xref: /netbsd-src/sys/dev/pci/ubsec.c (revision b7ae68fde0d8ef1c03714e8bbb1ee7c6118ea93b)
1 /*	$NetBSD: ubsec.c,v 1.9 2006/03/28 17:38:34 thorpej Exp $	*/
2 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.6 2003/01/23 21:06:43 sam Exp $ */
3 /*	$OpenBSD: ubsec.c,v 1.127 2003/06/04 14:04:58 jason Exp $	*/
4 
5 /*
6  * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
7  * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
8  * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
23  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
28  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  * Effort sponsored in part by the Defense Advanced Research Projects
32  * Agency (DARPA) and Air Force Research Laboratory, Air Force
33  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
34  *
35  */
36 
37 #undef UBSEC_DEBUG
38 
39 /*
40  * uBsec 5[56]01, bcm580xx, bcm582x hardware crypto accelerator
41  */
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/proc.h>
46 #include <sys/endian.h>
47 #ifdef __NetBSD__
48   #define letoh16 htole16
49   #define letoh32 htole32
50 #define UBSEC_NO_RNG		/* until statistically tested */
51 #endif
52 #include <sys/errno.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/mbuf.h>
56 #include <sys/device.h>
57 #include <sys/queue.h>
58 
59 #include <uvm/uvm_extern.h>
60 
61 #include <opencrypto/cryptodev.h>
62 #include <opencrypto/xform.h>
63 #ifdef __OpenBSD__
64  #include <dev/rndvar.h>
65  #include <sys/md5k.h>
66 #else
67  #include <sys/rnd.h>
68  #include <sys/md5.h>
69 #endif
70 #include <sys/sha1.h>
71 
72 #include <dev/pci/pcireg.h>
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcidevs.h>
75 
76 #include <dev/pci/ubsecreg.h>
77 #include <dev/pci/ubsecvar.h>
78 
79 /*
80  * Prototypes and count for the pci_device structure
81  */
82 static	int ubsec_probe(struct device *, struct cfdata *, void *);
83 static	void ubsec_attach(struct device *, struct device *, void *);
84 static	void ubsec_reset_board(struct ubsec_softc *);
85 static	void ubsec_init_board(struct ubsec_softc *);
86 static	void ubsec_init_pciregs(struct pci_attach_args *pa);
87 static	void ubsec_cleanchip(struct ubsec_softc *);
88 static	void ubsec_totalreset(struct ubsec_softc *);
89 static	int  ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
90 
91 #ifdef __OpenBSD__
92 struct cfattach ubsec_ca = {
93 	sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
94 };
95 
96 struct cfdriver ubsec_cd = {
97 	0, "ubsec", DV_DULL
98 };
99 #else
100 CFATTACH_DECL(ubsec, sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
101 	      NULL, NULL);
102 extern struct cfdriver ubsec_cd;
103 #endif
104 
105 /* patchable */
106 #ifdef	UBSEC_DEBUG
107 extern int ubsec_debug;
108 int ubsec_debug=1;
109 #endif
110 
111 static	int	ubsec_intr(void *);
112 static	int	ubsec_newsession(void*, u_int32_t *, struct cryptoini *);
113 static	int	ubsec_freesession(void*, u_int64_t);
114 static	int	ubsec_process(void*, struct cryptop *, int hint);
115 static	void	ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
116 static	void	ubsec_feed(struct ubsec_softc *);
117 static	void	ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
118 static	void	ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
119 static	void	ubsec_feed2(struct ubsec_softc *);
120 #ifndef UBSEC_NO_RNG
121 static	void	ubsec_rng(void *);
122 #endif /* UBSEC_NO_RNG */
123 static	int 	ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
124 				 struct ubsec_dma_alloc *, int);
125 static	void	ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
126 static	int	ubsec_dmamap_aligned(bus_dmamap_t);
127 
128 static	int	ubsec_kprocess(void*, struct cryptkop *, int);
129 static	int	ubsec_kprocess_modexp_sw(struct ubsec_softc *,
130 					 struct cryptkop *, int);
131 static	int	ubsec_kprocess_modexp_hw(struct ubsec_softc *,
132 					 struct cryptkop *, int);
133 static	int	ubsec_kprocess_rsapriv(struct ubsec_softc *,
134 				       struct cryptkop *, int);
135 static	void	ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
136 static	int	ubsec_ksigbits(struct crparam *);
137 static	void	ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
138 static	void	ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
139 
140 #ifdef UBSEC_DEBUG
141 static void	ubsec_dump_pb(volatile struct ubsec_pktbuf *);
142 static void	ubsec_dump_mcr(struct ubsec_mcr *);
143 static	void	ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *);
144 #endif
145 
146 #define	READ_REG(sc,r) \
147 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
148 
149 #define WRITE_REG(sc,reg,val) \
150 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
151 
152 #define	SWAP32(x) (x) = htole32(ntohl((x)))
153 #ifndef HTOLE32
154  #define	HTOLE32(x) (x) = htole32(x)
155 #endif
156 
157 struct ubsec_stats ubsecstats;
158 
159 /*
160  * ubsec_maxbatch controls the number of crypto ops to voluntarily
161  * collect into one submission to the hardware.  This batching happens
162  * when ops are dispatched from the crypto subsystem with a hint that
163  * more are to follow immediately.  These ops must also not be marked
164  * with a ``no delay'' flag.
165  */
166 static	int ubsec_maxbatch = 1;
167 #ifdef SYSCTL_INT
168 SYSCTL_INT(_kern, OID_AUTO, ubsec_maxbatch, CTLFLAG_RW, &ubsec_maxbatch,
169 	    0, "Broadcom driver: max ops to batch w/o interrupt");
170 #endif
171 
172 /*
173  * ubsec_maxaggr controls the number of crypto ops to submit to the
174  * hardware as a unit.  This aggregation reduces the number of interrupts
175  * to the host at the expense of increased latency (for all but the last
176  * operation).  For network traffic setting this to one yields the highest
177  * performance but at the expense of more interrupt processing.
178  */
179 static	int ubsec_maxaggr = 1;
180 #ifdef SYSCTL_INT
181 SYSCTL_INT(_kern, OID_AUTO, ubsec_maxaggr, CTLFLAG_RW, &ubsec_maxaggr,
182 	    0, "Broadcom driver: max ops to aggregate under one interrupt");
183 #endif
184 
185 static const struct ubsec_product {
186 	pci_vendor_id_t		ubsec_vendor;
187 	pci_product_id_t	ubsec_product;
188 	int			ubsec_flags;
189 	int			ubsec_statmask;
190 	const char		*ubsec_name;
191 } ubsec_products[] = {
192 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5501,
193 	  0,
194 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
195 	  "Bluesteel 5501"
196 	},
197 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5601,
198 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
199 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
200 	  "Bluesteel 5601"
201 	},
202 
203 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5801,
204 	  0,
205 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
206 	  "Broadcom BCM5801"
207 	},
208 
209 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5802,
210 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
211 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
212 	  "Broadcom BCM5802"
213 	},
214 
215 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5805,
216 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
217 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
218 	  "Broadcom BCM5805"
219 	},
220 
221 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5820,
222 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
223 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
224 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
225 	  "Broadcom BCM5820"
226 	},
227 
228 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5821,
229 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
230 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
231 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
232 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
233 	  "Broadcom BCM5821"
234 	},
235 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_SCA1K,
236 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
237 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
238 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
239 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
240 	  "Sun Crypto Accelerator 1000"
241 	},
242 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_5821,
243 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
244 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
245 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
246 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
247 	  "Broadcom BCM5821 (Sun)"
248 	},
249 
250 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5822,
251 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
252 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
253 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
254 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
255 	  "Broadcom BCM5822"
256 	},
257 
258 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5823,
259 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
260 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
261 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
262 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
263 	  "Broadcom BCM5823"
264 	},
265 
266 	{ 0,			0,
267 	  0,
268 	  0,
269 	  NULL
270 	}
271 };
272 
273 static const struct ubsec_product *
274 ubsec_lookup(const struct pci_attach_args *pa)
275 {
276 	const struct ubsec_product *up;
277 
278 	for (up = ubsec_products; up->ubsec_name != NULL; up++) {
279 		if (PCI_VENDOR(pa->pa_id) == up->ubsec_vendor &&
280 		    PCI_PRODUCT(pa->pa_id) == up->ubsec_product)
281 			return (up);
282 	}
283 	return (NULL);
284 }
285 
286 static int
287 ubsec_probe(struct device *parent, struct cfdata *match, void *aux)
288 {
289 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
290 
291 	if (ubsec_lookup(pa) != NULL)
292 		return (1);
293 
294 	return (0);
295 }
296 
297 static void
298 ubsec_attach(struct device *parent, struct device *self, void *aux)
299 {
300 	struct ubsec_softc *sc = (struct ubsec_softc *)self;
301 	struct pci_attach_args *pa = aux;
302 	const struct ubsec_product *up;
303 	pci_chipset_tag_t pc = pa->pa_pc;
304 	pci_intr_handle_t ih;
305 	const char *intrstr = NULL;
306 	struct ubsec_dma *dmap;
307 	u_int32_t cmd, i;
308 
309 	up = ubsec_lookup(pa);
310 	if (up == NULL) {
311 		printf("\n");
312 		panic("ubsec_attach: impossible");
313 	}
314 
315 	aprint_naive(": Crypto processor\n");
316 	aprint_normal(": %s, rev. %d\n", up->ubsec_name,
317 	    PCI_REVISION(pa->pa_class));
318 
319 	SIMPLEQ_INIT(&sc->sc_queue);
320 	SIMPLEQ_INIT(&sc->sc_qchip);
321 	SIMPLEQ_INIT(&sc->sc_queue2);
322 	SIMPLEQ_INIT(&sc->sc_qchip2);
323 	SIMPLEQ_INIT(&sc->sc_q2free);
324 
325 	sc->sc_flags = up->ubsec_flags;
326 	sc->sc_statmask = up->ubsec_statmask;
327 
328 	cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
329 	cmd |= PCI_COMMAND_MASTER_ENABLE;
330 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd);
331 
332 	if (pci_mapreg_map(pa, BS_BAR, PCI_MAPREG_TYPE_MEM, 0,
333 	    &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
334 		aprint_error("%s: can't find mem space",
335 		    sc->sc_dv.dv_xname);
336 		return;
337 	}
338 
339 	sc->sc_dmat = pa->pa_dmat;
340 
341 	if (pci_intr_map(pa, &ih)) {
342 		aprint_error("%s: couldn't map interrupt\n",
343 		    sc->sc_dv.dv_xname);
344 		return;
345 	}
346 	intrstr = pci_intr_string(pc, ih);
347 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ubsec_intr, sc);
348 	if (sc->sc_ih == NULL) {
349 		aprint_error("%s: couldn't establish interrupt",
350 		    sc->sc_dv.dv_xname);
351 		if (intrstr != NULL)
352 			aprint_normal(" at %s", intrstr);
353 		aprint_normal("\n");
354 		return;
355 	}
356 	aprint_normal("%s: interrupting at %s\n", sc->sc_dv.dv_xname, intrstr);
357 
358 	sc->sc_cid = crypto_get_driverid(0);
359 	if (sc->sc_cid < 0) {
360 		aprint_error("%s: couldn't get crypto driver id\n",
361 		    sc->sc_dv.dv_xname);
362 		pci_intr_disestablish(pc, sc->sc_ih);
363 		return;
364 	}
365 
366 	SIMPLEQ_INIT(&sc->sc_freequeue);
367 	dmap = sc->sc_dmaa;
368 	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
369 		struct ubsec_q *q;
370 
371 		q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
372 		    M_DEVBUF, M_NOWAIT);
373 		if (q == NULL) {
374 			aprint_error("%s: can't allocate queue buffers\n",
375 			    sc->sc_dv.dv_xname);
376 			break;
377 		}
378 
379 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
380 		    &dmap->d_alloc, 0)) {
381 			aprint_error("%s: can't allocate dma buffers\n",
382 			    sc->sc_dv.dv_xname);
383 			free(q, M_DEVBUF);
384 			break;
385 		}
386 		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
387 
388 		q->q_dma = dmap;
389 		sc->sc_queuea[i] = q;
390 
391 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
392 	}
393 
394 	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
395 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
396 	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
397 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
398 	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0,
399 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
400 	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0,
401 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
402 
403 	/*
404 	 * Reset Broadcom chip
405 	 */
406 	ubsec_reset_board(sc);
407 
408 	/*
409 	 * Init Broadcom specific PCI settings
410 	 */
411 	ubsec_init_pciregs(pa);
412 
413 	/*
414 	 * Init Broadcom chip
415 	 */
416 	ubsec_init_board(sc);
417 
418 #ifndef UBSEC_NO_RNG
419 	if (sc->sc_flags & UBS_FLAGS_RNG) {
420 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
421 
422 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
423 		    &sc->sc_rng.rng_q.q_mcr, 0))
424 			goto skip_rng;
425 
426 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
427 		    &sc->sc_rng.rng_q.q_ctx, 0)) {
428 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
429 			goto skip_rng;
430 		}
431 
432 		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
433 		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
434 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
435 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
436 			goto skip_rng;
437 		}
438 
439 		if (hz >= 100)
440 			sc->sc_rnghz = hz / 100;
441 		else
442 			sc->sc_rnghz = 1;
443 #ifdef __OpenBSD__
444 		timeout_set(&sc->sc_rngto, ubsec_rng, sc);
445 		timeout_add(&sc->sc_rngto, sc->sc_rnghz);
446 #else
447 		callout_init(&sc->sc_rngto);
448 		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
449 #endif
450  skip_rng:
451 		if (sc->sc_rnghz)
452 			aprint_normal("%s: random number generator enabled\n",
453 			    sc->sc_dv.dv_xname);
454 		else
455 			aprint_error("%s: WARNING: random number generator "
456 			    "disabled\n", sc->sc_dv.dv_xname);
457 	}
458 #endif /* UBSEC_NO_RNG */
459 
460 	if (sc->sc_flags & UBS_FLAGS_KEY) {
461 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
462 
463 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
464 				 ubsec_kprocess, sc);
465 #if 0
466 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
467 				 ubsec_kprocess, sc);
468 #endif
469 	}
470 }
471 
472 /*
473  * UBSEC Interrupt routine
474  */
475 static int
476 ubsec_intr(void *arg)
477 {
478 	struct ubsec_softc *sc = arg;
479 	volatile u_int32_t stat;
480 	struct ubsec_q *q;
481 	struct ubsec_dma *dmap;
482 	int npkts = 0, i;
483 
484 	stat = READ_REG(sc, BS_STAT);
485 	stat &= sc->sc_statmask;
486 	if (stat == 0) {
487 		return (0);
488 	}
489 
490 	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
491 
492 	/*
493 	 * Check to see if we have any packets waiting for us
494 	 */
495 	if ((stat & BS_STAT_MCR1_DONE)) {
496 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
497 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
498 			dmap = q->q_dma;
499 
500 			if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
501 				break;
502 
503 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
504 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
505 
506 			npkts = q->q_nstacked_mcrs;
507 			sc->sc_nqchip -= 1+npkts;
508 			/*
509 			 * search for further sc_qchip ubsec_q's that share
510 			 * the same MCR, and complete them too, they must be
511 			 * at the top.
512 			 */
513 			for (i = 0; i < npkts; i++) {
514 				if(q->q_stacked_mcr[i])
515 					ubsec_callback(sc, q->q_stacked_mcr[i]);
516 				else
517 					break;
518 			}
519 			ubsec_callback(sc, q);
520 		}
521 
522 		/*
523 		 * Don't send any more packet to chip if there has been
524 		 * a DMAERR.
525 		 */
526 		if (!(stat & BS_STAT_DMAERR))
527 			ubsec_feed(sc);
528 	}
529 
530 	/*
531 	 * Check to see if we have any key setups/rng's waiting for us
532 	 */
533 	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
534 	    (stat & BS_STAT_MCR2_DONE)) {
535 		struct ubsec_q2 *q2;
536 		struct ubsec_mcr *mcr;
537 
538 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
539 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
540 
541 			bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
542 			    0, q2->q_mcr.dma_map->dm_mapsize,
543 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
544 
545 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
546 			if ((mcr->mcr_flags & htole16(UBS_MCR_DONE)) == 0) {
547 				bus_dmamap_sync(sc->sc_dmat,
548 				    q2->q_mcr.dma_map, 0,
549 				    q2->q_mcr.dma_map->dm_mapsize,
550 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
551 				break;
552 			}
553 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
554 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, /*q2,*/ q_next);
555 			ubsec_callback2(sc, q2);
556 			/*
557 			 * Don't send any more packet to chip if there has been
558 			 * a DMAERR.
559 			 */
560 			if (!(stat & BS_STAT_DMAERR))
561 				ubsec_feed2(sc);
562 		}
563 	}
564 
565 	/*
566 	 * Check to see if we got any DMA Error
567 	 */
568 	if (stat & BS_STAT_DMAERR) {
569 #ifdef UBSEC_DEBUG
570 		if (ubsec_debug) {
571 			volatile u_int32_t a = READ_REG(sc, BS_ERR);
572 
573 			printf("%s: dmaerr %s@%08x\n", sc->sc_dv.dv_xname,
574 			    (a & BS_ERR_READ) ? "read" : "write",
575 			       a & BS_ERR_ADDR);
576 		}
577 #endif /* UBSEC_DEBUG */
578 		ubsecstats.hst_dmaerr++;
579 		ubsec_totalreset(sc);
580 		ubsec_feed(sc);
581 	}
582 
583 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
584 		int wkeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
585 #ifdef UBSEC_DEBUG
586 		if (ubsec_debug)
587 			printf("%s: wakeup crypto (%x)\n", sc->sc_dv.dv_xname,
588 				sc->sc_needwakeup);
589 #endif /* UBSEC_DEBUG */
590 		sc->sc_needwakeup &= ~wkeup;
591 		crypto_unblock(sc->sc_cid, wkeup);
592 	}
593 	return (1);
594 }
595 
596 /*
597  * ubsec_feed() - aggregate and post requests to chip
598  * OpenBSD comments:
599  *		  It is assumed that the caller set splnet()
600  */
601 static void
602 ubsec_feed(struct ubsec_softc *sc)
603 {
604 	struct ubsec_q *q, *q2;
605 	int npkts, i;
606 	void *v;
607 	u_int32_t stat;
608 #ifdef UBSEC_DEBUG
609 	static int max;
610 #endif /* UBSEC_DEBUG */
611 
612 	npkts = sc->sc_nqueue;
613 	if (npkts > ubsecstats.hst_maxqueue)
614 		ubsecstats.hst_maxqueue = npkts;
615 	if (npkts < 2)
616 		goto feed1;
617 
618 	/*
619 	 * Decide how many ops to combine in a single MCR.  We cannot
620 	 * aggregate more than UBS_MAX_AGGR because this is the number
621 	 * of slots defined in the data structure.  Otherwise we clamp
622 	 * based on the tunable parameter ubsec_maxaggr.  Note that
623 	 * aggregation can happen in two ways: either by batching ops
624 	 * from above or because the h/w backs up and throttles us.
625 	 * Aggregating ops reduces the number of interrupts to the host
626 	 * but also (potentially) increases the latency for processing
627 	 * completed ops as we only get an interrupt when all aggregated
628 	 * ops have completed.
629 	 */
630 	if (npkts > UBS_MAX_AGGR)
631 		npkts = UBS_MAX_AGGR;
632 	if (npkts > ubsec_maxaggr)
633 		npkts = ubsec_maxaggr;
634 	if (npkts > ubsecstats.hst_maxbatch)
635 		ubsecstats.hst_maxbatch = npkts;
636 	if (npkts < 2)
637 		goto feed1;
638 	ubsecstats.hst_totbatch += npkts-1;
639 
640 	if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
641 		if (stat & BS_STAT_DMAERR) {
642 			ubsec_totalreset(sc);
643 			ubsecstats.hst_dmaerr++;
644 		} else {
645 			ubsecstats.hst_mcr1full++;
646 		}
647 		return;
648 	}
649 
650 #ifdef UBSEC_DEBUG
651 	if (ubsec_debug)
652 	    printf("merging %d records\n", npkts);
653 	/* XXX temporary aggregation statistics reporting code */
654 	if (max < npkts) {
655 		max = npkts;
656 		printf("%s: new max aggregate %d\n", sc->sc_dv.dv_xname, max);
657 	}
658 #endif /* UBSEC_DEBUG */
659 
660 	q = SIMPLEQ_FIRST(&sc->sc_queue);
661 	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
662 	--sc->sc_nqueue;
663 
664 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
665 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
666 	if (q->q_dst_map != NULL)
667 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
668 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
669 
670 	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
671 
672 	for (i = 0; i < q->q_nstacked_mcrs; i++) {
673 		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
674 		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
675 		    0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
676 		if (q2->q_dst_map != NULL)
677 			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
678 			    0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
679 		q2= SIMPLEQ_FIRST(&sc->sc_queue);
680 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q2,*/ q_next);
681 		--sc->sc_nqueue;
682 
683 		v = ((void *)&q2->q_dma->d_dma->d_mcr);
684 		v = (char*)v + (sizeof(struct ubsec_mcr) -
685 				 sizeof(struct ubsec_mcr_add));
686 		bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add));
687 		q->q_stacked_mcr[i] = q2;
688 	}
689 	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
690 	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
691 	sc->sc_nqchip += npkts;
692 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
693 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
694 	bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
695 	    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
696 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
697 	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
698 	    offsetof(struct ubsec_dmachunk, d_mcr));
699 	return;
700 
701 feed1:
702 	while (!SIMPLEQ_EMPTY(&sc->sc_queue)) {
703 		if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
704 			if (stat & BS_STAT_DMAERR) {
705 				ubsec_totalreset(sc);
706 				ubsecstats.hst_dmaerr++;
707 			} else {
708 				ubsecstats.hst_mcr1full++;
709 			}
710 			break;
711 		}
712 
713 		q = SIMPLEQ_FIRST(&sc->sc_queue);
714 
715 		bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
716 		    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
717 		if (q->q_dst_map != NULL)
718 			bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
719 			    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
720 		bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
721 		    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
722 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
723 
724 		WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
725 		    offsetof(struct ubsec_dmachunk, d_mcr));
726 #ifdef UBSEC_DEBUG
727 		if (ubsec_debug)
728 			printf("feed: q->chip %p %08x stat %08x\n",
729  		    	       q, (u_int32_t)q->q_dma->d_alloc.dma_paddr,
730 			       stat);
731 #endif /* UBSEC_DEBUG */
732 		q = SIMPLEQ_FIRST(&sc->sc_queue);
733 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
734 		--sc->sc_nqueue;
735 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
736 		sc->sc_nqchip++;
737 	}
738 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
739 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
740 }
741 
742 /*
743  * Allocate a new 'session' and return an encoded session id.  'sidp'
744  * contains our registration id, and should contain an encoded session
745  * id on successful allocation.
746  */
747 static int
748 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
749 {
750 	struct cryptoini *c, *encini = NULL, *macini = NULL;
751 	struct ubsec_softc *sc;
752 	struct ubsec_session *ses = NULL;
753 	MD5_CTX md5ctx;
754 	SHA1_CTX sha1ctx;
755 	int i, sesn;
756 
757 	sc = arg;
758 	KASSERT(sc != NULL /*, ("ubsec_newsession: null softc")*/);
759 
760 	if (sidp == NULL || cri == NULL || sc == NULL)
761 		return (EINVAL);
762 
763 	for (c = cri; c != NULL; c = c->cri_next) {
764 		if (c->cri_alg == CRYPTO_MD5_HMAC ||
765 		    c->cri_alg == CRYPTO_SHA1_HMAC) {
766 			if (macini)
767 				return (EINVAL);
768 			macini = c;
769 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
770 		    c->cri_alg == CRYPTO_3DES_CBC) {
771 			if (encini)
772 				return (EINVAL);
773 			encini = c;
774 		} else
775 			return (EINVAL);
776 	}
777 	if (encini == NULL && macini == NULL)
778 		return (EINVAL);
779 
780 	if (sc->sc_sessions == NULL) {
781 		ses = sc->sc_sessions = (struct ubsec_session *)malloc(
782 		    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
783 		if (ses == NULL)
784 			return (ENOMEM);
785 		sesn = 0;
786 		sc->sc_nsessions = 1;
787 	} else {
788 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
789 			if (sc->sc_sessions[sesn].ses_used == 0) {
790 				ses = &sc->sc_sessions[sesn];
791 				break;
792 			}
793 		}
794 
795 		if (ses == NULL) {
796 			sesn = sc->sc_nsessions;
797 			ses = (struct ubsec_session *)malloc((sesn + 1) *
798 			    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
799 			if (ses == NULL)
800 				return (ENOMEM);
801 			bcopy(sc->sc_sessions, ses, sesn *
802 			    sizeof(struct ubsec_session));
803 			bzero(sc->sc_sessions, sesn *
804 			    sizeof(struct ubsec_session));
805 			free(sc->sc_sessions, M_DEVBUF);
806 			sc->sc_sessions = ses;
807 			ses = &sc->sc_sessions[sesn];
808 			sc->sc_nsessions++;
809 		}
810 	}
811 
812 	bzero(ses, sizeof(struct ubsec_session));
813 	ses->ses_used = 1;
814 	if (encini) {
815 		/* get an IV, network byte order */
816 #ifdef __NetBSD__
817 		rnd_extract_data(ses->ses_iv,
818 		    sizeof(ses->ses_iv), RND_EXTRACT_ANY);
819 #else
820 		get_random_bytes(ses->ses_iv, sizeof(ses->ses_iv));
821 #endif
822 
823 		/* Go ahead and compute key in ubsec's byte order */
824 		if (encini->cri_alg == CRYPTO_DES_CBC) {
825 			bcopy(encini->cri_key, &ses->ses_deskey[0], 8);
826 			bcopy(encini->cri_key, &ses->ses_deskey[2], 8);
827 			bcopy(encini->cri_key, &ses->ses_deskey[4], 8);
828 		} else
829 			bcopy(encini->cri_key, ses->ses_deskey, 24);
830 
831 		SWAP32(ses->ses_deskey[0]);
832 		SWAP32(ses->ses_deskey[1]);
833 		SWAP32(ses->ses_deskey[2]);
834 		SWAP32(ses->ses_deskey[3]);
835 		SWAP32(ses->ses_deskey[4]);
836 		SWAP32(ses->ses_deskey[5]);
837 	}
838 
839 	if (macini) {
840 		for (i = 0; i < macini->cri_klen / 8; i++)
841 			macini->cri_key[i] ^= HMAC_IPAD_VAL;
842 
843 		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
844 			MD5Init(&md5ctx);
845 			MD5Update(&md5ctx, macini->cri_key,
846 			    macini->cri_klen / 8);
847 			MD5Update(&md5ctx, hmac_ipad_buffer,
848 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
849 			bcopy(md5ctx.state, ses->ses_hminner,
850 			    sizeof(md5ctx.state));
851 		} else {
852 			SHA1Init(&sha1ctx);
853 			SHA1Update(&sha1ctx, macini->cri_key,
854 			    macini->cri_klen / 8);
855 			SHA1Update(&sha1ctx, hmac_ipad_buffer,
856 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
857 			bcopy(sha1ctx.state, ses->ses_hminner,
858 			    sizeof(sha1ctx.state));
859 		}
860 
861 		for (i = 0; i < macini->cri_klen / 8; i++)
862 			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
863 
864 		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
865 			MD5Init(&md5ctx);
866 			MD5Update(&md5ctx, macini->cri_key,
867 			    macini->cri_klen / 8);
868 			MD5Update(&md5ctx, hmac_opad_buffer,
869 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
870 			bcopy(md5ctx.state, ses->ses_hmouter,
871 			    sizeof(md5ctx.state));
872 		} else {
873 			SHA1Init(&sha1ctx);
874 			SHA1Update(&sha1ctx, macini->cri_key,
875 			    macini->cri_klen / 8);
876 			SHA1Update(&sha1ctx, hmac_opad_buffer,
877 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
878 			bcopy(sha1ctx.state, ses->ses_hmouter,
879 			    sizeof(sha1ctx.state));
880 		}
881 
882 		for (i = 0; i < macini->cri_klen / 8; i++)
883 			macini->cri_key[i] ^= HMAC_OPAD_VAL;
884 	}
885 
886 	*sidp = UBSEC_SID(device_unit(&sc->sc_dv), sesn);
887 	return (0);
888 }
889 
890 /*
891  * Deallocate a session.
892  */
893 static int
894 ubsec_freesession(void *arg, u_int64_t tid)
895 {
896 	struct ubsec_softc *sc;
897 	int session;
898 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
899 
900 	sc = arg;
901 	KASSERT(sc != NULL /*, ("ubsec_freesession: null softc")*/);
902 
903 	session = UBSEC_SESSION(sid);
904 	if (session >= sc->sc_nsessions)
905 		return (EINVAL);
906 
907 	bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
908 	return (0);
909 }
910 
911 #ifdef __FreeBSD__ /* Ugly gratuitous changes to bus_dma */
912 static void
913 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
914 {
915 	struct ubsec_operand *op = arg;
916 
917 	KASSERT(nsegs <= UBS_MAX_SCATTER
918 		/*, ("Too many DMA segments returned when mapping operand")*/);
919 #ifdef UBSEC_DEBUG
920 	if (ubsec_debug)
921 		printf("ubsec_op_cb: mapsize %u nsegs %d\n",
922 			(u_int) mapsize, nsegs);
923 #endif
924 	op->mapsize = mapsize;
925 	op->nsegs = nsegs;
926 	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
927 }
928 #endif
929 
930 static int
931 ubsec_process(void *arg, struct cryptop *crp, int hint)
932 {
933 	struct ubsec_q *q = NULL;
934 #ifdef	__OpenBSD__
935 	int card;
936 #endif
937 	int err = 0, i, j, s, nicealign;
938 	struct ubsec_softc *sc;
939 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
940 	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
941 	int sskip, dskip, stheend, dtheend;
942 	int16_t coffset;
943 	struct ubsec_session *ses;
944 	struct ubsec_pktctx ctx;
945 	struct ubsec_dma *dmap = NULL;
946 
947 	sc = arg;
948 	KASSERT(sc != NULL /*, ("ubsec_process: null softc")*/);
949 
950 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
951 		ubsecstats.hst_invalid++;
952 		return (EINVAL);
953 	}
954 	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
955 		ubsecstats.hst_badsession++;
956 		return (EINVAL);
957 	}
958 
959 	s = splnet();
960 
961 	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
962 		ubsecstats.hst_queuefull++;
963 		sc->sc_needwakeup |= CRYPTO_SYMQ;
964 		splx(s);
965 		return(ERESTART);
966 	}
967 
968 	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
969 	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, /*q,*/ q_next);
970 	splx(s);
971 
972 	dmap = q->q_dma; /* Save dma pointer */
973 	bzero(q, sizeof(struct ubsec_q));
974 	bzero(&ctx, sizeof(ctx));
975 
976 	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
977 	q->q_dma = dmap;
978 	ses = &sc->sc_sessions[q->q_sesn];
979 
980 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
981 		q->q_src_m = (struct mbuf *)crp->crp_buf;
982 		q->q_dst_m = (struct mbuf *)crp->crp_buf;
983 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
984 		q->q_src_io = (struct uio *)crp->crp_buf;
985 		q->q_dst_io = (struct uio *)crp->crp_buf;
986 	} else {
987 		ubsecstats.hst_badflags++;
988 		err = EINVAL;
989 		goto errout;	/* XXX we don't handle contiguous blocks! */
990 	}
991 
992 	bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr));
993 
994 	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
995 	dmap->d_dma->d_mcr.mcr_flags = 0;
996 	q->q_crp = crp;
997 
998 	crd1 = crp->crp_desc;
999 	if (crd1 == NULL) {
1000 		ubsecstats.hst_nodesc++;
1001 		err = EINVAL;
1002 		goto errout;
1003 	}
1004 	crd2 = crd1->crd_next;
1005 
1006 	if (crd2 == NULL) {
1007 		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
1008 		    crd1->crd_alg == CRYPTO_SHA1_HMAC) {
1009 			maccrd = crd1;
1010 			enccrd = NULL;
1011 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1012 		    crd1->crd_alg == CRYPTO_3DES_CBC) {
1013 			maccrd = NULL;
1014 			enccrd = crd1;
1015 		} else {
1016 			ubsecstats.hst_badalg++;
1017 			err = EINVAL;
1018 			goto errout;
1019 		}
1020 	} else {
1021 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
1022 		    crd1->crd_alg == CRYPTO_SHA1_HMAC) &&
1023 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
1024 			crd2->crd_alg == CRYPTO_3DES_CBC) &&
1025 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1026 			maccrd = crd1;
1027 			enccrd = crd2;
1028 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1029 		    crd1->crd_alg == CRYPTO_3DES_CBC) &&
1030 		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
1031 			crd2->crd_alg == CRYPTO_SHA1_HMAC) &&
1032 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
1033 			enccrd = crd1;
1034 			maccrd = crd2;
1035 		} else {
1036 			/*
1037 			 * We cannot order the ubsec as requested
1038 			 */
1039 			ubsecstats.hst_badalg++;
1040 			err = EINVAL;
1041 			goto errout;
1042 		}
1043 	}
1044 
1045 	if (enccrd) {
1046 		encoffset = enccrd->crd_skip;
1047 		ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1048 
1049 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1050 			q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1051 
1052 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1053 				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1054 			else {
1055 				ctx.pc_iv[0] = ses->ses_iv[0];
1056 				ctx.pc_iv[1] = ses->ses_iv[1];
1057 			}
1058 
1059 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1060 				if (crp->crp_flags & CRYPTO_F_IMBUF)
1061 					m_copyback(q->q_src_m,
1062 					    enccrd->crd_inject,
1063 					    8, (caddr_t)ctx.pc_iv);
1064 				else if (crp->crp_flags & CRYPTO_F_IOV)
1065 					cuio_copyback(q->q_src_io,
1066 					    enccrd->crd_inject,
1067 					    8, (caddr_t)ctx.pc_iv);
1068 			}
1069 		} else {
1070 			ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1071 
1072 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1073 				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1074 			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1075 				m_copydata(q->q_src_m, enccrd->crd_inject,
1076 				    8, (caddr_t)ctx.pc_iv);
1077 			else if (crp->crp_flags & CRYPTO_F_IOV)
1078 				cuio_copydata(q->q_src_io,
1079 				    enccrd->crd_inject, 8,
1080 				    (caddr_t)ctx.pc_iv);
1081 		}
1082 
1083 		ctx.pc_deskey[0] = ses->ses_deskey[0];
1084 		ctx.pc_deskey[1] = ses->ses_deskey[1];
1085 		ctx.pc_deskey[2] = ses->ses_deskey[2];
1086 		ctx.pc_deskey[3] = ses->ses_deskey[3];
1087 		ctx.pc_deskey[4] = ses->ses_deskey[4];
1088 		ctx.pc_deskey[5] = ses->ses_deskey[5];
1089 		SWAP32(ctx.pc_iv[0]);
1090 		SWAP32(ctx.pc_iv[1]);
1091 	}
1092 
1093 	if (maccrd) {
1094 		macoffset = maccrd->crd_skip;
1095 
1096 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC)
1097 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1098 		else
1099 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1100 
1101 		for (i = 0; i < 5; i++) {
1102 			ctx.pc_hminner[i] = ses->ses_hminner[i];
1103 			ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1104 
1105 			HTOLE32(ctx.pc_hminner[i]);
1106 			HTOLE32(ctx.pc_hmouter[i]);
1107 		}
1108 	}
1109 
1110 	if (enccrd && maccrd) {
1111 		/*
1112 		 * ubsec cannot handle packets where the end of encryption
1113 		 * and authentication are not the same, or where the
1114 		 * encrypted part begins before the authenticated part.
1115 		 */
1116 		if ((encoffset + enccrd->crd_len) !=
1117 		    (macoffset + maccrd->crd_len)) {
1118 			ubsecstats.hst_lenmismatch++;
1119 			err = EINVAL;
1120 			goto errout;
1121 		}
1122 		if (enccrd->crd_skip < maccrd->crd_skip) {
1123 			ubsecstats.hst_skipmismatch++;
1124 			err = EINVAL;
1125 			goto errout;
1126 		}
1127 		sskip = maccrd->crd_skip;
1128 		cpskip = dskip = enccrd->crd_skip;
1129 		stheend = maccrd->crd_len;
1130 		dtheend = enccrd->crd_len;
1131 		coffset = enccrd->crd_skip - maccrd->crd_skip;
1132 		cpoffset = cpskip + dtheend;
1133 #ifdef UBSEC_DEBUG
1134 		if (ubsec_debug) {
1135 			printf("mac: skip %d, len %d, inject %d\n",
1136 			       maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1137 			printf("enc: skip %d, len %d, inject %d\n",
1138 			       enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1139 			printf("src: skip %d, len %d\n", sskip, stheend);
1140 			printf("dst: skip %d, len %d\n", dskip, dtheend);
1141 			printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1142 			       coffset, stheend, cpskip, cpoffset);
1143 		}
1144 #endif
1145 	} else {
1146 		cpskip = dskip = sskip = macoffset + encoffset;
1147 		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1148 		cpoffset = cpskip + dtheend;
1149 		coffset = 0;
1150 	}
1151 	ctx.pc_offset = htole16(coffset >> 2);
1152 
1153 	/* XXX FIXME: jonathan asks, what the heck's that 0xfff0?  */
1154 	if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
1155 		0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
1156 		err = ENOMEM;
1157 		goto errout;
1158 	}
1159 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1160 		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1161 		    q->q_src_m, BUS_DMA_NOWAIT) != 0) {
1162 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1163 			q->q_src_map = NULL;
1164 			ubsecstats.hst_noload++;
1165 			err = ENOMEM;
1166 			goto errout;
1167 		}
1168 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1169 		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1170 		    q->q_src_io, BUS_DMA_NOWAIT) != 0) {
1171 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1172 			q->q_src_map = NULL;
1173 			ubsecstats.hst_noload++;
1174 			err = ENOMEM;
1175 			goto errout;
1176 		}
1177 	}
1178 	nicealign = ubsec_dmamap_aligned(q->q_src_map);
1179 
1180 	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1181 
1182 #ifdef UBSEC_DEBUG
1183 	if (ubsec_debug)
1184 		printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1185 #endif
1186 	for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) {
1187 		struct ubsec_pktbuf *pb;
1188 		bus_size_t packl = q->q_src_map->dm_segs[i].ds_len;
1189 		bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr;
1190 
1191 		if (sskip >= packl) {
1192 			sskip -= packl;
1193 			continue;
1194 		}
1195 
1196 		packl -= sskip;
1197 		packp += sskip;
1198 		sskip = 0;
1199 
1200 		if (packl > 0xfffc) {
1201 			err = EIO;
1202 			goto errout;
1203 		}
1204 
1205 		if (j == 0)
1206 			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1207 		else
1208 			pb = &dmap->d_dma->d_sbuf[j - 1];
1209 
1210 		pb->pb_addr = htole32(packp);
1211 
1212 		if (stheend) {
1213 			if (packl > stheend) {
1214 				pb->pb_len = htole32(stheend);
1215 				stheend = 0;
1216 			} else {
1217 				pb->pb_len = htole32(packl);
1218 				stheend -= packl;
1219 			}
1220 		} else
1221 			pb->pb_len = htole32(packl);
1222 
1223 		if ((i + 1) == q->q_src_map->dm_nsegs)
1224 			pb->pb_next = 0;
1225 		else
1226 			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1227 			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1228 		j++;
1229 	}
1230 
1231 	if (enccrd == NULL && maccrd != NULL) {
1232 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1233 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1234 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1235 		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1236 #ifdef UBSEC_DEBUG
1237 		if (ubsec_debug)
1238 			printf("opkt: %x %x %x\n",
1239 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1240 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1241 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1242 
1243 #endif
1244 	} else {
1245 		if (crp->crp_flags & CRYPTO_F_IOV) {
1246 			if (!nicealign) {
1247 				ubsecstats.hst_iovmisaligned++;
1248 				err = EINVAL;
1249 				goto errout;
1250 			}
1251 			/* XXX: ``what the heck's that'' 0xfff0? */
1252 			if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1253 			    UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1254 			    &q->q_dst_map) != 0) {
1255 				ubsecstats.hst_nomap++;
1256 				err = ENOMEM;
1257 				goto errout;
1258 			}
1259 			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1260 			    q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
1261 				bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1262 				q->q_dst_map = NULL;
1263 				ubsecstats.hst_noload++;
1264 				err = ENOMEM;
1265 				goto errout;
1266 			}
1267 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1268 			if (nicealign) {
1269 				q->q_dst_m = q->q_src_m;
1270 				q->q_dst_map = q->q_src_map;
1271 			} else {
1272 				int totlen, len;
1273 				struct mbuf *m, *top, **mp;
1274 
1275 				ubsecstats.hst_unaligned++;
1276 				totlen = q->q_src_map->dm_mapsize;
1277 				if (q->q_src_m->m_flags & M_PKTHDR) {
1278 					len = MHLEN;
1279 					MGETHDR(m, M_DONTWAIT, MT_DATA);
1280 					/*XXX FIXME: m_dup_pkthdr */
1281 					if (m && 1 /*!m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)*/) {
1282 						m_free(m);
1283 						m = NULL;
1284 					}
1285 				} else {
1286 					len = MLEN;
1287 					MGET(m, M_DONTWAIT, MT_DATA);
1288 				}
1289 				if (m == NULL) {
1290 					ubsecstats.hst_nombuf++;
1291 					err = sc->sc_nqueue ? ERESTART : ENOMEM;
1292 					goto errout;
1293 				}
1294 				if (len == MHLEN)
1295 				  /*XXX was M_DUP_PKTHDR*/
1296 				  M_COPY_PKTHDR(m, q->q_src_m);
1297 				if (totlen >= MINCLSIZE) {
1298 					MCLGET(m, M_DONTWAIT);
1299 					if ((m->m_flags & M_EXT) == 0) {
1300 						m_free(m);
1301 						ubsecstats.hst_nomcl++;
1302 						err = sc->sc_nqueue ? ERESTART : ENOMEM;
1303 						goto errout;
1304 					}
1305 					len = MCLBYTES;
1306 				}
1307 				m->m_len = len;
1308 				top = NULL;
1309 				mp = &top;
1310 
1311 				while (totlen > 0) {
1312 					if (top) {
1313 						MGET(m, M_DONTWAIT, MT_DATA);
1314 						if (m == NULL) {
1315 							m_freem(top);
1316 							ubsecstats.hst_nombuf++;
1317 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1318 							goto errout;
1319 						}
1320 						len = MLEN;
1321 					}
1322 					if (top && totlen >= MINCLSIZE) {
1323 						MCLGET(m, M_DONTWAIT);
1324 						if ((m->m_flags & M_EXT) == 0) {
1325 							*mp = m;
1326 							m_freem(top);
1327 							ubsecstats.hst_nomcl++;
1328 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1329 							goto errout;
1330 						}
1331 						len = MCLBYTES;
1332 					}
1333 					m->m_len = len = min(totlen, len);
1334 					totlen -= len;
1335 					*mp = m;
1336 					mp = &m->m_next;
1337 				}
1338 				q->q_dst_m = top;
1339 				ubsec_mcopy(q->q_src_m, q->q_dst_m,
1340 				    cpskip, cpoffset);
1341 				/* XXX again, what the heck is that 0xfff0? */
1342 				if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1343 				    UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1344 				    &q->q_dst_map) != 0) {
1345 					ubsecstats.hst_nomap++;
1346 					err = ENOMEM;
1347 					goto errout;
1348 				}
1349 				if (bus_dmamap_load_mbuf(sc->sc_dmat,
1350 				    q->q_dst_map, q->q_dst_m,
1351 				    BUS_DMA_NOWAIT) != 0) {
1352 					bus_dmamap_destroy(sc->sc_dmat,
1353 					q->q_dst_map);
1354 					q->q_dst_map = NULL;
1355 					ubsecstats.hst_noload++;
1356 					err = ENOMEM;
1357 					goto errout;
1358 				}
1359 			}
1360 		} else {
1361 			ubsecstats.hst_badflags++;
1362 			err = EINVAL;
1363 			goto errout;
1364 		}
1365 
1366 #ifdef UBSEC_DEBUG
1367 		if (ubsec_debug)
1368 			printf("dst skip: %d\n", dskip);
1369 #endif
1370 		for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) {
1371 			struct ubsec_pktbuf *pb;
1372 			bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len;
1373 			bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr;
1374 
1375 			if (dskip >= packl) {
1376 				dskip -= packl;
1377 				continue;
1378 			}
1379 
1380 			packl -= dskip;
1381 			packp += dskip;
1382 			dskip = 0;
1383 
1384 			if (packl > 0xfffc) {
1385 				err = EIO;
1386 				goto errout;
1387 			}
1388 
1389 			if (j == 0)
1390 				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1391 			else
1392 				pb = &dmap->d_dma->d_dbuf[j - 1];
1393 
1394 			pb->pb_addr = htole32(packp);
1395 
1396 			if (dtheend) {
1397 				if (packl > dtheend) {
1398 					pb->pb_len = htole32(dtheend);
1399 					dtheend = 0;
1400 				} else {
1401 					pb->pb_len = htole32(packl);
1402 					dtheend -= packl;
1403 				}
1404 			} else
1405 				pb->pb_len = htole32(packl);
1406 
1407 			if ((i + 1) == q->q_dst_map->dm_nsegs) {
1408 				if (maccrd)
1409 					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1410 					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1411 				else
1412 					pb->pb_next = 0;
1413 			} else
1414 				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1415 				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1416 			j++;
1417 		}
1418 	}
1419 
1420 	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1421 	    offsetof(struct ubsec_dmachunk, d_ctx));
1422 
1423 	if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1424 		struct ubsec_pktctx_long *ctxl;
1425 
1426 		ctxl = (struct ubsec_pktctx_long *)(dmap->d_alloc.dma_vaddr +
1427 		    offsetof(struct ubsec_dmachunk, d_ctx));
1428 
1429 		/* transform small context into long context */
1430 		ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
1431 		ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
1432 		ctxl->pc_flags = ctx.pc_flags;
1433 		ctxl->pc_offset = ctx.pc_offset;
1434 		for (i = 0; i < 6; i++)
1435 			ctxl->pc_deskey[i] = ctx.pc_deskey[i];
1436 		for (i = 0; i < 5; i++)
1437 			ctxl->pc_hminner[i] = ctx.pc_hminner[i];
1438 		for (i = 0; i < 5; i++)
1439 			ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
1440 		ctxl->pc_iv[0] = ctx.pc_iv[0];
1441 		ctxl->pc_iv[1] = ctx.pc_iv[1];
1442 	} else
1443 		bcopy(&ctx, dmap->d_alloc.dma_vaddr +
1444 		    offsetof(struct ubsec_dmachunk, d_ctx),
1445 		    sizeof(struct ubsec_pktctx));
1446 
1447 	s = splnet();
1448 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1449 	sc->sc_nqueue++;
1450 	ubsecstats.hst_ipackets++;
1451 	ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize;
1452 	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch)
1453 		ubsec_feed(sc);
1454 	splx(s);
1455 	return (0);
1456 
1457 errout:
1458 	if (q != NULL) {
1459 		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1460 			m_freem(q->q_dst_m);
1461 
1462 		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1463 			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1464 			bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1465 		}
1466 		if (q->q_src_map != NULL) {
1467 			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1468 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1469 		}
1470 
1471 		s = splnet();
1472 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1473 		splx(s);
1474 	}
1475 #if 0 /* jonathan says: this openbsd code seems to be subsumed elsewhere */
1476 	if (err == EINVAL)
1477 		ubsecstats.hst_invalid++;
1478 	else
1479 		ubsecstats.hst_nomem++;
1480 #endif
1481 	if (err != ERESTART) {
1482 		crp->crp_etype = err;
1483 		crypto_done(crp);
1484 	} else {
1485 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1486 	}
1487 	return (err);
1488 }
1489 
1490 static void
1491 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1492 {
1493 	struct cryptop *crp = (struct cryptop *)q->q_crp;
1494 	struct cryptodesc *crd;
1495 	struct ubsec_dma *dmap = q->q_dma;
1496 
1497 	ubsecstats.hst_opackets++;
1498 	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1499 
1500 	bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
1501 	    dmap->d_alloc.dma_map->dm_mapsize,
1502 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1503 	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1504 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1505 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1506 		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1507 		bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1508 	}
1509 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
1510 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1511 	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1512 	bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1513 
1514 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1515 		m_freem(q->q_src_m);
1516 		crp->crp_buf = (caddr_t)q->q_dst_m;
1517 	}
1518 
1519 	/* copy out IV for future use */
1520 	if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1521 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1522 			if (crd->crd_alg != CRYPTO_DES_CBC &&
1523 			    crd->crd_alg != CRYPTO_3DES_CBC)
1524 				continue;
1525 			if (crp->crp_flags & CRYPTO_F_IMBUF)
1526 				m_copydata((struct mbuf *)crp->crp_buf,
1527 				    crd->crd_skip + crd->crd_len - 8, 8,
1528 				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1529 			else if (crp->crp_flags & CRYPTO_F_IOV) {
1530 				cuio_copydata((struct uio *)crp->crp_buf,
1531 				    crd->crd_skip + crd->crd_len - 8, 8,
1532 				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1533 			}
1534 			break;
1535 		}
1536 	}
1537 
1538 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1539 		if (crd->crd_alg != CRYPTO_MD5_HMAC &&
1540 		    crd->crd_alg != CRYPTO_SHA1_HMAC)
1541 			continue;
1542 		if (crp->crp_flags & CRYPTO_F_IMBUF)
1543 			m_copyback((struct mbuf *)crp->crp_buf,
1544 			    crd->crd_inject, 12,
1545 			    (caddr_t)dmap->d_dma->d_macbuf);
1546 		else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1547 			bcopy((caddr_t)dmap->d_dma->d_macbuf,
1548 			    crp->crp_mac, 12);
1549 		break;
1550 	}
1551 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1552 	crypto_done(crp);
1553 }
1554 
1555 static void
1556 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1557 {
1558 	int i, j, dlen, slen;
1559 	caddr_t dptr, sptr;
1560 
1561 	j = 0;
1562 	sptr = srcm->m_data;
1563 	slen = srcm->m_len;
1564 	dptr = dstm->m_data;
1565 	dlen = dstm->m_len;
1566 
1567 	while (1) {
1568 		for (i = 0; i < min(slen, dlen); i++) {
1569 			if (j < hoffset || j >= toffset)
1570 				*dptr++ = *sptr++;
1571 			slen--;
1572 			dlen--;
1573 			j++;
1574 		}
1575 		if (slen == 0) {
1576 			srcm = srcm->m_next;
1577 			if (srcm == NULL)
1578 				return;
1579 			sptr = srcm->m_data;
1580 			slen = srcm->m_len;
1581 		}
1582 		if (dlen == 0) {
1583 			dstm = dstm->m_next;
1584 			if (dstm == NULL)
1585 				return;
1586 			dptr = dstm->m_data;
1587 			dlen = dstm->m_len;
1588 		}
1589 	}
1590 }
1591 
1592 /*
1593  * feed the key generator, must be called at splnet() or higher.
1594  */
1595 static void
1596 ubsec_feed2(struct ubsec_softc *sc)
1597 {
1598 	struct ubsec_q2 *q;
1599 
1600 	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1601 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1602 			break;
1603 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1604 
1605 		bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1606 		    q->q_mcr.dma_map->dm_mapsize,
1607 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1608 		bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1609 		    q->q_ctx.dma_map->dm_mapsize,
1610 		    BUS_DMASYNC_PREWRITE);
1611 
1612 		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1613 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1614 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, /*q,*/ q_next);
1615 		--sc->sc_nqueue2;
1616 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1617 	}
1618 }
1619 
1620 /*
1621  * Callback for handling random numbers
1622  */
1623 static void
1624 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
1625 {
1626 	struct cryptkop *krp;
1627 	struct ubsec_ctx_keyop *ctx;
1628 
1629 	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
1630 	bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1631 	    q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1632 
1633 	switch (q->q_type) {
1634 #ifndef UBSEC_NO_RNG
1635 	case UBS_CTXOP_RNGSHA1:
1636 	case UBS_CTXOP_RNGBYPASS: {
1637 		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
1638 		u_int32_t *p;
1639 		int i;
1640 
1641 		bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
1642 		    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1643 		p = (u_int32_t *)rng->rng_buf.dma_vaddr;
1644 #ifndef __NetBSD__
1645 		for (i = 0; i < UBSEC_RNG_BUFSIZ; p++, i++)
1646 			add_true_randomness(letoh32(*p));
1647 		rng->rng_used = 0;
1648 #else
1649 		/* XXX NetBSD rnd subsystem too weak */
1650 		i = 0; (void)i;	/* shut off gcc warnings */
1651 #endif
1652 #ifdef __OpenBSD__
1653 		timeout_add(&sc->sc_rngto, sc->sc_rnghz);
1654 #else
1655 		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1656 #endif
1657 		break;
1658 	}
1659 #endif
1660 	case UBS_CTXOP_MODEXP: {
1661 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1662 		u_int rlen, clen;
1663 
1664 		krp = me->me_krp;
1665 		rlen = (me->me_modbits + 7) / 8;
1666 		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
1667 
1668 		bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
1669 		    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1670 		bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
1671 		    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1672 		bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
1673 		    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1674 		bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
1675 		    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1676 
1677 		if (clen < rlen)
1678 			krp->krp_status = E2BIG;
1679 		else {
1680 			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
1681 				bzero(krp->krp_param[krp->krp_iparams].crp_p,
1682 				    (krp->krp_param[krp->krp_iparams].crp_nbits
1683 					+ 7) / 8);
1684 				bcopy(me->me_C.dma_vaddr,
1685 				    krp->krp_param[krp->krp_iparams].crp_p,
1686 				    (me->me_modbits + 7) / 8);
1687 			} else
1688 				ubsec_kshift_l(me->me_shiftbits,
1689 				    me->me_C.dma_vaddr, me->me_normbits,
1690 				    krp->krp_param[krp->krp_iparams].crp_p,
1691 				    krp->krp_param[krp->krp_iparams].crp_nbits);
1692 		}
1693 
1694 		crypto_kdone(krp);
1695 
1696 		/* bzero all potentially sensitive data */
1697 		bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
1698 		bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
1699 		bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
1700 		bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
1701 
1702 		/* Can't free here, so put us on the free list. */
1703 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
1704 		break;
1705 	}
1706 	case UBS_CTXOP_RSAPRIV: {
1707 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1708 		u_int len;
1709 
1710 		krp = rp->rpr_krp;
1711 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0,
1712 		    rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1713 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0,
1714 		    rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1715 
1716 		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
1717 		bcopy(rp->rpr_msgout.dma_vaddr,
1718 		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
1719 
1720 		crypto_kdone(krp);
1721 
1722 		bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
1723 		bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
1724 		bzero(rp->rpr_q.q_ctx.dma_vaddr, rp->rpr_q.q_ctx.dma_size);
1725 
1726 		/* Can't free here, so put us on the free list. */
1727 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
1728 		break;
1729 	}
1730 	default:
1731 		printf("%s: unknown ctx op: %x\n", sc->sc_dv.dv_xname,
1732 		    letoh16(ctx->ctx_op));
1733 		break;
1734 	}
1735 }
1736 
1737 #ifndef UBSEC_NO_RNG
1738 static void
1739 ubsec_rng(void *vsc)
1740 {
1741 	struct ubsec_softc *sc = vsc;
1742 	struct ubsec_q2_rng *rng = &sc->sc_rng;
1743 	struct ubsec_mcr *mcr;
1744 	struct ubsec_ctx_rngbypass *ctx;
1745 	int s;
1746 
1747 	s = splnet();
1748 	if (rng->rng_used) {
1749 		splx(s);
1750 		return;
1751 	}
1752 	sc->sc_nqueue2++;
1753 	if (sc->sc_nqueue2 >= UBS_MAX_NQUEUE)
1754 		goto out;
1755 
1756 	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
1757 	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
1758 
1759 	mcr->mcr_pkts = htole16(1);
1760 	mcr->mcr_flags = 0;
1761 	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
1762 	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
1763 	mcr->mcr_ipktbuf.pb_len = 0;
1764 	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
1765 	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
1766 	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
1767 	    UBS_PKTBUF_LEN);
1768 	mcr->mcr_opktbuf.pb_next = 0;
1769 
1770 	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
1771 	ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1);
1772 	rng->rng_q.q_type = UBS_CTXOP_RNGSHA1;
1773 
1774 	bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
1775 	    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1776 
1777 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
1778 	rng->rng_used = 1;
1779 	ubsec_feed2(sc);
1780 	ubsecstats.hst_rng++;
1781 	splx(s);
1782 
1783 	return;
1784 
1785 out:
1786 	/*
1787 	 * Something weird happened, generate our own call back.
1788 	 */
1789 	sc->sc_nqueue2--;
1790 	splx(s);
1791 #ifdef __OpenBSD__
1792 	timeout_add(&sc->sc_rngto, sc->sc_rnghz);
1793 #else
1794 	callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1795 #endif
1796 }
1797 #endif /* UBSEC_NO_RNG */
1798 
1799 static int
1800 ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size,
1801 		 struct ubsec_dma_alloc *dma,int mapflags)
1802 {
1803 	int r;
1804 
1805 	if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
1806 	    &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0)
1807 		goto fail_0;
1808 
1809 	if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg,
1810 	    size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0)
1811 		goto fail_1;
1812 
1813 	if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1814 	    BUS_DMA_NOWAIT, &dma->dma_map)) != 0)
1815 		goto fail_2;
1816 
1817 	if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
1818 	    size, NULL, BUS_DMA_NOWAIT)) != 0)
1819 		goto fail_3;
1820 
1821 	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
1822 	dma->dma_size = size;
1823 	return (0);
1824 
1825 fail_3:
1826 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
1827 fail_2:
1828 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
1829 fail_1:
1830 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
1831 fail_0:
1832 	dma->dma_map = NULL;
1833 	return (r);
1834 }
1835 
1836 static void
1837 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
1838 {
1839 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
1840 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
1841 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
1842 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
1843 }
1844 
1845 /*
1846  * Resets the board.  Values in the regesters are left as is
1847  * from the reset (i.e. initial values are assigned elsewhere).
1848  */
1849 static void
1850 ubsec_reset_board(struct ubsec_softc *sc)
1851 {
1852     volatile u_int32_t ctrl;
1853 
1854     ctrl = READ_REG(sc, BS_CTRL);
1855     ctrl |= BS_CTRL_RESET;
1856     WRITE_REG(sc, BS_CTRL, ctrl);
1857 
1858     /*
1859      * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
1860      */
1861     DELAY(10);
1862 }
1863 
1864 /*
1865  * Init Broadcom registers
1866  */
1867 static void
1868 ubsec_init_board(struct ubsec_softc *sc)
1869 {
1870 	u_int32_t ctrl;
1871 
1872 	ctrl = READ_REG(sc, BS_CTRL);
1873 	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
1874 	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
1875 
1876 	/*
1877 	 * XXX: Sam Leffler's code has (UBS_FLAGS_KEY|UBS_FLAGS_RNG)).
1878 	 * anyone got hw docs?
1879 	 */
1880 	if (sc->sc_flags & UBS_FLAGS_KEY)
1881 		ctrl |= BS_CTRL_MCR2INT;
1882 	else
1883 		ctrl &= ~BS_CTRL_MCR2INT;
1884 
1885 	if (sc->sc_flags & UBS_FLAGS_HWNORM)
1886 		ctrl &= ~BS_CTRL_SWNORM;
1887 
1888 	WRITE_REG(sc, BS_CTRL, ctrl);
1889 }
1890 
1891 /*
1892  * Init Broadcom PCI registers
1893  */
1894 static void
1895 ubsec_init_pciregs(struct pci_attach_args *pa)
1896 {
1897 	pci_chipset_tag_t pc = pa->pa_pc;
1898 	u_int32_t misc;
1899 
1900 	/*
1901 	 * This will set the cache line size to 1, this will
1902 	 * force the BCM58xx chip just to do burst read/writes.
1903 	 * Cache line read/writes are to slow
1904 	 */
1905 	misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG);
1906 	misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT))
1907 	    | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT);
1908 	pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc);
1909 }
1910 
1911 /*
1912  * Clean up after a chip crash.
1913  * It is assumed that the caller in splnet()
1914  */
1915 static void
1916 ubsec_cleanchip(struct ubsec_softc *sc)
1917 {
1918 	struct ubsec_q *q;
1919 
1920 	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
1921 		q = SIMPLEQ_FIRST(&sc->sc_qchip);
1922 		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
1923 		ubsec_free_q(sc, q);
1924 	}
1925 	sc->sc_nqchip = 0;
1926 }
1927 
1928 /*
1929  * free a ubsec_q
1930  * It is assumed that the caller is within splnet()
1931  */
1932 static int
1933 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
1934 {
1935 	struct ubsec_q *q2;
1936 	struct cryptop *crp;
1937 	int npkts;
1938 	int i;
1939 
1940 	npkts = q->q_nstacked_mcrs;
1941 
1942 	for (i = 0; i < npkts; i++) {
1943 		if(q->q_stacked_mcr[i]) {
1944 			q2 = q->q_stacked_mcr[i];
1945 
1946 			if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
1947 				m_freem(q2->q_dst_m);
1948 
1949 			crp = (struct cryptop *)q2->q_crp;
1950 
1951 			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
1952 
1953 			crp->crp_etype = EFAULT;
1954 			crypto_done(crp);
1955 		} else {
1956 			break;
1957 		}
1958 	}
1959 
1960 	/*
1961 	 * Free header MCR
1962 	 */
1963 	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1964 		m_freem(q->q_dst_m);
1965 
1966 	crp = (struct cryptop *)q->q_crp;
1967 
1968 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1969 
1970 	crp->crp_etype = EFAULT;
1971 	crypto_done(crp);
1972 	return(0);
1973 }
1974 
1975 /*
1976  * Routine to reset the chip and clean up.
1977  * It is assumed that the caller is in splnet()
1978  */
1979 static void
1980 ubsec_totalreset(struct ubsec_softc *sc)
1981 {
1982 	ubsec_reset_board(sc);
1983 	ubsec_init_board(sc);
1984 	ubsec_cleanchip(sc);
1985 }
1986 
1987 static int
1988 ubsec_dmamap_aligned(bus_dmamap_t map)
1989 {
1990 	int i;
1991 
1992 	for (i = 0; i < map->dm_nsegs; i++) {
1993 		if (map->dm_segs[i].ds_addr & 3)
1994 			return (0);
1995 		if ((i != (map->dm_nsegs - 1)) &&
1996 		    (map->dm_segs[i].ds_len & 3))
1997 			return (0);
1998 	}
1999 	return (1);
2000 }
2001 
2002 #ifdef __OpenBSD__
2003 struct ubsec_softc *
2004 ubsec_kfind(struct cryptkop *krp)
2005 {
2006 	struct ubsec_softc *sc;
2007 	int i;
2008 
2009 	for (i = 0; i < ubsec_cd.cd_ndevs; i++) {
2010 		sc = ubsec_cd.cd_devs[i];
2011 		if (sc == NULL)
2012 			continue;
2013 		if (sc->sc_cid == krp->krp_hid)
2014 			return (sc);
2015 	}
2016 	return (NULL);
2017 }
2018 #endif
2019 
2020 static void
2021 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2022 {
2023 	switch (q->q_type) {
2024 	case UBS_CTXOP_MODEXP: {
2025 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2026 
2027 		ubsec_dma_free(sc, &me->me_q.q_mcr);
2028 		ubsec_dma_free(sc, &me->me_q.q_ctx);
2029 		ubsec_dma_free(sc, &me->me_M);
2030 		ubsec_dma_free(sc, &me->me_E);
2031 		ubsec_dma_free(sc, &me->me_C);
2032 		ubsec_dma_free(sc, &me->me_epb);
2033 		free(me, M_DEVBUF);
2034 		break;
2035 	}
2036 	case UBS_CTXOP_RSAPRIV: {
2037 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2038 
2039 		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2040 		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2041 		ubsec_dma_free(sc, &rp->rpr_msgin);
2042 		ubsec_dma_free(sc, &rp->rpr_msgout);
2043 		free(rp, M_DEVBUF);
2044 		break;
2045 	}
2046 	default:
2047 		printf("%s: invalid kfree 0x%x\n", sc->sc_dv.dv_xname,
2048 		    q->q_type);
2049 		break;
2050 	}
2051 }
2052 
2053 static int
2054 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2055 {
2056 	struct ubsec_softc *sc;
2057 	int r;
2058 
2059 	if (krp == NULL || krp->krp_callback == NULL)
2060 		return (EINVAL);
2061 #ifdef __OpenBSD__
2062 	if ((sc = ubsec_kfind(krp)) == NULL)
2063 		return (EINVAL);
2064 #else
2065 	sc = arg;
2066 	KASSERT(sc != NULL /*, ("ubsec_kprocess: null softc")*/);
2067 #endif
2068 
2069 	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2070 		struct ubsec_q2 *q;
2071 
2072 		q = SIMPLEQ_FIRST(&sc->sc_q2free);
2073 		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, /*q,*/ q_next);
2074 		ubsec_kfree(sc, q);
2075 	}
2076 
2077 	switch (krp->krp_op) {
2078 	case CRK_MOD_EXP:
2079 		if (sc->sc_flags & UBS_FLAGS_HWNORM)
2080 			r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2081 		else
2082 			r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2083 		break;
2084 	case CRK_MOD_EXP_CRT:
2085 		r = ubsec_kprocess_rsapriv(sc, krp, hint);
2086 		break;
2087 	default:
2088 		printf("%s: kprocess: invalid op 0x%x\n",
2089 		    sc->sc_dv.dv_xname, krp->krp_op);
2090 		krp->krp_status = EOPNOTSUPP;
2091 		crypto_kdone(krp);
2092 		r = 0;
2093 	}
2094 	return (r);
2095 }
2096 
2097 /*
2098  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2099  */
2100 static int
2101 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp,
2102 			 int hint)
2103 {
2104 	struct ubsec_q2_modexp *me;
2105 	struct ubsec_mcr *mcr;
2106 	struct ubsec_ctx_modexp *ctx;
2107 	struct ubsec_pktbuf *epb;
2108 	int s, err = 0;
2109 	u_int nbits, normbits, mbits, shiftbits, ebits;
2110 
2111 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2112 	if (me == NULL) {
2113 		err = ENOMEM;
2114 		goto errout;
2115 	}
2116 	bzero(me, sizeof *me);
2117 	me->me_krp = krp;
2118 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2119 
2120 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2121 	if (nbits <= 512)
2122 		normbits = 512;
2123 	else if (nbits <= 768)
2124 		normbits = 768;
2125 	else if (nbits <= 1024)
2126 		normbits = 1024;
2127 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2128 		normbits = 1536;
2129 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2130 		normbits = 2048;
2131 	else {
2132 		err = E2BIG;
2133 		goto errout;
2134 	}
2135 
2136 	shiftbits = normbits - nbits;
2137 
2138 	me->me_modbits = nbits;
2139 	me->me_shiftbits = shiftbits;
2140 	me->me_normbits = normbits;
2141 
2142 	/* Sanity check: result bits must be >= true modulus bits. */
2143 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2144 		err = ERANGE;
2145 		goto errout;
2146 	}
2147 
2148 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2149 	    &me->me_q.q_mcr, 0)) {
2150 		err = ENOMEM;
2151 		goto errout;
2152 	}
2153 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2154 
2155 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2156 	    &me->me_q.q_ctx, 0)) {
2157 		err = ENOMEM;
2158 		goto errout;
2159 	}
2160 
2161 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2162 	if (mbits > nbits) {
2163 		err = E2BIG;
2164 		goto errout;
2165 	}
2166 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2167 		err = ENOMEM;
2168 		goto errout;
2169 	}
2170 	ubsec_kshift_r(shiftbits,
2171 	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2172 	    me->me_M.dma_vaddr, normbits);
2173 
2174 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2175 		err = ENOMEM;
2176 		goto errout;
2177 	}
2178 	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2179 
2180 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2181 	if (ebits > nbits) {
2182 		err = E2BIG;
2183 		goto errout;
2184 	}
2185 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2186 		err = ENOMEM;
2187 		goto errout;
2188 	}
2189 	ubsec_kshift_r(shiftbits,
2190 	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2191 	    me->me_E.dma_vaddr, normbits);
2192 
2193 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2194 	    &me->me_epb, 0)) {
2195 		err = ENOMEM;
2196 		goto errout;
2197 	}
2198 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2199 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2200 	epb->pb_next = 0;
2201 	epb->pb_len = htole32(normbits / 8);
2202 
2203 #ifdef UBSEC_DEBUG
2204 	if (ubsec_debug) {
2205 		printf("Epb ");
2206 		ubsec_dump_pb(epb);
2207 	}
2208 #endif
2209 
2210 	mcr->mcr_pkts = htole16(1);
2211 	mcr->mcr_flags = 0;
2212 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2213 	mcr->mcr_reserved = 0;
2214 	mcr->mcr_pktlen = 0;
2215 
2216 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2217 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2218 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2219 
2220 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2221 	mcr->mcr_opktbuf.pb_next = 0;
2222 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2223 
2224 #ifdef DIAGNOSTIC
2225 	/* Misaligned output buffer will hang the chip. */
2226 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2227 		panic("%s: modexp invalid addr 0x%x",
2228 		    sc->sc_dv.dv_xname, letoh32(mcr->mcr_opktbuf.pb_addr));
2229 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2230 		panic("%s: modexp invalid len 0x%x",
2231 		    sc->sc_dv.dv_xname, letoh32(mcr->mcr_opktbuf.pb_len));
2232 #endif
2233 
2234 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2235 	bzero(ctx, sizeof(*ctx));
2236 	ubsec_kshift_r(shiftbits,
2237 	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2238 	    ctx->me_N, normbits);
2239 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2240 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2241 	ctx->me_E_len = htole16(nbits);
2242 	ctx->me_N_len = htole16(nbits);
2243 
2244 #ifdef UBSEC_DEBUG
2245 	if (ubsec_debug) {
2246 		ubsec_dump_mcr(mcr);
2247 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2248 	}
2249 #endif
2250 
2251 	/*
2252 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2253 	 * everything else.
2254 	 */
2255 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2256 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2257 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2258 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2259 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2260 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2261 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2262 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2263 
2264 	/* Enqueue and we're done... */
2265 	s = splnet();
2266 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2267 	ubsec_feed2(sc);
2268 	ubsecstats.hst_modexp++;
2269 	splx(s);
2270 
2271 	return (0);
2272 
2273 errout:
2274 	if (me != NULL) {
2275 		if (me->me_q.q_mcr.dma_map != NULL)
2276 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2277 		if (me->me_q.q_ctx.dma_map != NULL) {
2278 			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2279 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2280 		}
2281 		if (me->me_M.dma_map != NULL) {
2282 			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2283 			ubsec_dma_free(sc, &me->me_M);
2284 		}
2285 		if (me->me_E.dma_map != NULL) {
2286 			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2287 			ubsec_dma_free(sc, &me->me_E);
2288 		}
2289 		if (me->me_C.dma_map != NULL) {
2290 			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2291 			ubsec_dma_free(sc, &me->me_C);
2292 		}
2293 		if (me->me_epb.dma_map != NULL)
2294 			ubsec_dma_free(sc, &me->me_epb);
2295 		free(me, M_DEVBUF);
2296 	}
2297 	krp->krp_status = err;
2298 	crypto_kdone(krp);
2299 	return (0);
2300 }
2301 
2302 /*
2303  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2304  */
2305 static int
2306 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp,
2307 			 int hint)
2308 {
2309 	struct ubsec_q2_modexp *me;
2310 	struct ubsec_mcr *mcr;
2311 	struct ubsec_ctx_modexp *ctx;
2312 	struct ubsec_pktbuf *epb;
2313 	int s, err = 0;
2314 	u_int nbits, normbits, mbits, shiftbits, ebits;
2315 
2316 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2317 	if (me == NULL) {
2318 		err = ENOMEM;
2319 		goto errout;
2320 	}
2321 	bzero(me, sizeof *me);
2322 	me->me_krp = krp;
2323 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2324 
2325 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2326 	if (nbits <= 512)
2327 		normbits = 512;
2328 	else if (nbits <= 768)
2329 		normbits = 768;
2330 	else if (nbits <= 1024)
2331 		normbits = 1024;
2332 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2333 		normbits = 1536;
2334 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2335 		normbits = 2048;
2336 	else {
2337 		err = E2BIG;
2338 		goto errout;
2339 	}
2340 
2341 	shiftbits = normbits - nbits;
2342 
2343 	/* XXX ??? */
2344 	me->me_modbits = nbits;
2345 	me->me_shiftbits = shiftbits;
2346 	me->me_normbits = normbits;
2347 
2348 	/* Sanity check: result bits must be >= true modulus bits. */
2349 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2350 		err = ERANGE;
2351 		goto errout;
2352 	}
2353 
2354 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2355 	    &me->me_q.q_mcr, 0)) {
2356 		err = ENOMEM;
2357 		goto errout;
2358 	}
2359 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2360 
2361 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2362 	    &me->me_q.q_ctx, 0)) {
2363 		err = ENOMEM;
2364 		goto errout;
2365 	}
2366 
2367 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2368 	if (mbits > nbits) {
2369 		err = E2BIG;
2370 		goto errout;
2371 	}
2372 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2373 		err = ENOMEM;
2374 		goto errout;
2375 	}
2376 	bzero(me->me_M.dma_vaddr, normbits / 8);
2377 	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2378 	    me->me_M.dma_vaddr, (mbits + 7) / 8);
2379 
2380 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2381 		err = ENOMEM;
2382 		goto errout;
2383 	}
2384 	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2385 
2386 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2387 	if (ebits > nbits) {
2388 		err = E2BIG;
2389 		goto errout;
2390 	}
2391 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2392 		err = ENOMEM;
2393 		goto errout;
2394 	}
2395 	bzero(me->me_E.dma_vaddr, normbits / 8);
2396 	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2397 	    me->me_E.dma_vaddr, (ebits + 7) / 8);
2398 
2399 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2400 	    &me->me_epb, 0)) {
2401 		err = ENOMEM;
2402 		goto errout;
2403 	}
2404 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2405 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2406 	epb->pb_next = 0;
2407 	epb->pb_len = htole32((ebits + 7) / 8);
2408 
2409 #ifdef UBSEC_DEBUG
2410 	if (ubsec_debug) {
2411 		printf("Epb ");
2412 		ubsec_dump_pb(epb);
2413 	}
2414 #endif
2415 
2416 	mcr->mcr_pkts = htole16(1);
2417 	mcr->mcr_flags = 0;
2418 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2419 	mcr->mcr_reserved = 0;
2420 	mcr->mcr_pktlen = 0;
2421 
2422 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2423 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2424 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2425 
2426 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2427 	mcr->mcr_opktbuf.pb_next = 0;
2428 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2429 
2430 #ifdef DIAGNOSTIC
2431 	/* Misaligned output buffer will hang the chip. */
2432 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2433 		panic("%s: modexp invalid addr 0x%x",
2434 		    sc->sc_dv.dv_xname, letoh32(mcr->mcr_opktbuf.pb_addr));
2435 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2436 		panic("%s: modexp invalid len 0x%x",
2437 		    sc->sc_dv.dv_xname, letoh32(mcr->mcr_opktbuf.pb_len));
2438 #endif
2439 
2440 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2441 	bzero(ctx, sizeof(*ctx));
2442 	bcopy(krp->krp_param[UBS_MODEXP_PAR_N].crp_p, ctx->me_N,
2443 	    (nbits + 7) / 8);
2444 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2445 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2446 	ctx->me_E_len = htole16(ebits);
2447 	ctx->me_N_len = htole16(nbits);
2448 
2449 #ifdef UBSEC_DEBUG
2450 	if (ubsec_debug) {
2451 		ubsec_dump_mcr(mcr);
2452 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2453 	}
2454 #endif
2455 
2456 	/*
2457 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2458 	 * everything else.
2459 	 */
2460 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2461 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2462 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2463 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2464 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2465 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2466 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2467 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2468 
2469 	/* Enqueue and we're done... */
2470 	s = splnet();
2471 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2472 	ubsec_feed2(sc);
2473 	splx(s);
2474 
2475 	return (0);
2476 
2477 errout:
2478 	if (me != NULL) {
2479 		if (me->me_q.q_mcr.dma_map != NULL)
2480 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2481 		if (me->me_q.q_ctx.dma_map != NULL) {
2482 			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2483 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2484 		}
2485 		if (me->me_M.dma_map != NULL) {
2486 			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2487 			ubsec_dma_free(sc, &me->me_M);
2488 		}
2489 		if (me->me_E.dma_map != NULL) {
2490 			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2491 			ubsec_dma_free(sc, &me->me_E);
2492 		}
2493 		if (me->me_C.dma_map != NULL) {
2494 			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2495 			ubsec_dma_free(sc, &me->me_C);
2496 		}
2497 		if (me->me_epb.dma_map != NULL)
2498 			ubsec_dma_free(sc, &me->me_epb);
2499 		free(me, M_DEVBUF);
2500 	}
2501 	krp->krp_status = err;
2502 	crypto_kdone(krp);
2503 	return (0);
2504 }
2505 
2506 static int
2507 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp,
2508 		       int hint)
2509 {
2510 	struct ubsec_q2_rsapriv *rp = NULL;
2511 	struct ubsec_mcr *mcr;
2512 	struct ubsec_ctx_rsapriv *ctx;
2513 	int s, err = 0;
2514 	u_int padlen, msglen;
2515 
2516 	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2517 	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2518 	if (msglen > padlen)
2519 		padlen = msglen;
2520 
2521 	if (padlen <= 256)
2522 		padlen = 256;
2523 	else if (padlen <= 384)
2524 		padlen = 384;
2525 	else if (padlen <= 512)
2526 		padlen = 512;
2527 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2528 		padlen = 768;
2529 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2530 		padlen = 1024;
2531 	else {
2532 		err = E2BIG;
2533 		goto errout;
2534 	}
2535 
2536 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2537 		err = E2BIG;
2538 		goto errout;
2539 	}
2540 
2541 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2542 		err = E2BIG;
2543 		goto errout;
2544 	}
2545 
2546 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2547 		err = E2BIG;
2548 		goto errout;
2549 	}
2550 
2551 	rp = (struct ubsec_q2_rsapriv *)malloc(sizeof *rp, M_DEVBUF, M_NOWAIT);
2552 	if (rp == NULL)
2553 		return (ENOMEM);
2554 	bzero(rp, sizeof *rp);
2555 	rp->rpr_krp = krp;
2556 	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2557 
2558 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2559 	    &rp->rpr_q.q_mcr, 0)) {
2560 		err = ENOMEM;
2561 		goto errout;
2562 	}
2563 	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2564 
2565 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2566 	    &rp->rpr_q.q_ctx, 0)) {
2567 		err = ENOMEM;
2568 		goto errout;
2569 	}
2570 	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
2571 	bzero(ctx, sizeof *ctx);
2572 
2573 	/* Copy in p */
2574 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
2575 	    &ctx->rpr_buf[0 * (padlen / 8)],
2576 	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
2577 
2578 	/* Copy in q */
2579 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
2580 	    &ctx->rpr_buf[1 * (padlen / 8)],
2581 	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
2582 
2583 	/* Copy in dp */
2584 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
2585 	    &ctx->rpr_buf[2 * (padlen / 8)],
2586 	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
2587 
2588 	/* Copy in dq */
2589 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
2590 	    &ctx->rpr_buf[3 * (padlen / 8)],
2591 	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
2592 
2593 	/* Copy in pinv */
2594 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
2595 	    &ctx->rpr_buf[4 * (padlen / 8)],
2596 	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
2597 
2598 	msglen = padlen * 2;
2599 
2600 	/* Copy in input message (aligned buffer/length). */
2601 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
2602 		/* Is this likely? */
2603 		err = E2BIG;
2604 		goto errout;
2605 	}
2606 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
2607 		err = ENOMEM;
2608 		goto errout;
2609 	}
2610 	bzero(rp->rpr_msgin.dma_vaddr, (msglen + 7) / 8);
2611 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
2612 	    rp->rpr_msgin.dma_vaddr,
2613 	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
2614 
2615 	/* Prepare space for output message (aligned buffer/length). */
2616 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
2617 		/* Is this likely? */
2618 		err = E2BIG;
2619 		goto errout;
2620 	}
2621 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
2622 		err = ENOMEM;
2623 		goto errout;
2624 	}
2625 	bzero(rp->rpr_msgout.dma_vaddr, (msglen + 7) / 8);
2626 
2627 	mcr->mcr_pkts = htole16(1);
2628 	mcr->mcr_flags = 0;
2629 	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
2630 	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
2631 	mcr->mcr_ipktbuf.pb_next = 0;
2632 	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
2633 	mcr->mcr_reserved = 0;
2634 	mcr->mcr_pktlen = htole16(msglen);
2635 	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
2636 	mcr->mcr_opktbuf.pb_next = 0;
2637 	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
2638 
2639 #ifdef DIAGNOSTIC
2640 	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
2641 		panic("%s: rsapriv: invalid msgin 0x%lx(0x%lx)",
2642 		    sc->sc_dv.dv_xname, (u_long) rp->rpr_msgin.dma_paddr,
2643 		    (u_long) rp->rpr_msgin.dma_size);
2644 	}
2645 	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
2646 		panic("%s: rsapriv: invalid msgout 0x%lx(0x%lx)",
2647 		    sc->sc_dv.dv_xname, (u_long) rp->rpr_msgout.dma_paddr,
2648 		    (u_long) rp->rpr_msgout.dma_size);
2649 	}
2650 #endif
2651 
2652 	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
2653 	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
2654 	ctx->rpr_q_len = htole16(padlen);
2655 	ctx->rpr_p_len = htole16(padlen);
2656 
2657 	/*
2658 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2659 	 * everything else.
2660 	 */
2661 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map,
2662 	    0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2663 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map,
2664 	    0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2665 
2666 	/* Enqueue and we're done... */
2667 	s = splnet();
2668 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
2669 	ubsec_feed2(sc);
2670 	ubsecstats.hst_modexpcrt++;
2671 	splx(s);
2672 	return (0);
2673 
2674 errout:
2675 	if (rp != NULL) {
2676 		if (rp->rpr_q.q_mcr.dma_map != NULL)
2677 			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2678 		if (rp->rpr_msgin.dma_map != NULL) {
2679 			bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
2680 			ubsec_dma_free(sc, &rp->rpr_msgin);
2681 		}
2682 		if (rp->rpr_msgout.dma_map != NULL) {
2683 			bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
2684 			ubsec_dma_free(sc, &rp->rpr_msgout);
2685 		}
2686 		free(rp, M_DEVBUF);
2687 	}
2688 	krp->krp_status = err;
2689 	crypto_kdone(krp);
2690 	return (0);
2691 }
2692 
2693 #ifdef UBSEC_DEBUG
2694 static void
2695 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
2696 {
2697 	printf("addr 0x%x (0x%x) next 0x%x\n",
2698 	    pb->pb_addr, pb->pb_len, pb->pb_next);
2699 }
2700 
2701 static void
2702 ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *c)
2703 {
2704 	printf("CTX (0x%x):\n", c->ctx_len);
2705 	switch (letoh16(c->ctx_op)) {
2706 	case UBS_CTXOP_RNGBYPASS:
2707 	case UBS_CTXOP_RNGSHA1:
2708 		break;
2709 	case UBS_CTXOP_MODEXP:
2710 	{
2711 		struct ubsec_ctx_modexp *cx = (void *)c;
2712 		int i, len;
2713 
2714 		printf(" Elen %u, Nlen %u\n",
2715 		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
2716 		len = (cx->me_N_len + 7)/8;
2717 		for (i = 0; i < len; i++)
2718 			printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
2719 		printf("\n");
2720 		break;
2721 	}
2722 	default:
2723 		printf("unknown context: %x\n", c->ctx_op);
2724 	}
2725 	printf("END CTX\n");
2726 }
2727 
2728 static void
2729 ubsec_dump_mcr(struct ubsec_mcr *mcr)
2730 {
2731 	volatile struct ubsec_mcr_add *ma;
2732 	int i;
2733 
2734 	printf("MCR:\n");
2735 	printf(" pkts: %u, flags 0x%x\n",
2736 	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
2737 	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
2738 	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
2739 		printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
2740 		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
2741 		    letoh16(ma->mcr_reserved));
2742 		printf(" %d: ipkt ", i);
2743 		ubsec_dump_pb(&ma->mcr_ipktbuf);
2744 		printf(" %d: opkt ", i);
2745 		ubsec_dump_pb(&ma->mcr_opktbuf);
2746 		ma++;
2747 	}
2748 	printf("END MCR\n");
2749 }
2750 #endif /* UBSEC_DEBUG */
2751 
2752 /*
2753  * Return the number of significant bits of a big number.
2754  */
2755 static int
2756 ubsec_ksigbits(struct crparam *cr)
2757 {
2758 	u_int plen = (cr->crp_nbits + 7) / 8;
2759 	int i, sig = plen * 8;
2760 	u_int8_t c, *p = cr->crp_p;
2761 
2762 	for (i = plen - 1; i >= 0; i--) {
2763 		c = p[i];
2764 		if (c != 0) {
2765 			while ((c & 0x80) == 0) {
2766 				sig--;
2767 				c <<= 1;
2768 			}
2769 			break;
2770 		}
2771 		sig -= 8;
2772 	}
2773 	return (sig);
2774 }
2775 
2776 static void
2777 ubsec_kshift_r(u_int shiftbits, u_int8_t *src, u_int srcbits,
2778     u_int8_t *dst, u_int dstbits)
2779 {
2780 	u_int slen, dlen;
2781 	int i, si, di, n;
2782 
2783 	slen = (srcbits + 7) / 8;
2784 	dlen = (dstbits + 7) / 8;
2785 
2786 	for (i = 0; i < slen; i++)
2787 		dst[i] = src[i];
2788 	for (i = 0; i < dlen - slen; i++)
2789 		dst[slen + i] = 0;
2790 
2791 	n = shiftbits / 8;
2792 	if (n != 0) {
2793 		si = dlen - n - 1;
2794 		di = dlen - 1;
2795 		while (si >= 0)
2796 			dst[di--] = dst[si--];
2797 		while (di >= 0)
2798 			dst[di--] = 0;
2799 	}
2800 
2801 	n = shiftbits % 8;
2802 	if (n != 0) {
2803 		for (i = dlen - 1; i > 0; i--)
2804 			dst[i] = (dst[i] << n) |
2805 			    (dst[i - 1] >> (8 - n));
2806 		dst[0] = dst[0] << n;
2807 	}
2808 }
2809 
2810 static void
2811 ubsec_kshift_l(u_int shiftbits, u_int8_t *src, u_int srcbits,
2812     u_int8_t *dst, u_int dstbits)
2813 {
2814 	int slen, dlen, i, n;
2815 
2816 	slen = (srcbits + 7) / 8;
2817 	dlen = (dstbits + 7) / 8;
2818 
2819 	n = shiftbits / 8;
2820 	for (i = 0; i < slen; i++)
2821 		dst[i] = src[i + n];
2822 	for (i = 0; i < dlen - slen; i++)
2823 		dst[slen + i] = 0;
2824 
2825 	n = shiftbits % 8;
2826 	if (n != 0) {
2827 		for (i = 0; i < (dlen - 1); i++)
2828 			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
2829 		dst[dlen - 1] = dst[dlen - 1] >> n;
2830 	}
2831 }
2832