570 					err = sc->sc_nqueue ? ERESTART : ENOMEM;
1571 					goto errout;
1572 				}
1573 				if (len == MHLEN)
1574 				  /*XXX was M_DUP_PKTHDR*/
1575 				  M_COPY_PKTHDR(m, q->q_src_m);
1576 				if (totlen >= MINCLSIZE) {
1577 					MCLGET(m, M_DONTWAIT);
1578 					if ((m->m_flags & M_EXT) == 0) {
1579 						m_free(m);
1580 						ubsecstats.hst_nomcl++;
1581 						err = sc->sc_nqueue ? ERESTART : ENOMEM;
1582 						goto errout;
1583 					}
1584 					len = MCLBYTES;
1585 				}
1586 				m->m_len = len;
1587 				top = NULL;
1588 				mp = &top;
1589 
1590 				while (totlen > 0) {
1591 					if (top) {
1592 						MGET(m, M_DONTWAIT, MT_DATA);
1593 						if (m == NULL) {
1594 							m_freem(top);
1595 							ubsecstats.hst_nombuf++;
1596 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1597 							goto errout;
1598 						}
1599 						len = MLEN;
1600 					}
1601 					if (top && totlen >= MINCLSIZE) {
1602 						MCLGET(m, M_DONTWAIT);
1603 						if ((m->m_flags & M_EXT) == 0) {
1604 							*mp = m;
1605 							m_freem(top);
1606 							ubsecstats.hst_nomcl++;
1607 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1608 							goto errout;
1609 						}
1610 						len = MCLBYTES;
1611 					}
1612 					m->m_len = len = min(totlen, len);
1613 					totlen -= len;
1614 					*mp = m;
1615 					mp = &m->m_next;
1616 				}
1617 				q->q_dst_m = top;
1618 				ubsec_mcopy(q->q_src_m, q->q_dst_m,
1619 				    cpskip, cpoffset);
1620 				if (q->q_dst_map == NULL) {
1621 					if (q->q_cached_dst_map == NULL) {
1622 						/* XXX again, what the heck is that 0xfff0? */
1623 						if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1624 						    UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1625 						    &q->q_cached_dst_map) != 0) {
1626 							ubsecstats.hst_nomap++;
1627 							err = ENOMEM;
1628 							goto errout;
1629 						}
1630 					}
1631 					q->q_dst_map = q->q_cached_dst_map;
1632 				}
1633 				if (bus_dmamap_load_mbuf(sc->sc_dmat,
1634 				    q->q_dst_map, q->q_dst_m,
1635 				    BUS_DMA_NOWAIT) != 0) {
1636 					ubsecstats.hst_noload++;
1637 					err = ENOMEM;
1638 					goto errout;
1639 				}
1640 			}
1641 		} else {
1642 			ubsecstats.hst_badflags++;
1643 			err = EINVAL;
1644 			goto errout;
1645 		}
1646 
1647 #ifdef UBSEC_DEBUG
1648 		if (ubsec_debug)
1649 			printf("dst skip: %d\n", dskip);
1650 #endif
1651 		for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) {
1652 			struct ubsec_pktbuf *pb;
1653 			bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len;
1654 			bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr;
1655 
1656 			if (dskip >= packl) {
1657 				dskip -= packl;
1658 				continue;
1659 			}
1660 
1661 			packl -= dskip;
1662 			packp += dskip;
1663 			dskip = 0;
1664 
1665 			if (packl > 0xfffc) {
1666 				err = EIO;
1667 				goto errout;
1668 			}
1669 
1670 			if (j == 0)
1671 				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1672 			else
1673 				pb = &dmap->d_dma->d_dbuf[j - 1];
1674 
1675 			pb->pb_addr = htole32(packp);
1676 
1677 			if (dtheend) {
1678 				if (packl > dtheend) {
1679 					pb->pb_len = htole32(dtheend);
1680 					dtheend = 0;
1681 				} else {
1682 					pb->pb_len = htole32(packl);
1683 					dtheend -= packl;
1684 				}
1685 			} else
1686 				pb->pb_len = htole32(packl);
1687 
1688 			if ((i + 1) == q->q_dst_map->dm_nsegs) {
1689 				if (maccrd)
1690 					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1691 					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1692 				else
1693 					pb->pb_next = 0;
1694 			} else
1695 				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1696 				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1697 			j++;
1698 		}
1699 	}
1700 
1701 	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1702 	    offsetof(struct ubsec_dmachunk, d_ctx));
1703 
1704 	if (enccrd && enccrd->crd_alg == CRYPTO_AES_CBC) {
1705 		struct ubsec_pktctx_aes128	*aes128;
1706 		struct ubsec_pktctx_aes192	*aes192;
1707 		struct ubsec_pktctx_aes256	*aes256;
1708 		struct ubsec_pktctx_hdr		*ph;
1709 		u_int8_t			*ctx;
1710 
1711 		ctx = (u_int8_t *)(dmap->d_alloc.dma_vaddr) +
1712 		    offsetof(struct ubsec_dmachunk, d_ctx);
1713 
1714 		ph = (struct ubsec_pktctx_hdr *)ctx;
1715 		ph->ph_type = htole16(UBS_PKTCTX_TYPE_IPSEC_AES);
1716 		ph->ph_flags = flags;
1717 		ph->ph_offset = htole16(coffset >> 2);
1718 
1719 		switch (enccrd->crd_klen) {
1720 		case 128:
1721 			aes128 = (struct ubsec_pktctx_aes128 *)ctx;
1722  			ph->ph_len = htole16(sizeof(*aes128));
1723 			ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_128);
1724 			for (i = 0; i < 4; i++)
1725 				aes128->pc_aeskey[i] = key.ses_key[i];
1726 			for (i = 0; i < 5; i++)
1727 				aes128->pc_hminner[i] = key.ses_hminner[i];
1728 			for (i = 0; i < 5; i++)
1729 				aes128->pc_hmouter[i] = key.ses_hmouter[i];
1730 			for (i = 0; i < 4; i++)
1731 				aes128->pc_iv[i] = key.ses_iv[i];
1732 			break;
1733 		case 192:
1734 			aes192 = (struct ubsec_pktctx_aes192 *)ctx;
1735 			ph->ph_len = htole16(sizeof(*aes192));
1736 			ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_192);
1737 			for (i = 0; i < 6; i++)
1738 				aes192->pc_aeskey[i] = key.ses_key[i];
1739 			for (i = 0; i < 5; i++)
1740 				aes192->pc_hminner[i] = key.ses_hminner[i];
1741 			for (i = 0; i < 5; i++)
1742 				aes192->pc_hmouter[i] = key.ses_hmouter[i];
1743 			for (i = 0; i < 4; i++)
1744 				aes192->pc_iv[i] = key.ses_iv[i];
1745 			break;
1746 		case 256:
1747 			aes256 = (struct ubsec_pktctx_aes256 *)ctx;
1748 			ph->ph_len = htole16(sizeof(*aes256));
1749 			ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_256);
1750 			for (i = 0; i < 8; i++)
1751 				aes256->pc_aeskey[i] = key.ses_key[i];
1752 			for (i = 0; i < 5; i++)
1753 				aes256->pc_hminner[i] = key.ses_hminner[i];
1754 			for (i = 0; i < 5; i++)
1755 				aes256->pc_hmouter[i] = key.ses_hmouter[i];
1756 			for (i = 0; i < 4; i++)
1757 				aes256->pc_iv[i] = key.ses_iv[i];
1758 			break;
1759 		}
1760 	} else if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1761 		struct ubsec_pktctx_3des	*ctx;
1762 		struct ubsec_pktctx_hdr		*ph;
1763 
1764 		ctx = (struct ubsec_pktctx_3des *)
1765 		    ((u_int8_t *)(dmap->d_alloc.dma_vaddr) +
1766 		    offsetof(struct ubsec_dmachunk, d_ctx));
1767 
1768 		ph = (struct ubsec_pktctx_hdr *)ctx;
1769 		ph->ph_len = htole16(sizeof(*ctx));
1770 		ph->ph_type = htole16(UBS_PKTCTX_TYPE_IPSEC_3DES);
1771 		ph->ph_flags = flags;
1772 		ph->ph_offset = htole16(coffset >> 2);
1773 
1774 		for (i = 0; i < 6; i++)
1775 			ctx->pc_deskey[i] = key.ses_key[i];
1776 		for (i = 0; i < 5; i++)
1777 			ctx->pc_hminner[i] = key.ses_hminner[i];
1778 		for (i = 0; i < 5; i++)
1779 			ctx->pc_hmouter[i] = key.ses_hmouter[i];
1780 		for (i = 0; i < 2; i++)
1781 			ctx->pc_iv[i] = key.ses_iv[i];
1782 	} else {
1783 		struct ubsec_pktctx *ctx = (struct ubsec_pktctx *)
1784 		    ((u_int8_t *)dmap->d_alloc.dma_vaddr +
1785 		    offsetof(struct ubsec_dmachunk, d_ctx));
1786 
1787 		ctx->pc_flags = flags;
1788 		ctx->pc_offset = htole16(coffset >> 2);
1789 		for (i = 0; i < 6; i++)
1790 			ctx->pc_deskey[i] = key.ses_key[i];
1791 		for (i = 0; i < 5; i++)
1792 			ctx->pc_hminner[i] = key.ses_hminner[i];
1793 		for (i = 0; i < 5; i++)
1794 			ctx->pc_hmouter[i] = key.ses_hmouter[i];
1795 		for (i = 0; i < 2; i++)
1796 			ctx->pc_iv[i] = key.ses_iv[i];
1797 	}
1798 
1799 	mutex_spin_enter(&sc->sc_mtx);
1800 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1801 	sc->sc_nqueue++;
1802 	ubsecstats.hst_ipackets++;
1803 	ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize;
1804 	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch)
1805 		ubsec_feed(sc);
1806 	mutex_spin_exit(&sc->sc_mtx);
1807 	return (0);
1808 
1809 errout:
1810 	if (q != NULL) {
1811 		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1812 			m_freem(q->q_dst_m);
1813 
1814 		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1815 			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1816 		}
1817 		if (q->q_src_map != NULL) {
1818 			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1819 		}
1820 
1821 		mutex_spin_enter(&sc->sc_mtx);
1822 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1823 		mutex_spin_exit(&sc->sc_mtx);
1824 	}
1825 #if 0 /* jonathan says: this openbsd code seems to be subsumed elsewhere */
1826 	if (err == EINVAL)
1827 		ubsecstats.hst_invalid++;
1828 	else
1829 		ubsecstats.hst_nomem++;
1830 #endif
1831 	if (err != ERESTART) {
1832 		crp->crp_etype = err;
1833 		crypto_done(crp);
1834 	} else {
1835 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1836 	}
1837 	return (err);
1838 }
1839 
1840 static void
1841 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1842 {
1843 	struct cryptop *crp = (struct cryptop *)q->q_crp;
1844 	struct cryptodesc *crd;
1845 	struct ubsec_dma *dmap = q->q_dma;
1846 
1847 	ubsecstats.hst_opackets++;
1848 	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1849 
1850 	bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
1851 	    dmap->d_alloc.dma_map->dm_mapsize,
1852 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1853 	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1854 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1855 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1856 		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1857 	}
1858 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
1859 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1860 	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1861 
1862 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1863 		m_freem(q->q_src_m);
1864 		crp->crp_buf = (void *)q->q_dst_m;
1865 	}
1866 
1867 	/* copy out IV for future use */
1868 	if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1869 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1870 			if (crd->crd_alg != CRYPTO_DES_CBC &&
1871 			    crd->crd_alg != CRYPTO_3DES_CBC &&
1872 			    crd->crd_alg != CRYPTO_AES_CBC)
1873 				continue;
1874 			if (crp->crp_flags & CRYPTO_F_IMBUF)
1875 				m_copydata((struct mbuf *)crp->crp_buf,
1876 				    crd->crd_skip + crd->crd_len - 8, 8,
1877 				    (void *)sc->sc_sessions[q->q_sesn].ses_iv);
1878 			else if (crp->crp_flags & CRYPTO_F_IOV) {
1879 				cuio_copydata((struct uio *)crp->crp_buf,
1880 				    crd->crd_skip + crd->crd_len - 8, 8,
1881 				    (void *)sc->sc_sessions[q->q_sesn].ses_iv);
1882 			}
1883 			break;
1884 		}
1885 	}
1886 
1887 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1888 		if (crd->crd_alg != CRYPTO_MD5_HMAC_96 &&
1889 		    crd->crd_alg != CRYPTO_SHA1_HMAC_96)
1890 			continue;
1891 		if (crp->crp_flags & CRYPTO_F_IMBUF)
1892 			m_copyback((struct mbuf *)crp->crp_buf,
1893 			    crd->crd_inject, 12,
1894 			    (void *)dmap->d_dma->d_macbuf);
1895 		else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1896 			bcopy((void *)dmap->d_dma->d_macbuf,
1897 			    crp->crp_mac, 12);
1898 		break;
1899 	}
1900 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1901 	crypto_done(crp);
1902 }
1903 
1904 static void
1905 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1906 {
1907 	int i, j, dlen, slen;
1908 	char *dptr, *sptr;
1909 
1910 	j = 0;
1911 	sptr = srcm->m_data;
1912 	slen = srcm->m_len;
1913 	dptr = dstm->m_data;
1914 	dlen = dstm->m_len;
1915 
1916 	while (1) {
1917 		for (i = 0; i < min(slen, dlen); i++) {
1918 			if (j < hoffset || j >= toffset)
1919 				*dptr++ = *sptr++;
1920 			slen--;
1921 			dlen--;
1922 			j++;
1923 		}
1924 		if (slen == 0) {
1925 			srcm = srcm->m_next;
1926 			if (srcm == NULL)
1927 				return;
1928 			sptr = srcm->m_data;
1929 			slen = srcm->m_len;
1930 		}
1931 		if (dlen == 0) {
1932 			dstm = dstm->m_next;
1933 			if (dstm == NULL)
1934 				return;
1935 			dptr = dstm->m_data;
1936 			dlen = dstm->m_len;
1937 		}
1938 	}
1939 }
1940 
1941 /*
1942  * feed the key generator, must be called at splnet() or higher.
1943  */
1944 static void
1945 ubsec_feed2(struct ubsec_softc *sc)
1946 {
1947 	struct ubsec_q2 *q;
1948 
1949 	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1950 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1951 			break;
1952 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1953 
1954 		bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1955 		    q->q_mcr.dma_map->dm_mapsize,
1956 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1957 		bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1958 		    q->q_ctx.dma_map->dm_mapsize,
1959 		    BUS_DMASYNC_PREWRITE);
1960 
1961 		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1962 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1963 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, /*q,*/ q_next);
1964 		--sc->sc_nqueue2;
1965 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1966 	}
1967 }
1968 
1969 /*
1970  * feed the RNG (used instead of ubsec_feed2() on 5827+ devices)
1971  */
1972 void
1973 ubsec_feed4(struct ubsec_softc *sc)
1974 {
1975 	struct ubsec_q2 *q;
1976 
1977 	while (!SIMPLEQ_EMPTY(&sc->sc_queue4)) {
1978 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR4_FULL)
1979 			break;
1980 		q = SIMPLEQ_FIRST(&sc->sc_queue4);
1981 
1982 		bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1983 		    q->q_mcr.dma_map->dm_mapsize,
1984 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1985 		bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1986 		    q->q_ctx.dma_map->dm_mapsize,
1987 		    BUS_DMASYNC_PREWRITE);
1988 
1989 		WRITE_REG(sc, BS_MCR4, q->q_mcr.dma_paddr);
1990 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue4, q_next);
1991 		--sc->sc_nqueue4;
1992 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip4, q, q_next);
1993 	}
1994 }
1995 
1996 /*
1997  * Callback for handling random numbers
1998  */
1999 static void
2000 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
2001 {
2002 	struct cryptkop *krp;
2003 	struct ubsec_ctx_keyop *ctx;
2004 
2005 	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
2006 	bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
2007 	    q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2008 
2009 	switch (q->q_type) {
2010 #ifndef UBSEC_NO_RNG
2011 	case UBS_CTXOP_RNGSHA1:
2012 	case UBS_CTXOP_RNGBYPASS: {
2013 		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
2014 		u_int32_t *p;
2015 		int i;
2016 
2017 		bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
2018 		    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2019 		p = (u_int32_t *)rng->rng_buf.dma_vaddr;
2020 #ifndef __NetBSD__
2021 		for (i = 0; i < UBSEC_RNG_BUFSIZ; p++, i++)
2022 			add_true_randomness(letoh32(*p));
2023 #else
2024 		i = UBSEC_RNG_BUFSIZ * sizeof(u_int32_t);
2025 		rnd_add_data(&sc->sc_rnd_source, (char *)p, i, i * NBBY);
2026 		sc->sc_rng_need -= i;
2027 #endif
2028 		rng->rng_used = 0;
2029 #ifdef __OpenBSD__
2030 		timeout_add(&sc->sc_rngto, sc->sc_rnghz);
2031 #else
2032 		if (sc->sc_rng_need > 0) {
2033 			callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
2034 		}
2035 #endif
2036 		break;
2037 	}
2038 #endif
2039 	case UBS_CTXOP_MODEXP: {
2040 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2041 		u_int rlen, clen;
2042 
2043 		krp = me->me_krp;
2044 		rlen = (me->me_modbits + 7) / 8;
2045 		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
2046 
2047 		bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2048 		    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2049 		bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2050 		    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2051 		bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2052 		    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2053 		bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2054 		    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2055 
2056 		if (clen < rlen)
2057 			krp->krp_status = E2BIG;
2058 		else {
2059 			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
2060 				memset(krp->krp_param[krp->krp_iparams].crp_p, 0,
2061 				    (krp->krp_param[krp->krp_iparams].crp_nbits
2062 					+ 7) / 8);
2063 				bcopy(me->me_C.dma_vaddr,
2064 				    krp->krp_param[krp->krp_iparams].crp_p,
2065 				    (me->me_modbits + 7) / 8);
2066 			} else
2067 				ubsec_kshift_l(me->me_shiftbits,
2068 				    me->me_C.dma_vaddr, me->me_normbits,
2069 				    krp->krp_param[krp->krp_iparams].crp_p,
2070 				    krp->krp_param[krp->krp_iparams].crp_nbits);
2071 		}
2072 
2073 		crypto_kdone(krp);
2074 
2075 		/* bzero all potentially sensitive data */
2076 		memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2077 		memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2078 		memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2079 		memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
2080 
2081 		/* Can't free here, so put us on the free list. */
2082 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
2083 		break;
2084 	}
2085 	case UBS_CTXOP_RSAPRIV: {
2086 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2087 		u_int len;
2088 
2089 		krp = rp->rpr_krp;
2090 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0,
2091 		    rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2092 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0,
2093 		    rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2094 
2095 		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
2096 		bcopy(rp->rpr_msgout.dma_vaddr,
2097 		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
2098 
2099 		crypto_kdone(krp);
2100 
2101 		memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
2102 		memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
2103 		memset(rp->rpr_q.q_ctx.dma_vaddr, 0, rp->rpr_q.q_ctx.dma_size);
2104 
2105 		/* Can't free here, so put us on the free list. */
2106 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
2107 		break;
2108 	}
2109 	default:
2110 		printf("%s: unknown ctx op: %x\n", device_xname(sc->sc_dev),
2111 		    letoh16(ctx->ctx_op));
2112 		break;
2113 	}
2114 }
2115 
2116 #ifndef UBSEC_NO_RNG
2117 
2118 static void
2119 ubsec_rng_get(size_t bytes, void *vsc)
2120 {
2121 	struct ubsec_softc *sc = vsc;
2122 
2123 	mutex_spin_enter(&sc->sc_mtx);
2124 	sc->sc_rng_need = bytes;
2125 	ubsec_rng_locked(sc);
2126 	mutex_spin_exit(&sc->sc_mtx);
2127 
2128 }
2129 
2130 static void
2131 ubsec_rng(void *vsc)
2132 {
2133 	struct ubsec_softc *sc = vsc;
2134 	mutex_spin_enter(&sc->sc_mtx);
2135 	ubsec_rng_locked(sc);
2136 	mutex_spin_exit(&sc->sc_mtx);
2137 }
2138 
2139 static void
2140 ubsec_rng_locked(void *vsc)
2141 {
2142 	struct ubsec_softc *sc = vsc;
2143 	struct ubsec_q2_rng *rng = &sc->sc_rng;
2144 	struct ubsec_mcr *mcr;
2145 	struct ubsec_ctx_rngbypass *ctx;
2146 	int *nqueue;
2147 
2148 	/* Caller is responsible to lock and release sc_mtx. */
2149 	KASSERT(mutex_owned(&sc->sc_mtx));
2150 
2151 	if (rng->rng_used) {
2152 		return;
2153 	}
2154 
2155 	if (sc->sc_rng_need < 1) {
2156 		callout_stop(&sc->sc_rngto);
2157 		return;
2158 	}
2159 
2160 	if (sc->sc_flags & UBS_FLAGS_RNG4)
2161 		nqueue = &sc->sc_nqueue4;
2162 	else
2163 		nqueue = &sc->sc_nqueue2;
2164 
2165 	(*nqueue)++;
2166 	if (*nqueue >= UBS_MAX_NQUEUE)
2167  		goto out;
2168 
2169 	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
2170 	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
2171 
2172 	mcr->mcr_pkts = htole16(1);
2173 	mcr->mcr_flags = 0;
2174 	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
2175 	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
2176 	mcr->mcr_ipktbuf.pb_len = 0;
2177 	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
2178 	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
2179 	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
2180 	    UBS_PKTBUF_LEN);
2181 	mcr->mcr_opktbuf.pb_next = 0;
2182 
2183 	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
2184 	ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1);
2185 	rng->rng_q.q_type = UBS_CTXOP_RNGSHA1;
2186 
2187 	bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
2188 	    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2189 
2190 	if (sc->sc_flags & UBS_FLAGS_RNG4) {
2191 		SIMPLEQ_INSERT_TAIL(&sc->sc_queue4, &rng->rng_q, q_next);
2192 		ubsec_feed4(sc);
2193 	} else {
2194 		SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
2195 		ubsec_feed2(sc);
2196 	}
2197 	rng->rng_used = 1;
2198 	ubsecstats.hst_rng++;
2199 
2200 	return;
2201 
2202 out:
2203 	/*
2204 	 * Something weird happened, generate our own call back.
2205 	 */
2206 	(*nqueue)--;
2207 #ifdef __OpenBSD__
2208 	timeout_add(&sc->sc_rngto, sc->sc_rnghz);
2209 #else
2210 	callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
2211 #endif
2212 }
2213 #endif /* UBSEC_NO_RNG */
2214 
2215 static int
2216 ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size,
2217 		 struct ubsec_dma_alloc *dma,int mapflags)
2218 {
2219 	int r;
2220 
2221 	if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
2222 	    &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0)
2223 		goto fail_0;
2224 
2225 	if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg,
2226 	    size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0)
2227 		goto fail_1;
2228 
2229 	if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
2230 	    BUS_DMA_NOWAIT, &dma->dma_map)) != 0)
2231 		goto fail_2;
2232 
2233 	if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
2234 	    size, NULL, BUS_DMA_NOWAIT)) != 0)
2235 		goto fail_3;
2236 
2237 	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
2238 	dma->dma_size = size;
2239 	return (0);
2240 
2241 fail_3:
2242 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
2243 fail_2:
2244 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
2245 fail_1:
2246 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
2247 fail_0:
2248 	dma->dma_map = NULL;
2249 	return (r);
2250 }
2251 
2252 static void
2253 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
2254 {
2255 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
2256 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
2257 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
2258 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
2259 }
2260 
2261 /*
2262  * Resets the board.  Values in the regesters are left as is
2263  * from the reset (i.e. initial values are assigned elsewhere).
2264  */
2265 static void
2266 ubsec_reset_board(struct ubsec_softc *sc)
2267 {
2268 	volatile u_int32_t ctrl;
2269 
2270 	ctrl = READ_REG(sc, BS_CTRL);
2271 	ctrl |= BS_CTRL_RESET;
2272 	WRITE_REG(sc, BS_CTRL, ctrl);
2273 
2274 	/*
2275 	* Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
2276 	*/
2277 	DELAY(10);
2278 
2279 	/* Enable RNG and interrupts on newer devices */
2280 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
2281 #ifndef UBSEC_NO_RNG
2282 		WRITE_REG(sc, BS_CFG, BS_CFG_RNG);
2283 #endif
2284 		WRITE_REG(sc, BS_INT, BS_INT_DMAINT);
2285 	}
2286 }
2287 
2288 /*
2289  * Init Broadcom registers
2290  */
2291 static void
2292 ubsec_init_board(struct ubsec_softc *sc)
2293 {
2294 	u_int32_t ctrl;
2295 
2296 	ctrl = READ_REG(sc, BS_CTRL);
2297 	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
2298 	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
2299 
2300 	/*
2301 	 * XXX: Sam Leffler's code has (UBS_FLAGS_KEY|UBS_FLAGS_RNG)).
2302 	 * anyone got hw docs?
2303 	 */
2304 	if (sc->sc_flags & UBS_FLAGS_KEY)
2305 		ctrl |= BS_CTRL_MCR2INT;
2306 	else
2307 		ctrl &= ~BS_CTRL_MCR2INT;
2308 
2309 	if (sc->sc_flags & UBS_FLAGS_HWNORM)
2310 		ctrl &= ~BS_CTRL_SWNORM;
2311 
2312 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
2313 		ctrl |= BS_CTRL_BSIZE240;
2314 		ctrl &= ~BS_CTRL_MCR3INT; /* MCR3 is reserved for SSL */
2315 
2316 		if (sc->sc_flags & UBS_FLAGS_RNG4)
2317 			ctrl |= BS_CTRL_MCR4INT;
2318 		else
2319 			ctrl &= ~BS_CTRL_MCR4INT;
2320 	}
2321 
2322 	WRITE_REG(sc, BS_CTRL, ctrl);
2323 }
2324 
2325 /*
2326  * Init Broadcom PCI registers
2327  */
2328 static void
2329 ubsec_init_pciregs(struct pci_attach_args *pa)
2330 {
2331 	pci_chipset_tag_t pc = pa->pa_pc;
2332 	u_int32_t misc;
2333 
2334 	/*
2335 	 * This will set the cache line size to 1, this will
2336 	 * force the BCM58xx chip just to do burst read/writes.
2337 	 * Cache line read/writes are to slow
2338 	 */
2339 	misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG);
2340 	misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT))
2341 	    | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT);
2342 	pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc);
2343 }
2344 
2345 /*
2346  * Clean up after a chip crash.
2347  * It is assumed that the caller in splnet()
2348  */
2349 static void
2350 ubsec_cleanchip(struct ubsec_softc *sc)
2351 {
2352 	struct ubsec_q *q;
2353 
2354 	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
2355 		q = SIMPLEQ_FIRST(&sc->sc_qchip);
2356 		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
2357 		ubsec_free_q(sc, q);
2358 	}
2359 	sc->sc_nqchip = 0;
2360 }
2361 
2362 /*
2363  * free a ubsec_q
2364  * It is assumed that the caller is within splnet()
2365  */
2366 static int
2367 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
2368 {
2369 	struct ubsec_q *q2;
2370 	struct cryptop *crp;
2371 	int npkts;
2372 	int i;
2373 
2374 	npkts = q->q_nstacked_mcrs;
2375 
2376 	for (i = 0; i < npkts; i++) {
2377 		if(q->q_stacked_mcr[i]) {
2378 			q2 = q->q_stacked_mcr[i];
2379 
2380 			if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
2381 				m_freem(q2->q_dst_m);
2382 
2383 			crp = (struct cryptop *)q2->q_crp;
2384 
2385 			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2386 
2387 			crp->crp_etype = EFAULT;
2388 			crypto_done(crp);
2389 		} else {
2390 			break;
2391 		}
2392 	}
2393 
2394 	/*
2395 	 * Free header MCR
2396 	 */
2397 	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2398 		m_freem(q->q_dst_m);
2399 
2400 	crp = (struct cryptop *)q->q_crp;
2401 
2402 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2403 
2404 	crp->crp_etype = EFAULT;
2405 	crypto_done(crp);
2406 	return(0);
2407 }
2408 
2409 /*
2410  * Routine to reset the chip and clean up.
2411  * It is assumed that the caller is in splnet()
2412  */
2413 static void
2414 ubsec_totalreset(struct ubsec_softc *sc)
2415 {
2416 	ubsec_reset_board(sc);
2417 	ubsec_init_board(sc);
2418 	ubsec_cleanchip(sc);
2419 }
2420 
2421 static int
2422 ubsec_dmamap_aligned(bus_dmamap_t map)
2423 {
2424 	int i;
2425 
2426 	for (i = 0; i < map->dm_nsegs; i++) {
2427 		if (map->dm_segs[i].ds_addr & 3)
2428 			return (0);
2429 		if ((i != (map->dm_nsegs - 1)) &&
2430 		    (map->dm_segs[i].ds_len & 3))
2431 			return (0);
2432 	}
2433 	return (1);
2434 }
2435 
2436 #ifdef __OpenBSD__
2437 struct ubsec_softc *
2438 ubsec_kfind(struct cryptkop *krp)
2439 {
2440 	struct ubsec_softc *sc;
2441 	int i;
2442 
2443 	for (i = 0; i < ubsec_cd.cd_ndevs; i++) {
2444 		sc = ubsec_cd.cd_devs[i];
2445 		if (sc == NULL)
2446 			continue;
2447 		if (sc->sc_cid == krp->krp_hid)
2448 			return (sc);
2449 	}
2450 	return (NULL);
2451 }
2452 #endif
2453 
2454 static void
2455 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2456 {
2457 	switch (q->q_type) {
2458 	case UBS_CTXOP_MODEXP: {
2459 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2460 
2461 		ubsec_dma_free(sc, &me->me_q.q_mcr);
2462 		ubsec_dma_free(sc, &me->me_q.q_ctx);
2463 		ubsec_dma_free(sc, &me->me_M);
2464 		ubsec_dma_free(sc, &me->me_E);
2465 		ubsec_dma_free(sc, &me->me_C);
2466 		ubsec_dma_free(sc, &me->me_epb);
2467 		free(me, M_DEVBUF);
2468 		break;
2469 	}
2470 	case UBS_CTXOP_RSAPRIV: {
2471 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2472 
2473 		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2474 		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2475 		ubsec_dma_free(sc, &rp->rpr_msgin);
2476 		ubsec_dma_free(sc, &rp->rpr_msgout);
2477 		free(rp, M_DEVBUF);
2478 		break;
2479 	}
2480 	default:
2481 		printf("%s: invalid kfree 0x%x\n", device_xname(sc->sc_dev),
2482 		    q->q_type);
2483 		break;
2484 	}
2485 }
2486 
2487 static int
2488 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2489 {
2490 	struct ubsec_softc *sc;
2491 	int r;
2492 
2493 	if (krp == NULL || krp->krp_callback == NULL)
2494 		return (EINVAL);
2495 #ifdef __OpenBSD__
2496 	if ((sc = ubsec_kfind(krp)) == NULL)
2497 		return (EINVAL);
2498 #else
2499 	sc = arg;
2500 	KASSERT(sc != NULL /*, ("ubsec_kprocess: null softc")*/);
2501 #endif
2502 
2503 	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2504 		struct ubsec_q2 *q;
2505 
2506 		q = SIMPLEQ_FIRST(&sc->sc_q2free);
2507 		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, /*q,*/ q_next);
2508 		ubsec_kfree(sc, q);
2509 	}
2510 
2511 	switch (krp->krp_op) {
2512 	case CRK_MOD_EXP:
2513 		if (sc->sc_flags & UBS_FLAGS_HWNORM)
2514 			r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2515 		else
2516 			r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2517 		break;
2518 	case CRK_MOD_EXP_CRT:
2519 		r = ubsec_kprocess_rsapriv(sc, krp, hint);
2520 		break;
2521 	default:
2522 		printf("%s: kprocess: invalid op 0x%x\n",
2523 		    device_xname(sc->sc_dev), krp->krp_op);
2524 		krp->krp_status = EOPNOTSUPP;
2525 		crypto_kdone(krp);
2526 		r = 0;
2527 	}
2528 	return (r);
2529 }
2530 
2531 /*
2532  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2533  */
2534 static int
2535 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp,
2536 			 int hint)
2537 {
2538 	struct ubsec_q2_modexp *me;
2539 	struct ubsec_mcr *mcr;
2540 	struct ubsec_ctx_modexp *ctx;
2541 	struct ubsec_pktbuf *epb;
2542 	int err = 0;
2543 	u_int nbits, normbits, mbits, shiftbits, ebits;
2544 
2545 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2546 	if (me == NULL) {
2547 		err = ENOMEM;
2548 		goto errout;
2549 	}
2550 	memset(me, 0, sizeof *me);
2551 	me->me_krp = krp;
2552 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2553 
2554 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2555 	if (nbits <= 512)
2556 		normbits = 512;
2557 	else if (nbits <= 768)
2558 		normbits = 768;
2559 	else if (nbits <= 1024)
2560 		normbits = 1024;
2561 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2562 		normbits = 1536;
2563 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2564 		normbits = 2048;
2565 	else {
2566 		err = E2BIG;
2567 		goto errout;
2568 	}
2569 
2570 	shiftbits = normbits - nbits;
2571 
2572 	me->me_modbits = nbits;
2573 	me->me_shiftbits = shiftbits;
2574 	me->me_normbits = normbits;
2575 
2576 	/* Sanity check: result bits must be >= true modulus bits. */
2577 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2578 		err = ERANGE;
2579 		goto errout;
2580 	}
2581 
2582 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2583 	    &me->me_q.q_mcr, 0)) {
2584 		err = ENOMEM;
2585 		goto errout;
2586 	}
2587 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2588 
2589 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2590 	    &me->me_q.q_ctx, 0)) {
2591 		err = ENOMEM;
2592 		goto errout;
2593 	}
2594 
2595 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2596 	if (mbits > nbits) {
2597 		err = E2BIG;
2598 		goto errout;
2599 	}
2600 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2601 		err = ENOMEM;
2602 		goto errout;
2603 	}
2604 	ubsec_kshift_r(shiftbits,
2605 	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2606 	    me->me_M.dma_vaddr, normbits);
2607 
2608 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2609 		err = ENOMEM;
2610 		goto errout;
2611 	}
2612 	memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2613 
2614 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2615 	if (ebits > nbits) {
2616 		err = E2BIG;
2617 		goto errout;
2618 	}
2619 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2620 		err = ENOMEM;
2621 		goto errout;
2622 	}
2623 	ubsec_kshift_r(shiftbits,
2624 	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2625 	    me->me_E.dma_vaddr, normbits);
2626 
2627 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2628 	    &me->me_epb, 0)) {
2629 		err = ENOMEM;
2630 		goto errout;
2631 	}
2632 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2633 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2634 	epb->pb_next = 0;
2635 	epb->pb_len = htole32(normbits / 8);
2636 
2637 #ifdef UBSEC_DEBUG
2638 	if (ubsec_debug) {
2639 		printf("Epb ");
2640 		ubsec_dump_pb(epb);
2641 	}
2642 #endif
2643 
2644 	mcr->mcr_pkts = htole16(1);
2645 	mcr->mcr_flags = 0;
2646 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2647 	mcr->mcr_reserved = 0;
2648 	mcr->mcr_pktlen = 0;
2649 
2650 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2651 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2652 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2653 
2654 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2655 	mcr->mcr_opktbuf.pb_next = 0;
2656 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2657 
2658 #ifdef DIAGNOSTIC
2659 	/* Misaligned output buffer will hang the chip. */
2660 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2661 		panic("%s: modexp invalid addr 0x%x",
2662 		    device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_addr));
2663 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2664 		panic("%s: modexp invalid len 0x%x",
2665 		    device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_len));
2666 #endif
2667 
2668 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2669 	memset(ctx, 0, sizeof(*ctx));
2670 	ubsec_kshift_r(shiftbits,
2671 	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2672 	    ctx->me_N, normbits);
2673 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2674 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2675 	ctx->me_E_len = htole16(nbits);
2676 	ctx->me_N_len = htole16(nbits);
2677 
2678 #ifdef UBSEC_DEBUG
2679 	if (ubsec_debug) {
2680 		ubsec_dump_mcr(mcr);
2681 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2682 	}
2683 #endif
2684 
2685 	/*
2686 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2687 	 * everything else.
2688 	 */
2689 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2690 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2691 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2692 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2693 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2694 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2695 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2696 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2697 
2698 	/* Enqueue and we're done... */
2699 	mutex_spin_enter(&sc->sc_mtx);
2700 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2701 	ubsec_feed2(sc);
2702 	ubsecstats.hst_modexp++;
2703 	mutex_spin_exit(&sc->sc_mtx);
2704 
2705 	return (0);
2706 
2707 errout:
2708 	if (me != NULL) {
2709 		if (me->me_q.q_mcr.dma_map != NULL)
2710 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2711 		if (me->me_q.q_ctx.dma_map != NULL) {
2712 			memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
2713 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2714 		}
2715 		if (me->me_M.dma_map != NULL) {
2716 			memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2717 			ubsec_dma_free(sc, &me->me_M);
2718 		}
2719 		if (me->me_E.dma_map != NULL) {
2720 			memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2721 			ubsec_dma_free(sc, &me->me_E);
2722 		}
2723 		if (me->me_C.dma_map != NULL) {
2724 			memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2725 			ubsec_dma_free(sc, &me->me_C);
2726 		}
2727 		if (me->me_epb.dma_map != NULL)
2728 			ubsec_dma_free(sc, &me->me_epb);
2729 		free(me, M_DEVBUF);
2730 	}
2731 	krp->krp_status = err;
2732 	crypto_kdone(krp);
2733 	return (0);
2734 }
2735 
2736 /*
2737  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2738  */
2739 static int
2740 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp,
2741 			 int hint)
2742 {
2743 	struct ubsec_q2_modexp *me;
2744 	struct ubsec_mcr *mcr;
2745 	struct ubsec_ctx_modexp *ctx;
2746 	struct ubsec_pktbuf *epb;
2747 	int err = 0;
2748 	u_int nbits, normbits, mbits, shiftbits, ebits;
2749 
2750 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2751 	if (me == NULL) {
2752 		err = ENOMEM;
2753 		goto errout;
2754 	}
2755 	memset(me, 0, sizeof *me);
2756 	me->me_krp = krp;
2757 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2758 
2759 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2760 	if (nbits <= 512)
2761 		normbits = 512;
2762 	else if (nbits <= 768)
2763 		normbits = 768;
2764 	else if (nbits <= 1024)
2765 		normbits = 1024;
2766 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2767 		normbits = 1536;
2768 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2769 		normbits = 2048;
2770 	else {
2771 		err = E2BIG;
2772 		goto errout;
2773 	}
2774 
2775 	shiftbits = normbits - nbits;
2776 
2777 	/* XXX ??? */
2778 	me->me_modbits = nbits;
2779 	me->me_shiftbits = shiftbits;
2780 	me->me_normbits = normbits;
2781 
2782 	/* Sanity check: result bits must be >= true modulus bits. */
2783 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2784 		err = ERANGE;
2785 		goto errout;
2786 	}
2787 
2788 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2789 	    &me->me_q.q_mcr, 0)) {
2790 		err = ENOMEM;
2791 		goto errout;
2792 	}
2793 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2794 
2795 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2796 	    &me->me_q.q_ctx, 0)) {
2797 		err = ENOMEM;
2798 		goto errout;
2799 	}
2800 
2801 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2802 	if (mbits > nbits) {
2803 		err = E2BIG;
2804 		goto errout;
2805 	}
2806 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2807 		err = ENOMEM;
2808 		goto errout;
2809 	}
2810 	memset(me->me_M.dma_vaddr, 0, normbits / 8);
2811 	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2812 	    me->me_M.dma_vaddr, (mbits + 7) / 8);
2813 
2814 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2815 		err = ENOMEM;
2816 		goto errout;
2817 	}
2818 	memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2819 
2820 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2821 	if (ebits > nbits) {
2822 		err = E2BIG;
2823 		goto errout;
2824 	}
2825 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2826 		err = ENOMEM;
2827 		goto errout;
2828 	}
2829 	memset(me->me_E.dma_vaddr, 0, normbits / 8);
2830 	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2831 	    me->me_E.dma_vaddr, (ebits + 7) / 8);
2832 
2833 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2834 	    &me->me_epb, 0)) {
2835 		err = ENOMEM;
2836 		goto errout;
2837 	}
2838 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2839 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2840 	epb->pb_next = 0;
2841 	epb->pb_len = htole32((ebits + 7) / 8);
2842 
2843 #ifdef UBSEC_DEBUG
2844 	if (ubsec_debug) {
2845 		printf("Epb ");
2846 		ubsec_dump_pb(epb);
2847 	}
2848 #endif
2849 
2850 	mcr->mcr_pkts = htole16(1);
2851 	mcr->mcr_flags = 0;
2852 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2853 	mcr->mcr_reserved = 0;
2854 	mcr->mcr_pktlen = 0;
2855 
2856 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2857 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2858 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2859 
2860 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2861 	mcr->mcr_opktbuf.pb_next = 0;
2862 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2863 
2864 #ifdef DIAGNOSTIC
2865 	/* Misaligned output buffer will hang the chip. */
2866 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2867 		panic("%s: modexp invalid addr 0x%x",
2868 		    device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_addr));
2869 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2870 		panic("%s: modexp invalid len 0x%x",
2871 		    device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_len));
2872 #endif
2873 
2874 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2875 	memset(ctx, 0, sizeof(*ctx));
2876 	memcpy(ctx->me_N, krp->krp_param[UBS_MODEXP_PAR_N].crp_p,
2877 	    (nbits + 7) / 8);
2878 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2879 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2880 	ctx->me_E_len = htole16(ebits);
2881 	ctx->me_N_len = htole16(nbits);
2882 
2883 #ifdef UBSEC_DEBUG
2884 	if (ubsec_debug) {
2885 		ubsec_dump_mcr(mcr);
2886 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2887 	}
2888 #endif
2889 
2890 	/*
2891 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2892 	 * everything else.
2893 	 */
2894 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2895 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2896 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2897 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2898 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2899 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2900 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2901 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2902 
2903 	/* Enqueue and we're done... */
2904 	mutex_spin_enter(&sc->sc_mtx);
2905 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2906 	ubsec_feed2(sc);
2907 	mutex_spin_exit(&sc->sc_mtx);
2908 
2909 	return (0);
2910 
2911 errout:
2912 	if (me != NULL) {
2913 		if (me->me_q.q_mcr.dma_map != NULL)
2914 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2915 		if (me->me_q.q_ctx.dma_map != NULL) {
2916 			memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
2917 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2918 		}
2919 		if (me->me_M.dma_map != NULL) {
2920 			memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2921 			ubsec_dma_free(sc, &me->me_M);
2922 		}
2923 		if (me->me_E.dma_map != NULL) {
2924 			memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2925 			ubsec_dma_free(sc, &me->me_E);
2926 		}
2927 		if (me->me_C.dma_map != NULL) {
2928 			memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2929 			ubsec_dma_free(sc, &me->me_C);
2930 		}
2931 		if (me->me_epb.dma_map != NULL)
2932 			ubsec_dma_free(sc, &me->me_epb);
2933 		free(me, M_DEVBUF);
2934 	}
2935 	krp->krp_status = err;
2936 	crypto_kdone(krp);
2937 	return (0);
2938 }
2939 
2940 static int
2941 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp,
2942 		       int hint)
2943 {
2944 	struct ubsec_q2_rsapriv *rp = NULL;
2945 	struct ubsec_mcr *mcr;
2946 	struct ubsec_ctx_rsapriv *ctx;
2947 	int err = 0;
2948 	u_int padlen, msglen;
2949 
2950 	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2951 	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2952 	if (msglen > padlen)
2953 		padlen = msglen;
2954 
2955 	if (padlen <= 256)
2956 		padlen = 256;
2957 	else if (padlen <= 384)
2958 		padlen = 384;
2959 	else if (padlen <= 512)
2960 		padlen = 512;
2961 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2962 		padlen = 768;
2963 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2964 		padlen = 1024;
2965 	else {
2966 		err = E2BIG;
2967 		goto errout;
2968 	}
2969 
2970 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2971 		err = E2BIG;
2972 		goto errout;
2973 	}
2974 
2975 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2976 		err = E2BIG;
2977 		goto errout;
2978 	}
2979 
2980 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2981 		err = E2BIG;
2982 		goto errout;
2983 	}
2984 
2985 	rp = malloc(sizeof *rp, M_DEVBUF, M_NOWAIT|M_ZERO);
2986 	if (rp == NULL)
2987 		return (ENOMEM);
2988 	rp->rpr_krp = krp;
2989 	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2990 
2991 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2992 	    &rp->rpr_q.q_mcr, 0)) {
2993 		err = ENOMEM;
2994 		goto errout;
2995 	}
2996 	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2997 
2998 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2999 	    &rp->rpr_q.q_ctx, 0)) {
3000 		err = ENOMEM;
3001 		goto errout;
3002 	}
3003 	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
3004 	memset(ctx, 0, sizeof *ctx);
3005 
3006 	/* Copy in p */
3007 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
3008 	    &ctx->rpr_buf[0 * (padlen / 8)],
3009 	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
3010 
3011 	/* Copy in q */
3012 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
3013 	    &ctx->rpr_buf[1 * (padlen / 8)],
3014 	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
3015 
3016 	/* Copy in dp */
3017 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
3018 	    &ctx->rpr_buf[2 * (padlen / 8)],
3019 	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
3020 
3021 	/* Copy in dq */
3022 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
3023 	    &ctx->rpr_buf[3 * (padlen / 8)],
3024 	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
3025 
3026 	/* Copy in pinv */
3027 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
3028 	    &ctx->rpr_buf[4 * (padlen / 8)],
3029 	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
3030 
3031 	msglen = padlen * 2;
3032 
3033 	/* Copy in input message (aligned buffer/length). */
3034 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
3035 		/* Is this likely? */
3036 		err = E2BIG;
3037 		goto errout;
3038 	}
3039 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
3040 		err = ENOMEM;
3041 		goto errout;
3042 	}
3043 	memset(rp->rpr_msgin.dma_vaddr, 0, (msglen + 7) / 8);
3044 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
3045 	    rp->rpr_msgin.dma_vaddr,
3046 	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
3047 
3048 	/* Prepare space for output message (aligned buffer/length). */
3049 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
3050 		/* Is this likely? */
3051 		err = E2BIG;
3052 		goto errout;
3053 	}
3054 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
3055 		err = ENOMEM;
3056 		goto errout;
3057 	}
3058 	memset(rp->rpr_msgout.dma_vaddr, 0, (msglen + 7) / 8);
3059 
3060 	mcr->mcr_pkts = htole16(1);
3061 	mcr->mcr_flags = 0;
3062 	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
3063 	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
3064 	mcr->mcr_ipktbuf.pb_next = 0;
3065 	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
3066 	mcr->mcr_reserved = 0;
3067 	mcr->mcr_pktlen = htole16(msglen);
3068 	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
3069 	mcr->mcr_opktbuf.pb_next = 0;
3070 	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
3071 
3072 #ifdef DIAGNOSTIC
3073 	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
3074 		panic("%s: rsapriv: invalid msgin 0x%lx(0x%lx)",
3075 		    device_xname(sc->sc_dev), (u_long) rp->rpr_msgin.dma_paddr,
3076 		    (u_long) rp->rpr_msgin.dma_size);
3077 	}
3078 	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
3079 		panic("%s: rsapriv: invalid msgout 0x%lx(0x%lx)",
3080 		    device_xname(sc->sc_dev), (u_long) rp->rpr_msgout.dma_paddr,
3081 		    (u_long) rp->rpr_msgout.dma_size);
3082 	}
3083 #endif
3084 
3085 	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
3086 	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
3087 	ctx->rpr_q_len = htole16(padlen);
3088 	ctx->rpr_p_len = htole16(padlen);
3089 
3090 	/*
3091 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
3092 	 * everything else.
3093 	 */
3094 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map,
3095 	    0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
3096 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map,
3097 	    0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
3098 
3099 	/* Enqueue and we're done... */
3100 	mutex_spin_enter(&sc->sc_mtx);
3101 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
3102 	ubsec_feed2(sc);
3103 	ubsecstats.hst_modexpcrt++;
3104 	mutex_spin_exit(&sc->sc_mtx);
3105 	return (0);
3106 
3107 errout:
3108 	if (rp != NULL) {
3109 		if (rp->rpr_q.q_mcr.dma_map != NULL)
3110 			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
3111 		if (rp->rpr_msgin.dma_map != NULL) {
3112 			memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
3113 			ubsec_dma_free(sc, &rp->rpr_msgin);
3114 		}
3115 		if (rp->rpr_msgout.dma_map != NULL) {
3116 			memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
3117 			ubsec_dma_free(sc, &rp->rpr_msgout);
3118 		}
3119 		free(rp, M_DEVBUF);
3120 	}
3121 	krp->krp_status = err;
3122 	crypto_kdone(krp);
3123 	return (0);
3124 }
3125 
3126 #ifdef UBSEC_DEBUG
3127 static void
3128 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
3129 {
3130 	printf("addr 0x%x (0x%x) next 0x%x\n",
3131 	    pb->pb_addr, pb->pb_len, pb->pb_next);
3132 }
3133 
3134 static void
3135 ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *c)
3136 {
3137 	printf("CTX (0x%x):\n", c->ctx_len);
3138 	switch (letoh16(c->ctx_op)) {
3139 	case UBS_CTXOP_RNGBYPASS:
3140 	case UBS_CTXOP_RNGSHA1:
3141 		break;
3142 	case UBS_CTXOP_MODEXP:
3143 	{
3144 		struct ubsec_ctx_modexp *cx = (void *)c;
3145 		int i, len;
3146 
3147 		printf(" Elen %u, Nlen %u\n",
3148 		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
3149 		len = (cx->me_N_len + 7)/8;
3150 		for (i = 0; i < len; i++)
3151 			printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
3152 		printf("\n");
3153 		break;
3154 	}
3155 	default:
3156 		printf("unknown context: %x\n", c->ctx_op);
3157 	}
3158 	printf("END CTX\n");
3159 }
3160 
3161 static void
3162 ubsec_dump_mcr(struct ubsec_mcr *mcr)
3163 {
3164 	volatile struct ubsec_mcr_add *ma;
3165 	int i;
3166 
3167 	printf("MCR:\n");
3168 	printf(" pkts: %u, flags 0x%x\n",
3169 	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
3170 	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
3171 	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
3172 		printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
3173 		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
3174 		    letoh16(ma->mcr_reserved));
3175 		printf(" %d: ipkt ", i);
3176 		ubsec_dump_pb(&ma->mcr_ipktbuf);
3177 		printf(" %d: opkt ", i);
3178 		ubsec_dump_pb(&ma->mcr_opktbuf);
3179 		ma++;
3180 	}
3181 	printf("END MCR\n");
3182 }
3183 #endif /* UBSEC_DEBUG */
3184 
3185 /*
3186  * Return the number of significant bits of a big number.
3187  */
3188 static int
3189 ubsec_ksigbits(struct crparam *cr)
3190 {
3191 	u_int plen = (cr->crp_nbits + 7) / 8;
3192 	int i, sig = plen * 8;
3193 	u_int8_t c, *p = cr->crp_p;
3194 
3195 	for (i = plen - 1; i >= 0; i--) {
3196 		c = p[i];
3197 		if (c != 0) {
3198 			while ((c & 0x80) == 0) {
3199 				sig--;
3200 				c <<= 1;
3201 			}
3202 			break;
3203 		}
3204 		sig -= 8;
3205 	}
3206 	return (sig);
3207 }
3208 
3209 static void
3210 ubsec_kshift_r(u_int shiftbits, u_int8_t *src, u_int srcbits,
3211     u_int8_t *dst, u_int dstbits)
3212 {
3213 	u_int slen, dlen;
3214 	int i, si, di, n;
3215 
3216 	slen = (srcbits + 7) / 8;
3217 	dlen = (dstbits + 7) / 8;
3218 
3219 	for (i = 0; i < slen; i++)
3220 		dst[i] = src[i];
3221 	for (i = 0; i < dlen - slen; i++)
3222 		dst[slen + i] = 0;
3223 
3224 	n = shiftbits / 8;
3225 	if (n != 0) {
3226 		si = dlen - n - 1;
3227 		di = dlen - 1;
3228 		while (si >= 0)
3229 			dst[di--] = dst[si--];
3230 		while (di >= 0)
3231 			dst[di--] = 0;
3232 	}
3233 
3234 	n = shiftbits % 8;
3235 	if (n != 0) {
3236 		for (i = dlen - 1; i > 0; i--)
3237 			dst[i] = (dst[i] << n) |
3238 			    (dst[i - 1] >> (8 - n));
3239 		dst[0] = dst[0] << n;
3240 	}
3241 }
3242 
3243 static void
3244 ubsec_kshift_l(u_int shiftbits, u_int8_t *src, u_int srcbits,
3245     u_int8_t *dst, u_int dstbits)
3246 {
3247 	int slen, dlen, i, n;
3248 
3249 	slen = (srcbits + 7) / 8;
3250 	dlen = (dstbits + 7) / 8;
3251 
3252 	n = shiftbits / 8;
3253 	for (i = 0; i < slen; i++)
3254 		dst[i] = src[i + n];
3255 	for (i = 0; i < dlen - slen; i++)
3256 		dst[slen + i] = 0;
3257 
3258 	n = shiftbits % 8;
3259 	if (n != 0) {
3260 		for (i = 0; i < (dlen - 1); i++)
3261 			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
3262 		dst[dlen - 1] = dst[dlen - 1] >> n;
3263 	}
3264 }
3265