1 /* $NetBSD: ubsec.c,v 1.24 2009/11/26 15:17:10 njoly Exp $ */ 2 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.6 2003/01/23 21:06:43 sam Exp $ */ 3 /* $OpenBSD: ubsec.c,v 1.127 2003/06/04 14:04:58 jason Exp $ */ 4 5 /* 6 * Copyright (c) 2000 Jason L. Wright (jason@thought.net) 7 * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org) 8 * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com) 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, 23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 27 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * Effort sponsored in part by the Defense Advanced Research Projects 32 * Agency (DARPA) and Air Force Research Laboratory, Air Force 33 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 34 * 35 */ 36 37 #include <sys/cdefs.h> 38 __KERNEL_RCSID(0, "$NetBSD: ubsec.c,v 1.24 2009/11/26 15:17:10 njoly Exp $"); 39 40 #undef UBSEC_DEBUG 41 42 /* 43 * uBsec 5[56]01, bcm580xx, bcm582x hardware crypto accelerator 44 */ 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/proc.h> 49 #include <sys/endian.h> 50 #ifdef __NetBSD__ 51 #define letoh16 htole16 52 #define letoh32 htole32 53 #define UBSEC_NO_RNG /* until statistically tested */ 54 #endif 55 #include <sys/errno.h> 56 #include <sys/malloc.h> 57 #include <sys/kernel.h> 58 #include <sys/mbuf.h> 59 #include <sys/device.h> 60 #include <sys/queue.h> 61 62 #include <uvm/uvm_extern.h> 63 64 #include <opencrypto/cryptodev.h> 65 #include <opencrypto/xform.h> 66 #ifdef __OpenBSD__ 67 #include <dev/rndvar.h> 68 #include <sys/md5k.h> 69 #else 70 #include <sys/rnd.h> 71 #include <sys/md5.h> 72 #endif 73 #include <sys/sha1.h> 74 75 #include <dev/pci/pcireg.h> 76 #include <dev/pci/pcivar.h> 77 #include <dev/pci/pcidevs.h> 78 79 #include <dev/pci/ubsecreg.h> 80 #include <dev/pci/ubsecvar.h> 81 82 /* 83 * Prototypes and count for the pci_device structure 84 */ 85 static int ubsec_probe(device_t, cfdata_t, void *); 86 static void ubsec_attach(device_t, device_t, void *); 87 static void ubsec_reset_board(struct ubsec_softc *); 88 static void ubsec_init_board(struct ubsec_softc *); 89 static void ubsec_init_pciregs(struct pci_attach_args *pa); 90 static void ubsec_cleanchip(struct ubsec_softc *); 91 static void ubsec_totalreset(struct ubsec_softc *); 92 static int ubsec_free_q(struct ubsec_softc*, struct ubsec_q *); 93 94 #ifdef __OpenBSD__ 95 struct cfattach ubsec_ca = { 96 sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach, 97 }; 98 99 struct cfdriver ubsec_cd = { 100 0, "ubsec", DV_DULL 101 }; 102 #else 103 CFATTACH_DECL(ubsec, sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach, 104 NULL, NULL); 105 extern struct cfdriver ubsec_cd; 106 #endif 107 108 /* patchable */ 109 #ifdef UBSEC_DEBUG 110 extern int ubsec_debug; 111 int ubsec_debug=1; 112 #endif 113 114 static int ubsec_intr(void *); 115 static int ubsec_newsession(void*, u_int32_t *, struct cryptoini *); 116 static int ubsec_freesession(void*, u_int64_t); 117 static int ubsec_process(void*, struct cryptop *, int hint); 118 static void ubsec_callback(struct ubsec_softc *, struct ubsec_q *); 119 static void ubsec_feed(struct ubsec_softc *); 120 static void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int); 121 static void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *); 122 static void ubsec_feed2(struct ubsec_softc *); 123 #ifndef UBSEC_NO_RNG 124 static void ubsec_rng(void *); 125 #endif /* UBSEC_NO_RNG */ 126 static int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t, 127 struct ubsec_dma_alloc *, int); 128 static void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *); 129 static int ubsec_dmamap_aligned(bus_dmamap_t); 130 131 static int ubsec_kprocess(void*, struct cryptkop *, int); 132 static int ubsec_kprocess_modexp_sw(struct ubsec_softc *, 133 struct cryptkop *, int); 134 static int ubsec_kprocess_modexp_hw(struct ubsec_softc *, 135 struct cryptkop *, int); 136 static int ubsec_kprocess_rsapriv(struct ubsec_softc *, 137 struct cryptkop *, int); 138 static void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *); 139 static int ubsec_ksigbits(struct crparam *); 140 static void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int); 141 static void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int); 142 143 #ifdef UBSEC_DEBUG 144 static void ubsec_dump_pb(volatile struct ubsec_pktbuf *); 145 static void ubsec_dump_mcr(struct ubsec_mcr *); 146 static void ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *); 147 #endif 148 149 #define READ_REG(sc,r) \ 150 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r)) 151 152 #define WRITE_REG(sc,reg,val) \ 153 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val) 154 155 #define SWAP32(x) (x) = htole32(ntohl((x))) 156 #ifndef HTOLE32 157 #define HTOLE32(x) (x) = htole32(x) 158 #endif 159 160 struct ubsec_stats ubsecstats; 161 162 /* 163 * ubsec_maxbatch controls the number of crypto ops to voluntarily 164 * collect into one submission to the hardware. This batching happens 165 * when ops are dispatched from the crypto subsystem with a hint that 166 * more are to follow immediately. These ops must also not be marked 167 * with a ``no delay'' flag. 168 */ 169 static int ubsec_maxbatch = 1; 170 #ifdef SYSCTL_INT 171 SYSCTL_INT(_kern, OID_AUTO, ubsec_maxbatch, CTLFLAG_RW, &ubsec_maxbatch, 172 0, "Broadcom driver: max ops to batch w/o interrupt"); 173 #endif 174 175 /* 176 * ubsec_maxaggr controls the number of crypto ops to submit to the 177 * hardware as a unit. This aggregation reduces the number of interrupts 178 * to the host at the expense of increased latency (for all but the last 179 * operation). For network traffic setting this to one yields the highest 180 * performance but at the expense of more interrupt processing. 181 */ 182 static int ubsec_maxaggr = 1; 183 #ifdef SYSCTL_INT 184 SYSCTL_INT(_kern, OID_AUTO, ubsec_maxaggr, CTLFLAG_RW, &ubsec_maxaggr, 185 0, "Broadcom driver: max ops to aggregate under one interrupt"); 186 #endif 187 188 static const struct ubsec_product { 189 pci_vendor_id_t ubsec_vendor; 190 pci_product_id_t ubsec_product; 191 int ubsec_flags; 192 int ubsec_statmask; 193 const char *ubsec_name; 194 } ubsec_products[] = { 195 { PCI_VENDOR_BLUESTEEL, PCI_PRODUCT_BLUESTEEL_5501, 196 0, 197 BS_STAT_MCR1_DONE | BS_STAT_DMAERR, 198 "Bluesteel 5501" 199 }, 200 { PCI_VENDOR_BLUESTEEL, PCI_PRODUCT_BLUESTEEL_5601, 201 UBS_FLAGS_KEY | UBS_FLAGS_RNG, 202 BS_STAT_MCR1_DONE | BS_STAT_DMAERR, 203 "Bluesteel 5601" 204 }, 205 206 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5801, 207 0, 208 BS_STAT_MCR1_DONE | BS_STAT_DMAERR, 209 "Broadcom BCM5801" 210 }, 211 212 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5802, 213 UBS_FLAGS_KEY | UBS_FLAGS_RNG, 214 BS_STAT_MCR1_DONE | BS_STAT_DMAERR, 215 "Broadcom BCM5802" 216 }, 217 218 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5805, 219 UBS_FLAGS_KEY | UBS_FLAGS_RNG, 220 BS_STAT_MCR1_DONE | BS_STAT_DMAERR, 221 "Broadcom BCM5805" 222 }, 223 224 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5820, 225 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX | 226 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY, 227 BS_STAT_MCR1_DONE | BS_STAT_DMAERR, 228 "Broadcom BCM5820" 229 }, 230 231 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5821, 232 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX | 233 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY, 234 BS_STAT_MCR1_DONE | BS_STAT_DMAERR | 235 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY, 236 "Broadcom BCM5821" 237 }, 238 { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_SCA1K, 239 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX | 240 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY, 241 BS_STAT_MCR1_DONE | BS_STAT_DMAERR | 242 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY, 243 "Sun Crypto Accelerator 1000" 244 }, 245 { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_5821, 246 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX | 247 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY, 248 BS_STAT_MCR1_DONE | BS_STAT_DMAERR | 249 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY, 250 "Broadcom BCM5821 (Sun)" 251 }, 252 253 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5822, 254 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX | 255 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY, 256 BS_STAT_MCR1_DONE | BS_STAT_DMAERR | 257 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY, 258 "Broadcom BCM5822" 259 }, 260 261 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5823, 262 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX | 263 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY, 264 BS_STAT_MCR1_DONE | BS_STAT_DMAERR | 265 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY, 266 "Broadcom BCM5823" 267 }, 268 269 { 0, 0, 270 0, 271 0, 272 NULL 273 } 274 }; 275 276 static const struct ubsec_product * 277 ubsec_lookup(const struct pci_attach_args *pa) 278 { 279 const struct ubsec_product *up; 280 281 for (up = ubsec_products; up->ubsec_name != NULL; up++) { 282 if (PCI_VENDOR(pa->pa_id) == up->ubsec_vendor && 283 PCI_PRODUCT(pa->pa_id) == up->ubsec_product) 284 return (up); 285 } 286 return (NULL); 287 } 288 289 static int 290 ubsec_probe(device_t parent, cfdata_t match, void *aux) 291 { 292 struct pci_attach_args *pa = (struct pci_attach_args *)aux; 293 294 if (ubsec_lookup(pa) != NULL) 295 return (1); 296 297 return (0); 298 } 299 300 static void 301 ubsec_attach(device_t parent, device_t self, void *aux) 302 { 303 struct ubsec_softc *sc = device_private(self); 304 struct pci_attach_args *pa = aux; 305 const struct ubsec_product *up; 306 pci_chipset_tag_t pc = pa->pa_pc; 307 pci_intr_handle_t ih; 308 const char *intrstr = NULL; 309 struct ubsec_dma *dmap; 310 u_int32_t cmd, i; 311 312 up = ubsec_lookup(pa); 313 if (up == NULL) { 314 printf("\n"); 315 panic("ubsec_attach: impossible"); 316 } 317 318 aprint_naive(": Crypto processor\n"); 319 aprint_normal(": %s, rev. %d\n", up->ubsec_name, 320 PCI_REVISION(pa->pa_class)); 321 322 SIMPLEQ_INIT(&sc->sc_queue); 323 SIMPLEQ_INIT(&sc->sc_qchip); 324 SIMPLEQ_INIT(&sc->sc_queue2); 325 SIMPLEQ_INIT(&sc->sc_qchip2); 326 SIMPLEQ_INIT(&sc->sc_q2free); 327 328 sc->sc_flags = up->ubsec_flags; 329 sc->sc_statmask = up->ubsec_statmask; 330 331 cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 332 cmd |= PCI_COMMAND_MASTER_ENABLE; 333 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd); 334 335 if (pci_mapreg_map(pa, BS_BAR, PCI_MAPREG_TYPE_MEM, 0, 336 &sc->sc_st, &sc->sc_sh, NULL, NULL)) { 337 aprint_error_dev(&sc->sc_dv, "can't find mem space"); 338 return; 339 } 340 341 sc->sc_dmat = pa->pa_dmat; 342 343 if (pci_intr_map(pa, &ih)) { 344 aprint_error_dev(&sc->sc_dv, "couldn't map interrupt\n"); 345 return; 346 } 347 intrstr = pci_intr_string(pc, ih); 348 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ubsec_intr, sc); 349 if (sc->sc_ih == NULL) { 350 aprint_error_dev(&sc->sc_dv, "couldn't establish interrupt"); 351 if (intrstr != NULL) 352 aprint_error(" at %s", intrstr); 353 aprint_error("\n"); 354 return; 355 } 356 aprint_normal_dev(&sc->sc_dv, "interrupting at %s\n", intrstr); 357 358 sc->sc_cid = crypto_get_driverid(0); 359 if (sc->sc_cid < 0) { 360 aprint_error_dev(&sc->sc_dv, "couldn't get crypto driver id\n"); 361 pci_intr_disestablish(pc, sc->sc_ih); 362 return; 363 } 364 365 SIMPLEQ_INIT(&sc->sc_freequeue); 366 dmap = sc->sc_dmaa; 367 for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) { 368 struct ubsec_q *q; 369 370 q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q), 371 M_DEVBUF, M_NOWAIT); 372 if (q == NULL) { 373 aprint_error_dev(&sc->sc_dv, "can't allocate queue buffers\n"); 374 break; 375 } 376 377 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk), 378 &dmap->d_alloc, 0)) { 379 aprint_error_dev(&sc->sc_dv, "can't allocate dma buffers\n"); 380 free(q, M_DEVBUF); 381 break; 382 } 383 dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr; 384 385 q->q_dma = dmap; 386 sc->sc_queuea[i] = q; 387 388 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next); 389 } 390 391 crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0, 392 ubsec_newsession, ubsec_freesession, ubsec_process, sc); 393 crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0, 394 ubsec_newsession, ubsec_freesession, ubsec_process, sc); 395 crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC_96, 0, 0, 396 ubsec_newsession, ubsec_freesession, ubsec_process, sc); 397 crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC_96, 0, 0, 398 ubsec_newsession, ubsec_freesession, ubsec_process, sc); 399 400 /* 401 * Reset Broadcom chip 402 */ 403 ubsec_reset_board(sc); 404 405 /* 406 * Init Broadcom specific PCI settings 407 */ 408 ubsec_init_pciregs(pa); 409 410 /* 411 * Init Broadcom chip 412 */ 413 ubsec_init_board(sc); 414 415 #ifndef UBSEC_NO_RNG 416 if (sc->sc_flags & UBS_FLAGS_RNG) { 417 sc->sc_statmask |= BS_STAT_MCR2_DONE; 418 419 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr), 420 &sc->sc_rng.rng_q.q_mcr, 0)) 421 goto skip_rng; 422 423 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass), 424 &sc->sc_rng.rng_q.q_ctx, 0)) { 425 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr); 426 goto skip_rng; 427 } 428 429 if (ubsec_dma_malloc(sc, sizeof(u_int32_t) * 430 UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) { 431 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx); 432 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr); 433 goto skip_rng; 434 } 435 436 if (hz >= 100) 437 sc->sc_rnghz = hz / 100; 438 else 439 sc->sc_rnghz = 1; 440 #ifdef __OpenBSD__ 441 timeout_set(&sc->sc_rngto, ubsec_rng, sc); 442 timeout_add(&sc->sc_rngto, sc->sc_rnghz); 443 #else 444 callout_init(&sc->sc_rngto, 0); 445 callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc); 446 #endif 447 skip_rng: 448 if (sc->sc_rnghz) 449 aprint_normal_dev(&sc->sc_dv, "random number generator enabled\n"); 450 else 451 aprint_error_dev(&sc->sc_dv, "WARNING: random number generator " 452 "disabled\n"); 453 } 454 #endif /* UBSEC_NO_RNG */ 455 456 if (sc->sc_flags & UBS_FLAGS_KEY) { 457 sc->sc_statmask |= BS_STAT_MCR2_DONE; 458 459 crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0, 460 ubsec_kprocess, sc); 461 #if 0 462 crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0, 463 ubsec_kprocess, sc); 464 #endif 465 } 466 } 467 468 /* 469 * UBSEC Interrupt routine 470 */ 471 static int 472 ubsec_intr(void *arg) 473 { 474 struct ubsec_softc *sc = arg; 475 volatile u_int32_t stat; 476 struct ubsec_q *q; 477 struct ubsec_dma *dmap; 478 int npkts = 0, i; 479 480 stat = READ_REG(sc, BS_STAT); 481 stat &= sc->sc_statmask; 482 if (stat == 0) { 483 return (0); 484 } 485 486 WRITE_REG(sc, BS_STAT, stat); /* IACK */ 487 488 /* 489 * Check to see if we have any packets waiting for us 490 */ 491 if ((stat & BS_STAT_MCR1_DONE)) { 492 while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) { 493 q = SIMPLEQ_FIRST(&sc->sc_qchip); 494 dmap = q->q_dma; 495 496 if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0) 497 break; 498 499 q = SIMPLEQ_FIRST(&sc->sc_qchip); 500 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next); 501 502 npkts = q->q_nstacked_mcrs; 503 sc->sc_nqchip -= 1+npkts; 504 /* 505 * search for further sc_qchip ubsec_q's that share 506 * the same MCR, and complete them too, they must be 507 * at the top. 508 */ 509 for (i = 0; i < npkts; i++) { 510 if(q->q_stacked_mcr[i]) 511 ubsec_callback(sc, q->q_stacked_mcr[i]); 512 else 513 break; 514 } 515 ubsec_callback(sc, q); 516 } 517 518 /* 519 * Don't send any more packet to chip if there has been 520 * a DMAERR. 521 */ 522 if (!(stat & BS_STAT_DMAERR)) 523 ubsec_feed(sc); 524 } 525 526 /* 527 * Check to see if we have any key setups/rng's waiting for us 528 */ 529 if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) && 530 (stat & BS_STAT_MCR2_DONE)) { 531 struct ubsec_q2 *q2; 532 struct ubsec_mcr *mcr; 533 534 while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) { 535 q2 = SIMPLEQ_FIRST(&sc->sc_qchip2); 536 537 bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map, 538 0, q2->q_mcr.dma_map->dm_mapsize, 539 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 540 541 mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr; 542 if ((mcr->mcr_flags & htole16(UBS_MCR_DONE)) == 0) { 543 bus_dmamap_sync(sc->sc_dmat, 544 q2->q_mcr.dma_map, 0, 545 q2->q_mcr.dma_map->dm_mapsize, 546 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 547 break; 548 } 549 q2 = SIMPLEQ_FIRST(&sc->sc_qchip2); 550 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, /*q2,*/ q_next); 551 ubsec_callback2(sc, q2); 552 /* 553 * Don't send any more packet to chip if there has been 554 * a DMAERR. 555 */ 556 if (!(stat & BS_STAT_DMAERR)) 557 ubsec_feed2(sc); 558 } 559 } 560 561 /* 562 * Check to see if we got any DMA Error 563 */ 564 if (stat & BS_STAT_DMAERR) { 565 #ifdef UBSEC_DEBUG 566 if (ubsec_debug) { 567 volatile u_int32_t a = READ_REG(sc, BS_ERR); 568 569 printf("%s: dmaerr %s@%08x\n", device_xname(&sc->sc_dv), 570 (a & BS_ERR_READ) ? "read" : "write", 571 a & BS_ERR_ADDR); 572 } 573 #endif /* UBSEC_DEBUG */ 574 ubsecstats.hst_dmaerr++; 575 ubsec_totalreset(sc); 576 ubsec_feed(sc); 577 } 578 579 if (sc->sc_needwakeup) { /* XXX check high watermark */ 580 int wkeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ); 581 #ifdef UBSEC_DEBUG 582 if (ubsec_debug) 583 printf("%s: wakeup crypto (%x)\n", device_xname(&sc->sc_dv), 584 sc->sc_needwakeup); 585 #endif /* UBSEC_DEBUG */ 586 sc->sc_needwakeup &= ~wkeup; 587 crypto_unblock(sc->sc_cid, wkeup); 588 } 589 return (1); 590 } 591 592 /* 593 * ubsec_feed() - aggregate and post requests to chip 594 * OpenBSD comments: 595 * It is assumed that the caller set splnet() 596 */ 597 static void 598 ubsec_feed(struct ubsec_softc *sc) 599 { 600 struct ubsec_q *q, *q2; 601 int npkts, i; 602 void *v; 603 u_int32_t stat; 604 #ifdef UBSEC_DEBUG 605 static int max; 606 #endif /* UBSEC_DEBUG */ 607 608 npkts = sc->sc_nqueue; 609 if (npkts > ubsecstats.hst_maxqueue) 610 ubsecstats.hst_maxqueue = npkts; 611 if (npkts < 2) 612 goto feed1; 613 614 /* 615 * Decide how many ops to combine in a single MCR. We cannot 616 * aggregate more than UBS_MAX_AGGR because this is the number 617 * of slots defined in the data structure. Otherwise we clamp 618 * based on the tunable parameter ubsec_maxaggr. Note that 619 * aggregation can happen in two ways: either by batching ops 620 * from above or because the h/w backs up and throttles us. 621 * Aggregating ops reduces the number of interrupts to the host 622 * but also (potentially) increases the latency for processing 623 * completed ops as we only get an interrupt when all aggregated 624 * ops have completed. 625 */ 626 if (npkts > UBS_MAX_AGGR) 627 npkts = UBS_MAX_AGGR; 628 if (npkts > ubsec_maxaggr) 629 npkts = ubsec_maxaggr; 630 if (npkts > ubsecstats.hst_maxbatch) 631 ubsecstats.hst_maxbatch = npkts; 632 if (npkts < 2) 633 goto feed1; 634 ubsecstats.hst_totbatch += npkts-1; 635 636 if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) { 637 if (stat & BS_STAT_DMAERR) { 638 ubsec_totalreset(sc); 639 ubsecstats.hst_dmaerr++; 640 } else { 641 ubsecstats.hst_mcr1full++; 642 } 643 return; 644 } 645 646 #ifdef UBSEC_DEBUG 647 if (ubsec_debug) 648 printf("merging %d records\n", npkts); 649 /* XXX temporary aggregation statistics reporting code */ 650 if (max < npkts) { 651 max = npkts; 652 printf("%s: new max aggregate %d\n", device_xname(&sc->sc_dv), max); 653 } 654 #endif /* UBSEC_DEBUG */ 655 656 q = SIMPLEQ_FIRST(&sc->sc_queue); 657 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next); 658 --sc->sc_nqueue; 659 660 bus_dmamap_sync(sc->sc_dmat, q->q_src_map, 661 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 662 if (q->q_dst_map != NULL) 663 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, 664 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD); 665 666 q->q_nstacked_mcrs = npkts - 1; /* Number of packets stacked */ 667 668 for (i = 0; i < q->q_nstacked_mcrs; i++) { 669 q2 = SIMPLEQ_FIRST(&sc->sc_queue); 670 bus_dmamap_sync(sc->sc_dmat, q2->q_src_map, 671 0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 672 if (q2->q_dst_map != NULL) 673 bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map, 674 0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD); 675 q2= SIMPLEQ_FIRST(&sc->sc_queue); 676 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q2,*/ q_next); 677 --sc->sc_nqueue; 678 679 v = ((void *)&q2->q_dma->d_dma->d_mcr); 680 v = (char*)v + (sizeof(struct ubsec_mcr) - 681 sizeof(struct ubsec_mcr_add)); 682 memcpy(&q->q_dma->d_dma->d_mcradd[i], v, sizeof(struct ubsec_mcr_add)); 683 q->q_stacked_mcr[i] = q2; 684 } 685 q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts); 686 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next); 687 sc->sc_nqchip += npkts; 688 if (sc->sc_nqchip > ubsecstats.hst_maxqchip) 689 ubsecstats.hst_maxqchip = sc->sc_nqchip; 690 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map, 691 0, q->q_dma->d_alloc.dma_map->dm_mapsize, 692 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 693 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr + 694 offsetof(struct ubsec_dmachunk, d_mcr)); 695 return; 696 697 feed1: 698 while (!SIMPLEQ_EMPTY(&sc->sc_queue)) { 699 if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) { 700 if (stat & BS_STAT_DMAERR) { 701 ubsec_totalreset(sc); 702 ubsecstats.hst_dmaerr++; 703 } else { 704 ubsecstats.hst_mcr1full++; 705 } 706 break; 707 } 708 709 q = SIMPLEQ_FIRST(&sc->sc_queue); 710 711 bus_dmamap_sync(sc->sc_dmat, q->q_src_map, 712 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 713 if (q->q_dst_map != NULL) 714 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, 715 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD); 716 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map, 717 0, q->q_dma->d_alloc.dma_map->dm_mapsize, 718 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 719 720 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr + 721 offsetof(struct ubsec_dmachunk, d_mcr)); 722 #ifdef UBSEC_DEBUG 723 if (ubsec_debug) 724 printf("feed: q->chip %p %08x stat %08x\n", 725 q, (u_int32_t)q->q_dma->d_alloc.dma_paddr, 726 stat); 727 #endif /* UBSEC_DEBUG */ 728 q = SIMPLEQ_FIRST(&sc->sc_queue); 729 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next); 730 --sc->sc_nqueue; 731 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next); 732 sc->sc_nqchip++; 733 } 734 if (sc->sc_nqchip > ubsecstats.hst_maxqchip) 735 ubsecstats.hst_maxqchip = sc->sc_nqchip; 736 } 737 738 /* 739 * Allocate a new 'session' and return an encoded session id. 'sidp' 740 * contains our registration id, and should contain an encoded session 741 * id on successful allocation. 742 */ 743 static int 744 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri) 745 { 746 struct cryptoini *c, *encini = NULL, *macini = NULL; 747 struct ubsec_softc *sc; 748 struct ubsec_session *ses = NULL; 749 MD5_CTX md5ctx; 750 SHA1_CTX sha1ctx; 751 int i, sesn; 752 753 sc = arg; 754 KASSERT(sc != NULL /*, ("ubsec_newsession: null softc")*/); 755 756 if (sidp == NULL || cri == NULL || sc == NULL) 757 return (EINVAL); 758 759 for (c = cri; c != NULL; c = c->cri_next) { 760 if (c->cri_alg == CRYPTO_MD5_HMAC_96 || 761 c->cri_alg == CRYPTO_SHA1_HMAC_96) { 762 if (macini) 763 return (EINVAL); 764 macini = c; 765 } else if (c->cri_alg == CRYPTO_DES_CBC || 766 c->cri_alg == CRYPTO_3DES_CBC) { 767 if (encini) 768 return (EINVAL); 769 encini = c; 770 } else 771 return (EINVAL); 772 } 773 if (encini == NULL && macini == NULL) 774 return (EINVAL); 775 776 if (sc->sc_sessions == NULL) { 777 ses = sc->sc_sessions = (struct ubsec_session *)malloc( 778 sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT); 779 if (ses == NULL) 780 return (ENOMEM); 781 sesn = 0; 782 sc->sc_nsessions = 1; 783 } else { 784 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) { 785 if (sc->sc_sessions[sesn].ses_used == 0) { 786 ses = &sc->sc_sessions[sesn]; 787 break; 788 } 789 } 790 791 if (ses == NULL) { 792 sesn = sc->sc_nsessions; 793 ses = (struct ubsec_session *)malloc((sesn + 1) * 794 sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT); 795 if (ses == NULL) 796 return (ENOMEM); 797 memcpy(ses, sc->sc_sessions, sesn * 798 sizeof(struct ubsec_session)); 799 memset(sc->sc_sessions, 0, sesn * 800 sizeof(struct ubsec_session)); 801 free(sc->sc_sessions, M_DEVBUF); 802 sc->sc_sessions = ses; 803 ses = &sc->sc_sessions[sesn]; 804 sc->sc_nsessions++; 805 } 806 } 807 808 memset(ses, 0, sizeof(struct ubsec_session)); 809 ses->ses_used = 1; 810 if (encini) { 811 /* get an IV, network byte order */ 812 #ifdef __NetBSD__ 813 rnd_extract_data(ses->ses_iv, 814 sizeof(ses->ses_iv), RND_EXTRACT_ANY); 815 #else 816 get_random_bytes(ses->ses_iv, sizeof(ses->ses_iv)); 817 #endif 818 819 /* Go ahead and compute key in ubsec's byte order */ 820 if (encini->cri_alg == CRYPTO_DES_CBC) { 821 memcpy(&ses->ses_deskey[0], encini->cri_key, 8); 822 memcpy(&ses->ses_deskey[2], encini->cri_key, 8); 823 memcpy(&ses->ses_deskey[4], encini->cri_key, 8); 824 } else 825 memcpy(ses->ses_deskey, encini->cri_key, 24); 826 827 SWAP32(ses->ses_deskey[0]); 828 SWAP32(ses->ses_deskey[1]); 829 SWAP32(ses->ses_deskey[2]); 830 SWAP32(ses->ses_deskey[3]); 831 SWAP32(ses->ses_deskey[4]); 832 SWAP32(ses->ses_deskey[5]); 833 } 834 835 if (macini) { 836 for (i = 0; i < macini->cri_klen / 8; i++) 837 macini->cri_key[i] ^= HMAC_IPAD_VAL; 838 839 if (macini->cri_alg == CRYPTO_MD5_HMAC_96) { 840 MD5Init(&md5ctx); 841 MD5Update(&md5ctx, macini->cri_key, 842 macini->cri_klen / 8); 843 MD5Update(&md5ctx, hmac_ipad_buffer, 844 HMAC_BLOCK_LEN - (macini->cri_klen / 8)); 845 memcpy(ses->ses_hminner, md5ctx.state, 846 sizeof(md5ctx.state)); 847 } else { 848 SHA1Init(&sha1ctx); 849 SHA1Update(&sha1ctx, macini->cri_key, 850 macini->cri_klen / 8); 851 SHA1Update(&sha1ctx, hmac_ipad_buffer, 852 HMAC_BLOCK_LEN - (macini->cri_klen / 8)); 853 memcpy(ses->ses_hminner, sha1ctx.state, 854 sizeof(sha1ctx.state)); 855 } 856 857 for (i = 0; i < macini->cri_klen / 8; i++) 858 macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL); 859 860 if (macini->cri_alg == CRYPTO_MD5_HMAC_96) { 861 MD5Init(&md5ctx); 862 MD5Update(&md5ctx, macini->cri_key, 863 macini->cri_klen / 8); 864 MD5Update(&md5ctx, hmac_opad_buffer, 865 HMAC_BLOCK_LEN - (macini->cri_klen / 8)); 866 memcpy(ses->ses_hmouter, md5ctx.state, 867 sizeof(md5ctx.state)); 868 } else { 869 SHA1Init(&sha1ctx); 870 SHA1Update(&sha1ctx, macini->cri_key, 871 macini->cri_klen / 8); 872 SHA1Update(&sha1ctx, hmac_opad_buffer, 873 HMAC_BLOCK_LEN - (macini->cri_klen / 8)); 874 memcpy(ses->ses_hmouter, sha1ctx.state, 875 sizeof(sha1ctx.state)); 876 } 877 878 for (i = 0; i < macini->cri_klen / 8; i++) 879 macini->cri_key[i] ^= HMAC_OPAD_VAL; 880 } 881 882 *sidp = UBSEC_SID(device_unit(&sc->sc_dv), sesn); 883 return (0); 884 } 885 886 /* 887 * Deallocate a session. 888 */ 889 static int 890 ubsec_freesession(void *arg, u_int64_t tid) 891 { 892 struct ubsec_softc *sc; 893 int session; 894 u_int32_t sid = ((u_int32_t) tid) & 0xffffffff; 895 896 sc = arg; 897 KASSERT(sc != NULL /*, ("ubsec_freesession: null softc")*/); 898 899 session = UBSEC_SESSION(sid); 900 if (session >= sc->sc_nsessions) 901 return (EINVAL); 902 903 memset(&sc->sc_sessions[session], 0, sizeof(sc->sc_sessions[session])); 904 return (0); 905 } 906 907 #ifdef __FreeBSD__ /* Ugly gratuitous changes to bus_dma */ 908 static void 909 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error) 910 { 911 struct ubsec_operand *op = arg; 912 913 KASSERT(nsegs <= UBS_MAX_SCATTER 914 /*, ("Too many DMA segments returned when mapping operand")*/); 915 #ifdef UBSEC_DEBUG 916 if (ubsec_debug) 917 printf("ubsec_op_cb: mapsize %u nsegs %d\n", 918 (u_int) mapsize, nsegs); 919 #endif 920 op->mapsize = mapsize; 921 op->nsegs = nsegs; 922 memcpy(op->segs, seg, nsegs * sizeof (seg[0])); 923 } 924 #endif 925 926 static int 927 ubsec_process(void *arg, struct cryptop *crp, int hint) 928 { 929 struct ubsec_q *q = NULL; 930 #ifdef __OpenBSD__ 931 int card; 932 #endif 933 int err = 0, i, j, s, nicealign; 934 struct ubsec_softc *sc; 935 struct cryptodesc *crd1, *crd2, *maccrd, *enccrd; 936 int encoffset = 0, macoffset = 0, cpskip, cpoffset; 937 int sskip, dskip, stheend, dtheend; 938 int16_t coffset; 939 struct ubsec_session *ses; 940 struct ubsec_pktctx ctx; 941 struct ubsec_dma *dmap = NULL; 942 943 sc = arg; 944 KASSERT(sc != NULL /*, ("ubsec_process: null softc")*/); 945 946 if (crp == NULL || crp->crp_callback == NULL || sc == NULL) { 947 ubsecstats.hst_invalid++; 948 return (EINVAL); 949 } 950 if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) { 951 ubsecstats.hst_badsession++; 952 return (EINVAL); 953 } 954 955 s = splnet(); 956 957 if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) { 958 ubsecstats.hst_queuefull++; 959 sc->sc_needwakeup |= CRYPTO_SYMQ; 960 splx(s); 961 return(ERESTART); 962 } 963 964 q = SIMPLEQ_FIRST(&sc->sc_freequeue); 965 SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, /*q,*/ q_next); 966 splx(s); 967 968 dmap = q->q_dma; /* Save dma pointer */ 969 memset(q, 0, sizeof(struct ubsec_q)); 970 memset(&ctx, 0, sizeof(ctx)); 971 972 q->q_sesn = UBSEC_SESSION(crp->crp_sid); 973 q->q_dma = dmap; 974 ses = &sc->sc_sessions[q->q_sesn]; 975 976 if (crp->crp_flags & CRYPTO_F_IMBUF) { 977 q->q_src_m = (struct mbuf *)crp->crp_buf; 978 q->q_dst_m = (struct mbuf *)crp->crp_buf; 979 } else if (crp->crp_flags & CRYPTO_F_IOV) { 980 q->q_src_io = (struct uio *)crp->crp_buf; 981 q->q_dst_io = (struct uio *)crp->crp_buf; 982 } else { 983 ubsecstats.hst_badflags++; 984 err = EINVAL; 985 goto errout; /* XXX we don't handle contiguous blocks! */ 986 } 987 988 memset(&dmap->d_dma->d_mcr, 0, sizeof(struct ubsec_mcr)); 989 990 dmap->d_dma->d_mcr.mcr_pkts = htole16(1); 991 dmap->d_dma->d_mcr.mcr_flags = 0; 992 q->q_crp = crp; 993 994 crd1 = crp->crp_desc; 995 if (crd1 == NULL) { 996 ubsecstats.hst_nodesc++; 997 err = EINVAL; 998 goto errout; 999 } 1000 crd2 = crd1->crd_next; 1001 1002 if (crd2 == NULL) { 1003 if (crd1->crd_alg == CRYPTO_MD5_HMAC_96 || 1004 crd1->crd_alg == CRYPTO_SHA1_HMAC_96) { 1005 maccrd = crd1; 1006 enccrd = NULL; 1007 } else if (crd1->crd_alg == CRYPTO_DES_CBC || 1008 crd1->crd_alg == CRYPTO_3DES_CBC) { 1009 maccrd = NULL; 1010 enccrd = crd1; 1011 } else { 1012 ubsecstats.hst_badalg++; 1013 err = EINVAL; 1014 goto errout; 1015 } 1016 } else { 1017 if ((crd1->crd_alg == CRYPTO_MD5_HMAC_96 || 1018 crd1->crd_alg == CRYPTO_SHA1_HMAC_96) && 1019 (crd2->crd_alg == CRYPTO_DES_CBC || 1020 crd2->crd_alg == CRYPTO_3DES_CBC) && 1021 ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) { 1022 maccrd = crd1; 1023 enccrd = crd2; 1024 } else if ((crd1->crd_alg == CRYPTO_DES_CBC || 1025 crd1->crd_alg == CRYPTO_3DES_CBC) && 1026 (crd2->crd_alg == CRYPTO_MD5_HMAC_96 || 1027 crd2->crd_alg == CRYPTO_SHA1_HMAC_96) && 1028 (crd1->crd_flags & CRD_F_ENCRYPT)) { 1029 enccrd = crd1; 1030 maccrd = crd2; 1031 } else { 1032 /* 1033 * We cannot order the ubsec as requested 1034 */ 1035 ubsecstats.hst_badalg++; 1036 err = EINVAL; 1037 goto errout; 1038 } 1039 } 1040 1041 if (enccrd) { 1042 encoffset = enccrd->crd_skip; 1043 ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES); 1044 1045 if (enccrd->crd_flags & CRD_F_ENCRYPT) { 1046 q->q_flags |= UBSEC_QFLAGS_COPYOUTIV; 1047 1048 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) 1049 memcpy(ctx.pc_iv, enccrd->crd_iv, 8); 1050 else { 1051 ctx.pc_iv[0] = ses->ses_iv[0]; 1052 ctx.pc_iv[1] = ses->ses_iv[1]; 1053 } 1054 1055 if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) { 1056 if (crp->crp_flags & CRYPTO_F_IMBUF) 1057 m_copyback(q->q_src_m, 1058 enccrd->crd_inject, 1059 8, (void *)ctx.pc_iv); 1060 else if (crp->crp_flags & CRYPTO_F_IOV) 1061 cuio_copyback(q->q_src_io, 1062 enccrd->crd_inject, 1063 8, (void *)ctx.pc_iv); 1064 } 1065 } else { 1066 ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND); 1067 1068 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) 1069 memcpy(ctx.pc_iv, enccrd->crd_iv, 8); 1070 else if (crp->crp_flags & CRYPTO_F_IMBUF) 1071 m_copydata(q->q_src_m, enccrd->crd_inject, 1072 8, (void *)ctx.pc_iv); 1073 else if (crp->crp_flags & CRYPTO_F_IOV) 1074 cuio_copydata(q->q_src_io, 1075 enccrd->crd_inject, 8, 1076 (void *)ctx.pc_iv); 1077 } 1078 1079 ctx.pc_deskey[0] = ses->ses_deskey[0]; 1080 ctx.pc_deskey[1] = ses->ses_deskey[1]; 1081 ctx.pc_deskey[2] = ses->ses_deskey[2]; 1082 ctx.pc_deskey[3] = ses->ses_deskey[3]; 1083 ctx.pc_deskey[4] = ses->ses_deskey[4]; 1084 ctx.pc_deskey[5] = ses->ses_deskey[5]; 1085 SWAP32(ctx.pc_iv[0]); 1086 SWAP32(ctx.pc_iv[1]); 1087 } 1088 1089 if (maccrd) { 1090 macoffset = maccrd->crd_skip; 1091 1092 if (maccrd->crd_alg == CRYPTO_MD5_HMAC_96) 1093 ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5); 1094 else 1095 ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1); 1096 1097 for (i = 0; i < 5; i++) { 1098 ctx.pc_hminner[i] = ses->ses_hminner[i]; 1099 ctx.pc_hmouter[i] = ses->ses_hmouter[i]; 1100 1101 HTOLE32(ctx.pc_hminner[i]); 1102 HTOLE32(ctx.pc_hmouter[i]); 1103 } 1104 } 1105 1106 if (enccrd && maccrd) { 1107 /* 1108 * ubsec cannot handle packets where the end of encryption 1109 * and authentication are not the same, or where the 1110 * encrypted part begins before the authenticated part. 1111 */ 1112 if ((encoffset + enccrd->crd_len) != 1113 (macoffset + maccrd->crd_len)) { 1114 ubsecstats.hst_lenmismatch++; 1115 err = EINVAL; 1116 goto errout; 1117 } 1118 if (enccrd->crd_skip < maccrd->crd_skip) { 1119 ubsecstats.hst_skipmismatch++; 1120 err = EINVAL; 1121 goto errout; 1122 } 1123 sskip = maccrd->crd_skip; 1124 cpskip = dskip = enccrd->crd_skip; 1125 stheend = maccrd->crd_len; 1126 dtheend = enccrd->crd_len; 1127 coffset = enccrd->crd_skip - maccrd->crd_skip; 1128 cpoffset = cpskip + dtheend; 1129 #ifdef UBSEC_DEBUG 1130 if (ubsec_debug) { 1131 printf("mac: skip %d, len %d, inject %d\n", 1132 maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject); 1133 printf("enc: skip %d, len %d, inject %d\n", 1134 enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject); 1135 printf("src: skip %d, len %d\n", sskip, stheend); 1136 printf("dst: skip %d, len %d\n", dskip, dtheend); 1137 printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n", 1138 coffset, stheend, cpskip, cpoffset); 1139 } 1140 #endif 1141 } else { 1142 cpskip = dskip = sskip = macoffset + encoffset; 1143 dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len; 1144 cpoffset = cpskip + dtheend; 1145 coffset = 0; 1146 } 1147 ctx.pc_offset = htole16(coffset >> 2); 1148 1149 /* XXX FIXME: jonathan asks, what the heck's that 0xfff0? */ 1150 if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER, 1151 0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) { 1152 err = ENOMEM; 1153 goto errout; 1154 } 1155 if (crp->crp_flags & CRYPTO_F_IMBUF) { 1156 if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map, 1157 q->q_src_m, BUS_DMA_NOWAIT) != 0) { 1158 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map); 1159 q->q_src_map = NULL; 1160 ubsecstats.hst_noload++; 1161 err = ENOMEM; 1162 goto errout; 1163 } 1164 } else if (crp->crp_flags & CRYPTO_F_IOV) { 1165 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map, 1166 q->q_src_io, BUS_DMA_NOWAIT) != 0) { 1167 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map); 1168 q->q_src_map = NULL; 1169 ubsecstats.hst_noload++; 1170 err = ENOMEM; 1171 goto errout; 1172 } 1173 } 1174 nicealign = ubsec_dmamap_aligned(q->q_src_map); 1175 1176 dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend); 1177 1178 #ifdef UBSEC_DEBUG 1179 if (ubsec_debug) 1180 printf("src skip: %d nicealign: %u\n", sskip, nicealign); 1181 #endif 1182 for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) { 1183 struct ubsec_pktbuf *pb; 1184 bus_size_t packl = q->q_src_map->dm_segs[i].ds_len; 1185 bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr; 1186 1187 if (sskip >= packl) { 1188 sskip -= packl; 1189 continue; 1190 } 1191 1192 packl -= sskip; 1193 packp += sskip; 1194 sskip = 0; 1195 1196 if (packl > 0xfffc) { 1197 err = EIO; 1198 goto errout; 1199 } 1200 1201 if (j == 0) 1202 pb = &dmap->d_dma->d_mcr.mcr_ipktbuf; 1203 else 1204 pb = &dmap->d_dma->d_sbuf[j - 1]; 1205 1206 pb->pb_addr = htole32(packp); 1207 1208 if (stheend) { 1209 if (packl > stheend) { 1210 pb->pb_len = htole32(stheend); 1211 stheend = 0; 1212 } else { 1213 pb->pb_len = htole32(packl); 1214 stheend -= packl; 1215 } 1216 } else 1217 pb->pb_len = htole32(packl); 1218 1219 if ((i + 1) == q->q_src_map->dm_nsegs) 1220 pb->pb_next = 0; 1221 else 1222 pb->pb_next = htole32(dmap->d_alloc.dma_paddr + 1223 offsetof(struct ubsec_dmachunk, d_sbuf[j])); 1224 j++; 1225 } 1226 1227 if (enccrd == NULL && maccrd != NULL) { 1228 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0; 1229 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0; 1230 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr + 1231 offsetof(struct ubsec_dmachunk, d_macbuf[0])); 1232 #ifdef UBSEC_DEBUG 1233 if (ubsec_debug) 1234 printf("opkt: %x %x %x\n", 1235 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr, 1236 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len, 1237 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next); 1238 1239 #endif 1240 } else { 1241 if (crp->crp_flags & CRYPTO_F_IOV) { 1242 if (!nicealign) { 1243 ubsecstats.hst_iovmisaligned++; 1244 err = EINVAL; 1245 goto errout; 1246 } 1247 /* XXX: ``what the heck's that'' 0xfff0? */ 1248 if (bus_dmamap_create(sc->sc_dmat, 0xfff0, 1249 UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT, 1250 &q->q_dst_map) != 0) { 1251 ubsecstats.hst_nomap++; 1252 err = ENOMEM; 1253 goto errout; 1254 } 1255 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map, 1256 q->q_dst_io, BUS_DMA_NOWAIT) != 0) { 1257 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map); 1258 q->q_dst_map = NULL; 1259 ubsecstats.hst_noload++; 1260 err = ENOMEM; 1261 goto errout; 1262 } 1263 } else if (crp->crp_flags & CRYPTO_F_IMBUF) { 1264 if (nicealign) { 1265 q->q_dst_m = q->q_src_m; 1266 q->q_dst_map = q->q_src_map; 1267 } else { 1268 int totlen, len; 1269 struct mbuf *m, *top, **mp; 1270 1271 ubsecstats.hst_unaligned++; 1272 totlen = q->q_src_map->dm_mapsize; 1273 if (q->q_src_m->m_flags & M_PKTHDR) { 1274 len = MHLEN; 1275 MGETHDR(m, M_DONTWAIT, MT_DATA); 1276 /*XXX FIXME: m_dup_pkthdr */ 1277 if (m && 1 /*!m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)*/) { 1278 m_free(m); 1279 m = NULL; 1280 } 1281 } else { 1282 len = MLEN; 1283 MGET(m, M_DONTWAIT, MT_DATA); 1284 } 1285 if (m == NULL) { 1286 ubsecstats.hst_nombuf++; 1287 err = sc->sc_nqueue ? ERESTART : ENOMEM; 1288 goto errout; 1289 } 1290 if (len == MHLEN) 1291 /*XXX was M_DUP_PKTHDR*/ 1292 M_COPY_PKTHDR(m, q->q_src_m); 1293 if (totlen >= MINCLSIZE) { 1294 MCLGET(m, M_DONTWAIT); 1295 if ((m->m_flags & M_EXT) == 0) { 1296 m_free(m); 1297 ubsecstats.hst_nomcl++; 1298 err = sc->sc_nqueue ? ERESTART : ENOMEM; 1299 goto errout; 1300 } 1301 len = MCLBYTES; 1302 } 1303 m->m_len = len; 1304 top = NULL; 1305 mp = ⊤ 1306 1307 while (totlen > 0) { 1308 if (top) { 1309 MGET(m, M_DONTWAIT, MT_DATA); 1310 if (m == NULL) { 1311 m_freem(top); 1312 ubsecstats.hst_nombuf++; 1313 err = sc->sc_nqueue ? ERESTART : ENOMEM; 1314 goto errout; 1315 } 1316 len = MLEN; 1317 } 1318 if (top && totlen >= MINCLSIZE) { 1319 MCLGET(m, M_DONTWAIT); 1320 if ((m->m_flags & M_EXT) == 0) { 1321 *mp = m; 1322 m_freem(top); 1323 ubsecstats.hst_nomcl++; 1324 err = sc->sc_nqueue ? ERESTART : ENOMEM; 1325 goto errout; 1326 } 1327 len = MCLBYTES; 1328 } 1329 m->m_len = len = min(totlen, len); 1330 totlen -= len; 1331 *mp = m; 1332 mp = &m->m_next; 1333 } 1334 q->q_dst_m = top; 1335 ubsec_mcopy(q->q_src_m, q->q_dst_m, 1336 cpskip, cpoffset); 1337 /* XXX again, what the heck is that 0xfff0? */ 1338 if (bus_dmamap_create(sc->sc_dmat, 0xfff0, 1339 UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT, 1340 &q->q_dst_map) != 0) { 1341 ubsecstats.hst_nomap++; 1342 err = ENOMEM; 1343 goto errout; 1344 } 1345 if (bus_dmamap_load_mbuf(sc->sc_dmat, 1346 q->q_dst_map, q->q_dst_m, 1347 BUS_DMA_NOWAIT) != 0) { 1348 bus_dmamap_destroy(sc->sc_dmat, 1349 q->q_dst_map); 1350 q->q_dst_map = NULL; 1351 ubsecstats.hst_noload++; 1352 err = ENOMEM; 1353 goto errout; 1354 } 1355 } 1356 } else { 1357 ubsecstats.hst_badflags++; 1358 err = EINVAL; 1359 goto errout; 1360 } 1361 1362 #ifdef UBSEC_DEBUG 1363 if (ubsec_debug) 1364 printf("dst skip: %d\n", dskip); 1365 #endif 1366 for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) { 1367 struct ubsec_pktbuf *pb; 1368 bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len; 1369 bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr; 1370 1371 if (dskip >= packl) { 1372 dskip -= packl; 1373 continue; 1374 } 1375 1376 packl -= dskip; 1377 packp += dskip; 1378 dskip = 0; 1379 1380 if (packl > 0xfffc) { 1381 err = EIO; 1382 goto errout; 1383 } 1384 1385 if (j == 0) 1386 pb = &dmap->d_dma->d_mcr.mcr_opktbuf; 1387 else 1388 pb = &dmap->d_dma->d_dbuf[j - 1]; 1389 1390 pb->pb_addr = htole32(packp); 1391 1392 if (dtheend) { 1393 if (packl > dtheend) { 1394 pb->pb_len = htole32(dtheend); 1395 dtheend = 0; 1396 } else { 1397 pb->pb_len = htole32(packl); 1398 dtheend -= packl; 1399 } 1400 } else 1401 pb->pb_len = htole32(packl); 1402 1403 if ((i + 1) == q->q_dst_map->dm_nsegs) { 1404 if (maccrd) 1405 pb->pb_next = htole32(dmap->d_alloc.dma_paddr + 1406 offsetof(struct ubsec_dmachunk, d_macbuf[0])); 1407 else 1408 pb->pb_next = 0; 1409 } else 1410 pb->pb_next = htole32(dmap->d_alloc.dma_paddr + 1411 offsetof(struct ubsec_dmachunk, d_dbuf[j])); 1412 j++; 1413 } 1414 } 1415 1416 dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr + 1417 offsetof(struct ubsec_dmachunk, d_ctx)); 1418 1419 if (sc->sc_flags & UBS_FLAGS_LONGCTX) { 1420 struct ubsec_pktctx_long *ctxl; 1421 1422 ctxl = (struct ubsec_pktctx_long *)((char *)dmap->d_alloc.dma_vaddr + 1423 offsetof(struct ubsec_dmachunk, d_ctx)); 1424 1425 /* transform small context into long context */ 1426 ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long)); 1427 ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC); 1428 ctxl->pc_flags = ctx.pc_flags; 1429 ctxl->pc_offset = ctx.pc_offset; 1430 for (i = 0; i < 6; i++) 1431 ctxl->pc_deskey[i] = ctx.pc_deskey[i]; 1432 for (i = 0; i < 5; i++) 1433 ctxl->pc_hminner[i] = ctx.pc_hminner[i]; 1434 for (i = 0; i < 5; i++) 1435 ctxl->pc_hmouter[i] = ctx.pc_hmouter[i]; 1436 ctxl->pc_iv[0] = ctx.pc_iv[0]; 1437 ctxl->pc_iv[1] = ctx.pc_iv[1]; 1438 } else 1439 memcpy((char *)dmap->d_alloc.dma_vaddr + 1440 offsetof(struct ubsec_dmachunk, d_ctx), &ctx, 1441 sizeof(struct ubsec_pktctx)); 1442 1443 s = splnet(); 1444 SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next); 1445 sc->sc_nqueue++; 1446 ubsecstats.hst_ipackets++; 1447 ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize; 1448 if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch) 1449 ubsec_feed(sc); 1450 splx(s); 1451 return (0); 1452 1453 errout: 1454 if (q != NULL) { 1455 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m)) 1456 m_freem(q->q_dst_m); 1457 1458 if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) { 1459 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map); 1460 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map); 1461 } 1462 if (q->q_src_map != NULL) { 1463 bus_dmamap_unload(sc->sc_dmat, q->q_src_map); 1464 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map); 1465 } 1466 1467 s = splnet(); 1468 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next); 1469 splx(s); 1470 } 1471 #if 0 /* jonathan says: this openbsd code seems to be subsumed elsewhere */ 1472 if (err == EINVAL) 1473 ubsecstats.hst_invalid++; 1474 else 1475 ubsecstats.hst_nomem++; 1476 #endif 1477 if (err != ERESTART) { 1478 crp->crp_etype = err; 1479 crypto_done(crp); 1480 } else { 1481 sc->sc_needwakeup |= CRYPTO_SYMQ; 1482 } 1483 return (err); 1484 } 1485 1486 static void 1487 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q) 1488 { 1489 struct cryptop *crp = (struct cryptop *)q->q_crp; 1490 struct cryptodesc *crd; 1491 struct ubsec_dma *dmap = q->q_dma; 1492 1493 ubsecstats.hst_opackets++; 1494 ubsecstats.hst_obytes += dmap->d_alloc.dma_size; 1495 1496 bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0, 1497 dmap->d_alloc.dma_map->dm_mapsize, 1498 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1499 if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) { 1500 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, 1501 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1502 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map); 1503 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map); 1504 } 1505 bus_dmamap_sync(sc->sc_dmat, q->q_src_map, 1506 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1507 bus_dmamap_unload(sc->sc_dmat, q->q_src_map); 1508 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map); 1509 1510 if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) { 1511 m_freem(q->q_src_m); 1512 crp->crp_buf = (void *)q->q_dst_m; 1513 } 1514 1515 /* copy out IV for future use */ 1516 if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) { 1517 for (crd = crp->crp_desc; crd; crd = crd->crd_next) { 1518 if (crd->crd_alg != CRYPTO_DES_CBC && 1519 crd->crd_alg != CRYPTO_3DES_CBC) 1520 continue; 1521 if (crp->crp_flags & CRYPTO_F_IMBUF) 1522 m_copydata((struct mbuf *)crp->crp_buf, 1523 crd->crd_skip + crd->crd_len - 8, 8, 1524 (void *)sc->sc_sessions[q->q_sesn].ses_iv); 1525 else if (crp->crp_flags & CRYPTO_F_IOV) { 1526 cuio_copydata((struct uio *)crp->crp_buf, 1527 crd->crd_skip + crd->crd_len - 8, 8, 1528 (void *)sc->sc_sessions[q->q_sesn].ses_iv); 1529 } 1530 break; 1531 } 1532 } 1533 1534 for (crd = crp->crp_desc; crd; crd = crd->crd_next) { 1535 if (crd->crd_alg != CRYPTO_MD5_HMAC_96 && 1536 crd->crd_alg != CRYPTO_SHA1_HMAC_96) 1537 continue; 1538 if (crp->crp_flags & CRYPTO_F_IMBUF) 1539 m_copyback((struct mbuf *)crp->crp_buf, 1540 crd->crd_inject, 12, 1541 (void *)dmap->d_dma->d_macbuf); 1542 else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac) 1543 bcopy((void *)dmap->d_dma->d_macbuf, 1544 crp->crp_mac, 12); 1545 break; 1546 } 1547 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next); 1548 crypto_done(crp); 1549 } 1550 1551 static void 1552 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset) 1553 { 1554 int i, j, dlen, slen; 1555 char *dptr, *sptr; 1556 1557 j = 0; 1558 sptr = srcm->m_data; 1559 slen = srcm->m_len; 1560 dptr = dstm->m_data; 1561 dlen = dstm->m_len; 1562 1563 while (1) { 1564 for (i = 0; i < min(slen, dlen); i++) { 1565 if (j < hoffset || j >= toffset) 1566 *dptr++ = *sptr++; 1567 slen--; 1568 dlen--; 1569 j++; 1570 } 1571 if (slen == 0) { 1572 srcm = srcm->m_next; 1573 if (srcm == NULL) 1574 return; 1575 sptr = srcm->m_data; 1576 slen = srcm->m_len; 1577 } 1578 if (dlen == 0) { 1579 dstm = dstm->m_next; 1580 if (dstm == NULL) 1581 return; 1582 dptr = dstm->m_data; 1583 dlen = dstm->m_len; 1584 } 1585 } 1586 } 1587 1588 /* 1589 * feed the key generator, must be called at splnet() or higher. 1590 */ 1591 static void 1592 ubsec_feed2(struct ubsec_softc *sc) 1593 { 1594 struct ubsec_q2 *q; 1595 1596 while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) { 1597 if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL) 1598 break; 1599 q = SIMPLEQ_FIRST(&sc->sc_queue2); 1600 1601 bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0, 1602 q->q_mcr.dma_map->dm_mapsize, 1603 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1604 bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0, 1605 q->q_ctx.dma_map->dm_mapsize, 1606 BUS_DMASYNC_PREWRITE); 1607 1608 WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr); 1609 q = SIMPLEQ_FIRST(&sc->sc_queue2); 1610 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, /*q,*/ q_next); 1611 --sc->sc_nqueue2; 1612 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next); 1613 } 1614 } 1615 1616 /* 1617 * Callback for handling random numbers 1618 */ 1619 static void 1620 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q) 1621 { 1622 struct cryptkop *krp; 1623 struct ubsec_ctx_keyop *ctx; 1624 1625 ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr; 1626 bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0, 1627 q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1628 1629 switch (q->q_type) { 1630 #ifndef UBSEC_NO_RNG 1631 case UBS_CTXOP_RNGSHA1: 1632 case UBS_CTXOP_RNGBYPASS: { 1633 struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q; 1634 u_int32_t *p; 1635 int i; 1636 1637 bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0, 1638 rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1639 p = (u_int32_t *)rng->rng_buf.dma_vaddr; 1640 #ifndef __NetBSD__ 1641 for (i = 0; i < UBSEC_RNG_BUFSIZ; p++, i++) 1642 add_true_randomness(letoh32(*p)); 1643 rng->rng_used = 0; 1644 #else 1645 /* XXX NetBSD rnd subsystem too weak */ 1646 i = 0; (void)i; /* shut off gcc warnings */ 1647 #endif 1648 #ifdef __OpenBSD__ 1649 timeout_add(&sc->sc_rngto, sc->sc_rnghz); 1650 #else 1651 callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc); 1652 #endif 1653 break; 1654 } 1655 #endif 1656 case UBS_CTXOP_MODEXP: { 1657 struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q; 1658 u_int rlen, clen; 1659 1660 krp = me->me_krp; 1661 rlen = (me->me_modbits + 7) / 8; 1662 clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8; 1663 1664 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map, 1665 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1666 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map, 1667 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1668 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map, 1669 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1670 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map, 1671 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1672 1673 if (clen < rlen) 1674 krp->krp_status = E2BIG; 1675 else { 1676 if (sc->sc_flags & UBS_FLAGS_HWNORM) { 1677 memset(krp->krp_param[krp->krp_iparams].crp_p, 0, 1678 (krp->krp_param[krp->krp_iparams].crp_nbits 1679 + 7) / 8); 1680 bcopy(me->me_C.dma_vaddr, 1681 krp->krp_param[krp->krp_iparams].crp_p, 1682 (me->me_modbits + 7) / 8); 1683 } else 1684 ubsec_kshift_l(me->me_shiftbits, 1685 me->me_C.dma_vaddr, me->me_normbits, 1686 krp->krp_param[krp->krp_iparams].crp_p, 1687 krp->krp_param[krp->krp_iparams].crp_nbits); 1688 } 1689 1690 crypto_kdone(krp); 1691 1692 /* bzero all potentially sensitive data */ 1693 memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size); 1694 memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size); 1695 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size); 1696 memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size); 1697 1698 /* Can't free here, so put us on the free list. */ 1699 SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next); 1700 break; 1701 } 1702 case UBS_CTXOP_RSAPRIV: { 1703 struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q; 1704 u_int len; 1705 1706 krp = rp->rpr_krp; 1707 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0, 1708 rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1709 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0, 1710 rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1711 1712 len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8; 1713 bcopy(rp->rpr_msgout.dma_vaddr, 1714 krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len); 1715 1716 crypto_kdone(krp); 1717 1718 memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size); 1719 memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size); 1720 memset(rp->rpr_q.q_ctx.dma_vaddr, 0, rp->rpr_q.q_ctx.dma_size); 1721 1722 /* Can't free here, so put us on the free list. */ 1723 SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next); 1724 break; 1725 } 1726 default: 1727 printf("%s: unknown ctx op: %x\n", device_xname(&sc->sc_dv), 1728 letoh16(ctx->ctx_op)); 1729 break; 1730 } 1731 } 1732 1733 #ifndef UBSEC_NO_RNG 1734 static void 1735 ubsec_rng(void *vsc) 1736 { 1737 struct ubsec_softc *sc = vsc; 1738 struct ubsec_q2_rng *rng = &sc->sc_rng; 1739 struct ubsec_mcr *mcr; 1740 struct ubsec_ctx_rngbypass *ctx; 1741 int s; 1742 1743 s = splnet(); 1744 if (rng->rng_used) { 1745 splx(s); 1746 return; 1747 } 1748 sc->sc_nqueue2++; 1749 if (sc->sc_nqueue2 >= UBS_MAX_NQUEUE) 1750 goto out; 1751 1752 mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr; 1753 ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr; 1754 1755 mcr->mcr_pkts = htole16(1); 1756 mcr->mcr_flags = 0; 1757 mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr); 1758 mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0; 1759 mcr->mcr_ipktbuf.pb_len = 0; 1760 mcr->mcr_reserved = mcr->mcr_pktlen = 0; 1761 mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr); 1762 mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) & 1763 UBS_PKTBUF_LEN); 1764 mcr->mcr_opktbuf.pb_next = 0; 1765 1766 ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass)); 1767 ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1); 1768 rng->rng_q.q_type = UBS_CTXOP_RNGSHA1; 1769 1770 bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0, 1771 rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD); 1772 1773 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next); 1774 rng->rng_used = 1; 1775 ubsec_feed2(sc); 1776 ubsecstats.hst_rng++; 1777 splx(s); 1778 1779 return; 1780 1781 out: 1782 /* 1783 * Something weird happened, generate our own call back. 1784 */ 1785 sc->sc_nqueue2--; 1786 splx(s); 1787 #ifdef __OpenBSD__ 1788 timeout_add(&sc->sc_rngto, sc->sc_rnghz); 1789 #else 1790 callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc); 1791 #endif 1792 } 1793 #endif /* UBSEC_NO_RNG */ 1794 1795 static int 1796 ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size, 1797 struct ubsec_dma_alloc *dma,int mapflags) 1798 { 1799 int r; 1800 1801 if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, 1802 &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0) 1803 goto fail_0; 1804 1805 if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg, 1806 size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0) 1807 goto fail_1; 1808 1809 if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, 1810 BUS_DMA_NOWAIT, &dma->dma_map)) != 0) 1811 goto fail_2; 1812 1813 if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr, 1814 size, NULL, BUS_DMA_NOWAIT)) != 0) 1815 goto fail_3; 1816 1817 dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr; 1818 dma->dma_size = size; 1819 return (0); 1820 1821 fail_3: 1822 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map); 1823 fail_2: 1824 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size); 1825 fail_1: 1826 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg); 1827 fail_0: 1828 dma->dma_map = NULL; 1829 return (r); 1830 } 1831 1832 static void 1833 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma) 1834 { 1835 bus_dmamap_unload(sc->sc_dmat, dma->dma_map); 1836 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size); 1837 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg); 1838 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map); 1839 } 1840 1841 /* 1842 * Resets the board. Values in the regesters are left as is 1843 * from the reset (i.e. initial values are assigned elsewhere). 1844 */ 1845 static void 1846 ubsec_reset_board(struct ubsec_softc *sc) 1847 { 1848 volatile u_int32_t ctrl; 1849 1850 ctrl = READ_REG(sc, BS_CTRL); 1851 ctrl |= BS_CTRL_RESET; 1852 WRITE_REG(sc, BS_CTRL, ctrl); 1853 1854 /* 1855 * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us 1856 */ 1857 DELAY(10); 1858 } 1859 1860 /* 1861 * Init Broadcom registers 1862 */ 1863 static void 1864 ubsec_init_board(struct ubsec_softc *sc) 1865 { 1866 u_int32_t ctrl; 1867 1868 ctrl = READ_REG(sc, BS_CTRL); 1869 ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64); 1870 ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT; 1871 1872 /* 1873 * XXX: Sam Leffler's code has (UBS_FLAGS_KEY|UBS_FLAGS_RNG)). 1874 * anyone got hw docs? 1875 */ 1876 if (sc->sc_flags & UBS_FLAGS_KEY) 1877 ctrl |= BS_CTRL_MCR2INT; 1878 else 1879 ctrl &= ~BS_CTRL_MCR2INT; 1880 1881 if (sc->sc_flags & UBS_FLAGS_HWNORM) 1882 ctrl &= ~BS_CTRL_SWNORM; 1883 1884 WRITE_REG(sc, BS_CTRL, ctrl); 1885 } 1886 1887 /* 1888 * Init Broadcom PCI registers 1889 */ 1890 static void 1891 ubsec_init_pciregs(struct pci_attach_args *pa) 1892 { 1893 pci_chipset_tag_t pc = pa->pa_pc; 1894 u_int32_t misc; 1895 1896 /* 1897 * This will set the cache line size to 1, this will 1898 * force the BCM58xx chip just to do burst read/writes. 1899 * Cache line read/writes are to slow 1900 */ 1901 misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG); 1902 misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT)) 1903 | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT); 1904 pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc); 1905 } 1906 1907 /* 1908 * Clean up after a chip crash. 1909 * It is assumed that the caller in splnet() 1910 */ 1911 static void 1912 ubsec_cleanchip(struct ubsec_softc *sc) 1913 { 1914 struct ubsec_q *q; 1915 1916 while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) { 1917 q = SIMPLEQ_FIRST(&sc->sc_qchip); 1918 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next); 1919 ubsec_free_q(sc, q); 1920 } 1921 sc->sc_nqchip = 0; 1922 } 1923 1924 /* 1925 * free a ubsec_q 1926 * It is assumed that the caller is within splnet() 1927 */ 1928 static int 1929 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q) 1930 { 1931 struct ubsec_q *q2; 1932 struct cryptop *crp; 1933 int npkts; 1934 int i; 1935 1936 npkts = q->q_nstacked_mcrs; 1937 1938 for (i = 0; i < npkts; i++) { 1939 if(q->q_stacked_mcr[i]) { 1940 q2 = q->q_stacked_mcr[i]; 1941 1942 if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m)) 1943 m_freem(q2->q_dst_m); 1944 1945 crp = (struct cryptop *)q2->q_crp; 1946 1947 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next); 1948 1949 crp->crp_etype = EFAULT; 1950 crypto_done(crp); 1951 } else { 1952 break; 1953 } 1954 } 1955 1956 /* 1957 * Free header MCR 1958 */ 1959 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m)) 1960 m_freem(q->q_dst_m); 1961 1962 crp = (struct cryptop *)q->q_crp; 1963 1964 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next); 1965 1966 crp->crp_etype = EFAULT; 1967 crypto_done(crp); 1968 return(0); 1969 } 1970 1971 /* 1972 * Routine to reset the chip and clean up. 1973 * It is assumed that the caller is in splnet() 1974 */ 1975 static void 1976 ubsec_totalreset(struct ubsec_softc *sc) 1977 { 1978 ubsec_reset_board(sc); 1979 ubsec_init_board(sc); 1980 ubsec_cleanchip(sc); 1981 } 1982 1983 static int 1984 ubsec_dmamap_aligned(bus_dmamap_t map) 1985 { 1986 int i; 1987 1988 for (i = 0; i < map->dm_nsegs; i++) { 1989 if (map->dm_segs[i].ds_addr & 3) 1990 return (0); 1991 if ((i != (map->dm_nsegs - 1)) && 1992 (map->dm_segs[i].ds_len & 3)) 1993 return (0); 1994 } 1995 return (1); 1996 } 1997 1998 #ifdef __OpenBSD__ 1999 struct ubsec_softc * 2000 ubsec_kfind(struct cryptkop *krp) 2001 { 2002 struct ubsec_softc *sc; 2003 int i; 2004 2005 for (i = 0; i < ubsec_cd.cd_ndevs; i++) { 2006 sc = ubsec_cd.cd_devs[i]; 2007 if (sc == NULL) 2008 continue; 2009 if (sc->sc_cid == krp->krp_hid) 2010 return (sc); 2011 } 2012 return (NULL); 2013 } 2014 #endif 2015 2016 static void 2017 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q) 2018 { 2019 switch (q->q_type) { 2020 case UBS_CTXOP_MODEXP: { 2021 struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q; 2022 2023 ubsec_dma_free(sc, &me->me_q.q_mcr); 2024 ubsec_dma_free(sc, &me->me_q.q_ctx); 2025 ubsec_dma_free(sc, &me->me_M); 2026 ubsec_dma_free(sc, &me->me_E); 2027 ubsec_dma_free(sc, &me->me_C); 2028 ubsec_dma_free(sc, &me->me_epb); 2029 free(me, M_DEVBUF); 2030 break; 2031 } 2032 case UBS_CTXOP_RSAPRIV: { 2033 struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q; 2034 2035 ubsec_dma_free(sc, &rp->rpr_q.q_mcr); 2036 ubsec_dma_free(sc, &rp->rpr_q.q_ctx); 2037 ubsec_dma_free(sc, &rp->rpr_msgin); 2038 ubsec_dma_free(sc, &rp->rpr_msgout); 2039 free(rp, M_DEVBUF); 2040 break; 2041 } 2042 default: 2043 printf("%s: invalid kfree 0x%x\n", device_xname(&sc->sc_dv), 2044 q->q_type); 2045 break; 2046 } 2047 } 2048 2049 static int 2050 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint) 2051 { 2052 struct ubsec_softc *sc; 2053 int r; 2054 2055 if (krp == NULL || krp->krp_callback == NULL) 2056 return (EINVAL); 2057 #ifdef __OpenBSD__ 2058 if ((sc = ubsec_kfind(krp)) == NULL) 2059 return (EINVAL); 2060 #else 2061 sc = arg; 2062 KASSERT(sc != NULL /*, ("ubsec_kprocess: null softc")*/); 2063 #endif 2064 2065 while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) { 2066 struct ubsec_q2 *q; 2067 2068 q = SIMPLEQ_FIRST(&sc->sc_q2free); 2069 SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, /*q,*/ q_next); 2070 ubsec_kfree(sc, q); 2071 } 2072 2073 switch (krp->krp_op) { 2074 case CRK_MOD_EXP: 2075 if (sc->sc_flags & UBS_FLAGS_HWNORM) 2076 r = ubsec_kprocess_modexp_hw(sc, krp, hint); 2077 else 2078 r = ubsec_kprocess_modexp_sw(sc, krp, hint); 2079 break; 2080 case CRK_MOD_EXP_CRT: 2081 r = ubsec_kprocess_rsapriv(sc, krp, hint); 2082 break; 2083 default: 2084 printf("%s: kprocess: invalid op 0x%x\n", 2085 device_xname(&sc->sc_dv), krp->krp_op); 2086 krp->krp_status = EOPNOTSUPP; 2087 crypto_kdone(krp); 2088 r = 0; 2089 } 2090 return (r); 2091 } 2092 2093 /* 2094 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization) 2095 */ 2096 static int 2097 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp, 2098 int hint) 2099 { 2100 struct ubsec_q2_modexp *me; 2101 struct ubsec_mcr *mcr; 2102 struct ubsec_ctx_modexp *ctx; 2103 struct ubsec_pktbuf *epb; 2104 int s, err = 0; 2105 u_int nbits, normbits, mbits, shiftbits, ebits; 2106 2107 me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT); 2108 if (me == NULL) { 2109 err = ENOMEM; 2110 goto errout; 2111 } 2112 memset(me, 0, sizeof *me); 2113 me->me_krp = krp; 2114 me->me_q.q_type = UBS_CTXOP_MODEXP; 2115 2116 nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]); 2117 if (nbits <= 512) 2118 normbits = 512; 2119 else if (nbits <= 768) 2120 normbits = 768; 2121 else if (nbits <= 1024) 2122 normbits = 1024; 2123 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536) 2124 normbits = 1536; 2125 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048) 2126 normbits = 2048; 2127 else { 2128 err = E2BIG; 2129 goto errout; 2130 } 2131 2132 shiftbits = normbits - nbits; 2133 2134 me->me_modbits = nbits; 2135 me->me_shiftbits = shiftbits; 2136 me->me_normbits = normbits; 2137 2138 /* Sanity check: result bits must be >= true modulus bits. */ 2139 if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) { 2140 err = ERANGE; 2141 goto errout; 2142 } 2143 2144 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr), 2145 &me->me_q.q_mcr, 0)) { 2146 err = ENOMEM; 2147 goto errout; 2148 } 2149 mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr; 2150 2151 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp), 2152 &me->me_q.q_ctx, 0)) { 2153 err = ENOMEM; 2154 goto errout; 2155 } 2156 2157 mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]); 2158 if (mbits > nbits) { 2159 err = E2BIG; 2160 goto errout; 2161 } 2162 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) { 2163 err = ENOMEM; 2164 goto errout; 2165 } 2166 ubsec_kshift_r(shiftbits, 2167 krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits, 2168 me->me_M.dma_vaddr, normbits); 2169 2170 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) { 2171 err = ENOMEM; 2172 goto errout; 2173 } 2174 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size); 2175 2176 ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]); 2177 if (ebits > nbits) { 2178 err = E2BIG; 2179 goto errout; 2180 } 2181 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) { 2182 err = ENOMEM; 2183 goto errout; 2184 } 2185 ubsec_kshift_r(shiftbits, 2186 krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits, 2187 me->me_E.dma_vaddr, normbits); 2188 2189 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf), 2190 &me->me_epb, 0)) { 2191 err = ENOMEM; 2192 goto errout; 2193 } 2194 epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr; 2195 epb->pb_addr = htole32(me->me_E.dma_paddr); 2196 epb->pb_next = 0; 2197 epb->pb_len = htole32(normbits / 8); 2198 2199 #ifdef UBSEC_DEBUG 2200 if (ubsec_debug) { 2201 printf("Epb "); 2202 ubsec_dump_pb(epb); 2203 } 2204 #endif 2205 2206 mcr->mcr_pkts = htole16(1); 2207 mcr->mcr_flags = 0; 2208 mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr); 2209 mcr->mcr_reserved = 0; 2210 mcr->mcr_pktlen = 0; 2211 2212 mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr); 2213 mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8); 2214 mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr); 2215 2216 mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr); 2217 mcr->mcr_opktbuf.pb_next = 0; 2218 mcr->mcr_opktbuf.pb_len = htole32(normbits / 8); 2219 2220 #ifdef DIAGNOSTIC 2221 /* Misaligned output buffer will hang the chip. */ 2222 if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0) 2223 panic("%s: modexp invalid addr 0x%x", 2224 device_xname(&sc->sc_dv), letoh32(mcr->mcr_opktbuf.pb_addr)); 2225 if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0) 2226 panic("%s: modexp invalid len 0x%x", 2227 device_xname(&sc->sc_dv), letoh32(mcr->mcr_opktbuf.pb_len)); 2228 #endif 2229 2230 ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr; 2231 memset(ctx, 0, sizeof(*ctx)); 2232 ubsec_kshift_r(shiftbits, 2233 krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits, 2234 ctx->me_N, normbits); 2235 ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t))); 2236 ctx->me_op = htole16(UBS_CTXOP_MODEXP); 2237 ctx->me_E_len = htole16(nbits); 2238 ctx->me_N_len = htole16(nbits); 2239 2240 #ifdef UBSEC_DEBUG 2241 if (ubsec_debug) { 2242 ubsec_dump_mcr(mcr); 2243 ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx); 2244 } 2245 #endif 2246 2247 /* 2248 * ubsec_feed2 will sync mcr and ctx, we just need to sync 2249 * everything else. 2250 */ 2251 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map, 2252 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2253 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map, 2254 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2255 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map, 2256 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD); 2257 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map, 2258 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2259 2260 /* Enqueue and we're done... */ 2261 s = splnet(); 2262 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next); 2263 ubsec_feed2(sc); 2264 ubsecstats.hst_modexp++; 2265 splx(s); 2266 2267 return (0); 2268 2269 errout: 2270 if (me != NULL) { 2271 if (me->me_q.q_mcr.dma_map != NULL) 2272 ubsec_dma_free(sc, &me->me_q.q_mcr); 2273 if (me->me_q.q_ctx.dma_map != NULL) { 2274 memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size); 2275 ubsec_dma_free(sc, &me->me_q.q_ctx); 2276 } 2277 if (me->me_M.dma_map != NULL) { 2278 memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size); 2279 ubsec_dma_free(sc, &me->me_M); 2280 } 2281 if (me->me_E.dma_map != NULL) { 2282 memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size); 2283 ubsec_dma_free(sc, &me->me_E); 2284 } 2285 if (me->me_C.dma_map != NULL) { 2286 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size); 2287 ubsec_dma_free(sc, &me->me_C); 2288 } 2289 if (me->me_epb.dma_map != NULL) 2290 ubsec_dma_free(sc, &me->me_epb); 2291 free(me, M_DEVBUF); 2292 } 2293 krp->krp_status = err; 2294 crypto_kdone(krp); 2295 return (0); 2296 } 2297 2298 /* 2299 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization) 2300 */ 2301 static int 2302 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp, 2303 int hint) 2304 { 2305 struct ubsec_q2_modexp *me; 2306 struct ubsec_mcr *mcr; 2307 struct ubsec_ctx_modexp *ctx; 2308 struct ubsec_pktbuf *epb; 2309 int s, err = 0; 2310 u_int nbits, normbits, mbits, shiftbits, ebits; 2311 2312 me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT); 2313 if (me == NULL) { 2314 err = ENOMEM; 2315 goto errout; 2316 } 2317 memset(me, 0, sizeof *me); 2318 me->me_krp = krp; 2319 me->me_q.q_type = UBS_CTXOP_MODEXP; 2320 2321 nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]); 2322 if (nbits <= 512) 2323 normbits = 512; 2324 else if (nbits <= 768) 2325 normbits = 768; 2326 else if (nbits <= 1024) 2327 normbits = 1024; 2328 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536) 2329 normbits = 1536; 2330 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048) 2331 normbits = 2048; 2332 else { 2333 err = E2BIG; 2334 goto errout; 2335 } 2336 2337 shiftbits = normbits - nbits; 2338 2339 /* XXX ??? */ 2340 me->me_modbits = nbits; 2341 me->me_shiftbits = shiftbits; 2342 me->me_normbits = normbits; 2343 2344 /* Sanity check: result bits must be >= true modulus bits. */ 2345 if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) { 2346 err = ERANGE; 2347 goto errout; 2348 } 2349 2350 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr), 2351 &me->me_q.q_mcr, 0)) { 2352 err = ENOMEM; 2353 goto errout; 2354 } 2355 mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr; 2356 2357 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp), 2358 &me->me_q.q_ctx, 0)) { 2359 err = ENOMEM; 2360 goto errout; 2361 } 2362 2363 mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]); 2364 if (mbits > nbits) { 2365 err = E2BIG; 2366 goto errout; 2367 } 2368 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) { 2369 err = ENOMEM; 2370 goto errout; 2371 } 2372 memset(me->me_M.dma_vaddr, 0, normbits / 8); 2373 bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p, 2374 me->me_M.dma_vaddr, (mbits + 7) / 8); 2375 2376 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) { 2377 err = ENOMEM; 2378 goto errout; 2379 } 2380 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size); 2381 2382 ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]); 2383 if (ebits > nbits) { 2384 err = E2BIG; 2385 goto errout; 2386 } 2387 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) { 2388 err = ENOMEM; 2389 goto errout; 2390 } 2391 memset(me->me_E.dma_vaddr, 0, normbits / 8); 2392 bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p, 2393 me->me_E.dma_vaddr, (ebits + 7) / 8); 2394 2395 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf), 2396 &me->me_epb, 0)) { 2397 err = ENOMEM; 2398 goto errout; 2399 } 2400 epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr; 2401 epb->pb_addr = htole32(me->me_E.dma_paddr); 2402 epb->pb_next = 0; 2403 epb->pb_len = htole32((ebits + 7) / 8); 2404 2405 #ifdef UBSEC_DEBUG 2406 if (ubsec_debug) { 2407 printf("Epb "); 2408 ubsec_dump_pb(epb); 2409 } 2410 #endif 2411 2412 mcr->mcr_pkts = htole16(1); 2413 mcr->mcr_flags = 0; 2414 mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr); 2415 mcr->mcr_reserved = 0; 2416 mcr->mcr_pktlen = 0; 2417 2418 mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr); 2419 mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8); 2420 mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr); 2421 2422 mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr); 2423 mcr->mcr_opktbuf.pb_next = 0; 2424 mcr->mcr_opktbuf.pb_len = htole32(normbits / 8); 2425 2426 #ifdef DIAGNOSTIC 2427 /* Misaligned output buffer will hang the chip. */ 2428 if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0) 2429 panic("%s: modexp invalid addr 0x%x", 2430 device_xname(&sc->sc_dv), letoh32(mcr->mcr_opktbuf.pb_addr)); 2431 if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0) 2432 panic("%s: modexp invalid len 0x%x", 2433 device_xname(&sc->sc_dv), letoh32(mcr->mcr_opktbuf.pb_len)); 2434 #endif 2435 2436 ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr; 2437 memset(ctx, 0, sizeof(*ctx)); 2438 memcpy(ctx->me_N, krp->krp_param[UBS_MODEXP_PAR_N].crp_p, 2439 (nbits + 7) / 8); 2440 ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t))); 2441 ctx->me_op = htole16(UBS_CTXOP_MODEXP); 2442 ctx->me_E_len = htole16(ebits); 2443 ctx->me_N_len = htole16(nbits); 2444 2445 #ifdef UBSEC_DEBUG 2446 if (ubsec_debug) { 2447 ubsec_dump_mcr(mcr); 2448 ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx); 2449 } 2450 #endif 2451 2452 /* 2453 * ubsec_feed2 will sync mcr and ctx, we just need to sync 2454 * everything else. 2455 */ 2456 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map, 2457 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2458 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map, 2459 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2460 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map, 2461 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD); 2462 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map, 2463 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2464 2465 /* Enqueue and we're done... */ 2466 s = splnet(); 2467 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next); 2468 ubsec_feed2(sc); 2469 splx(s); 2470 2471 return (0); 2472 2473 errout: 2474 if (me != NULL) { 2475 if (me->me_q.q_mcr.dma_map != NULL) 2476 ubsec_dma_free(sc, &me->me_q.q_mcr); 2477 if (me->me_q.q_ctx.dma_map != NULL) { 2478 memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size); 2479 ubsec_dma_free(sc, &me->me_q.q_ctx); 2480 } 2481 if (me->me_M.dma_map != NULL) { 2482 memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size); 2483 ubsec_dma_free(sc, &me->me_M); 2484 } 2485 if (me->me_E.dma_map != NULL) { 2486 memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size); 2487 ubsec_dma_free(sc, &me->me_E); 2488 } 2489 if (me->me_C.dma_map != NULL) { 2490 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size); 2491 ubsec_dma_free(sc, &me->me_C); 2492 } 2493 if (me->me_epb.dma_map != NULL) 2494 ubsec_dma_free(sc, &me->me_epb); 2495 free(me, M_DEVBUF); 2496 } 2497 krp->krp_status = err; 2498 crypto_kdone(krp); 2499 return (0); 2500 } 2501 2502 static int 2503 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp, 2504 int hint) 2505 { 2506 struct ubsec_q2_rsapriv *rp = NULL; 2507 struct ubsec_mcr *mcr; 2508 struct ubsec_ctx_rsapriv *ctx; 2509 int s, err = 0; 2510 u_int padlen, msglen; 2511 2512 msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]); 2513 padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]); 2514 if (msglen > padlen) 2515 padlen = msglen; 2516 2517 if (padlen <= 256) 2518 padlen = 256; 2519 else if (padlen <= 384) 2520 padlen = 384; 2521 else if (padlen <= 512) 2522 padlen = 512; 2523 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768) 2524 padlen = 768; 2525 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024) 2526 padlen = 1024; 2527 else { 2528 err = E2BIG; 2529 goto errout; 2530 } 2531 2532 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) { 2533 err = E2BIG; 2534 goto errout; 2535 } 2536 2537 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) { 2538 err = E2BIG; 2539 goto errout; 2540 } 2541 2542 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) { 2543 err = E2BIG; 2544 goto errout; 2545 } 2546 2547 rp = malloc(sizeof *rp, M_DEVBUF, M_NOWAIT|M_ZERO); 2548 if (rp == NULL) 2549 return (ENOMEM); 2550 rp->rpr_krp = krp; 2551 rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV; 2552 2553 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr), 2554 &rp->rpr_q.q_mcr, 0)) { 2555 err = ENOMEM; 2556 goto errout; 2557 } 2558 mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr; 2559 2560 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv), 2561 &rp->rpr_q.q_ctx, 0)) { 2562 err = ENOMEM; 2563 goto errout; 2564 } 2565 ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr; 2566 memset(ctx, 0, sizeof *ctx); 2567 2568 /* Copy in p */ 2569 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p, 2570 &ctx->rpr_buf[0 * (padlen / 8)], 2571 (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8); 2572 2573 /* Copy in q */ 2574 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p, 2575 &ctx->rpr_buf[1 * (padlen / 8)], 2576 (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8); 2577 2578 /* Copy in dp */ 2579 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p, 2580 &ctx->rpr_buf[2 * (padlen / 8)], 2581 (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8); 2582 2583 /* Copy in dq */ 2584 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p, 2585 &ctx->rpr_buf[3 * (padlen / 8)], 2586 (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8); 2587 2588 /* Copy in pinv */ 2589 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p, 2590 &ctx->rpr_buf[4 * (padlen / 8)], 2591 (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8); 2592 2593 msglen = padlen * 2; 2594 2595 /* Copy in input message (aligned buffer/length). */ 2596 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) { 2597 /* Is this likely? */ 2598 err = E2BIG; 2599 goto errout; 2600 } 2601 if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) { 2602 err = ENOMEM; 2603 goto errout; 2604 } 2605 memset(rp->rpr_msgin.dma_vaddr, 0, (msglen + 7) / 8); 2606 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p, 2607 rp->rpr_msgin.dma_vaddr, 2608 (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8); 2609 2610 /* Prepare space for output message (aligned buffer/length). */ 2611 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) { 2612 /* Is this likely? */ 2613 err = E2BIG; 2614 goto errout; 2615 } 2616 if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) { 2617 err = ENOMEM; 2618 goto errout; 2619 } 2620 memset(rp->rpr_msgout.dma_vaddr, 0, (msglen + 7) / 8); 2621 2622 mcr->mcr_pkts = htole16(1); 2623 mcr->mcr_flags = 0; 2624 mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr); 2625 mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr); 2626 mcr->mcr_ipktbuf.pb_next = 0; 2627 mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size); 2628 mcr->mcr_reserved = 0; 2629 mcr->mcr_pktlen = htole16(msglen); 2630 mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr); 2631 mcr->mcr_opktbuf.pb_next = 0; 2632 mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size); 2633 2634 #ifdef DIAGNOSTIC 2635 if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) { 2636 panic("%s: rsapriv: invalid msgin 0x%lx(0x%lx)", 2637 device_xname(&sc->sc_dv), (u_long) rp->rpr_msgin.dma_paddr, 2638 (u_long) rp->rpr_msgin.dma_size); 2639 } 2640 if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) { 2641 panic("%s: rsapriv: invalid msgout 0x%lx(0x%lx)", 2642 device_xname(&sc->sc_dv), (u_long) rp->rpr_msgout.dma_paddr, 2643 (u_long) rp->rpr_msgout.dma_size); 2644 } 2645 #endif 2646 2647 ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8)); 2648 ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV); 2649 ctx->rpr_q_len = htole16(padlen); 2650 ctx->rpr_p_len = htole16(padlen); 2651 2652 /* 2653 * ubsec_feed2 will sync mcr and ctx, we just need to sync 2654 * everything else. 2655 */ 2656 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 2657 0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2658 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 2659 0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD); 2660 2661 /* Enqueue and we're done... */ 2662 s = splnet(); 2663 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next); 2664 ubsec_feed2(sc); 2665 ubsecstats.hst_modexpcrt++; 2666 splx(s); 2667 return (0); 2668 2669 errout: 2670 if (rp != NULL) { 2671 if (rp->rpr_q.q_mcr.dma_map != NULL) 2672 ubsec_dma_free(sc, &rp->rpr_q.q_mcr); 2673 if (rp->rpr_msgin.dma_map != NULL) { 2674 memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size); 2675 ubsec_dma_free(sc, &rp->rpr_msgin); 2676 } 2677 if (rp->rpr_msgout.dma_map != NULL) { 2678 memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size); 2679 ubsec_dma_free(sc, &rp->rpr_msgout); 2680 } 2681 free(rp, M_DEVBUF); 2682 } 2683 krp->krp_status = err; 2684 crypto_kdone(krp); 2685 return (0); 2686 } 2687 2688 #ifdef UBSEC_DEBUG 2689 static void 2690 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb) 2691 { 2692 printf("addr 0x%x (0x%x) next 0x%x\n", 2693 pb->pb_addr, pb->pb_len, pb->pb_next); 2694 } 2695 2696 static void 2697 ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *c) 2698 { 2699 printf("CTX (0x%x):\n", c->ctx_len); 2700 switch (letoh16(c->ctx_op)) { 2701 case UBS_CTXOP_RNGBYPASS: 2702 case UBS_CTXOP_RNGSHA1: 2703 break; 2704 case UBS_CTXOP_MODEXP: 2705 { 2706 struct ubsec_ctx_modexp *cx = (void *)c; 2707 int i, len; 2708 2709 printf(" Elen %u, Nlen %u\n", 2710 letoh16(cx->me_E_len), letoh16(cx->me_N_len)); 2711 len = (cx->me_N_len + 7)/8; 2712 for (i = 0; i < len; i++) 2713 printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]); 2714 printf("\n"); 2715 break; 2716 } 2717 default: 2718 printf("unknown context: %x\n", c->ctx_op); 2719 } 2720 printf("END CTX\n"); 2721 } 2722 2723 static void 2724 ubsec_dump_mcr(struct ubsec_mcr *mcr) 2725 { 2726 volatile struct ubsec_mcr_add *ma; 2727 int i; 2728 2729 printf("MCR:\n"); 2730 printf(" pkts: %u, flags 0x%x\n", 2731 letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags)); 2732 ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp; 2733 for (i = 0; i < letoh16(mcr->mcr_pkts); i++) { 2734 printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i, 2735 letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen), 2736 letoh16(ma->mcr_reserved)); 2737 printf(" %d: ipkt ", i); 2738 ubsec_dump_pb(&ma->mcr_ipktbuf); 2739 printf(" %d: opkt ", i); 2740 ubsec_dump_pb(&ma->mcr_opktbuf); 2741 ma++; 2742 } 2743 printf("END MCR\n"); 2744 } 2745 #endif /* UBSEC_DEBUG */ 2746 2747 /* 2748 * Return the number of significant bits of a big number. 2749 */ 2750 static int 2751 ubsec_ksigbits(struct crparam *cr) 2752 { 2753 u_int plen = (cr->crp_nbits + 7) / 8; 2754 int i, sig = plen * 8; 2755 u_int8_t c, *p = cr->crp_p; 2756 2757 for (i = plen - 1; i >= 0; i--) { 2758 c = p[i]; 2759 if (c != 0) { 2760 while ((c & 0x80) == 0) { 2761 sig--; 2762 c <<= 1; 2763 } 2764 break; 2765 } 2766 sig -= 8; 2767 } 2768 return (sig); 2769 } 2770 2771 static void 2772 ubsec_kshift_r(u_int shiftbits, u_int8_t *src, u_int srcbits, 2773 u_int8_t *dst, u_int dstbits) 2774 { 2775 u_int slen, dlen; 2776 int i, si, di, n; 2777 2778 slen = (srcbits + 7) / 8; 2779 dlen = (dstbits + 7) / 8; 2780 2781 for (i = 0; i < slen; i++) 2782 dst[i] = src[i]; 2783 for (i = 0; i < dlen - slen; i++) 2784 dst[slen + i] = 0; 2785 2786 n = shiftbits / 8; 2787 if (n != 0) { 2788 si = dlen - n - 1; 2789 di = dlen - 1; 2790 while (si >= 0) 2791 dst[di--] = dst[si--]; 2792 while (di >= 0) 2793 dst[di--] = 0; 2794 } 2795 2796 n = shiftbits % 8; 2797 if (n != 0) { 2798 for (i = dlen - 1; i > 0; i--) 2799 dst[i] = (dst[i] << n) | 2800 (dst[i - 1] >> (8 - n)); 2801 dst[0] = dst[0] << n; 2802 } 2803 } 2804 2805 static void 2806 ubsec_kshift_l(u_int shiftbits, u_int8_t *src, u_int srcbits, 2807 u_int8_t *dst, u_int dstbits) 2808 { 2809 int slen, dlen, i, n; 2810 2811 slen = (srcbits + 7) / 8; 2812 dlen = (dstbits + 7) / 8; 2813 2814 n = shiftbits / 8; 2815 for (i = 0; i < slen; i++) 2816 dst[i] = src[i + n]; 2817 for (i = 0; i < dlen - slen; i++) 2818 dst[slen + i] = 0; 2819 2820 n = shiftbits % 8; 2821 if (n != 0) { 2822 for (i = 0; i < (dlen - 1); i++) 2823 dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n)); 2824 dst[dlen - 1] = dst[dlen - 1] >> n; 2825 } 2826 } 2827