1 /* $NetBSD: ubsec.c,v 1.37 2014/02/25 18:30:10 pooka Exp $ */ 2 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.6 2003/01/23 21:06:43 sam Exp $ */ 3 /* $OpenBSD: ubsec.c,v 1.127 2003/06/04 14:04:58 jason Exp $ */ 4 5 /* 6 * Copyright (c) 2000 Jason L. Wright (jason@thought.net) 7 * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org) 8 * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com) 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, 23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 27 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * Effort sponsored in part by the Defense Advanced Research Projects 32 * Agency (DARPA) and Air Force Research Laboratory, Air Force 33 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 34 * 35 */ 36 37 #include <sys/cdefs.h> 38 __KERNEL_RCSID(0, "$NetBSD: ubsec.c,v 1.37 2014/02/25 18:30:10 pooka Exp $"); 39 40 #undef UBSEC_DEBUG 41 42 /* 43 * uBsec 5[56]01, bcm580xx, bcm582x hardware crypto accelerator 44 */ 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/proc.h> 49 #include <sys/endian.h> 50 #ifdef __NetBSD__ 51 #define UBSEC_NO_RNG /* hangs on attach */ 52 #define letoh16 htole16 53 #define letoh32 htole32 54 #endif 55 #include <sys/errno.h> 56 #include <sys/malloc.h> 57 #include <sys/kernel.h> 58 #include <sys/mbuf.h> 59 #include <sys/device.h> 60 #include <sys/module.h> 61 #include <sys/queue.h> 62 #include <sys/sysctl.h> 63 64 #include <opencrypto/cryptodev.h> 65 #include <opencrypto/xform.h> 66 #ifdef __OpenBSD__ 67 #include <dev/rndvar.h> 68 #include <sys/md5k.h> 69 #else 70 #include <sys/cprng.h> 71 #include <sys/md5.h> 72 #endif 73 #include <sys/sha1.h> 74 75 #include <dev/pci/pcireg.h> 76 #include <dev/pci/pcivar.h> 77 #include <dev/pci/pcidevs.h> 78 79 #include <dev/pci/ubsecreg.h> 80 #include <dev/pci/ubsecvar.h> 81 82 /* 83 * Prototypes and count for the pci_device structure 84 */ 85 static int ubsec_probe(device_t, cfdata_t, void *); 86 static void ubsec_attach(device_t, device_t, void *); 87 static int ubsec_detach(device_t, int); 88 static int ubsec_sysctl_init(void); 89 static void ubsec_reset_board(struct ubsec_softc *); 90 static void ubsec_init_board(struct ubsec_softc *); 91 static void ubsec_init_pciregs(struct pci_attach_args *pa); 92 static void ubsec_cleanchip(struct ubsec_softc *); 93 static void ubsec_totalreset(struct ubsec_softc *); 94 static int ubsec_free_q(struct ubsec_softc*, struct ubsec_q *); 95 96 #ifdef __OpenBSD__ 97 struct cfattach ubsec_ca = { 98 sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach, 99 }; 100 101 struct cfdriver ubsec_cd = { 102 0, "ubsec", DV_DULL 103 }; 104 #else 105 CFATTACH_DECL_NEW(ubsec, sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach, 106 ubsec_detach, NULL); 107 extern struct cfdriver ubsec_cd; 108 #endif 109 110 /* patchable */ 111 #ifdef UBSEC_DEBUG 112 extern int ubsec_debug; 113 int ubsec_debug=1; 114 #endif 115 116 static int ubsec_intr(void *); 117 static int ubsec_newsession(void*, u_int32_t *, struct cryptoini *); 118 static int ubsec_freesession(void*, u_int64_t); 119 static int ubsec_process(void*, struct cryptop *, int hint); 120 static void ubsec_callback(struct ubsec_softc *, struct ubsec_q *); 121 static void ubsec_feed(struct ubsec_softc *); 122 static void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int); 123 static void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *); 124 static void ubsec_feed2(struct ubsec_softc *); 125 static void ubsec_feed4(struct ubsec_softc *); 126 #ifndef UBSEC_NO_RNG 127 static void ubsec_rng(void *); 128 static void ubsec_rng_locked(void *); 129 static void ubsec_rng_get(size_t, void *); 130 #endif /* UBSEC_NO_RNG */ 131 static int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t, 132 struct ubsec_dma_alloc *, int); 133 static void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *); 134 static int ubsec_dmamap_aligned(bus_dmamap_t); 135 136 static int ubsec_kprocess(void*, struct cryptkop *, int); 137 static int ubsec_kprocess_modexp_sw(struct ubsec_softc *, 138 struct cryptkop *, int); 139 static int ubsec_kprocess_modexp_hw(struct ubsec_softc *, 140 struct cryptkop *, int); 141 static int ubsec_kprocess_rsapriv(struct ubsec_softc *, 142 struct cryptkop *, int); 143 static void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *); 144 static int ubsec_ksigbits(struct crparam *); 145 static void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int); 146 static void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int); 147 148 #ifdef UBSEC_DEBUG 149 static void ubsec_dump_pb(volatile struct ubsec_pktbuf *); 150 static void ubsec_dump_mcr(struct ubsec_mcr *); 151 static void ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *); 152 #endif 153 154 #define READ_REG(sc,r) \ 155 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r)) 156 157 #define WRITE_REG(sc,reg,val) \ 158 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val) 159 160 #define SWAP32(x) (x) = htole32(ntohl((x))) 161 #ifndef HTOLE32 162 #define HTOLE32(x) (x) = htole32(x) 163 #endif 164 165 struct ubsec_stats ubsecstats; 166 167 static struct sysctllog *ubsec_sysctllog; 168 169 /* 170 * ubsec_maxbatch controls the number of crypto ops to voluntarily 171 * collect into one submission to the hardware. This batching happens 172 * when ops are dispatched from the crypto subsystem with a hint that 173 * more are to follow immediately. These ops must also not be marked 174 * with a ``no delay'' flag. 175 */ 176 static int ubsec_maxbatch = 1; 177 178 /* 179 * ubsec_maxaggr controls the number of crypto ops to submit to the 180 * hardware as a unit. This aggregation reduces the number of interrupts 181 * to the host at the expense of increased latency (for all but the last 182 * operation). For network traffic setting this to one yields the highest 183 * performance but at the expense of more interrupt processing. 184 */ 185 static int ubsec_maxaggr = 1; 186 187 static const struct ubsec_product { 188 pci_vendor_id_t ubsec_vendor; 189 pci_product_id_t ubsec_product; 190 int ubsec_flags; 191 int ubsec_statmask; 192 int ubsec_maxaggr; 193 const char *ubsec_name; 194 } ubsec_products[] = { 195 { PCI_VENDOR_BLUESTEEL, PCI_PRODUCT_BLUESTEEL_5501, 196 0, 197 BS_STAT_MCR1_DONE | BS_STAT_DMAERR, 198 UBS_MIN_AGGR, 199 "Bluesteel 5501" 200 }, 201 { PCI_VENDOR_BLUESTEEL, PCI_PRODUCT_BLUESTEEL_5601, 202 UBS_FLAGS_KEY | UBS_FLAGS_RNG, 203 BS_STAT_MCR1_DONE | BS_STAT_DMAERR, 204 UBS_MIN_AGGR, 205 "Bluesteel 5601" 206 }, 207 208 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5801, 209 0, 210 BS_STAT_MCR1_DONE | BS_STAT_DMAERR, 211 UBS_MIN_AGGR, 212 "Broadcom BCM5801" 213 }, 214 215 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5802, 216 UBS_FLAGS_KEY | UBS_FLAGS_RNG, 217 BS_STAT_MCR1_DONE | BS_STAT_DMAERR, 218 UBS_MIN_AGGR, 219 "Broadcom BCM5802" 220 }, 221 222 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5805, 223 UBS_FLAGS_KEY | UBS_FLAGS_RNG, 224 BS_STAT_MCR1_DONE | BS_STAT_DMAERR, 225 UBS_MIN_AGGR, 226 "Broadcom BCM5805" 227 }, 228 229 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5820, 230 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX | 231 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY, 232 BS_STAT_MCR1_DONE | BS_STAT_DMAERR, 233 UBS_MIN_AGGR, 234 "Broadcom BCM5820" 235 }, 236 237 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5821, 238 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX | 239 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY, 240 BS_STAT_MCR1_DONE | BS_STAT_DMAERR | 241 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY, 242 UBS_MIN_AGGR, 243 "Broadcom BCM5821" 244 }, 245 { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_SCA1K, 246 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX | 247 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY, 248 BS_STAT_MCR1_DONE | BS_STAT_DMAERR | 249 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY, 250 UBS_MIN_AGGR, 251 "Sun Crypto Accelerator 1000" 252 }, 253 { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_5821, 254 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX | 255 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY, 256 BS_STAT_MCR1_DONE | BS_STAT_DMAERR | 257 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY, 258 UBS_MIN_AGGR, 259 "Broadcom BCM5821 (Sun)" 260 }, 261 262 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5822, 263 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX | 264 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY, 265 BS_STAT_MCR1_DONE | BS_STAT_DMAERR | 266 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY, 267 UBS_MIN_AGGR, 268 "Broadcom BCM5822" 269 }, 270 271 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5823, 272 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX | 273 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY, 274 BS_STAT_MCR1_DONE | BS_STAT_DMAERR | 275 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY, 276 UBS_MIN_AGGR, 277 "Broadcom BCM5823" 278 }, 279 280 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5825, 281 UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX | 282 UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY, 283 BS_STAT_MCR1_DONE | BS_STAT_DMAERR | 284 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY, 285 UBS_MIN_AGGR, 286 "Broadcom BCM5825" 287 }, 288 289 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5860, 290 UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM | 291 UBS_FLAGS_LONGCTX | 292 UBS_FLAGS_RNG | UBS_FLAGS_RNG4 | 293 UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY, 294 BS_STAT_MCR1_DONE | BS_STAT_DMAERR | 295 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY | 296 BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY, 297 UBS_MAX_AGGR, 298 "Broadcom BCM5860" 299 }, 300 301 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5861, 302 UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM | 303 UBS_FLAGS_LONGCTX | 304 UBS_FLAGS_RNG | UBS_FLAGS_RNG4 | 305 UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY, 306 BS_STAT_MCR1_DONE | BS_STAT_DMAERR | 307 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY | 308 BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY, 309 UBS_MAX_AGGR, 310 "Broadcom BCM5861" 311 }, 312 313 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5862, 314 UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM | 315 UBS_FLAGS_LONGCTX | 316 UBS_FLAGS_RNG | UBS_FLAGS_RNG4 | 317 UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY, 318 BS_STAT_MCR1_DONE | BS_STAT_DMAERR | 319 BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY | 320 BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY, 321 UBS_MAX_AGGR, 322 "Broadcom BCM5862" 323 }, 324 325 { 0, 0, 326 0, 327 0, 328 0, 329 NULL 330 } 331 }; 332 333 static const struct ubsec_product * 334 ubsec_lookup(const struct pci_attach_args *pa) 335 { 336 const struct ubsec_product *up; 337 338 for (up = ubsec_products; up->ubsec_name != NULL; up++) { 339 if (PCI_VENDOR(pa->pa_id) == up->ubsec_vendor && 340 PCI_PRODUCT(pa->pa_id) == up->ubsec_product) 341 return (up); 342 } 343 return (NULL); 344 } 345 346 static int 347 ubsec_probe(device_t parent, cfdata_t match, void *aux) 348 { 349 struct pci_attach_args *pa = (struct pci_attach_args *)aux; 350 351 if (ubsec_lookup(pa) != NULL) 352 return (1); 353 354 return (0); 355 } 356 357 static void 358 ubsec_attach(device_t parent, device_t self, void *aux) 359 { 360 struct ubsec_softc *sc = device_private(self); 361 struct pci_attach_args *pa = aux; 362 const struct ubsec_product *up; 363 pci_chipset_tag_t pc = pa->pa_pc; 364 pci_intr_handle_t ih; 365 const char *intrstr = NULL; 366 pcireg_t memtype; 367 struct ubsec_dma *dmap; 368 u_int32_t cmd, i; 369 370 sc->sc_dev = self; 371 sc->sc_pct = pc; 372 373 up = ubsec_lookup(pa); 374 if (up == NULL) { 375 printf("\n"); 376 panic("ubsec_attach: impossible"); 377 } 378 379 pci_aprint_devinfo_fancy(pa, "Crypto processor", up->ubsec_name, 1); 380 381 SIMPLEQ_INIT(&sc->sc_queue); 382 SIMPLEQ_INIT(&sc->sc_qchip); 383 SIMPLEQ_INIT(&sc->sc_queue2); 384 SIMPLEQ_INIT(&sc->sc_qchip2); 385 SIMPLEQ_INIT(&sc->sc_queue4); 386 SIMPLEQ_INIT(&sc->sc_qchip4); 387 SIMPLEQ_INIT(&sc->sc_q2free); 388 389 sc->sc_flags = up->ubsec_flags; 390 sc->sc_statmask = up->ubsec_statmask; 391 sc->sc_maxaggr = up->ubsec_maxaggr; 392 393 cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 394 cmd |= PCI_COMMAND_MASTER_ENABLE; 395 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd); 396 397 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BS_BAR); 398 if (pci_mapreg_map(pa, BS_BAR, memtype, 0, 399 &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize)) { 400 aprint_error_dev(self, "can't find mem space"); 401 return; 402 } 403 404 sc->sc_dmat = pa->pa_dmat; 405 406 if (pci_intr_map(pa, &ih)) { 407 aprint_error_dev(self, "couldn't map interrupt\n"); 408 return; 409 } 410 intrstr = pci_intr_string(pc, ih); 411 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ubsec_intr, sc); 412 if (sc->sc_ih == NULL) { 413 aprint_error_dev(self, "couldn't establish interrupt"); 414 if (intrstr != NULL) 415 aprint_error(" at %s", intrstr); 416 aprint_error("\n"); 417 return; 418 } 419 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 420 421 sc->sc_cid = crypto_get_driverid(0); 422 if (sc->sc_cid < 0) { 423 aprint_error_dev(self, "couldn't get crypto driver id\n"); 424 pci_intr_disestablish(pc, sc->sc_ih); 425 return; 426 } 427 428 sc->sc_rng_need = RND_POOLBITS / NBBY; 429 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_VM); 430 431 SIMPLEQ_INIT(&sc->sc_freequeue); 432 dmap = sc->sc_dmaa; 433 for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) { 434 struct ubsec_q *q; 435 436 q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q), 437 M_DEVBUF, M_NOWAIT); 438 if (q == NULL) { 439 aprint_error_dev(self, "can't allocate queue buffers\n"); 440 break; 441 } 442 443 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk), 444 &dmap->d_alloc, 0)) { 445 aprint_error_dev(self, "can't allocate dma buffers\n"); 446 free(q, M_DEVBUF); 447 break; 448 } 449 dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr; 450 451 q->q_dma = dmap; 452 sc->sc_queuea[i] = q; 453 454 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next); 455 } 456 457 crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0, 458 ubsec_newsession, ubsec_freesession, ubsec_process, sc); 459 crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0, 460 ubsec_newsession, ubsec_freesession, ubsec_process, sc); 461 crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC_96, 0, 0, 462 ubsec_newsession, ubsec_freesession, ubsec_process, sc); 463 crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC_96, 0, 0, 464 ubsec_newsession, ubsec_freesession, ubsec_process, sc); 465 466 /* 467 * Reset Broadcom chip 468 */ 469 ubsec_reset_board(sc); 470 471 /* 472 * Init Broadcom specific PCI settings 473 */ 474 ubsec_init_pciregs(pa); 475 476 /* 477 * Init Broadcom chip 478 */ 479 ubsec_init_board(sc); 480 481 #ifndef UBSEC_NO_RNG 482 if (sc->sc_flags & UBS_FLAGS_RNG) { 483 if (sc->sc_flags & UBS_FLAGS_RNG4) 484 sc->sc_statmask |= BS_STAT_MCR4_DONE; 485 else 486 sc->sc_statmask |= BS_STAT_MCR2_DONE; 487 488 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr), 489 &sc->sc_rng.rng_q.q_mcr, 0)) 490 goto skip_rng; 491 492 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass), 493 &sc->sc_rng.rng_q.q_ctx, 0)) { 494 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr); 495 goto skip_rng; 496 } 497 498 if (ubsec_dma_malloc(sc, sizeof(u_int32_t) * 499 UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) { 500 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx); 501 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr); 502 goto skip_rng; 503 } 504 505 rndsource_setcb(&sc->sc_rnd_source, ubsec_rng_get, sc); 506 rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev), 507 RND_TYPE_RNG, 508 RND_FLAG_NO_ESTIMATE|RND_FLAG_HASCB); 509 if (hz >= 100) 510 sc->sc_rnghz = hz / 100; 511 else 512 sc->sc_rnghz = 1; 513 #ifdef __OpenBSD__ 514 timeout_set(&sc->sc_rngto, ubsec_rng, sc); 515 timeout_add(&sc->sc_rngto, sc->sc_rnghz); 516 #else 517 callout_init(&sc->sc_rngto, 0); 518 callout_setfunc(&sc->sc_rngto, ubsec_rng, sc); 519 callout_schedule(&sc->sc_rngto, sc->sc_rnghz); 520 #endif 521 skip_rng: 522 if (sc->sc_rnghz) 523 aprint_normal_dev(self, "random number generator enabled\n"); 524 else 525 aprint_error_dev(self, "WARNING: random number generator " 526 "disabled\n"); 527 } 528 #endif /* UBSEC_NO_RNG */ 529 530 if (sc->sc_flags & UBS_FLAGS_KEY) { 531 sc->sc_statmask |= BS_STAT_MCR2_DONE; 532 533 crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0, 534 ubsec_kprocess, sc); 535 #if 0 536 crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0, 537 ubsec_kprocess, sc); 538 #endif 539 } 540 } 541 542 static int 543 ubsec_detach(device_t self, int flags) 544 { 545 struct ubsec_softc *sc = device_private(self); 546 struct ubsec_q *q, *qtmp; 547 volatile u_int32_t ctrl; 548 549 /* disable interrupts */ 550 /* XXX wait/abort current ops? where is DMAERR enabled? */ 551 ctrl = READ_REG(sc, BS_CTRL); 552 553 ctrl &= ~(BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR); 554 if (sc->sc_flags & UBS_FLAGS_MULTIMCR) 555 ctrl &= ~BS_CTRL_MCR4INT; 556 557 WRITE_REG(sc, BS_CTRL, ctrl); 558 559 #ifndef UBSEC_NO_RNG 560 if (sc->sc_flags & UBS_FLAGS_RNG) { 561 callout_halt(&sc->sc_rngto, NULL); 562 ubsec_dma_free(sc, &sc->sc_rng.rng_buf); 563 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx); 564 ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr); 565 rnd_detach_source(&sc->sc_rnd_source); 566 } 567 #endif /* UBSEC_NO_RNG */ 568 569 crypto_unregister_all(sc->sc_cid); 570 571 mutex_spin_enter(&sc->sc_mtx); 572 573 ubsec_totalreset(sc); /* XXX leaves the chip running */ 574 575 SIMPLEQ_FOREACH_SAFE(q, &sc->sc_freequeue, q_next, qtmp) { 576 ubsec_dma_free(sc, &q->q_dma->d_alloc); 577 free(q, M_DEVBUF); 578 } 579 580 mutex_spin_exit(&sc->sc_mtx); 581 582 if (sc->sc_ih != NULL) { 583 pci_intr_disestablish(sc->sc_pct, sc->sc_ih); 584 sc->sc_ih = NULL; 585 } 586 587 if (sc->sc_memsize != 0) { 588 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize); 589 sc->sc_memsize = 0; 590 } 591 592 return 0; 593 } 594 595 MODULE(MODULE_CLASS_DRIVER, ubsec, "pci,opencrypto"); 596 597 #ifdef _MODULE 598 #include "ioconf.c" 599 #endif 600 601 static int 602 ubsec_modcmd(modcmd_t cmd, void *data) 603 { 604 int error = 0; 605 606 switch (cmd) { 607 case MODULE_CMD_INIT: 608 #ifdef _MODULE 609 error = config_init_component(cfdriver_ioconf_ubsec, 610 cfattach_ioconf_ubsec, cfdata_ioconf_ubsec); 611 #endif 612 if (error == 0) 613 error = ubsec_sysctl_init(); 614 return error; 615 case MODULE_CMD_FINI: 616 if (ubsec_sysctllog != NULL) 617 sysctl_teardown(&ubsec_sysctllog); 618 #ifdef _MODULE 619 error = config_fini_component(cfdriver_ioconf_ubsec, 620 cfattach_ioconf_ubsec, cfdata_ioconf_ubsec); 621 #endif 622 return error; 623 default: 624 return ENOTTY; 625 } 626 } 627 628 static int 629 ubsec_sysctl_init(void) 630 { 631 const struct sysctlnode *node = NULL; 632 633 ubsec_sysctllog = NULL; 634 635 sysctl_createv(&ubsec_sysctllog, 0, NULL, &node, 636 CTLFLAG_PERMANENT, 637 CTLTYPE_NODE, "ubsec", 638 SYSCTL_DESCR("ubsec opetions"), 639 NULL, 0, NULL, 0, 640 CTL_HW, CTL_CREATE, CTL_EOL); 641 sysctl_createv(&ubsec_sysctllog, 0, &node, NULL, 642 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 643 CTLTYPE_INT, "maxbatch", 644 SYSCTL_DESCR("max ops to batch w/o interrupt"), 645 NULL, 0, &ubsec_maxbatch, 0, 646 CTL_CREATE, CTL_EOL); 647 sysctl_createv(&ubsec_sysctllog, 0, &node, NULL, 648 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 649 CTLTYPE_INT, "maxaggr", 650 SYSCTL_DESCR("max ops to aggregate under one interrupt"), 651 NULL, 0, &ubsec_maxaggr, 0, 652 CTL_CREATE, CTL_EOL); 653 654 return 0; 655 } 656 657 /* 658 * UBSEC Interrupt routine 659 */ 660 static int 661 ubsec_intr(void *arg) 662 { 663 struct ubsec_softc *sc = arg; 664 volatile u_int32_t stat; 665 struct ubsec_q *q; 666 struct ubsec_dma *dmap; 667 int flags; 668 int npkts = 0, i; 669 670 mutex_spin_enter(&sc->sc_mtx); 671 stat = READ_REG(sc, BS_STAT); 672 stat &= sc->sc_statmask; 673 if (stat == 0) { 674 mutex_spin_exit(&sc->sc_mtx); 675 return (0); 676 } 677 678 WRITE_REG(sc, BS_STAT, stat); /* IACK */ 679 680 /* 681 * Check to see if we have any packets waiting for us 682 */ 683 if ((stat & BS_STAT_MCR1_DONE)) { 684 while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) { 685 q = SIMPLEQ_FIRST(&sc->sc_qchip); 686 dmap = q->q_dma; 687 688 if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0) 689 break; 690 691 q = SIMPLEQ_FIRST(&sc->sc_qchip); 692 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next); 693 694 npkts = q->q_nstacked_mcrs; 695 sc->sc_nqchip -= 1+npkts; 696 /* 697 * search for further sc_qchip ubsec_q's that share 698 * the same MCR, and complete them too, they must be 699 * at the top. 700 */ 701 for (i = 0; i < npkts; i++) { 702 if(q->q_stacked_mcr[i]) 703 ubsec_callback(sc, q->q_stacked_mcr[i]); 704 else 705 break; 706 } 707 ubsec_callback(sc, q); 708 } 709 710 /* 711 * Don't send any more packet to chip if there has been 712 * a DMAERR. 713 */ 714 if (!(stat & BS_STAT_DMAERR)) 715 ubsec_feed(sc); 716 } 717 718 /* 719 * Check to see if we have any key setups/rng's waiting for us 720 */ 721 if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) && 722 (stat & BS_STAT_MCR2_DONE)) { 723 struct ubsec_q2 *q2; 724 struct ubsec_mcr *mcr; 725 726 while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) { 727 q2 = SIMPLEQ_FIRST(&sc->sc_qchip2); 728 729 bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map, 730 0, q2->q_mcr.dma_map->dm_mapsize, 731 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 732 733 mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr; 734 735 /* A bug in new devices requires to swap this field */ 736 if (sc->sc_flags & UBS_FLAGS_MULTIMCR) 737 flags = htole16(mcr->mcr_flags); 738 else 739 flags = mcr->mcr_flags; 740 if ((flags & htole16(UBS_MCR_DONE)) == 0) { 741 bus_dmamap_sync(sc->sc_dmat, 742 q2->q_mcr.dma_map, 0, 743 q2->q_mcr.dma_map->dm_mapsize, 744 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 745 break; 746 } 747 q2 = SIMPLEQ_FIRST(&sc->sc_qchip2); 748 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, /*q2,*/ q_next); 749 ubsec_callback2(sc, q2); 750 /* 751 * Don't send any more packet to chip if there has been 752 * a DMAERR. 753 */ 754 if (!(stat & BS_STAT_DMAERR)) 755 ubsec_feed2(sc); 756 } 757 } 758 if ((sc->sc_flags & UBS_FLAGS_RNG4) && (stat & BS_STAT_MCR4_DONE)) { 759 struct ubsec_q2 *q2; 760 struct ubsec_mcr *mcr; 761 762 while (!SIMPLEQ_EMPTY(&sc->sc_qchip4)) { 763 q2 = SIMPLEQ_FIRST(&sc->sc_qchip4); 764 765 bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map, 766 0, q2->q_mcr.dma_map->dm_mapsize, 767 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 768 769 mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr; 770 771 /* A bug in new devices requires to swap this field */ 772 flags = htole16(mcr->mcr_flags); 773 774 if ((flags & htole16(UBS_MCR_DONE)) == 0) { 775 bus_dmamap_sync(sc->sc_dmat, 776 q2->q_mcr.dma_map, 0, 777 q2->q_mcr.dma_map->dm_mapsize, 778 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 779 break; 780 } 781 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip4, q_next); 782 ubsec_callback2(sc, q2); 783 /* 784 * Don't send any more packet to chip if there has been 785 * a DMAERR. 786 */ 787 if (!(stat & BS_STAT_DMAERR)) 788 ubsec_feed4(sc); 789 } 790 } 791 792 /* 793 * Check to see if we got any DMA Error 794 */ 795 if (stat & BS_STAT_DMAERR) { 796 #ifdef UBSEC_DEBUG 797 if (ubsec_debug) { 798 volatile u_int32_t a = READ_REG(sc, BS_ERR); 799 800 printf("%s: dmaerr %s@%08x\n", device_xname(sc->sc_dev), 801 (a & BS_ERR_READ) ? "read" : "write", 802 a & BS_ERR_ADDR); 803 } 804 #endif /* UBSEC_DEBUG */ 805 ubsecstats.hst_dmaerr++; 806 ubsec_totalreset(sc); 807 ubsec_feed(sc); 808 } 809 810 if (sc->sc_needwakeup) { /* XXX check high watermark */ 811 int wkeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ); 812 #ifdef UBSEC_DEBUG 813 if (ubsec_debug) 814 printf("%s: wakeup crypto (%x)\n", device_xname(sc->sc_dev), 815 sc->sc_needwakeup); 816 #endif /* UBSEC_DEBUG */ 817 sc->sc_needwakeup &= ~wkeup; 818 crypto_unblock(sc->sc_cid, wkeup); 819 } 820 mutex_spin_exit(&sc->sc_mtx); 821 return (1); 822 } 823 824 /* 825 * ubsec_feed() - aggregate and post requests to chip 826 * OpenBSD comments: 827 * It is assumed that the caller set splnet() 828 */ 829 static void 830 ubsec_feed(struct ubsec_softc *sc) 831 { 832 struct ubsec_q *q, *q2; 833 int npkts, i; 834 void *v; 835 u_int32_t stat; 836 #ifdef UBSEC_DEBUG 837 static int max; 838 #endif /* UBSEC_DEBUG */ 839 840 npkts = sc->sc_nqueue; 841 if (npkts > ubsecstats.hst_maxqueue) 842 ubsecstats.hst_maxqueue = npkts; 843 if (npkts < 2) 844 goto feed1; 845 846 /* 847 * Decide how many ops to combine in a single MCR. We cannot 848 * aggregate more than UBS_MAX_AGGR because this is the number 849 * of slots defined in the data structure. Otherwise we clamp 850 * based on the tunable parameter ubsec_maxaggr. Note that 851 * aggregation can happen in two ways: either by batching ops 852 * from above or because the h/w backs up and throttles us. 853 * Aggregating ops reduces the number of interrupts to the host 854 * but also (potentially) increases the latency for processing 855 * completed ops as we only get an interrupt when all aggregated 856 * ops have completed. 857 */ 858 if (npkts > sc->sc_maxaggr) 859 npkts = sc->sc_maxaggr; 860 if (npkts > ubsec_maxaggr) 861 npkts = ubsec_maxaggr; 862 if (npkts > ubsecstats.hst_maxbatch) 863 ubsecstats.hst_maxbatch = npkts; 864 if (npkts < 2) 865 goto feed1; 866 ubsecstats.hst_totbatch += npkts-1; 867 868 if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) { 869 if (stat & BS_STAT_DMAERR) { 870 ubsec_totalreset(sc); 871 ubsecstats.hst_dmaerr++; 872 } else { 873 ubsecstats.hst_mcr1full++; 874 } 875 return; 876 } 877 878 #ifdef UBSEC_DEBUG 879 if (ubsec_debug) 880 printf("merging %d records\n", npkts); 881 /* XXX temporary aggregation statistics reporting code */ 882 if (max < npkts) { 883 max = npkts; 884 printf("%s: new max aggregate %d\n", device_xname(sc->sc_dev), max); 885 } 886 #endif /* UBSEC_DEBUG */ 887 888 q = SIMPLEQ_FIRST(&sc->sc_queue); 889 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next); 890 --sc->sc_nqueue; 891 892 bus_dmamap_sync(sc->sc_dmat, q->q_src_map, 893 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 894 if (q->q_dst_map != NULL) 895 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, 896 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD); 897 898 q->q_nstacked_mcrs = npkts - 1; /* Number of packets stacked */ 899 900 for (i = 0; i < q->q_nstacked_mcrs; i++) { 901 q2 = SIMPLEQ_FIRST(&sc->sc_queue); 902 bus_dmamap_sync(sc->sc_dmat, q2->q_src_map, 903 0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 904 if (q2->q_dst_map != NULL) 905 bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map, 906 0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD); 907 q2= SIMPLEQ_FIRST(&sc->sc_queue); 908 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q2,*/ q_next); 909 --sc->sc_nqueue; 910 911 v = ((void *)&q2->q_dma->d_dma->d_mcr); 912 v = (char*)v + (sizeof(struct ubsec_mcr) - 913 sizeof(struct ubsec_mcr_add)); 914 memcpy(&q->q_dma->d_dma->d_mcradd[i], v, sizeof(struct ubsec_mcr_add)); 915 q->q_stacked_mcr[i] = q2; 916 } 917 q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts); 918 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next); 919 sc->sc_nqchip += npkts; 920 if (sc->sc_nqchip > ubsecstats.hst_maxqchip) 921 ubsecstats.hst_maxqchip = sc->sc_nqchip; 922 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map, 923 0, q->q_dma->d_alloc.dma_map->dm_mapsize, 924 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 925 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr + 926 offsetof(struct ubsec_dmachunk, d_mcr)); 927 return; 928 929 feed1: 930 while (!SIMPLEQ_EMPTY(&sc->sc_queue)) { 931 if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) { 932 if (stat & BS_STAT_DMAERR) { 933 ubsec_totalreset(sc); 934 ubsecstats.hst_dmaerr++; 935 } else { 936 ubsecstats.hst_mcr1full++; 937 } 938 break; 939 } 940 941 q = SIMPLEQ_FIRST(&sc->sc_queue); 942 943 bus_dmamap_sync(sc->sc_dmat, q->q_src_map, 944 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 945 if (q->q_dst_map != NULL) 946 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, 947 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD); 948 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map, 949 0, q->q_dma->d_alloc.dma_map->dm_mapsize, 950 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 951 952 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr + 953 offsetof(struct ubsec_dmachunk, d_mcr)); 954 #ifdef UBSEC_DEBUG 955 if (ubsec_debug) 956 printf("feed: q->chip %p %08x stat %08x\n", 957 q, (u_int32_t)q->q_dma->d_alloc.dma_paddr, 958 stat); 959 #endif /* UBSEC_DEBUG */ 960 q = SIMPLEQ_FIRST(&sc->sc_queue); 961 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next); 962 --sc->sc_nqueue; 963 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next); 964 sc->sc_nqchip++; 965 } 966 if (sc->sc_nqchip > ubsecstats.hst_maxqchip) 967 ubsecstats.hst_maxqchip = sc->sc_nqchip; 968 } 969 970 /* 971 * Allocate a new 'session' and return an encoded session id. 'sidp' 972 * contains our registration id, and should contain an encoded session 973 * id on successful allocation. 974 */ 975 static int 976 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri) 977 { 978 struct cryptoini *c, *encini = NULL, *macini = NULL; 979 struct ubsec_softc *sc; 980 struct ubsec_session *ses = NULL; 981 MD5_CTX md5ctx; 982 SHA1_CTX sha1ctx; 983 int i, sesn; 984 985 sc = arg; 986 KASSERT(sc != NULL /*, ("ubsec_newsession: null softc")*/); 987 988 if (sidp == NULL || cri == NULL || sc == NULL) 989 return (EINVAL); 990 991 for (c = cri; c != NULL; c = c->cri_next) { 992 if (c->cri_alg == CRYPTO_MD5_HMAC_96 || 993 c->cri_alg == CRYPTO_SHA1_HMAC_96) { 994 if (macini) 995 return (EINVAL); 996 macini = c; 997 } else if (c->cri_alg == CRYPTO_DES_CBC || 998 c->cri_alg == CRYPTO_3DES_CBC) { 999 if (encini) 1000 return (EINVAL); 1001 encini = c; 1002 } else 1003 return (EINVAL); 1004 } 1005 if (encini == NULL && macini == NULL) 1006 return (EINVAL); 1007 1008 if (sc->sc_sessions == NULL) { 1009 ses = sc->sc_sessions = (struct ubsec_session *)malloc( 1010 sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT); 1011 if (ses == NULL) 1012 return (ENOMEM); 1013 sesn = 0; 1014 sc->sc_nsessions = 1; 1015 } else { 1016 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) { 1017 if (sc->sc_sessions[sesn].ses_used == 0) { 1018 ses = &sc->sc_sessions[sesn]; 1019 break; 1020 } 1021 } 1022 1023 if (ses == NULL) { 1024 sesn = sc->sc_nsessions; 1025 ses = (struct ubsec_session *)malloc((sesn + 1) * 1026 sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT); 1027 if (ses == NULL) 1028 return (ENOMEM); 1029 memcpy(ses, sc->sc_sessions, sesn * 1030 sizeof(struct ubsec_session)); 1031 memset(sc->sc_sessions, 0, sesn * 1032 sizeof(struct ubsec_session)); 1033 free(sc->sc_sessions, M_DEVBUF); 1034 sc->sc_sessions = ses; 1035 ses = &sc->sc_sessions[sesn]; 1036 sc->sc_nsessions++; 1037 } 1038 } 1039 1040 memset(ses, 0, sizeof(struct ubsec_session)); 1041 ses->ses_used = 1; 1042 if (encini) { 1043 /* get an IV, network byte order */ 1044 #ifdef __NetBSD__ 1045 cprng_fast(ses->ses_iv, sizeof(ses->ses_iv)); 1046 #else 1047 get_random_bytes(ses->ses_iv, sizeof(ses->ses_iv)); 1048 #endif 1049 1050 /* Go ahead and compute key in ubsec's byte order */ 1051 if (encini->cri_alg == CRYPTO_DES_CBC) { 1052 memcpy(&ses->ses_deskey[0], encini->cri_key, 8); 1053 memcpy(&ses->ses_deskey[2], encini->cri_key, 8); 1054 memcpy(&ses->ses_deskey[4], encini->cri_key, 8); 1055 } else 1056 memcpy(ses->ses_deskey, encini->cri_key, 24); 1057 1058 SWAP32(ses->ses_deskey[0]); 1059 SWAP32(ses->ses_deskey[1]); 1060 SWAP32(ses->ses_deskey[2]); 1061 SWAP32(ses->ses_deskey[3]); 1062 SWAP32(ses->ses_deskey[4]); 1063 SWAP32(ses->ses_deskey[5]); 1064 } 1065 1066 if (macini) { 1067 for (i = 0; i < macini->cri_klen / 8; i++) 1068 macini->cri_key[i] ^= HMAC_IPAD_VAL; 1069 1070 if (macini->cri_alg == CRYPTO_MD5_HMAC_96) { 1071 MD5Init(&md5ctx); 1072 MD5Update(&md5ctx, macini->cri_key, 1073 macini->cri_klen / 8); 1074 MD5Update(&md5ctx, hmac_ipad_buffer, 1075 HMAC_BLOCK_LEN - (macini->cri_klen / 8)); 1076 memcpy(ses->ses_hminner, md5ctx.state, 1077 sizeof(md5ctx.state)); 1078 } else { 1079 SHA1Init(&sha1ctx); 1080 SHA1Update(&sha1ctx, macini->cri_key, 1081 macini->cri_klen / 8); 1082 SHA1Update(&sha1ctx, hmac_ipad_buffer, 1083 HMAC_BLOCK_LEN - (macini->cri_klen / 8)); 1084 memcpy(ses->ses_hminner, sha1ctx.state, 1085 sizeof(sha1ctx.state)); 1086 } 1087 1088 for (i = 0; i < macini->cri_klen / 8; i++) 1089 macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL); 1090 1091 if (macini->cri_alg == CRYPTO_MD5_HMAC_96) { 1092 MD5Init(&md5ctx); 1093 MD5Update(&md5ctx, macini->cri_key, 1094 macini->cri_klen / 8); 1095 MD5Update(&md5ctx, hmac_opad_buffer, 1096 HMAC_BLOCK_LEN - (macini->cri_klen / 8)); 1097 memcpy(ses->ses_hmouter, md5ctx.state, 1098 sizeof(md5ctx.state)); 1099 } else { 1100 SHA1Init(&sha1ctx); 1101 SHA1Update(&sha1ctx, macini->cri_key, 1102 macini->cri_klen / 8); 1103 SHA1Update(&sha1ctx, hmac_opad_buffer, 1104 HMAC_BLOCK_LEN - (macini->cri_klen / 8)); 1105 memcpy(ses->ses_hmouter, sha1ctx.state, 1106 sizeof(sha1ctx.state)); 1107 } 1108 1109 for (i = 0; i < macini->cri_klen / 8; i++) 1110 macini->cri_key[i] ^= HMAC_OPAD_VAL; 1111 } 1112 1113 *sidp = UBSEC_SID(device_unit(sc->sc_dev), sesn); 1114 return (0); 1115 } 1116 1117 /* 1118 * Deallocate a session. 1119 */ 1120 static int 1121 ubsec_freesession(void *arg, u_int64_t tid) 1122 { 1123 struct ubsec_softc *sc; 1124 int session; 1125 u_int32_t sid = ((u_int32_t) tid) & 0xffffffff; 1126 1127 sc = arg; 1128 KASSERT(sc != NULL /*, ("ubsec_freesession: null softc")*/); 1129 1130 session = UBSEC_SESSION(sid); 1131 if (session >= sc->sc_nsessions) 1132 return (EINVAL); 1133 1134 memset(&sc->sc_sessions[session], 0, sizeof(sc->sc_sessions[session])); 1135 return (0); 1136 } 1137 1138 #ifdef __FreeBSD__ /* Ugly gratuitous changes to bus_dma */ 1139 static void 1140 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error) 1141 { 1142 struct ubsec_operand *op = arg; 1143 1144 KASSERT(nsegs <= UBS_MAX_SCATTER 1145 /*, ("Too many DMA segments returned when mapping operand")*/); 1146 #ifdef UBSEC_DEBUG 1147 if (ubsec_debug) 1148 printf("ubsec_op_cb: mapsize %u nsegs %d\n", 1149 (u_int) mapsize, nsegs); 1150 #endif 1151 op->mapsize = mapsize; 1152 op->nsegs = nsegs; 1153 memcpy(op->segs, seg, nsegs * sizeof (seg[0])); 1154 } 1155 #endif 1156 1157 static int 1158 ubsec_process(void *arg, struct cryptop *crp, int hint) 1159 { 1160 struct ubsec_q *q = NULL; 1161 #ifdef __OpenBSD__ 1162 int card; 1163 #endif 1164 int err = 0, i, j, nicealign; 1165 struct ubsec_softc *sc; 1166 struct cryptodesc *crd1, *crd2, *maccrd, *enccrd; 1167 int encoffset = 0, macoffset = 0, cpskip, cpoffset; 1168 int sskip, dskip, stheend, dtheend; 1169 int16_t coffset; 1170 struct ubsec_session *ses; 1171 struct ubsec_pktctx ctx; 1172 struct ubsec_dma *dmap = NULL; 1173 1174 sc = arg; 1175 KASSERT(sc != NULL /*, ("ubsec_process: null softc")*/); 1176 1177 if (crp == NULL || crp->crp_callback == NULL || sc == NULL) { 1178 ubsecstats.hst_invalid++; 1179 return (EINVAL); 1180 } 1181 if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) { 1182 ubsecstats.hst_badsession++; 1183 return (EINVAL); 1184 } 1185 1186 mutex_spin_enter(&sc->sc_mtx); 1187 1188 if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) { 1189 ubsecstats.hst_queuefull++; 1190 sc->sc_needwakeup |= CRYPTO_SYMQ; 1191 mutex_spin_exit(&sc->sc_mtx); 1192 return(ERESTART); 1193 } 1194 1195 q = SIMPLEQ_FIRST(&sc->sc_freequeue); 1196 SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, /*q,*/ q_next); 1197 mutex_spin_exit(&sc->sc_mtx); 1198 1199 dmap = q->q_dma; /* Save dma pointer */ 1200 memset(q, 0, sizeof(struct ubsec_q)); 1201 memset(&ctx, 0, sizeof(ctx)); 1202 1203 q->q_sesn = UBSEC_SESSION(crp->crp_sid); 1204 q->q_dma = dmap; 1205 ses = &sc->sc_sessions[q->q_sesn]; 1206 1207 if (crp->crp_flags & CRYPTO_F_IMBUF) { 1208 q->q_src_m = (struct mbuf *)crp->crp_buf; 1209 q->q_dst_m = (struct mbuf *)crp->crp_buf; 1210 } else if (crp->crp_flags & CRYPTO_F_IOV) { 1211 q->q_src_io = (struct uio *)crp->crp_buf; 1212 q->q_dst_io = (struct uio *)crp->crp_buf; 1213 } else { 1214 ubsecstats.hst_badflags++; 1215 err = EINVAL; 1216 goto errout; /* XXX we don't handle contiguous blocks! */ 1217 } 1218 1219 memset(&dmap->d_dma->d_mcr, 0, sizeof(struct ubsec_mcr)); 1220 1221 dmap->d_dma->d_mcr.mcr_pkts = htole16(1); 1222 dmap->d_dma->d_mcr.mcr_flags = 0; 1223 q->q_crp = crp; 1224 1225 crd1 = crp->crp_desc; 1226 if (crd1 == NULL) { 1227 ubsecstats.hst_nodesc++; 1228 err = EINVAL; 1229 goto errout; 1230 } 1231 crd2 = crd1->crd_next; 1232 1233 if (crd2 == NULL) { 1234 if (crd1->crd_alg == CRYPTO_MD5_HMAC_96 || 1235 crd1->crd_alg == CRYPTO_SHA1_HMAC_96) { 1236 maccrd = crd1; 1237 enccrd = NULL; 1238 } else if (crd1->crd_alg == CRYPTO_DES_CBC || 1239 crd1->crd_alg == CRYPTO_3DES_CBC) { 1240 maccrd = NULL; 1241 enccrd = crd1; 1242 } else { 1243 ubsecstats.hst_badalg++; 1244 err = EINVAL; 1245 goto errout; 1246 } 1247 } else { 1248 if ((crd1->crd_alg == CRYPTO_MD5_HMAC_96 || 1249 crd1->crd_alg == CRYPTO_SHA1_HMAC_96) && 1250 (crd2->crd_alg == CRYPTO_DES_CBC || 1251 crd2->crd_alg == CRYPTO_3DES_CBC) && 1252 ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) { 1253 maccrd = crd1; 1254 enccrd = crd2; 1255 } else if ((crd1->crd_alg == CRYPTO_DES_CBC || 1256 crd1->crd_alg == CRYPTO_3DES_CBC) && 1257 (crd2->crd_alg == CRYPTO_MD5_HMAC_96 || 1258 crd2->crd_alg == CRYPTO_SHA1_HMAC_96) && 1259 (crd1->crd_flags & CRD_F_ENCRYPT)) { 1260 enccrd = crd1; 1261 maccrd = crd2; 1262 } else { 1263 /* 1264 * We cannot order the ubsec as requested 1265 */ 1266 ubsecstats.hst_badalg++; 1267 err = EINVAL; 1268 goto errout; 1269 } 1270 } 1271 1272 if (enccrd) { 1273 encoffset = enccrd->crd_skip; 1274 ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES); 1275 1276 if (enccrd->crd_flags & CRD_F_ENCRYPT) { 1277 q->q_flags |= UBSEC_QFLAGS_COPYOUTIV; 1278 1279 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) 1280 memcpy(ctx.pc_iv, enccrd->crd_iv, 8); 1281 else { 1282 ctx.pc_iv[0] = ses->ses_iv[0]; 1283 ctx.pc_iv[1] = ses->ses_iv[1]; 1284 } 1285 1286 if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) { 1287 if (crp->crp_flags & CRYPTO_F_IMBUF) 1288 m_copyback(q->q_src_m, 1289 enccrd->crd_inject, 1290 8, (void *)ctx.pc_iv); 1291 else if (crp->crp_flags & CRYPTO_F_IOV) 1292 cuio_copyback(q->q_src_io, 1293 enccrd->crd_inject, 1294 8, (void *)ctx.pc_iv); 1295 } 1296 } else { 1297 ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND); 1298 1299 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) 1300 memcpy(ctx.pc_iv, enccrd->crd_iv, 8); 1301 else if (crp->crp_flags & CRYPTO_F_IMBUF) 1302 m_copydata(q->q_src_m, enccrd->crd_inject, 1303 8, (void *)ctx.pc_iv); 1304 else if (crp->crp_flags & CRYPTO_F_IOV) 1305 cuio_copydata(q->q_src_io, 1306 enccrd->crd_inject, 8, 1307 (void *)ctx.pc_iv); 1308 } 1309 1310 ctx.pc_deskey[0] = ses->ses_deskey[0]; 1311 ctx.pc_deskey[1] = ses->ses_deskey[1]; 1312 ctx.pc_deskey[2] = ses->ses_deskey[2]; 1313 ctx.pc_deskey[3] = ses->ses_deskey[3]; 1314 ctx.pc_deskey[4] = ses->ses_deskey[4]; 1315 ctx.pc_deskey[5] = ses->ses_deskey[5]; 1316 SWAP32(ctx.pc_iv[0]); 1317 SWAP32(ctx.pc_iv[1]); 1318 } 1319 1320 if (maccrd) { 1321 macoffset = maccrd->crd_skip; 1322 1323 if (maccrd->crd_alg == CRYPTO_MD5_HMAC_96) 1324 ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5); 1325 else 1326 ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1); 1327 1328 for (i = 0; i < 5; i++) { 1329 ctx.pc_hminner[i] = ses->ses_hminner[i]; 1330 ctx.pc_hmouter[i] = ses->ses_hmouter[i]; 1331 1332 HTOLE32(ctx.pc_hminner[i]); 1333 HTOLE32(ctx.pc_hmouter[i]); 1334 } 1335 } 1336 1337 if (enccrd && maccrd) { 1338 /* 1339 * ubsec cannot handle packets where the end of encryption 1340 * and authentication are not the same, or where the 1341 * encrypted part begins before the authenticated part. 1342 */ 1343 if ((encoffset + enccrd->crd_len) != 1344 (macoffset + maccrd->crd_len)) { 1345 ubsecstats.hst_lenmismatch++; 1346 err = EINVAL; 1347 goto errout; 1348 } 1349 if (enccrd->crd_skip < maccrd->crd_skip) { 1350 ubsecstats.hst_skipmismatch++; 1351 err = EINVAL; 1352 goto errout; 1353 } 1354 sskip = maccrd->crd_skip; 1355 cpskip = dskip = enccrd->crd_skip; 1356 stheend = maccrd->crd_len; 1357 dtheend = enccrd->crd_len; 1358 coffset = enccrd->crd_skip - maccrd->crd_skip; 1359 cpoffset = cpskip + dtheend; 1360 #ifdef UBSEC_DEBUG 1361 if (ubsec_debug) { 1362 printf("mac: skip %d, len %d, inject %d\n", 1363 maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject); 1364 printf("enc: skip %d, len %d, inject %d\n", 1365 enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject); 1366 printf("src: skip %d, len %d\n", sskip, stheend); 1367 printf("dst: skip %d, len %d\n", dskip, dtheend); 1368 printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n", 1369 coffset, stheend, cpskip, cpoffset); 1370 } 1371 #endif 1372 } else { 1373 cpskip = dskip = sskip = macoffset + encoffset; 1374 dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len; 1375 cpoffset = cpskip + dtheend; 1376 coffset = 0; 1377 } 1378 ctx.pc_offset = htole16(coffset >> 2); 1379 1380 /* XXX FIXME: jonathan asks, what the heck's that 0xfff0? */ 1381 if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER, 1382 0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) { 1383 err = ENOMEM; 1384 goto errout; 1385 } 1386 if (crp->crp_flags & CRYPTO_F_IMBUF) { 1387 if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map, 1388 q->q_src_m, BUS_DMA_NOWAIT) != 0) { 1389 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map); 1390 q->q_src_map = NULL; 1391 ubsecstats.hst_noload++; 1392 err = ENOMEM; 1393 goto errout; 1394 } 1395 } else if (crp->crp_flags & CRYPTO_F_IOV) { 1396 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map, 1397 q->q_src_io, BUS_DMA_NOWAIT) != 0) { 1398 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map); 1399 q->q_src_map = NULL; 1400 ubsecstats.hst_noload++; 1401 err = ENOMEM; 1402 goto errout; 1403 } 1404 } 1405 nicealign = ubsec_dmamap_aligned(q->q_src_map); 1406 1407 dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend); 1408 1409 #ifdef UBSEC_DEBUG 1410 if (ubsec_debug) 1411 printf("src skip: %d nicealign: %u\n", sskip, nicealign); 1412 #endif 1413 for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) { 1414 struct ubsec_pktbuf *pb; 1415 bus_size_t packl = q->q_src_map->dm_segs[i].ds_len; 1416 bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr; 1417 1418 if (sskip >= packl) { 1419 sskip -= packl; 1420 continue; 1421 } 1422 1423 packl -= sskip; 1424 packp += sskip; 1425 sskip = 0; 1426 1427 if (packl > 0xfffc) { 1428 err = EIO; 1429 goto errout; 1430 } 1431 1432 if (j == 0) 1433 pb = &dmap->d_dma->d_mcr.mcr_ipktbuf; 1434 else 1435 pb = &dmap->d_dma->d_sbuf[j - 1]; 1436 1437 pb->pb_addr = htole32(packp); 1438 1439 if (stheend) { 1440 if (packl > stheend) { 1441 pb->pb_len = htole32(stheend); 1442 stheend = 0; 1443 } else { 1444 pb->pb_len = htole32(packl); 1445 stheend -= packl; 1446 } 1447 } else 1448 pb->pb_len = htole32(packl); 1449 1450 if ((i + 1) == q->q_src_map->dm_nsegs) 1451 pb->pb_next = 0; 1452 else 1453 pb->pb_next = htole32(dmap->d_alloc.dma_paddr + 1454 offsetof(struct ubsec_dmachunk, d_sbuf[j])); 1455 j++; 1456 } 1457 1458 if (enccrd == NULL && maccrd != NULL) { 1459 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0; 1460 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0; 1461 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr + 1462 offsetof(struct ubsec_dmachunk, d_macbuf[0])); 1463 #ifdef UBSEC_DEBUG 1464 if (ubsec_debug) 1465 printf("opkt: %x %x %x\n", 1466 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr, 1467 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len, 1468 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next); 1469 1470 #endif 1471 } else { 1472 if (crp->crp_flags & CRYPTO_F_IOV) { 1473 if (!nicealign) { 1474 ubsecstats.hst_iovmisaligned++; 1475 err = EINVAL; 1476 goto errout; 1477 } 1478 /* XXX: ``what the heck's that'' 0xfff0? */ 1479 if (bus_dmamap_create(sc->sc_dmat, 0xfff0, 1480 UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT, 1481 &q->q_dst_map) != 0) { 1482 ubsecstats.hst_nomap++; 1483 err = ENOMEM; 1484 goto errout; 1485 } 1486 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map, 1487 q->q_dst_io, BUS_DMA_NOWAIT) != 0) { 1488 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map); 1489 q->q_dst_map = NULL; 1490 ubsecstats.hst_noload++; 1491 err = ENOMEM; 1492 goto errout; 1493 } 1494 } else if (crp->crp_flags & CRYPTO_F_IMBUF) { 1495 if (nicealign) { 1496 q->q_dst_m = q->q_src_m; 1497 q->q_dst_map = q->q_src_map; 1498 } else { 1499 int totlen, len; 1500 struct mbuf *m, *top, **mp; 1501 1502 ubsecstats.hst_unaligned++; 1503 totlen = q->q_src_map->dm_mapsize; 1504 if (q->q_src_m->m_flags & M_PKTHDR) { 1505 len = MHLEN; 1506 MGETHDR(m, M_DONTWAIT, MT_DATA); 1507 /*XXX FIXME: m_dup_pkthdr */ 1508 if (m && 1 /*!m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)*/) { 1509 m_free(m); 1510 m = NULL; 1511 } 1512 } else { 1513 len = MLEN; 1514 MGET(m, M_DONTWAIT, MT_DATA); 1515 } 1516 if (m == NULL) { 1517 ubsecstats.hst_nombuf++; 1518 err = sc->sc_nqueue ? ERESTART : ENOMEM; 1519 goto errout; 1520 } 1521 if (len == MHLEN) 1522 /*XXX was M_DUP_PKTHDR*/ 1523 M_COPY_PKTHDR(m, q->q_src_m); 1524 if (totlen >= MINCLSIZE) { 1525 MCLGET(m, M_DONTWAIT); 1526 if ((m->m_flags & M_EXT) == 0) { 1527 m_free(m); 1528 ubsecstats.hst_nomcl++; 1529 err = sc->sc_nqueue ? ERESTART : ENOMEM; 1530 goto errout; 1531 } 1532 len = MCLBYTES; 1533 } 1534 m->m_len = len; 1535 top = NULL; 1536 mp = ⊤ 1537 1538 while (totlen > 0) { 1539 if (top) { 1540 MGET(m, M_DONTWAIT, MT_DATA); 1541 if (m == NULL) { 1542 m_freem(top); 1543 ubsecstats.hst_nombuf++; 1544 err = sc->sc_nqueue ? ERESTART : ENOMEM; 1545 goto errout; 1546 } 1547 len = MLEN; 1548 } 1549 if (top && totlen >= MINCLSIZE) { 1550 MCLGET(m, M_DONTWAIT); 1551 if ((m->m_flags & M_EXT) == 0) { 1552 *mp = m; 1553 m_freem(top); 1554 ubsecstats.hst_nomcl++; 1555 err = sc->sc_nqueue ? ERESTART : ENOMEM; 1556 goto errout; 1557 } 1558 len = MCLBYTES; 1559 } 1560 m->m_len = len = min(totlen, len); 1561 totlen -= len; 1562 *mp = m; 1563 mp = &m->m_next; 1564 } 1565 q->q_dst_m = top; 1566 ubsec_mcopy(q->q_src_m, q->q_dst_m, 1567 cpskip, cpoffset); 1568 /* XXX again, what the heck is that 0xfff0? */ 1569 if (bus_dmamap_create(sc->sc_dmat, 0xfff0, 1570 UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT, 1571 &q->q_dst_map) != 0) { 1572 ubsecstats.hst_nomap++; 1573 err = ENOMEM; 1574 goto errout; 1575 } 1576 if (bus_dmamap_load_mbuf(sc->sc_dmat, 1577 q->q_dst_map, q->q_dst_m, 1578 BUS_DMA_NOWAIT) != 0) { 1579 bus_dmamap_destroy(sc->sc_dmat, 1580 q->q_dst_map); 1581 q->q_dst_map = NULL; 1582 ubsecstats.hst_noload++; 1583 err = ENOMEM; 1584 goto errout; 1585 } 1586 } 1587 } else { 1588 ubsecstats.hst_badflags++; 1589 err = EINVAL; 1590 goto errout; 1591 } 1592 1593 #ifdef UBSEC_DEBUG 1594 if (ubsec_debug) 1595 printf("dst skip: %d\n", dskip); 1596 #endif 1597 for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) { 1598 struct ubsec_pktbuf *pb; 1599 bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len; 1600 bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr; 1601 1602 if (dskip >= packl) { 1603 dskip -= packl; 1604 continue; 1605 } 1606 1607 packl -= dskip; 1608 packp += dskip; 1609 dskip = 0; 1610 1611 if (packl > 0xfffc) { 1612 err = EIO; 1613 goto errout; 1614 } 1615 1616 if (j == 0) 1617 pb = &dmap->d_dma->d_mcr.mcr_opktbuf; 1618 else 1619 pb = &dmap->d_dma->d_dbuf[j - 1]; 1620 1621 pb->pb_addr = htole32(packp); 1622 1623 if (dtheend) { 1624 if (packl > dtheend) { 1625 pb->pb_len = htole32(dtheend); 1626 dtheend = 0; 1627 } else { 1628 pb->pb_len = htole32(packl); 1629 dtheend -= packl; 1630 } 1631 } else 1632 pb->pb_len = htole32(packl); 1633 1634 if ((i + 1) == q->q_dst_map->dm_nsegs) { 1635 if (maccrd) 1636 pb->pb_next = htole32(dmap->d_alloc.dma_paddr + 1637 offsetof(struct ubsec_dmachunk, d_macbuf[0])); 1638 else 1639 pb->pb_next = 0; 1640 } else 1641 pb->pb_next = htole32(dmap->d_alloc.dma_paddr + 1642 offsetof(struct ubsec_dmachunk, d_dbuf[j])); 1643 j++; 1644 } 1645 } 1646 1647 dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr + 1648 offsetof(struct ubsec_dmachunk, d_ctx)); 1649 1650 if (sc->sc_flags & UBS_FLAGS_LONGCTX) { 1651 struct ubsec_pktctx_long *ctxl; 1652 1653 ctxl = (struct ubsec_pktctx_long *)((char *)dmap->d_alloc.dma_vaddr + 1654 offsetof(struct ubsec_dmachunk, d_ctx)); 1655 1656 /* transform small context into long context */ 1657 ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long)); 1658 ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC); 1659 ctxl->pc_flags = ctx.pc_flags; 1660 ctxl->pc_offset = ctx.pc_offset; 1661 for (i = 0; i < 6; i++) 1662 ctxl->pc_deskey[i] = ctx.pc_deskey[i]; 1663 for (i = 0; i < 5; i++) 1664 ctxl->pc_hminner[i] = ctx.pc_hminner[i]; 1665 for (i = 0; i < 5; i++) 1666 ctxl->pc_hmouter[i] = ctx.pc_hmouter[i]; 1667 ctxl->pc_iv[0] = ctx.pc_iv[0]; 1668 ctxl->pc_iv[1] = ctx.pc_iv[1]; 1669 } else 1670 memcpy((char *)dmap->d_alloc.dma_vaddr + 1671 offsetof(struct ubsec_dmachunk, d_ctx), &ctx, 1672 sizeof(struct ubsec_pktctx)); 1673 1674 mutex_spin_enter(&sc->sc_mtx); 1675 SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next); 1676 sc->sc_nqueue++; 1677 ubsecstats.hst_ipackets++; 1678 ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize; 1679 if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch) 1680 ubsec_feed(sc); 1681 mutex_spin_exit(&sc->sc_mtx); 1682 return (0); 1683 1684 errout: 1685 if (q != NULL) { 1686 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m)) 1687 m_freem(q->q_dst_m); 1688 1689 if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) { 1690 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map); 1691 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map); 1692 } 1693 if (q->q_src_map != NULL) { 1694 bus_dmamap_unload(sc->sc_dmat, q->q_src_map); 1695 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map); 1696 } 1697 1698 mutex_spin_enter(&sc->sc_mtx); 1699 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next); 1700 mutex_spin_exit(&sc->sc_mtx); 1701 } 1702 #if 0 /* jonathan says: this openbsd code seems to be subsumed elsewhere */ 1703 if (err == EINVAL) 1704 ubsecstats.hst_invalid++; 1705 else 1706 ubsecstats.hst_nomem++; 1707 #endif 1708 if (err != ERESTART) { 1709 crp->crp_etype = err; 1710 crypto_done(crp); 1711 } else { 1712 sc->sc_needwakeup |= CRYPTO_SYMQ; 1713 } 1714 return (err); 1715 } 1716 1717 static void 1718 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q) 1719 { 1720 struct cryptop *crp = (struct cryptop *)q->q_crp; 1721 struct cryptodesc *crd; 1722 struct ubsec_dma *dmap = q->q_dma; 1723 1724 ubsecstats.hst_opackets++; 1725 ubsecstats.hst_obytes += dmap->d_alloc.dma_size; 1726 1727 bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0, 1728 dmap->d_alloc.dma_map->dm_mapsize, 1729 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1730 if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) { 1731 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, 1732 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1733 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map); 1734 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map); 1735 } 1736 bus_dmamap_sync(sc->sc_dmat, q->q_src_map, 1737 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1738 bus_dmamap_unload(sc->sc_dmat, q->q_src_map); 1739 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map); 1740 1741 if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) { 1742 m_freem(q->q_src_m); 1743 crp->crp_buf = (void *)q->q_dst_m; 1744 } 1745 1746 /* copy out IV for future use */ 1747 if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) { 1748 for (crd = crp->crp_desc; crd; crd = crd->crd_next) { 1749 if (crd->crd_alg != CRYPTO_DES_CBC && 1750 crd->crd_alg != CRYPTO_3DES_CBC) 1751 continue; 1752 if (crp->crp_flags & CRYPTO_F_IMBUF) 1753 m_copydata((struct mbuf *)crp->crp_buf, 1754 crd->crd_skip + crd->crd_len - 8, 8, 1755 (void *)sc->sc_sessions[q->q_sesn].ses_iv); 1756 else if (crp->crp_flags & CRYPTO_F_IOV) { 1757 cuio_copydata((struct uio *)crp->crp_buf, 1758 crd->crd_skip + crd->crd_len - 8, 8, 1759 (void *)sc->sc_sessions[q->q_sesn].ses_iv); 1760 } 1761 break; 1762 } 1763 } 1764 1765 for (crd = crp->crp_desc; crd; crd = crd->crd_next) { 1766 if (crd->crd_alg != CRYPTO_MD5_HMAC_96 && 1767 crd->crd_alg != CRYPTO_SHA1_HMAC_96) 1768 continue; 1769 if (crp->crp_flags & CRYPTO_F_IMBUF) 1770 m_copyback((struct mbuf *)crp->crp_buf, 1771 crd->crd_inject, 12, 1772 (void *)dmap->d_dma->d_macbuf); 1773 else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac) 1774 bcopy((void *)dmap->d_dma->d_macbuf, 1775 crp->crp_mac, 12); 1776 break; 1777 } 1778 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next); 1779 crypto_done(crp); 1780 } 1781 1782 static void 1783 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset) 1784 { 1785 int i, j, dlen, slen; 1786 char *dptr, *sptr; 1787 1788 j = 0; 1789 sptr = srcm->m_data; 1790 slen = srcm->m_len; 1791 dptr = dstm->m_data; 1792 dlen = dstm->m_len; 1793 1794 while (1) { 1795 for (i = 0; i < min(slen, dlen); i++) { 1796 if (j < hoffset || j >= toffset) 1797 *dptr++ = *sptr++; 1798 slen--; 1799 dlen--; 1800 j++; 1801 } 1802 if (slen == 0) { 1803 srcm = srcm->m_next; 1804 if (srcm == NULL) 1805 return; 1806 sptr = srcm->m_data; 1807 slen = srcm->m_len; 1808 } 1809 if (dlen == 0) { 1810 dstm = dstm->m_next; 1811 if (dstm == NULL) 1812 return; 1813 dptr = dstm->m_data; 1814 dlen = dstm->m_len; 1815 } 1816 } 1817 } 1818 1819 /* 1820 * feed the key generator, must be called at splnet() or higher. 1821 */ 1822 static void 1823 ubsec_feed2(struct ubsec_softc *sc) 1824 { 1825 struct ubsec_q2 *q; 1826 1827 while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) { 1828 if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL) 1829 break; 1830 q = SIMPLEQ_FIRST(&sc->sc_queue2); 1831 1832 bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0, 1833 q->q_mcr.dma_map->dm_mapsize, 1834 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1835 bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0, 1836 q->q_ctx.dma_map->dm_mapsize, 1837 BUS_DMASYNC_PREWRITE); 1838 1839 WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr); 1840 q = SIMPLEQ_FIRST(&sc->sc_queue2); 1841 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, /*q,*/ q_next); 1842 --sc->sc_nqueue2; 1843 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next); 1844 } 1845 } 1846 1847 /* 1848 * feed the RNG (used instead of ubsec_feed2() on 5827+ devices) 1849 */ 1850 void 1851 ubsec_feed4(struct ubsec_softc *sc) 1852 { 1853 struct ubsec_q2 *q; 1854 1855 while (!SIMPLEQ_EMPTY(&sc->sc_queue4)) { 1856 if (READ_REG(sc, BS_STAT) & BS_STAT_MCR4_FULL) 1857 break; 1858 q = SIMPLEQ_FIRST(&sc->sc_queue4); 1859 1860 bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0, 1861 q->q_mcr.dma_map->dm_mapsize, 1862 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1863 bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0, 1864 q->q_ctx.dma_map->dm_mapsize, 1865 BUS_DMASYNC_PREWRITE); 1866 1867 WRITE_REG(sc, BS_MCR4, q->q_mcr.dma_paddr); 1868 SIMPLEQ_REMOVE_HEAD(&sc->sc_queue4, q_next); 1869 --sc->sc_nqueue4; 1870 SIMPLEQ_INSERT_TAIL(&sc->sc_qchip4, q, q_next); 1871 } 1872 } 1873 1874 /* 1875 * Callback for handling random numbers 1876 */ 1877 static void 1878 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q) 1879 { 1880 struct cryptkop *krp; 1881 struct ubsec_ctx_keyop *ctx; 1882 1883 ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr; 1884 bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0, 1885 q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1886 1887 switch (q->q_type) { 1888 #ifndef UBSEC_NO_RNG 1889 case UBS_CTXOP_RNGSHA1: 1890 case UBS_CTXOP_RNGBYPASS: { 1891 struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q; 1892 u_int32_t *p; 1893 int i; 1894 1895 bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0, 1896 rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1897 p = (u_int32_t *)rng->rng_buf.dma_vaddr; 1898 #ifndef __NetBSD__ 1899 for (i = 0; i < UBSEC_RNG_BUFSIZ; p++, i++) 1900 add_true_randomness(letoh32(*p)); 1901 #else 1902 i = UBSEC_RNG_BUFSIZ * sizeof(u_int32_t); 1903 rnd_add_data(&sc->sc_rnd_source, (char *)p, i, i * NBBY); 1904 sc->sc_rng_need -= i; 1905 #endif 1906 rng->rng_used = 0; 1907 #ifdef __OpenBSD__ 1908 timeout_add(&sc->sc_rngto, sc->sc_rnghz); 1909 #else 1910 if (sc->sc_rng_need > 0) { 1911 callout_schedule(&sc->sc_rngto, sc->sc_rnghz); 1912 } 1913 #endif 1914 break; 1915 } 1916 #endif 1917 case UBS_CTXOP_MODEXP: { 1918 struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q; 1919 u_int rlen, clen; 1920 1921 krp = me->me_krp; 1922 rlen = (me->me_modbits + 7) / 8; 1923 clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8; 1924 1925 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map, 1926 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1927 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map, 1928 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1929 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map, 1930 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1931 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map, 1932 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1933 1934 if (clen < rlen) 1935 krp->krp_status = E2BIG; 1936 else { 1937 if (sc->sc_flags & UBS_FLAGS_HWNORM) { 1938 memset(krp->krp_param[krp->krp_iparams].crp_p, 0, 1939 (krp->krp_param[krp->krp_iparams].crp_nbits 1940 + 7) / 8); 1941 bcopy(me->me_C.dma_vaddr, 1942 krp->krp_param[krp->krp_iparams].crp_p, 1943 (me->me_modbits + 7) / 8); 1944 } else 1945 ubsec_kshift_l(me->me_shiftbits, 1946 me->me_C.dma_vaddr, me->me_normbits, 1947 krp->krp_param[krp->krp_iparams].crp_p, 1948 krp->krp_param[krp->krp_iparams].crp_nbits); 1949 } 1950 1951 crypto_kdone(krp); 1952 1953 /* bzero all potentially sensitive data */ 1954 memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size); 1955 memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size); 1956 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size); 1957 memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size); 1958 1959 /* Can't free here, so put us on the free list. */ 1960 SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next); 1961 break; 1962 } 1963 case UBS_CTXOP_RSAPRIV: { 1964 struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q; 1965 u_int len; 1966 1967 krp = rp->rpr_krp; 1968 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0, 1969 rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1970 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0, 1971 rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1972 1973 len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8; 1974 bcopy(rp->rpr_msgout.dma_vaddr, 1975 krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len); 1976 1977 crypto_kdone(krp); 1978 1979 memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size); 1980 memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size); 1981 memset(rp->rpr_q.q_ctx.dma_vaddr, 0, rp->rpr_q.q_ctx.dma_size); 1982 1983 /* Can't free here, so put us on the free list. */ 1984 SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next); 1985 break; 1986 } 1987 default: 1988 printf("%s: unknown ctx op: %x\n", device_xname(sc->sc_dev), 1989 letoh16(ctx->ctx_op)); 1990 break; 1991 } 1992 } 1993 1994 #ifndef UBSEC_NO_RNG 1995 1996 static void 1997 ubsec_rng_get(size_t bytes, void *vsc) 1998 { 1999 struct ubsec_softc *sc = vsc; 2000 2001 mutex_spin_enter(&sc->sc_mtx); 2002 sc->sc_rng_need = bytes; 2003 ubsec_rng_locked(sc); 2004 mutex_spin_exit(&sc->sc_mtx); 2005 2006 } 2007 2008 static void 2009 ubsec_rng(void *vsc) 2010 { 2011 struct ubsec_softc *sc = vsc; 2012 mutex_spin_enter(&sc->sc_mtx); 2013 ubsec_rng_locked(sc); 2014 mutex_spin_exit(&sc->sc_mtx); 2015 } 2016 2017 static void 2018 ubsec_rng_locked(void *vsc) 2019 { 2020 struct ubsec_softc *sc = vsc; 2021 struct ubsec_q2_rng *rng = &sc->sc_rng; 2022 struct ubsec_mcr *mcr; 2023 struct ubsec_ctx_rngbypass *ctx; 2024 int *nqueue; 2025 2026 /* Caller is responsible to lock and release sc_mtx. */ 2027 KASSERT(mutex_owned(&sc->sc_mtx)); 2028 2029 if (rng->rng_used) { 2030 return; 2031 } 2032 2033 if (sc->sc_rng_need < 1) { 2034 callout_stop(&sc->sc_rngto); 2035 return; 2036 } 2037 2038 if (sc->sc_flags & UBS_FLAGS_RNG4) 2039 nqueue = &sc->sc_nqueue4; 2040 else 2041 nqueue = &sc->sc_nqueue2; 2042 2043 (*nqueue)++; 2044 if (*nqueue >= UBS_MAX_NQUEUE) 2045 goto out; 2046 2047 mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr; 2048 ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr; 2049 2050 mcr->mcr_pkts = htole16(1); 2051 mcr->mcr_flags = 0; 2052 mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr); 2053 mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0; 2054 mcr->mcr_ipktbuf.pb_len = 0; 2055 mcr->mcr_reserved = mcr->mcr_pktlen = 0; 2056 mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr); 2057 mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) & 2058 UBS_PKTBUF_LEN); 2059 mcr->mcr_opktbuf.pb_next = 0; 2060 2061 ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass)); 2062 ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1); 2063 rng->rng_q.q_type = UBS_CTXOP_RNGSHA1; 2064 2065 bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0, 2066 rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD); 2067 2068 if (sc->sc_flags & UBS_FLAGS_RNG4) { 2069 SIMPLEQ_INSERT_TAIL(&sc->sc_queue4, &rng->rng_q, q_next); 2070 ubsec_feed4(sc); 2071 } else { 2072 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next); 2073 ubsec_feed2(sc); 2074 } 2075 rng->rng_used = 1; 2076 ubsecstats.hst_rng++; 2077 2078 return; 2079 2080 out: 2081 /* 2082 * Something weird happened, generate our own call back. 2083 */ 2084 (*nqueue)--; 2085 #ifdef __OpenBSD__ 2086 timeout_add(&sc->sc_rngto, sc->sc_rnghz); 2087 #else 2088 callout_schedule(&sc->sc_rngto, sc->sc_rnghz); 2089 #endif 2090 } 2091 #endif /* UBSEC_NO_RNG */ 2092 2093 static int 2094 ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size, 2095 struct ubsec_dma_alloc *dma,int mapflags) 2096 { 2097 int r; 2098 2099 if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, 2100 &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0) 2101 goto fail_0; 2102 2103 if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg, 2104 size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0) 2105 goto fail_1; 2106 2107 if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, 2108 BUS_DMA_NOWAIT, &dma->dma_map)) != 0) 2109 goto fail_2; 2110 2111 if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr, 2112 size, NULL, BUS_DMA_NOWAIT)) != 0) 2113 goto fail_3; 2114 2115 dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr; 2116 dma->dma_size = size; 2117 return (0); 2118 2119 fail_3: 2120 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map); 2121 fail_2: 2122 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size); 2123 fail_1: 2124 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg); 2125 fail_0: 2126 dma->dma_map = NULL; 2127 return (r); 2128 } 2129 2130 static void 2131 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma) 2132 { 2133 bus_dmamap_unload(sc->sc_dmat, dma->dma_map); 2134 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size); 2135 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg); 2136 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map); 2137 } 2138 2139 /* 2140 * Resets the board. Values in the regesters are left as is 2141 * from the reset (i.e. initial values are assigned elsewhere). 2142 */ 2143 static void 2144 ubsec_reset_board(struct ubsec_softc *sc) 2145 { 2146 volatile u_int32_t ctrl; 2147 2148 ctrl = READ_REG(sc, BS_CTRL); 2149 ctrl |= BS_CTRL_RESET; 2150 WRITE_REG(sc, BS_CTRL, ctrl); 2151 2152 /* 2153 * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us 2154 */ 2155 DELAY(10); 2156 2157 /* Enable RNG and interrupts on newer devices */ 2158 if (sc->sc_flags & UBS_FLAGS_MULTIMCR) { 2159 #ifndef UBSEC_NO_RNG 2160 WRITE_REG(sc, BS_CFG, BS_CFG_RNG); 2161 #endif 2162 WRITE_REG(sc, BS_INT, BS_INT_DMAINT); 2163 } 2164 } 2165 2166 /* 2167 * Init Broadcom registers 2168 */ 2169 static void 2170 ubsec_init_board(struct ubsec_softc *sc) 2171 { 2172 u_int32_t ctrl; 2173 2174 ctrl = READ_REG(sc, BS_CTRL); 2175 ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64); 2176 ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT; 2177 2178 /* 2179 * XXX: Sam Leffler's code has (UBS_FLAGS_KEY|UBS_FLAGS_RNG)). 2180 * anyone got hw docs? 2181 */ 2182 if (sc->sc_flags & UBS_FLAGS_KEY) 2183 ctrl |= BS_CTRL_MCR2INT; 2184 else 2185 ctrl &= ~BS_CTRL_MCR2INT; 2186 2187 if (sc->sc_flags & UBS_FLAGS_HWNORM) 2188 ctrl &= ~BS_CTRL_SWNORM; 2189 2190 if (sc->sc_flags & UBS_FLAGS_MULTIMCR) { 2191 ctrl |= BS_CTRL_BSIZE240; 2192 ctrl &= ~BS_CTRL_MCR3INT; /* MCR3 is reserved for SSL */ 2193 2194 if (sc->sc_flags & UBS_FLAGS_RNG4) 2195 ctrl |= BS_CTRL_MCR4INT; 2196 else 2197 ctrl &= ~BS_CTRL_MCR4INT; 2198 } 2199 2200 WRITE_REG(sc, BS_CTRL, ctrl); 2201 } 2202 2203 /* 2204 * Init Broadcom PCI registers 2205 */ 2206 static void 2207 ubsec_init_pciregs(struct pci_attach_args *pa) 2208 { 2209 pci_chipset_tag_t pc = pa->pa_pc; 2210 u_int32_t misc; 2211 2212 /* 2213 * This will set the cache line size to 1, this will 2214 * force the BCM58xx chip just to do burst read/writes. 2215 * Cache line read/writes are to slow 2216 */ 2217 misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG); 2218 misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT)) 2219 | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT); 2220 pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc); 2221 } 2222 2223 /* 2224 * Clean up after a chip crash. 2225 * It is assumed that the caller in splnet() 2226 */ 2227 static void 2228 ubsec_cleanchip(struct ubsec_softc *sc) 2229 { 2230 struct ubsec_q *q; 2231 2232 while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) { 2233 q = SIMPLEQ_FIRST(&sc->sc_qchip); 2234 SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next); 2235 ubsec_free_q(sc, q); 2236 } 2237 sc->sc_nqchip = 0; 2238 } 2239 2240 /* 2241 * free a ubsec_q 2242 * It is assumed that the caller is within splnet() 2243 */ 2244 static int 2245 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q) 2246 { 2247 struct ubsec_q *q2; 2248 struct cryptop *crp; 2249 int npkts; 2250 int i; 2251 2252 npkts = q->q_nstacked_mcrs; 2253 2254 for (i = 0; i < npkts; i++) { 2255 if(q->q_stacked_mcr[i]) { 2256 q2 = q->q_stacked_mcr[i]; 2257 2258 if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m)) 2259 m_freem(q2->q_dst_m); 2260 2261 crp = (struct cryptop *)q2->q_crp; 2262 2263 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next); 2264 2265 crp->crp_etype = EFAULT; 2266 crypto_done(crp); 2267 } else { 2268 break; 2269 } 2270 } 2271 2272 /* 2273 * Free header MCR 2274 */ 2275 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m)) 2276 m_freem(q->q_dst_m); 2277 2278 crp = (struct cryptop *)q->q_crp; 2279 2280 SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next); 2281 2282 crp->crp_etype = EFAULT; 2283 crypto_done(crp); 2284 return(0); 2285 } 2286 2287 /* 2288 * Routine to reset the chip and clean up. 2289 * It is assumed that the caller is in splnet() 2290 */ 2291 static void 2292 ubsec_totalreset(struct ubsec_softc *sc) 2293 { 2294 ubsec_reset_board(sc); 2295 ubsec_init_board(sc); 2296 ubsec_cleanchip(sc); 2297 } 2298 2299 static int 2300 ubsec_dmamap_aligned(bus_dmamap_t map) 2301 { 2302 int i; 2303 2304 for (i = 0; i < map->dm_nsegs; i++) { 2305 if (map->dm_segs[i].ds_addr & 3) 2306 return (0); 2307 if ((i != (map->dm_nsegs - 1)) && 2308 (map->dm_segs[i].ds_len & 3)) 2309 return (0); 2310 } 2311 return (1); 2312 } 2313 2314 #ifdef __OpenBSD__ 2315 struct ubsec_softc * 2316 ubsec_kfind(struct cryptkop *krp) 2317 { 2318 struct ubsec_softc *sc; 2319 int i; 2320 2321 for (i = 0; i < ubsec_cd.cd_ndevs; i++) { 2322 sc = ubsec_cd.cd_devs[i]; 2323 if (sc == NULL) 2324 continue; 2325 if (sc->sc_cid == krp->krp_hid) 2326 return (sc); 2327 } 2328 return (NULL); 2329 } 2330 #endif 2331 2332 static void 2333 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q) 2334 { 2335 switch (q->q_type) { 2336 case UBS_CTXOP_MODEXP: { 2337 struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q; 2338 2339 ubsec_dma_free(sc, &me->me_q.q_mcr); 2340 ubsec_dma_free(sc, &me->me_q.q_ctx); 2341 ubsec_dma_free(sc, &me->me_M); 2342 ubsec_dma_free(sc, &me->me_E); 2343 ubsec_dma_free(sc, &me->me_C); 2344 ubsec_dma_free(sc, &me->me_epb); 2345 free(me, M_DEVBUF); 2346 break; 2347 } 2348 case UBS_CTXOP_RSAPRIV: { 2349 struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q; 2350 2351 ubsec_dma_free(sc, &rp->rpr_q.q_mcr); 2352 ubsec_dma_free(sc, &rp->rpr_q.q_ctx); 2353 ubsec_dma_free(sc, &rp->rpr_msgin); 2354 ubsec_dma_free(sc, &rp->rpr_msgout); 2355 free(rp, M_DEVBUF); 2356 break; 2357 } 2358 default: 2359 printf("%s: invalid kfree 0x%x\n", device_xname(sc->sc_dev), 2360 q->q_type); 2361 break; 2362 } 2363 } 2364 2365 static int 2366 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint) 2367 { 2368 struct ubsec_softc *sc; 2369 int r; 2370 2371 if (krp == NULL || krp->krp_callback == NULL) 2372 return (EINVAL); 2373 #ifdef __OpenBSD__ 2374 if ((sc = ubsec_kfind(krp)) == NULL) 2375 return (EINVAL); 2376 #else 2377 sc = arg; 2378 KASSERT(sc != NULL /*, ("ubsec_kprocess: null softc")*/); 2379 #endif 2380 2381 while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) { 2382 struct ubsec_q2 *q; 2383 2384 q = SIMPLEQ_FIRST(&sc->sc_q2free); 2385 SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, /*q,*/ q_next); 2386 ubsec_kfree(sc, q); 2387 } 2388 2389 switch (krp->krp_op) { 2390 case CRK_MOD_EXP: 2391 if (sc->sc_flags & UBS_FLAGS_HWNORM) 2392 r = ubsec_kprocess_modexp_hw(sc, krp, hint); 2393 else 2394 r = ubsec_kprocess_modexp_sw(sc, krp, hint); 2395 break; 2396 case CRK_MOD_EXP_CRT: 2397 r = ubsec_kprocess_rsapriv(sc, krp, hint); 2398 break; 2399 default: 2400 printf("%s: kprocess: invalid op 0x%x\n", 2401 device_xname(sc->sc_dev), krp->krp_op); 2402 krp->krp_status = EOPNOTSUPP; 2403 crypto_kdone(krp); 2404 r = 0; 2405 } 2406 return (r); 2407 } 2408 2409 /* 2410 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization) 2411 */ 2412 static int 2413 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp, 2414 int hint) 2415 { 2416 struct ubsec_q2_modexp *me; 2417 struct ubsec_mcr *mcr; 2418 struct ubsec_ctx_modexp *ctx; 2419 struct ubsec_pktbuf *epb; 2420 int err = 0; 2421 u_int nbits, normbits, mbits, shiftbits, ebits; 2422 2423 me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT); 2424 if (me == NULL) { 2425 err = ENOMEM; 2426 goto errout; 2427 } 2428 memset(me, 0, sizeof *me); 2429 me->me_krp = krp; 2430 me->me_q.q_type = UBS_CTXOP_MODEXP; 2431 2432 nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]); 2433 if (nbits <= 512) 2434 normbits = 512; 2435 else if (nbits <= 768) 2436 normbits = 768; 2437 else if (nbits <= 1024) 2438 normbits = 1024; 2439 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536) 2440 normbits = 1536; 2441 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048) 2442 normbits = 2048; 2443 else { 2444 err = E2BIG; 2445 goto errout; 2446 } 2447 2448 shiftbits = normbits - nbits; 2449 2450 me->me_modbits = nbits; 2451 me->me_shiftbits = shiftbits; 2452 me->me_normbits = normbits; 2453 2454 /* Sanity check: result bits must be >= true modulus bits. */ 2455 if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) { 2456 err = ERANGE; 2457 goto errout; 2458 } 2459 2460 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr), 2461 &me->me_q.q_mcr, 0)) { 2462 err = ENOMEM; 2463 goto errout; 2464 } 2465 mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr; 2466 2467 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp), 2468 &me->me_q.q_ctx, 0)) { 2469 err = ENOMEM; 2470 goto errout; 2471 } 2472 2473 mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]); 2474 if (mbits > nbits) { 2475 err = E2BIG; 2476 goto errout; 2477 } 2478 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) { 2479 err = ENOMEM; 2480 goto errout; 2481 } 2482 ubsec_kshift_r(shiftbits, 2483 krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits, 2484 me->me_M.dma_vaddr, normbits); 2485 2486 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) { 2487 err = ENOMEM; 2488 goto errout; 2489 } 2490 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size); 2491 2492 ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]); 2493 if (ebits > nbits) { 2494 err = E2BIG; 2495 goto errout; 2496 } 2497 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) { 2498 err = ENOMEM; 2499 goto errout; 2500 } 2501 ubsec_kshift_r(shiftbits, 2502 krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits, 2503 me->me_E.dma_vaddr, normbits); 2504 2505 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf), 2506 &me->me_epb, 0)) { 2507 err = ENOMEM; 2508 goto errout; 2509 } 2510 epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr; 2511 epb->pb_addr = htole32(me->me_E.dma_paddr); 2512 epb->pb_next = 0; 2513 epb->pb_len = htole32(normbits / 8); 2514 2515 #ifdef UBSEC_DEBUG 2516 if (ubsec_debug) { 2517 printf("Epb "); 2518 ubsec_dump_pb(epb); 2519 } 2520 #endif 2521 2522 mcr->mcr_pkts = htole16(1); 2523 mcr->mcr_flags = 0; 2524 mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr); 2525 mcr->mcr_reserved = 0; 2526 mcr->mcr_pktlen = 0; 2527 2528 mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr); 2529 mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8); 2530 mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr); 2531 2532 mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr); 2533 mcr->mcr_opktbuf.pb_next = 0; 2534 mcr->mcr_opktbuf.pb_len = htole32(normbits / 8); 2535 2536 #ifdef DIAGNOSTIC 2537 /* Misaligned output buffer will hang the chip. */ 2538 if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0) 2539 panic("%s: modexp invalid addr 0x%x", 2540 device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_addr)); 2541 if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0) 2542 panic("%s: modexp invalid len 0x%x", 2543 device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_len)); 2544 #endif 2545 2546 ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr; 2547 memset(ctx, 0, sizeof(*ctx)); 2548 ubsec_kshift_r(shiftbits, 2549 krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits, 2550 ctx->me_N, normbits); 2551 ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t))); 2552 ctx->me_op = htole16(UBS_CTXOP_MODEXP); 2553 ctx->me_E_len = htole16(nbits); 2554 ctx->me_N_len = htole16(nbits); 2555 2556 #ifdef UBSEC_DEBUG 2557 if (ubsec_debug) { 2558 ubsec_dump_mcr(mcr); 2559 ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx); 2560 } 2561 #endif 2562 2563 /* 2564 * ubsec_feed2 will sync mcr and ctx, we just need to sync 2565 * everything else. 2566 */ 2567 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map, 2568 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2569 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map, 2570 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2571 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map, 2572 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD); 2573 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map, 2574 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2575 2576 /* Enqueue and we're done... */ 2577 mutex_spin_enter(&sc->sc_mtx); 2578 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next); 2579 ubsec_feed2(sc); 2580 ubsecstats.hst_modexp++; 2581 mutex_spin_exit(&sc->sc_mtx); 2582 2583 return (0); 2584 2585 errout: 2586 if (me != NULL) { 2587 if (me->me_q.q_mcr.dma_map != NULL) 2588 ubsec_dma_free(sc, &me->me_q.q_mcr); 2589 if (me->me_q.q_ctx.dma_map != NULL) { 2590 memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size); 2591 ubsec_dma_free(sc, &me->me_q.q_ctx); 2592 } 2593 if (me->me_M.dma_map != NULL) { 2594 memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size); 2595 ubsec_dma_free(sc, &me->me_M); 2596 } 2597 if (me->me_E.dma_map != NULL) { 2598 memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size); 2599 ubsec_dma_free(sc, &me->me_E); 2600 } 2601 if (me->me_C.dma_map != NULL) { 2602 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size); 2603 ubsec_dma_free(sc, &me->me_C); 2604 } 2605 if (me->me_epb.dma_map != NULL) 2606 ubsec_dma_free(sc, &me->me_epb); 2607 free(me, M_DEVBUF); 2608 } 2609 krp->krp_status = err; 2610 crypto_kdone(krp); 2611 return (0); 2612 } 2613 2614 /* 2615 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization) 2616 */ 2617 static int 2618 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp, 2619 int hint) 2620 { 2621 struct ubsec_q2_modexp *me; 2622 struct ubsec_mcr *mcr; 2623 struct ubsec_ctx_modexp *ctx; 2624 struct ubsec_pktbuf *epb; 2625 int err = 0; 2626 u_int nbits, normbits, mbits, shiftbits, ebits; 2627 2628 me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT); 2629 if (me == NULL) { 2630 err = ENOMEM; 2631 goto errout; 2632 } 2633 memset(me, 0, sizeof *me); 2634 me->me_krp = krp; 2635 me->me_q.q_type = UBS_CTXOP_MODEXP; 2636 2637 nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]); 2638 if (nbits <= 512) 2639 normbits = 512; 2640 else if (nbits <= 768) 2641 normbits = 768; 2642 else if (nbits <= 1024) 2643 normbits = 1024; 2644 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536) 2645 normbits = 1536; 2646 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048) 2647 normbits = 2048; 2648 else { 2649 err = E2BIG; 2650 goto errout; 2651 } 2652 2653 shiftbits = normbits - nbits; 2654 2655 /* XXX ??? */ 2656 me->me_modbits = nbits; 2657 me->me_shiftbits = shiftbits; 2658 me->me_normbits = normbits; 2659 2660 /* Sanity check: result bits must be >= true modulus bits. */ 2661 if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) { 2662 err = ERANGE; 2663 goto errout; 2664 } 2665 2666 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr), 2667 &me->me_q.q_mcr, 0)) { 2668 err = ENOMEM; 2669 goto errout; 2670 } 2671 mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr; 2672 2673 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp), 2674 &me->me_q.q_ctx, 0)) { 2675 err = ENOMEM; 2676 goto errout; 2677 } 2678 2679 mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]); 2680 if (mbits > nbits) { 2681 err = E2BIG; 2682 goto errout; 2683 } 2684 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) { 2685 err = ENOMEM; 2686 goto errout; 2687 } 2688 memset(me->me_M.dma_vaddr, 0, normbits / 8); 2689 bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p, 2690 me->me_M.dma_vaddr, (mbits + 7) / 8); 2691 2692 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) { 2693 err = ENOMEM; 2694 goto errout; 2695 } 2696 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size); 2697 2698 ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]); 2699 if (ebits > nbits) { 2700 err = E2BIG; 2701 goto errout; 2702 } 2703 if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) { 2704 err = ENOMEM; 2705 goto errout; 2706 } 2707 memset(me->me_E.dma_vaddr, 0, normbits / 8); 2708 bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p, 2709 me->me_E.dma_vaddr, (ebits + 7) / 8); 2710 2711 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf), 2712 &me->me_epb, 0)) { 2713 err = ENOMEM; 2714 goto errout; 2715 } 2716 epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr; 2717 epb->pb_addr = htole32(me->me_E.dma_paddr); 2718 epb->pb_next = 0; 2719 epb->pb_len = htole32((ebits + 7) / 8); 2720 2721 #ifdef UBSEC_DEBUG 2722 if (ubsec_debug) { 2723 printf("Epb "); 2724 ubsec_dump_pb(epb); 2725 } 2726 #endif 2727 2728 mcr->mcr_pkts = htole16(1); 2729 mcr->mcr_flags = 0; 2730 mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr); 2731 mcr->mcr_reserved = 0; 2732 mcr->mcr_pktlen = 0; 2733 2734 mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr); 2735 mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8); 2736 mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr); 2737 2738 mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr); 2739 mcr->mcr_opktbuf.pb_next = 0; 2740 mcr->mcr_opktbuf.pb_len = htole32(normbits / 8); 2741 2742 #ifdef DIAGNOSTIC 2743 /* Misaligned output buffer will hang the chip. */ 2744 if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0) 2745 panic("%s: modexp invalid addr 0x%x", 2746 device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_addr)); 2747 if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0) 2748 panic("%s: modexp invalid len 0x%x", 2749 device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_len)); 2750 #endif 2751 2752 ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr; 2753 memset(ctx, 0, sizeof(*ctx)); 2754 memcpy(ctx->me_N, krp->krp_param[UBS_MODEXP_PAR_N].crp_p, 2755 (nbits + 7) / 8); 2756 ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t))); 2757 ctx->me_op = htole16(UBS_CTXOP_MODEXP); 2758 ctx->me_E_len = htole16(ebits); 2759 ctx->me_N_len = htole16(nbits); 2760 2761 #ifdef UBSEC_DEBUG 2762 if (ubsec_debug) { 2763 ubsec_dump_mcr(mcr); 2764 ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx); 2765 } 2766 #endif 2767 2768 /* 2769 * ubsec_feed2 will sync mcr and ctx, we just need to sync 2770 * everything else. 2771 */ 2772 bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map, 2773 0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2774 bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map, 2775 0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2776 bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map, 2777 0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD); 2778 bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map, 2779 0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2780 2781 /* Enqueue and we're done... */ 2782 mutex_spin_enter(&sc->sc_mtx); 2783 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next); 2784 ubsec_feed2(sc); 2785 mutex_spin_exit(&sc->sc_mtx); 2786 2787 return (0); 2788 2789 errout: 2790 if (me != NULL) { 2791 if (me->me_q.q_mcr.dma_map != NULL) 2792 ubsec_dma_free(sc, &me->me_q.q_mcr); 2793 if (me->me_q.q_ctx.dma_map != NULL) { 2794 memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size); 2795 ubsec_dma_free(sc, &me->me_q.q_ctx); 2796 } 2797 if (me->me_M.dma_map != NULL) { 2798 memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size); 2799 ubsec_dma_free(sc, &me->me_M); 2800 } 2801 if (me->me_E.dma_map != NULL) { 2802 memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size); 2803 ubsec_dma_free(sc, &me->me_E); 2804 } 2805 if (me->me_C.dma_map != NULL) { 2806 memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size); 2807 ubsec_dma_free(sc, &me->me_C); 2808 } 2809 if (me->me_epb.dma_map != NULL) 2810 ubsec_dma_free(sc, &me->me_epb); 2811 free(me, M_DEVBUF); 2812 } 2813 krp->krp_status = err; 2814 crypto_kdone(krp); 2815 return (0); 2816 } 2817 2818 static int 2819 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp, 2820 int hint) 2821 { 2822 struct ubsec_q2_rsapriv *rp = NULL; 2823 struct ubsec_mcr *mcr; 2824 struct ubsec_ctx_rsapriv *ctx; 2825 int err = 0; 2826 u_int padlen, msglen; 2827 2828 msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]); 2829 padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]); 2830 if (msglen > padlen) 2831 padlen = msglen; 2832 2833 if (padlen <= 256) 2834 padlen = 256; 2835 else if (padlen <= 384) 2836 padlen = 384; 2837 else if (padlen <= 512) 2838 padlen = 512; 2839 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768) 2840 padlen = 768; 2841 else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024) 2842 padlen = 1024; 2843 else { 2844 err = E2BIG; 2845 goto errout; 2846 } 2847 2848 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) { 2849 err = E2BIG; 2850 goto errout; 2851 } 2852 2853 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) { 2854 err = E2BIG; 2855 goto errout; 2856 } 2857 2858 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) { 2859 err = E2BIG; 2860 goto errout; 2861 } 2862 2863 rp = malloc(sizeof *rp, M_DEVBUF, M_NOWAIT|M_ZERO); 2864 if (rp == NULL) 2865 return (ENOMEM); 2866 rp->rpr_krp = krp; 2867 rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV; 2868 2869 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr), 2870 &rp->rpr_q.q_mcr, 0)) { 2871 err = ENOMEM; 2872 goto errout; 2873 } 2874 mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr; 2875 2876 if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv), 2877 &rp->rpr_q.q_ctx, 0)) { 2878 err = ENOMEM; 2879 goto errout; 2880 } 2881 ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr; 2882 memset(ctx, 0, sizeof *ctx); 2883 2884 /* Copy in p */ 2885 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p, 2886 &ctx->rpr_buf[0 * (padlen / 8)], 2887 (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8); 2888 2889 /* Copy in q */ 2890 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p, 2891 &ctx->rpr_buf[1 * (padlen / 8)], 2892 (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8); 2893 2894 /* Copy in dp */ 2895 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p, 2896 &ctx->rpr_buf[2 * (padlen / 8)], 2897 (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8); 2898 2899 /* Copy in dq */ 2900 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p, 2901 &ctx->rpr_buf[3 * (padlen / 8)], 2902 (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8); 2903 2904 /* Copy in pinv */ 2905 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p, 2906 &ctx->rpr_buf[4 * (padlen / 8)], 2907 (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8); 2908 2909 msglen = padlen * 2; 2910 2911 /* Copy in input message (aligned buffer/length). */ 2912 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) { 2913 /* Is this likely? */ 2914 err = E2BIG; 2915 goto errout; 2916 } 2917 if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) { 2918 err = ENOMEM; 2919 goto errout; 2920 } 2921 memset(rp->rpr_msgin.dma_vaddr, 0, (msglen + 7) / 8); 2922 bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p, 2923 rp->rpr_msgin.dma_vaddr, 2924 (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8); 2925 2926 /* Prepare space for output message (aligned buffer/length). */ 2927 if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) { 2928 /* Is this likely? */ 2929 err = E2BIG; 2930 goto errout; 2931 } 2932 if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) { 2933 err = ENOMEM; 2934 goto errout; 2935 } 2936 memset(rp->rpr_msgout.dma_vaddr, 0, (msglen + 7) / 8); 2937 2938 mcr->mcr_pkts = htole16(1); 2939 mcr->mcr_flags = 0; 2940 mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr); 2941 mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr); 2942 mcr->mcr_ipktbuf.pb_next = 0; 2943 mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size); 2944 mcr->mcr_reserved = 0; 2945 mcr->mcr_pktlen = htole16(msglen); 2946 mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr); 2947 mcr->mcr_opktbuf.pb_next = 0; 2948 mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size); 2949 2950 #ifdef DIAGNOSTIC 2951 if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) { 2952 panic("%s: rsapriv: invalid msgin 0x%lx(0x%lx)", 2953 device_xname(sc->sc_dev), (u_long) rp->rpr_msgin.dma_paddr, 2954 (u_long) rp->rpr_msgin.dma_size); 2955 } 2956 if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) { 2957 panic("%s: rsapriv: invalid msgout 0x%lx(0x%lx)", 2958 device_xname(sc->sc_dev), (u_long) rp->rpr_msgout.dma_paddr, 2959 (u_long) rp->rpr_msgout.dma_size); 2960 } 2961 #endif 2962 2963 ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8)); 2964 ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV); 2965 ctx->rpr_q_len = htole16(padlen); 2966 ctx->rpr_p_len = htole16(padlen); 2967 2968 /* 2969 * ubsec_feed2 will sync mcr and ctx, we just need to sync 2970 * everything else. 2971 */ 2972 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 2973 0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 2974 bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 2975 0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD); 2976 2977 /* Enqueue and we're done... */ 2978 mutex_spin_enter(&sc->sc_mtx); 2979 SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next); 2980 ubsec_feed2(sc); 2981 ubsecstats.hst_modexpcrt++; 2982 mutex_spin_exit(&sc->sc_mtx); 2983 return (0); 2984 2985 errout: 2986 if (rp != NULL) { 2987 if (rp->rpr_q.q_mcr.dma_map != NULL) 2988 ubsec_dma_free(sc, &rp->rpr_q.q_mcr); 2989 if (rp->rpr_msgin.dma_map != NULL) { 2990 memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size); 2991 ubsec_dma_free(sc, &rp->rpr_msgin); 2992 } 2993 if (rp->rpr_msgout.dma_map != NULL) { 2994 memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size); 2995 ubsec_dma_free(sc, &rp->rpr_msgout); 2996 } 2997 free(rp, M_DEVBUF); 2998 } 2999 krp->krp_status = err; 3000 crypto_kdone(krp); 3001 return (0); 3002 } 3003 3004 #ifdef UBSEC_DEBUG 3005 static void 3006 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb) 3007 { 3008 printf("addr 0x%x (0x%x) next 0x%x\n", 3009 pb->pb_addr, pb->pb_len, pb->pb_next); 3010 } 3011 3012 static void 3013 ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *c) 3014 { 3015 printf("CTX (0x%x):\n", c->ctx_len); 3016 switch (letoh16(c->ctx_op)) { 3017 case UBS_CTXOP_RNGBYPASS: 3018 case UBS_CTXOP_RNGSHA1: 3019 break; 3020 case UBS_CTXOP_MODEXP: 3021 { 3022 struct ubsec_ctx_modexp *cx = (void *)c; 3023 int i, len; 3024 3025 printf(" Elen %u, Nlen %u\n", 3026 letoh16(cx->me_E_len), letoh16(cx->me_N_len)); 3027 len = (cx->me_N_len + 7)/8; 3028 for (i = 0; i < len; i++) 3029 printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]); 3030 printf("\n"); 3031 break; 3032 } 3033 default: 3034 printf("unknown context: %x\n", c->ctx_op); 3035 } 3036 printf("END CTX\n"); 3037 } 3038 3039 static void 3040 ubsec_dump_mcr(struct ubsec_mcr *mcr) 3041 { 3042 volatile struct ubsec_mcr_add *ma; 3043 int i; 3044 3045 printf("MCR:\n"); 3046 printf(" pkts: %u, flags 0x%x\n", 3047 letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags)); 3048 ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp; 3049 for (i = 0; i < letoh16(mcr->mcr_pkts); i++) { 3050 printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i, 3051 letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen), 3052 letoh16(ma->mcr_reserved)); 3053 printf(" %d: ipkt ", i); 3054 ubsec_dump_pb(&ma->mcr_ipktbuf); 3055 printf(" %d: opkt ", i); 3056 ubsec_dump_pb(&ma->mcr_opktbuf); 3057 ma++; 3058 } 3059 printf("END MCR\n"); 3060 } 3061 #endif /* UBSEC_DEBUG */ 3062 3063 /* 3064 * Return the number of significant bits of a big number. 3065 */ 3066 static int 3067 ubsec_ksigbits(struct crparam *cr) 3068 { 3069 u_int plen = (cr->crp_nbits + 7) / 8; 3070 int i, sig = plen * 8; 3071 u_int8_t c, *p = cr->crp_p; 3072 3073 for (i = plen - 1; i >= 0; i--) { 3074 c = p[i]; 3075 if (c != 0) { 3076 while ((c & 0x80) == 0) { 3077 sig--; 3078 c <<= 1; 3079 } 3080 break; 3081 } 3082 sig -= 8; 3083 } 3084 return (sig); 3085 } 3086 3087 static void 3088 ubsec_kshift_r(u_int shiftbits, u_int8_t *src, u_int srcbits, 3089 u_int8_t *dst, u_int dstbits) 3090 { 3091 u_int slen, dlen; 3092 int i, si, di, n; 3093 3094 slen = (srcbits + 7) / 8; 3095 dlen = (dstbits + 7) / 8; 3096 3097 for (i = 0; i < slen; i++) 3098 dst[i] = src[i]; 3099 for (i = 0; i < dlen - slen; i++) 3100 dst[slen + i] = 0; 3101 3102 n = shiftbits / 8; 3103 if (n != 0) { 3104 si = dlen - n - 1; 3105 di = dlen - 1; 3106 while (si >= 0) 3107 dst[di--] = dst[si--]; 3108 while (di >= 0) 3109 dst[di--] = 0; 3110 } 3111 3112 n = shiftbits % 8; 3113 if (n != 0) { 3114 for (i = dlen - 1; i > 0; i--) 3115 dst[i] = (dst[i] << n) | 3116 (dst[i - 1] >> (8 - n)); 3117 dst[0] = dst[0] << n; 3118 } 3119 } 3120 3121 static void 3122 ubsec_kshift_l(u_int shiftbits, u_int8_t *src, u_int srcbits, 3123 u_int8_t *dst, u_int dstbits) 3124 { 3125 int slen, dlen, i, n; 3126 3127 slen = (srcbits + 7) / 8; 3128 dlen = (dstbits + 7) / 8; 3129 3130 n = shiftbits / 8; 3131 for (i = 0; i < slen; i++) 3132 dst[i] = src[i + n]; 3133 for (i = 0; i < dlen - slen; i++) 3134 dst[slen + i] = 0; 3135 3136 n = shiftbits % 8; 3137 if (n != 0) { 3138 for (i = 0; i < (dlen - 1); i++) 3139 dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n)); 3140 dst[dlen - 1] = dst[dlen - 1] >> n; 3141 } 3142 } 3143