xref: /netbsd-src/sys/dev/pci/ubsec.c (revision 48fb7bfab72acd4281a53bbee5ccf3f809019e75)
1 /*	$NetBSD: ubsec.c,v 1.37 2014/02/25 18:30:10 pooka Exp $	*/
2 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.6 2003/01/23 21:06:43 sam Exp $ */
3 /*	$OpenBSD: ubsec.c,v 1.127 2003/06/04 14:04:58 jason Exp $	*/
4 
5 /*
6  * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
7  * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
8  * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
23  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
28  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  * Effort sponsored in part by the Defense Advanced Research Projects
32  * Agency (DARPA) and Air Force Research Laboratory, Air Force
33  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
34  *
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: ubsec.c,v 1.37 2014/02/25 18:30:10 pooka Exp $");
39 
40 #undef UBSEC_DEBUG
41 
42 /*
43  * uBsec 5[56]01, bcm580xx, bcm582x hardware crypto accelerator
44  */
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/proc.h>
49 #include <sys/endian.h>
50 #ifdef __NetBSD__
51   #define UBSEC_NO_RNG	/* hangs on attach */
52   #define letoh16 htole16
53   #define letoh32 htole32
54 #endif
55 #include <sys/errno.h>
56 #include <sys/malloc.h>
57 #include <sys/kernel.h>
58 #include <sys/mbuf.h>
59 #include <sys/device.h>
60 #include <sys/module.h>
61 #include <sys/queue.h>
62 #include <sys/sysctl.h>
63 
64 #include <opencrypto/cryptodev.h>
65 #include <opencrypto/xform.h>
66 #ifdef __OpenBSD__
67  #include <dev/rndvar.h>
68  #include <sys/md5k.h>
69 #else
70  #include <sys/cprng.h>
71  #include <sys/md5.h>
72 #endif
73 #include <sys/sha1.h>
74 
75 #include <dev/pci/pcireg.h>
76 #include <dev/pci/pcivar.h>
77 #include <dev/pci/pcidevs.h>
78 
79 #include <dev/pci/ubsecreg.h>
80 #include <dev/pci/ubsecvar.h>
81 
82 /*
83  * Prototypes and count for the pci_device structure
84  */
85 static	int ubsec_probe(device_t, cfdata_t, void *);
86 static	void ubsec_attach(device_t, device_t, void *);
87 static	int  ubsec_detach(device_t, int);
88 static	int  ubsec_sysctl_init(void);
89 static	void ubsec_reset_board(struct ubsec_softc *);
90 static	void ubsec_init_board(struct ubsec_softc *);
91 static	void ubsec_init_pciregs(struct pci_attach_args *pa);
92 static	void ubsec_cleanchip(struct ubsec_softc *);
93 static	void ubsec_totalreset(struct ubsec_softc *);
94 static	int  ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
95 
96 #ifdef __OpenBSD__
97 struct cfattach ubsec_ca = {
98 	sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
99 };
100 
101 struct cfdriver ubsec_cd = {
102 	0, "ubsec", DV_DULL
103 };
104 #else
105 CFATTACH_DECL_NEW(ubsec, sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
106 	      ubsec_detach, NULL);
107 extern struct cfdriver ubsec_cd;
108 #endif
109 
110 /* patchable */
111 #ifdef	UBSEC_DEBUG
112 extern int ubsec_debug;
113 int ubsec_debug=1;
114 #endif
115 
116 static	int	ubsec_intr(void *);
117 static	int	ubsec_newsession(void*, u_int32_t *, struct cryptoini *);
118 static	int	ubsec_freesession(void*, u_int64_t);
119 static	int	ubsec_process(void*, struct cryptop *, int hint);
120 static	void	ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
121 static	void	ubsec_feed(struct ubsec_softc *);
122 static	void	ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
123 static	void	ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
124 static	void	ubsec_feed2(struct ubsec_softc *);
125 static	void	ubsec_feed4(struct ubsec_softc *);
126 #ifndef UBSEC_NO_RNG
127 static  void	ubsec_rng(void *);
128 static  void	ubsec_rng_locked(void *);
129 static  void	ubsec_rng_get(size_t, void *);
130 #endif /* UBSEC_NO_RNG */
131 static	int 	ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
132 				 struct ubsec_dma_alloc *, int);
133 static	void	ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
134 static	int	ubsec_dmamap_aligned(bus_dmamap_t);
135 
136 static	int	ubsec_kprocess(void*, struct cryptkop *, int);
137 static	int	ubsec_kprocess_modexp_sw(struct ubsec_softc *,
138 					 struct cryptkop *, int);
139 static	int	ubsec_kprocess_modexp_hw(struct ubsec_softc *,
140 					 struct cryptkop *, int);
141 static	int	ubsec_kprocess_rsapriv(struct ubsec_softc *,
142 				       struct cryptkop *, int);
143 static	void	ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
144 static	int	ubsec_ksigbits(struct crparam *);
145 static	void	ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
146 static	void	ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
147 
148 #ifdef UBSEC_DEBUG
149 static void	ubsec_dump_pb(volatile struct ubsec_pktbuf *);
150 static void	ubsec_dump_mcr(struct ubsec_mcr *);
151 static	void	ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *);
152 #endif
153 
154 #define	READ_REG(sc,r) \
155 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
156 
157 #define WRITE_REG(sc,reg,val) \
158 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
159 
160 #define	SWAP32(x) (x) = htole32(ntohl((x)))
161 #ifndef HTOLE32
162  #define	HTOLE32(x) (x) = htole32(x)
163 #endif
164 
165 struct ubsec_stats ubsecstats;
166 
167 static struct sysctllog *ubsec_sysctllog;
168 
169 /*
170  * ubsec_maxbatch controls the number of crypto ops to voluntarily
171  * collect into one submission to the hardware.  This batching happens
172  * when ops are dispatched from the crypto subsystem with a hint that
173  * more are to follow immediately.  These ops must also not be marked
174  * with a ``no delay'' flag.
175  */
176 static	int ubsec_maxbatch = 1;
177 
178 /*
179  * ubsec_maxaggr controls the number of crypto ops to submit to the
180  * hardware as a unit.  This aggregation reduces the number of interrupts
181  * to the host at the expense of increased latency (for all but the last
182  * operation).  For network traffic setting this to one yields the highest
183  * performance but at the expense of more interrupt processing.
184  */
185 static	int ubsec_maxaggr = 1;
186 
187 static const struct ubsec_product {
188 	pci_vendor_id_t		ubsec_vendor;
189 	pci_product_id_t	ubsec_product;
190 	int			ubsec_flags;
191 	int			ubsec_statmask;
192 	int			ubsec_maxaggr;
193 	const char		*ubsec_name;
194 } ubsec_products[] = {
195 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5501,
196 	  0,
197 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
198 	  UBS_MIN_AGGR,
199 	  "Bluesteel 5501"
200 	},
201 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5601,
202 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
203 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
204 	  UBS_MIN_AGGR,
205 	  "Bluesteel 5601"
206 	},
207 
208 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5801,
209 	  0,
210 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
211 	  UBS_MIN_AGGR,
212 	  "Broadcom BCM5801"
213 	},
214 
215 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5802,
216 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
217 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
218 	  UBS_MIN_AGGR,
219 	  "Broadcom BCM5802"
220 	},
221 
222 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5805,
223 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
224 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
225 	  UBS_MIN_AGGR,
226 	  "Broadcom BCM5805"
227 	},
228 
229 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5820,
230 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
231 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
232 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
233 	  UBS_MIN_AGGR,
234 	  "Broadcom BCM5820"
235 	},
236 
237 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5821,
238 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
239 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
240 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
241 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
242 	  UBS_MIN_AGGR,
243 	  "Broadcom BCM5821"
244 	},
245 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_SCA1K,
246 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
247 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
248 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
249 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
250 	  UBS_MIN_AGGR,
251 	  "Sun Crypto Accelerator 1000"
252 	},
253 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_5821,
254 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
255 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
256 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
257 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
258 	  UBS_MIN_AGGR,
259 	  "Broadcom BCM5821 (Sun)"
260 	},
261 
262 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5822,
263 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
264 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
265 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
266 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
267 	  UBS_MIN_AGGR,
268 	  "Broadcom BCM5822"
269 	},
270 
271 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5823,
272 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
273 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
274 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
275 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
276 	  UBS_MIN_AGGR,
277 	  "Broadcom BCM5823"
278 	},
279 
280 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5825,
281 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
282 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
283 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
284 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
285 	  UBS_MIN_AGGR,
286 	  "Broadcom BCM5825"
287 	},
288 
289 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5860,
290 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
291 	      UBS_FLAGS_LONGCTX |
292 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
293 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY,
294 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
295 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
296 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
297 	  UBS_MAX_AGGR,
298 	  "Broadcom BCM5860"
299 	},
300 
301 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5861,
302 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
303 	      UBS_FLAGS_LONGCTX |
304 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
305 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY,
306 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
307 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
308 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
309 	  UBS_MAX_AGGR,
310 	  "Broadcom BCM5861"
311 	},
312 
313 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5862,
314 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
315 	      UBS_FLAGS_LONGCTX |
316 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
317 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY,
318 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
319 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
320 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
321 	  UBS_MAX_AGGR,
322 	  "Broadcom BCM5862"
323 	},
324 
325 	{ 0,			0,
326 	  0,
327 	  0,
328 	  0,
329 	  NULL
330 	}
331 };
332 
333 static const struct ubsec_product *
334 ubsec_lookup(const struct pci_attach_args *pa)
335 {
336 	const struct ubsec_product *up;
337 
338 	for (up = ubsec_products; up->ubsec_name != NULL; up++) {
339 		if (PCI_VENDOR(pa->pa_id) == up->ubsec_vendor &&
340 		    PCI_PRODUCT(pa->pa_id) == up->ubsec_product)
341 			return (up);
342 	}
343 	return (NULL);
344 }
345 
346 static int
347 ubsec_probe(device_t parent, cfdata_t match, void *aux)
348 {
349 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
350 
351 	if (ubsec_lookup(pa) != NULL)
352 		return (1);
353 
354 	return (0);
355 }
356 
357 static void
358 ubsec_attach(device_t parent, device_t self, void *aux)
359 {
360 	struct ubsec_softc *sc = device_private(self);
361 	struct pci_attach_args *pa = aux;
362 	const struct ubsec_product *up;
363 	pci_chipset_tag_t pc = pa->pa_pc;
364 	pci_intr_handle_t ih;
365 	const char *intrstr = NULL;
366 	pcireg_t memtype;
367 	struct ubsec_dma *dmap;
368 	u_int32_t cmd, i;
369 
370 	sc->sc_dev = self;
371 	sc->sc_pct = pc;
372 
373 	up = ubsec_lookup(pa);
374 	if (up == NULL) {
375 		printf("\n");
376 		panic("ubsec_attach: impossible");
377 	}
378 
379 	pci_aprint_devinfo_fancy(pa, "Crypto processor", up->ubsec_name, 1);
380 
381 	SIMPLEQ_INIT(&sc->sc_queue);
382 	SIMPLEQ_INIT(&sc->sc_qchip);
383 	SIMPLEQ_INIT(&sc->sc_queue2);
384 	SIMPLEQ_INIT(&sc->sc_qchip2);
385 	SIMPLEQ_INIT(&sc->sc_queue4);
386 	SIMPLEQ_INIT(&sc->sc_qchip4);
387 	SIMPLEQ_INIT(&sc->sc_q2free);
388 
389 	sc->sc_flags = up->ubsec_flags;
390 	sc->sc_statmask = up->ubsec_statmask;
391 	sc->sc_maxaggr = up->ubsec_maxaggr;
392 
393 	cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
394 	cmd |= PCI_COMMAND_MASTER_ENABLE;
395 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd);
396 
397 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BS_BAR);
398 	if (pci_mapreg_map(pa, BS_BAR, memtype, 0,
399 	    &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize)) {
400 		aprint_error_dev(self, "can't find mem space");
401 		return;
402 	}
403 
404 	sc->sc_dmat = pa->pa_dmat;
405 
406 	if (pci_intr_map(pa, &ih)) {
407 		aprint_error_dev(self, "couldn't map interrupt\n");
408 		return;
409 	}
410 	intrstr = pci_intr_string(pc, ih);
411 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ubsec_intr, sc);
412 	if (sc->sc_ih == NULL) {
413 		aprint_error_dev(self, "couldn't establish interrupt");
414 		if (intrstr != NULL)
415 			aprint_error(" at %s", intrstr);
416 		aprint_error("\n");
417 		return;
418 	}
419 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
420 
421 	sc->sc_cid = crypto_get_driverid(0);
422 	if (sc->sc_cid < 0) {
423 		aprint_error_dev(self, "couldn't get crypto driver id\n");
424 		pci_intr_disestablish(pc, sc->sc_ih);
425 		return;
426 	}
427 
428 	sc->sc_rng_need = RND_POOLBITS / NBBY;
429 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_VM);
430 
431 	SIMPLEQ_INIT(&sc->sc_freequeue);
432 	dmap = sc->sc_dmaa;
433 	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
434 		struct ubsec_q *q;
435 
436 		q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
437 		    M_DEVBUF, M_NOWAIT);
438 		if (q == NULL) {
439 			aprint_error_dev(self, "can't allocate queue buffers\n");
440 			break;
441 		}
442 
443 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
444 		    &dmap->d_alloc, 0)) {
445 			aprint_error_dev(self, "can't allocate dma buffers\n");
446 			free(q, M_DEVBUF);
447 			break;
448 		}
449 		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
450 
451 		q->q_dma = dmap;
452 		sc->sc_queuea[i] = q;
453 
454 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
455 	}
456 
457 	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
458 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
459 	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
460 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
461 	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC_96, 0, 0,
462 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
463 	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC_96, 0, 0,
464 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
465 
466 	/*
467 	 * Reset Broadcom chip
468 	 */
469 	ubsec_reset_board(sc);
470 
471 	/*
472 	 * Init Broadcom specific PCI settings
473 	 */
474 	ubsec_init_pciregs(pa);
475 
476 	/*
477 	 * Init Broadcom chip
478 	 */
479 	ubsec_init_board(sc);
480 
481 #ifndef UBSEC_NO_RNG
482 	if (sc->sc_flags & UBS_FLAGS_RNG) {
483 		if (sc->sc_flags & UBS_FLAGS_RNG4)
484 			sc->sc_statmask |= BS_STAT_MCR4_DONE;
485 		else
486 			sc->sc_statmask |= BS_STAT_MCR2_DONE;
487 
488 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
489 		    &sc->sc_rng.rng_q.q_mcr, 0))
490 			goto skip_rng;
491 
492 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
493 		    &sc->sc_rng.rng_q.q_ctx, 0)) {
494 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
495 			goto skip_rng;
496 		}
497 
498 		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
499 		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
500 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
501 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
502 			goto skip_rng;
503 		}
504 
505 		rndsource_setcb(&sc->sc_rnd_source, ubsec_rng_get, sc);
506 		rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
507 				  RND_TYPE_RNG,
508 				  RND_FLAG_NO_ESTIMATE|RND_FLAG_HASCB);
509 		if (hz >= 100)
510 			sc->sc_rnghz = hz / 100;
511 		else
512 			sc->sc_rnghz = 1;
513 #ifdef __OpenBSD__
514 		timeout_set(&sc->sc_rngto, ubsec_rng, sc);
515 		timeout_add(&sc->sc_rngto, sc->sc_rnghz);
516 #else
517 		callout_init(&sc->sc_rngto, 0);
518 		callout_setfunc(&sc->sc_rngto, ubsec_rng, sc);
519 		callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
520 #endif
521  skip_rng:
522 		if (sc->sc_rnghz)
523 			aprint_normal_dev(self, "random number generator enabled\n");
524 		else
525 			aprint_error_dev(self, "WARNING: random number generator "
526 			    "disabled\n");
527 	}
528 #endif /* UBSEC_NO_RNG */
529 
530 	if (sc->sc_flags & UBS_FLAGS_KEY) {
531 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
532 
533 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
534 				 ubsec_kprocess, sc);
535 #if 0
536 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
537 				 ubsec_kprocess, sc);
538 #endif
539 	}
540 }
541 
542 static int
543 ubsec_detach(device_t self, int flags)
544 {
545 	struct ubsec_softc *sc = device_private(self);
546 	struct ubsec_q *q, *qtmp;
547 	volatile u_int32_t ctrl;
548 
549 	/* disable interrupts */
550 	/* XXX wait/abort current ops? where is DMAERR enabled? */
551 	ctrl = READ_REG(sc, BS_CTRL);
552 
553 	ctrl &= ~(BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR);
554 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
555 		ctrl &= ~BS_CTRL_MCR4INT;
556 
557 	WRITE_REG(sc, BS_CTRL, ctrl);
558 
559 #ifndef UBSEC_NO_RNG
560 	if (sc->sc_flags & UBS_FLAGS_RNG) {
561 		callout_halt(&sc->sc_rngto, NULL);
562 		ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
563 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
564 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
565 		rnd_detach_source(&sc->sc_rnd_source);
566 	}
567 #endif /* UBSEC_NO_RNG */
568 
569 	crypto_unregister_all(sc->sc_cid);
570 
571 	mutex_spin_enter(&sc->sc_mtx);
572 
573 	ubsec_totalreset(sc);  /* XXX leaves the chip running */
574 
575 	SIMPLEQ_FOREACH_SAFE(q, &sc->sc_freequeue, q_next, qtmp) {
576 		ubsec_dma_free(sc, &q->q_dma->d_alloc);
577 		free(q, M_DEVBUF);
578 	}
579 
580 	mutex_spin_exit(&sc->sc_mtx);
581 
582 	if (sc->sc_ih != NULL) {
583 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
584 		sc->sc_ih = NULL;
585 	}
586 
587 	if (sc->sc_memsize != 0) {
588 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize);
589 		sc->sc_memsize = 0;
590 	}
591 
592 	return 0;
593 }
594 
595 MODULE(MODULE_CLASS_DRIVER, ubsec, "pci,opencrypto");
596 
597 #ifdef _MODULE
598 #include "ioconf.c"
599 #endif
600 
601 static int
602 ubsec_modcmd(modcmd_t cmd, void *data)
603 {
604 	int error = 0;
605 
606 	switch (cmd) {
607 	case MODULE_CMD_INIT:
608 #ifdef _MODULE
609 		error = config_init_component(cfdriver_ioconf_ubsec,
610 		    cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
611 #endif
612 		if (error == 0)
613 			error = ubsec_sysctl_init();
614 		return error;
615 	case MODULE_CMD_FINI:
616 		if (ubsec_sysctllog != NULL)
617 			sysctl_teardown(&ubsec_sysctllog);
618 #ifdef _MODULE
619 		error = config_fini_component(cfdriver_ioconf_ubsec,
620 		    cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
621 #endif
622 		return error;
623 	default:
624 		return ENOTTY;
625 	}
626 }
627 
628 static int
629 ubsec_sysctl_init(void)
630 {
631 	const struct sysctlnode *node = NULL;
632 
633 	ubsec_sysctllog = NULL;
634 
635 	sysctl_createv(&ubsec_sysctllog, 0, NULL, &node,
636 		CTLFLAG_PERMANENT,
637 		CTLTYPE_NODE, "ubsec",
638 		SYSCTL_DESCR("ubsec opetions"),
639 		NULL, 0, NULL, 0,
640 		CTL_HW, CTL_CREATE, CTL_EOL);
641 	sysctl_createv(&ubsec_sysctllog, 0, &node, NULL,
642 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
643 		CTLTYPE_INT, "maxbatch",
644 		SYSCTL_DESCR("max ops to batch w/o interrupt"),
645 		NULL, 0, &ubsec_maxbatch, 0,
646 		CTL_CREATE, CTL_EOL);
647 	sysctl_createv(&ubsec_sysctllog, 0, &node, NULL,
648 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
649 		CTLTYPE_INT, "maxaggr",
650 		SYSCTL_DESCR("max ops to aggregate under one interrupt"),
651 		NULL, 0, &ubsec_maxaggr, 0,
652 		CTL_CREATE, CTL_EOL);
653 
654 	return 0;
655 }
656 
657 /*
658  * UBSEC Interrupt routine
659  */
660 static int
661 ubsec_intr(void *arg)
662 {
663 	struct ubsec_softc *sc = arg;
664 	volatile u_int32_t stat;
665 	struct ubsec_q *q;
666 	struct ubsec_dma *dmap;
667 	int flags;
668 	int npkts = 0, i;
669 
670 	mutex_spin_enter(&sc->sc_mtx);
671 	stat = READ_REG(sc, BS_STAT);
672 	stat &= sc->sc_statmask;
673 	if (stat == 0) {
674 		mutex_spin_exit(&sc->sc_mtx);
675 		return (0);
676 	}
677 
678 	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
679 
680 	/*
681 	 * Check to see if we have any packets waiting for us
682 	 */
683 	if ((stat & BS_STAT_MCR1_DONE)) {
684 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
685 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
686 			dmap = q->q_dma;
687 
688 			if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
689 				break;
690 
691 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
692 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
693 
694 			npkts = q->q_nstacked_mcrs;
695 			sc->sc_nqchip -= 1+npkts;
696 			/*
697 			 * search for further sc_qchip ubsec_q's that share
698 			 * the same MCR, and complete them too, they must be
699 			 * at the top.
700 			 */
701 			for (i = 0; i < npkts; i++) {
702 				if(q->q_stacked_mcr[i])
703 					ubsec_callback(sc, q->q_stacked_mcr[i]);
704 				else
705 					break;
706 			}
707 			ubsec_callback(sc, q);
708 		}
709 
710 		/*
711 		 * Don't send any more packet to chip if there has been
712 		 * a DMAERR.
713 		 */
714 		if (!(stat & BS_STAT_DMAERR))
715 			ubsec_feed(sc);
716 	}
717 
718 	/*
719 	 * Check to see if we have any key setups/rng's waiting for us
720 	 */
721 	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
722 	    (stat & BS_STAT_MCR2_DONE)) {
723 		struct ubsec_q2 *q2;
724 		struct ubsec_mcr *mcr;
725 
726 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
727 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
728 
729 			bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
730 			    0, q2->q_mcr.dma_map->dm_mapsize,
731 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
732 
733 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
734 
735 			/* A bug in new devices requires to swap this field */
736 			if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
737 				flags = htole16(mcr->mcr_flags);
738 			else
739 				flags = mcr->mcr_flags;
740 			if ((flags & htole16(UBS_MCR_DONE)) == 0) {
741 				bus_dmamap_sync(sc->sc_dmat,
742 				    q2->q_mcr.dma_map, 0,
743 				    q2->q_mcr.dma_map->dm_mapsize,
744 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
745 				break;
746 			}
747 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
748 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, /*q2,*/ q_next);
749 			ubsec_callback2(sc, q2);
750 			/*
751 			 * Don't send any more packet to chip if there has been
752 			 * a DMAERR.
753 			 */
754 			if (!(stat & BS_STAT_DMAERR))
755 				ubsec_feed2(sc);
756 		}
757 	}
758 	if ((sc->sc_flags & UBS_FLAGS_RNG4) && (stat & BS_STAT_MCR4_DONE)) {
759 		struct ubsec_q2 *q2;
760 		struct ubsec_mcr *mcr;
761 
762 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip4)) {
763 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip4);
764 
765 			bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
766 			    0, q2->q_mcr.dma_map->dm_mapsize,
767 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
768 
769 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
770 
771 			/* A bug in new devices requires to swap this field */
772 			flags = htole16(mcr->mcr_flags);
773 
774 			if ((flags & htole16(UBS_MCR_DONE)) == 0) {
775 				bus_dmamap_sync(sc->sc_dmat,
776 				    q2->q_mcr.dma_map, 0,
777 				    q2->q_mcr.dma_map->dm_mapsize,
778 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
779 				break;
780 			}
781 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip4, q_next);
782 			ubsec_callback2(sc, q2);
783 			/*
784 			 * Don't send any more packet to chip if there has been
785 			 * a DMAERR.
786 			 */
787 			if (!(stat & BS_STAT_DMAERR))
788 				ubsec_feed4(sc);
789 		}
790 	}
791 
792 	/*
793 	 * Check to see if we got any DMA Error
794 	 */
795 	if (stat & BS_STAT_DMAERR) {
796 #ifdef UBSEC_DEBUG
797 		if (ubsec_debug) {
798 			volatile u_int32_t a = READ_REG(sc, BS_ERR);
799 
800 			printf("%s: dmaerr %s@%08x\n", device_xname(sc->sc_dev),
801 			    (a & BS_ERR_READ) ? "read" : "write",
802 			       a & BS_ERR_ADDR);
803 		}
804 #endif /* UBSEC_DEBUG */
805 		ubsecstats.hst_dmaerr++;
806 		ubsec_totalreset(sc);
807 		ubsec_feed(sc);
808 	}
809 
810 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
811 		int wkeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
812 #ifdef UBSEC_DEBUG
813 		if (ubsec_debug)
814 			printf("%s: wakeup crypto (%x)\n", device_xname(sc->sc_dev),
815 				sc->sc_needwakeup);
816 #endif /* UBSEC_DEBUG */
817 		sc->sc_needwakeup &= ~wkeup;
818 		crypto_unblock(sc->sc_cid, wkeup);
819 	}
820 	mutex_spin_exit(&sc->sc_mtx);
821 	return (1);
822 }
823 
824 /*
825  * ubsec_feed() - aggregate and post requests to chip
826  * OpenBSD comments:
827  *		  It is assumed that the caller set splnet()
828  */
829 static void
830 ubsec_feed(struct ubsec_softc *sc)
831 {
832 	struct ubsec_q *q, *q2;
833 	int npkts, i;
834 	void *v;
835 	u_int32_t stat;
836 #ifdef UBSEC_DEBUG
837 	static int max;
838 #endif /* UBSEC_DEBUG */
839 
840 	npkts = sc->sc_nqueue;
841 	if (npkts > ubsecstats.hst_maxqueue)
842 		ubsecstats.hst_maxqueue = npkts;
843 	if (npkts < 2)
844 		goto feed1;
845 
846 	/*
847 	 * Decide how many ops to combine in a single MCR.  We cannot
848 	 * aggregate more than UBS_MAX_AGGR because this is the number
849 	 * of slots defined in the data structure.  Otherwise we clamp
850 	 * based on the tunable parameter ubsec_maxaggr.  Note that
851 	 * aggregation can happen in two ways: either by batching ops
852 	 * from above or because the h/w backs up and throttles us.
853 	 * Aggregating ops reduces the number of interrupts to the host
854 	 * but also (potentially) increases the latency for processing
855 	 * completed ops as we only get an interrupt when all aggregated
856 	 * ops have completed.
857 	 */
858 	if (npkts > sc->sc_maxaggr)
859 		npkts = sc->sc_maxaggr;
860 	if (npkts > ubsec_maxaggr)
861 		npkts = ubsec_maxaggr;
862 	if (npkts > ubsecstats.hst_maxbatch)
863 		ubsecstats.hst_maxbatch = npkts;
864 	if (npkts < 2)
865 		goto feed1;
866 	ubsecstats.hst_totbatch += npkts-1;
867 
868 	if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
869 		if (stat & BS_STAT_DMAERR) {
870 			ubsec_totalreset(sc);
871 			ubsecstats.hst_dmaerr++;
872 		} else {
873 			ubsecstats.hst_mcr1full++;
874 		}
875 		return;
876 	}
877 
878 #ifdef UBSEC_DEBUG
879 	if (ubsec_debug)
880 	    printf("merging %d records\n", npkts);
881 	/* XXX temporary aggregation statistics reporting code */
882 	if (max < npkts) {
883 		max = npkts;
884 		printf("%s: new max aggregate %d\n", device_xname(sc->sc_dev), max);
885 	}
886 #endif /* UBSEC_DEBUG */
887 
888 	q = SIMPLEQ_FIRST(&sc->sc_queue);
889 	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
890 	--sc->sc_nqueue;
891 
892 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
893 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
894 	if (q->q_dst_map != NULL)
895 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
896 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
897 
898 	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
899 
900 	for (i = 0; i < q->q_nstacked_mcrs; i++) {
901 		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
902 		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
903 		    0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
904 		if (q2->q_dst_map != NULL)
905 			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
906 			    0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
907 		q2= SIMPLEQ_FIRST(&sc->sc_queue);
908 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q2,*/ q_next);
909 		--sc->sc_nqueue;
910 
911 		v = ((void *)&q2->q_dma->d_dma->d_mcr);
912 		v = (char*)v + (sizeof(struct ubsec_mcr) -
913 				 sizeof(struct ubsec_mcr_add));
914 		memcpy(&q->q_dma->d_dma->d_mcradd[i], v, sizeof(struct ubsec_mcr_add));
915 		q->q_stacked_mcr[i] = q2;
916 	}
917 	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
918 	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
919 	sc->sc_nqchip += npkts;
920 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
921 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
922 	bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
923 	    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
924 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
925 	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
926 	    offsetof(struct ubsec_dmachunk, d_mcr));
927 	return;
928 
929 feed1:
930 	while (!SIMPLEQ_EMPTY(&sc->sc_queue)) {
931 		if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
932 			if (stat & BS_STAT_DMAERR) {
933 				ubsec_totalreset(sc);
934 				ubsecstats.hst_dmaerr++;
935 			} else {
936 				ubsecstats.hst_mcr1full++;
937 			}
938 			break;
939 		}
940 
941 		q = SIMPLEQ_FIRST(&sc->sc_queue);
942 
943 		bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
944 		    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
945 		if (q->q_dst_map != NULL)
946 			bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
947 			    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
948 		bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
949 		    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
950 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
951 
952 		WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
953 		    offsetof(struct ubsec_dmachunk, d_mcr));
954 #ifdef UBSEC_DEBUG
955 		if (ubsec_debug)
956 			printf("feed: q->chip %p %08x stat %08x\n",
957  		    	       q, (u_int32_t)q->q_dma->d_alloc.dma_paddr,
958 			       stat);
959 #endif /* UBSEC_DEBUG */
960 		q = SIMPLEQ_FIRST(&sc->sc_queue);
961 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
962 		--sc->sc_nqueue;
963 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
964 		sc->sc_nqchip++;
965 	}
966 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
967 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
968 }
969 
970 /*
971  * Allocate a new 'session' and return an encoded session id.  'sidp'
972  * contains our registration id, and should contain an encoded session
973  * id on successful allocation.
974  */
975 static int
976 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
977 {
978 	struct cryptoini *c, *encini = NULL, *macini = NULL;
979 	struct ubsec_softc *sc;
980 	struct ubsec_session *ses = NULL;
981 	MD5_CTX md5ctx;
982 	SHA1_CTX sha1ctx;
983 	int i, sesn;
984 
985 	sc = arg;
986 	KASSERT(sc != NULL /*, ("ubsec_newsession: null softc")*/);
987 
988 	if (sidp == NULL || cri == NULL || sc == NULL)
989 		return (EINVAL);
990 
991 	for (c = cri; c != NULL; c = c->cri_next) {
992 		if (c->cri_alg == CRYPTO_MD5_HMAC_96 ||
993 		    c->cri_alg == CRYPTO_SHA1_HMAC_96) {
994 			if (macini)
995 				return (EINVAL);
996 			macini = c;
997 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
998 		    c->cri_alg == CRYPTO_3DES_CBC) {
999 			if (encini)
1000 				return (EINVAL);
1001 			encini = c;
1002 		} else
1003 			return (EINVAL);
1004 	}
1005 	if (encini == NULL && macini == NULL)
1006 		return (EINVAL);
1007 
1008 	if (sc->sc_sessions == NULL) {
1009 		ses = sc->sc_sessions = (struct ubsec_session *)malloc(
1010 		    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
1011 		if (ses == NULL)
1012 			return (ENOMEM);
1013 		sesn = 0;
1014 		sc->sc_nsessions = 1;
1015 	} else {
1016 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
1017 			if (sc->sc_sessions[sesn].ses_used == 0) {
1018 				ses = &sc->sc_sessions[sesn];
1019 				break;
1020 			}
1021 		}
1022 
1023 		if (ses == NULL) {
1024 			sesn = sc->sc_nsessions;
1025 			ses = (struct ubsec_session *)malloc((sesn + 1) *
1026 			    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
1027 			if (ses == NULL)
1028 				return (ENOMEM);
1029 			memcpy(ses, sc->sc_sessions, sesn *
1030 			    sizeof(struct ubsec_session));
1031 			memset(sc->sc_sessions, 0, sesn *
1032 			    sizeof(struct ubsec_session));
1033 			free(sc->sc_sessions, M_DEVBUF);
1034 			sc->sc_sessions = ses;
1035 			ses = &sc->sc_sessions[sesn];
1036 			sc->sc_nsessions++;
1037 		}
1038 	}
1039 
1040 	memset(ses, 0, sizeof(struct ubsec_session));
1041 	ses->ses_used = 1;
1042 	if (encini) {
1043 		/* get an IV, network byte order */
1044 #ifdef __NetBSD__
1045 		cprng_fast(ses->ses_iv, sizeof(ses->ses_iv));
1046 #else
1047 		get_random_bytes(ses->ses_iv, sizeof(ses->ses_iv));
1048 #endif
1049 
1050 		/* Go ahead and compute key in ubsec's byte order */
1051 		if (encini->cri_alg == CRYPTO_DES_CBC) {
1052 			memcpy(&ses->ses_deskey[0], encini->cri_key, 8);
1053 			memcpy(&ses->ses_deskey[2], encini->cri_key, 8);
1054 			memcpy(&ses->ses_deskey[4], encini->cri_key, 8);
1055 		} else
1056 			memcpy(ses->ses_deskey, encini->cri_key, 24);
1057 
1058 		SWAP32(ses->ses_deskey[0]);
1059 		SWAP32(ses->ses_deskey[1]);
1060 		SWAP32(ses->ses_deskey[2]);
1061 		SWAP32(ses->ses_deskey[3]);
1062 		SWAP32(ses->ses_deskey[4]);
1063 		SWAP32(ses->ses_deskey[5]);
1064 	}
1065 
1066 	if (macini) {
1067 		for (i = 0; i < macini->cri_klen / 8; i++)
1068 			macini->cri_key[i] ^= HMAC_IPAD_VAL;
1069 
1070 		if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
1071 			MD5Init(&md5ctx);
1072 			MD5Update(&md5ctx, macini->cri_key,
1073 			    macini->cri_klen / 8);
1074 			MD5Update(&md5ctx, hmac_ipad_buffer,
1075 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1076 			memcpy(ses->ses_hminner, md5ctx.state,
1077 			    sizeof(md5ctx.state));
1078 		} else {
1079 			SHA1Init(&sha1ctx);
1080 			SHA1Update(&sha1ctx, macini->cri_key,
1081 			    macini->cri_klen / 8);
1082 			SHA1Update(&sha1ctx, hmac_ipad_buffer,
1083 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1084 			memcpy(ses->ses_hminner, sha1ctx.state,
1085 			    sizeof(sha1ctx.state));
1086 		}
1087 
1088 		for (i = 0; i < macini->cri_klen / 8; i++)
1089 			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
1090 
1091 		if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
1092 			MD5Init(&md5ctx);
1093 			MD5Update(&md5ctx, macini->cri_key,
1094 			    macini->cri_klen / 8);
1095 			MD5Update(&md5ctx, hmac_opad_buffer,
1096 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1097 			memcpy(ses->ses_hmouter, md5ctx.state,
1098 			    sizeof(md5ctx.state));
1099 		} else {
1100 			SHA1Init(&sha1ctx);
1101 			SHA1Update(&sha1ctx, macini->cri_key,
1102 			    macini->cri_klen / 8);
1103 			SHA1Update(&sha1ctx, hmac_opad_buffer,
1104 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1105 			memcpy(ses->ses_hmouter, sha1ctx.state,
1106 			    sizeof(sha1ctx.state));
1107 		}
1108 
1109 		for (i = 0; i < macini->cri_klen / 8; i++)
1110 			macini->cri_key[i] ^= HMAC_OPAD_VAL;
1111 	}
1112 
1113 	*sidp = UBSEC_SID(device_unit(sc->sc_dev), sesn);
1114 	return (0);
1115 }
1116 
1117 /*
1118  * Deallocate a session.
1119  */
1120 static int
1121 ubsec_freesession(void *arg, u_int64_t tid)
1122 {
1123 	struct ubsec_softc *sc;
1124 	int session;
1125 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
1126 
1127 	sc = arg;
1128 	KASSERT(sc != NULL /*, ("ubsec_freesession: null softc")*/);
1129 
1130 	session = UBSEC_SESSION(sid);
1131 	if (session >= sc->sc_nsessions)
1132 		return (EINVAL);
1133 
1134 	memset(&sc->sc_sessions[session], 0, sizeof(sc->sc_sessions[session]));
1135 	return (0);
1136 }
1137 
1138 #ifdef __FreeBSD__ /* Ugly gratuitous changes to bus_dma */
1139 static void
1140 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
1141 {
1142 	struct ubsec_operand *op = arg;
1143 
1144 	KASSERT(nsegs <= UBS_MAX_SCATTER
1145 		/*, ("Too many DMA segments returned when mapping operand")*/);
1146 #ifdef UBSEC_DEBUG
1147 	if (ubsec_debug)
1148 		printf("ubsec_op_cb: mapsize %u nsegs %d\n",
1149 			(u_int) mapsize, nsegs);
1150 #endif
1151 	op->mapsize = mapsize;
1152 	op->nsegs = nsegs;
1153 	memcpy(op->segs, seg, nsegs * sizeof (seg[0]));
1154 }
1155 #endif
1156 
1157 static int
1158 ubsec_process(void *arg, struct cryptop *crp, int hint)
1159 {
1160 	struct ubsec_q *q = NULL;
1161 #ifdef	__OpenBSD__
1162 	int card;
1163 #endif
1164 	int err = 0, i, j, nicealign;
1165 	struct ubsec_softc *sc;
1166 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1167 	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1168 	int sskip, dskip, stheend, dtheend;
1169 	int16_t coffset;
1170 	struct ubsec_session *ses;
1171 	struct ubsec_pktctx ctx;
1172 	struct ubsec_dma *dmap = NULL;
1173 
1174 	sc = arg;
1175 	KASSERT(sc != NULL /*, ("ubsec_process: null softc")*/);
1176 
1177 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
1178 		ubsecstats.hst_invalid++;
1179 		return (EINVAL);
1180 	}
1181 	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
1182 		ubsecstats.hst_badsession++;
1183 		return (EINVAL);
1184 	}
1185 
1186 	mutex_spin_enter(&sc->sc_mtx);
1187 
1188 	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1189 		ubsecstats.hst_queuefull++;
1190 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1191 		mutex_spin_exit(&sc->sc_mtx);
1192 		return(ERESTART);
1193 	}
1194 
1195 	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
1196 	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, /*q,*/ q_next);
1197 	mutex_spin_exit(&sc->sc_mtx);
1198 
1199 	dmap = q->q_dma; /* Save dma pointer */
1200 	memset(q, 0, sizeof(struct ubsec_q));
1201 	memset(&ctx, 0, sizeof(ctx));
1202 
1203 	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1204 	q->q_dma = dmap;
1205 	ses = &sc->sc_sessions[q->q_sesn];
1206 
1207 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1208 		q->q_src_m = (struct mbuf *)crp->crp_buf;
1209 		q->q_dst_m = (struct mbuf *)crp->crp_buf;
1210 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1211 		q->q_src_io = (struct uio *)crp->crp_buf;
1212 		q->q_dst_io = (struct uio *)crp->crp_buf;
1213 	} else {
1214 		ubsecstats.hst_badflags++;
1215 		err = EINVAL;
1216 		goto errout;	/* XXX we don't handle contiguous blocks! */
1217 	}
1218 
1219 	memset(&dmap->d_dma->d_mcr, 0, sizeof(struct ubsec_mcr));
1220 
1221 	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1222 	dmap->d_dma->d_mcr.mcr_flags = 0;
1223 	q->q_crp = crp;
1224 
1225 	crd1 = crp->crp_desc;
1226 	if (crd1 == NULL) {
1227 		ubsecstats.hst_nodesc++;
1228 		err = EINVAL;
1229 		goto errout;
1230 	}
1231 	crd2 = crd1->crd_next;
1232 
1233 	if (crd2 == NULL) {
1234 		if (crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
1235 		    crd1->crd_alg == CRYPTO_SHA1_HMAC_96) {
1236 			maccrd = crd1;
1237 			enccrd = NULL;
1238 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1239 		    crd1->crd_alg == CRYPTO_3DES_CBC) {
1240 			maccrd = NULL;
1241 			enccrd = crd1;
1242 		} else {
1243 			ubsecstats.hst_badalg++;
1244 			err = EINVAL;
1245 			goto errout;
1246 		}
1247 	} else {
1248 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
1249 		    crd1->crd_alg == CRYPTO_SHA1_HMAC_96) &&
1250 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
1251 			crd2->crd_alg == CRYPTO_3DES_CBC) &&
1252 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1253 			maccrd = crd1;
1254 			enccrd = crd2;
1255 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1256 		    crd1->crd_alg == CRYPTO_3DES_CBC) &&
1257 		    (crd2->crd_alg == CRYPTO_MD5_HMAC_96 ||
1258 			crd2->crd_alg == CRYPTO_SHA1_HMAC_96) &&
1259 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
1260 			enccrd = crd1;
1261 			maccrd = crd2;
1262 		} else {
1263 			/*
1264 			 * We cannot order the ubsec as requested
1265 			 */
1266 			ubsecstats.hst_badalg++;
1267 			err = EINVAL;
1268 			goto errout;
1269 		}
1270 	}
1271 
1272 	if (enccrd) {
1273 		encoffset = enccrd->crd_skip;
1274 		ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1275 
1276 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1277 			q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1278 
1279 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1280 				memcpy(ctx.pc_iv, enccrd->crd_iv, 8);
1281 			else {
1282 				ctx.pc_iv[0] = ses->ses_iv[0];
1283 				ctx.pc_iv[1] = ses->ses_iv[1];
1284 			}
1285 
1286 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1287 				if (crp->crp_flags & CRYPTO_F_IMBUF)
1288 					m_copyback(q->q_src_m,
1289 					    enccrd->crd_inject,
1290 					    8, (void *)ctx.pc_iv);
1291 				else if (crp->crp_flags & CRYPTO_F_IOV)
1292 					cuio_copyback(q->q_src_io,
1293 					    enccrd->crd_inject,
1294 					    8, (void *)ctx.pc_iv);
1295 			}
1296 		} else {
1297 			ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1298 
1299 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1300 				memcpy(ctx.pc_iv, enccrd->crd_iv, 8);
1301 			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1302 				m_copydata(q->q_src_m, enccrd->crd_inject,
1303 				    8, (void *)ctx.pc_iv);
1304 			else if (crp->crp_flags & CRYPTO_F_IOV)
1305 				cuio_copydata(q->q_src_io,
1306 				    enccrd->crd_inject, 8,
1307 				    (void *)ctx.pc_iv);
1308 		}
1309 
1310 		ctx.pc_deskey[0] = ses->ses_deskey[0];
1311 		ctx.pc_deskey[1] = ses->ses_deskey[1];
1312 		ctx.pc_deskey[2] = ses->ses_deskey[2];
1313 		ctx.pc_deskey[3] = ses->ses_deskey[3];
1314 		ctx.pc_deskey[4] = ses->ses_deskey[4];
1315 		ctx.pc_deskey[5] = ses->ses_deskey[5];
1316 		SWAP32(ctx.pc_iv[0]);
1317 		SWAP32(ctx.pc_iv[1]);
1318 	}
1319 
1320 	if (maccrd) {
1321 		macoffset = maccrd->crd_skip;
1322 
1323 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC_96)
1324 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1325 		else
1326 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1327 
1328 		for (i = 0; i < 5; i++) {
1329 			ctx.pc_hminner[i] = ses->ses_hminner[i];
1330 			ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1331 
1332 			HTOLE32(ctx.pc_hminner[i]);
1333 			HTOLE32(ctx.pc_hmouter[i]);
1334 		}
1335 	}
1336 
1337 	if (enccrd && maccrd) {
1338 		/*
1339 		 * ubsec cannot handle packets where the end of encryption
1340 		 * and authentication are not the same, or where the
1341 		 * encrypted part begins before the authenticated part.
1342 		 */
1343 		if ((encoffset + enccrd->crd_len) !=
1344 		    (macoffset + maccrd->crd_len)) {
1345 			ubsecstats.hst_lenmismatch++;
1346 			err = EINVAL;
1347 			goto errout;
1348 		}
1349 		if (enccrd->crd_skip < maccrd->crd_skip) {
1350 			ubsecstats.hst_skipmismatch++;
1351 			err = EINVAL;
1352 			goto errout;
1353 		}
1354 		sskip = maccrd->crd_skip;
1355 		cpskip = dskip = enccrd->crd_skip;
1356 		stheend = maccrd->crd_len;
1357 		dtheend = enccrd->crd_len;
1358 		coffset = enccrd->crd_skip - maccrd->crd_skip;
1359 		cpoffset = cpskip + dtheend;
1360 #ifdef UBSEC_DEBUG
1361 		if (ubsec_debug) {
1362 			printf("mac: skip %d, len %d, inject %d\n",
1363 			       maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1364 			printf("enc: skip %d, len %d, inject %d\n",
1365 			       enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1366 			printf("src: skip %d, len %d\n", sskip, stheend);
1367 			printf("dst: skip %d, len %d\n", dskip, dtheend);
1368 			printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1369 			       coffset, stheend, cpskip, cpoffset);
1370 		}
1371 #endif
1372 	} else {
1373 		cpskip = dskip = sskip = macoffset + encoffset;
1374 		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1375 		cpoffset = cpskip + dtheend;
1376 		coffset = 0;
1377 	}
1378 	ctx.pc_offset = htole16(coffset >> 2);
1379 
1380 	/* XXX FIXME: jonathan asks, what the heck's that 0xfff0?  */
1381 	if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
1382 		0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
1383 		err = ENOMEM;
1384 		goto errout;
1385 	}
1386 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1387 		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1388 		    q->q_src_m, BUS_DMA_NOWAIT) != 0) {
1389 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1390 			q->q_src_map = NULL;
1391 			ubsecstats.hst_noload++;
1392 			err = ENOMEM;
1393 			goto errout;
1394 		}
1395 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1396 		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1397 		    q->q_src_io, BUS_DMA_NOWAIT) != 0) {
1398 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1399 			q->q_src_map = NULL;
1400 			ubsecstats.hst_noload++;
1401 			err = ENOMEM;
1402 			goto errout;
1403 		}
1404 	}
1405 	nicealign = ubsec_dmamap_aligned(q->q_src_map);
1406 
1407 	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1408 
1409 #ifdef UBSEC_DEBUG
1410 	if (ubsec_debug)
1411 		printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1412 #endif
1413 	for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) {
1414 		struct ubsec_pktbuf *pb;
1415 		bus_size_t packl = q->q_src_map->dm_segs[i].ds_len;
1416 		bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr;
1417 
1418 		if (sskip >= packl) {
1419 			sskip -= packl;
1420 			continue;
1421 		}
1422 
1423 		packl -= sskip;
1424 		packp += sskip;
1425 		sskip = 0;
1426 
1427 		if (packl > 0xfffc) {
1428 			err = EIO;
1429 			goto errout;
1430 		}
1431 
1432 		if (j == 0)
1433 			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1434 		else
1435 			pb = &dmap->d_dma->d_sbuf[j - 1];
1436 
1437 		pb->pb_addr = htole32(packp);
1438 
1439 		if (stheend) {
1440 			if (packl > stheend) {
1441 				pb->pb_len = htole32(stheend);
1442 				stheend = 0;
1443 			} else {
1444 				pb->pb_len = htole32(packl);
1445 				stheend -= packl;
1446 			}
1447 		} else
1448 			pb->pb_len = htole32(packl);
1449 
1450 		if ((i + 1) == q->q_src_map->dm_nsegs)
1451 			pb->pb_next = 0;
1452 		else
1453 			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1454 			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1455 		j++;
1456 	}
1457 
1458 	if (enccrd == NULL && maccrd != NULL) {
1459 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1460 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1461 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1462 		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1463 #ifdef UBSEC_DEBUG
1464 		if (ubsec_debug)
1465 			printf("opkt: %x %x %x\n",
1466 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1467 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1468 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1469 
1470 #endif
1471 	} else {
1472 		if (crp->crp_flags & CRYPTO_F_IOV) {
1473 			if (!nicealign) {
1474 				ubsecstats.hst_iovmisaligned++;
1475 				err = EINVAL;
1476 				goto errout;
1477 			}
1478 			/* XXX: ``what the heck's that'' 0xfff0? */
1479 			if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1480 			    UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1481 			    &q->q_dst_map) != 0) {
1482 				ubsecstats.hst_nomap++;
1483 				err = ENOMEM;
1484 				goto errout;
1485 			}
1486 			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1487 			    q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
1488 				bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1489 				q->q_dst_map = NULL;
1490 				ubsecstats.hst_noload++;
1491 				err = ENOMEM;
1492 				goto errout;
1493 			}
1494 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1495 			if (nicealign) {
1496 				q->q_dst_m = q->q_src_m;
1497 				q->q_dst_map = q->q_src_map;
1498 			} else {
1499 				int totlen, len;
1500 				struct mbuf *m, *top, **mp;
1501 
1502 				ubsecstats.hst_unaligned++;
1503 				totlen = q->q_src_map->dm_mapsize;
1504 				if (q->q_src_m->m_flags & M_PKTHDR) {
1505 					len = MHLEN;
1506 					MGETHDR(m, M_DONTWAIT, MT_DATA);
1507 					/*XXX FIXME: m_dup_pkthdr */
1508 					if (m && 1 /*!m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)*/) {
1509 						m_free(m);
1510 						m = NULL;
1511 					}
1512 				} else {
1513 					len = MLEN;
1514 					MGET(m, M_DONTWAIT, MT_DATA);
1515 				}
1516 				if (m == NULL) {
1517 					ubsecstats.hst_nombuf++;
1518 					err = sc->sc_nqueue ? ERESTART : ENOMEM;
1519 					goto errout;
1520 				}
1521 				if (len == MHLEN)
1522 				  /*XXX was M_DUP_PKTHDR*/
1523 				  M_COPY_PKTHDR(m, q->q_src_m);
1524 				if (totlen >= MINCLSIZE) {
1525 					MCLGET(m, M_DONTWAIT);
1526 					if ((m->m_flags & M_EXT) == 0) {
1527 						m_free(m);
1528 						ubsecstats.hst_nomcl++;
1529 						err = sc->sc_nqueue ? ERESTART : ENOMEM;
1530 						goto errout;
1531 					}
1532 					len = MCLBYTES;
1533 				}
1534 				m->m_len = len;
1535 				top = NULL;
1536 				mp = &top;
1537 
1538 				while (totlen > 0) {
1539 					if (top) {
1540 						MGET(m, M_DONTWAIT, MT_DATA);
1541 						if (m == NULL) {
1542 							m_freem(top);
1543 							ubsecstats.hst_nombuf++;
1544 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1545 							goto errout;
1546 						}
1547 						len = MLEN;
1548 					}
1549 					if (top && totlen >= MINCLSIZE) {
1550 						MCLGET(m, M_DONTWAIT);
1551 						if ((m->m_flags & M_EXT) == 0) {
1552 							*mp = m;
1553 							m_freem(top);
1554 							ubsecstats.hst_nomcl++;
1555 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1556 							goto errout;
1557 						}
1558 						len = MCLBYTES;
1559 					}
1560 					m->m_len = len = min(totlen, len);
1561 					totlen -= len;
1562 					*mp = m;
1563 					mp = &m->m_next;
1564 				}
1565 				q->q_dst_m = top;
1566 				ubsec_mcopy(q->q_src_m, q->q_dst_m,
1567 				    cpskip, cpoffset);
1568 				/* XXX again, what the heck is that 0xfff0? */
1569 				if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1570 				    UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1571 				    &q->q_dst_map) != 0) {
1572 					ubsecstats.hst_nomap++;
1573 					err = ENOMEM;
1574 					goto errout;
1575 				}
1576 				if (bus_dmamap_load_mbuf(sc->sc_dmat,
1577 				    q->q_dst_map, q->q_dst_m,
1578 				    BUS_DMA_NOWAIT) != 0) {
1579 					bus_dmamap_destroy(sc->sc_dmat,
1580 					q->q_dst_map);
1581 					q->q_dst_map = NULL;
1582 					ubsecstats.hst_noload++;
1583 					err = ENOMEM;
1584 					goto errout;
1585 				}
1586 			}
1587 		} else {
1588 			ubsecstats.hst_badflags++;
1589 			err = EINVAL;
1590 			goto errout;
1591 		}
1592 
1593 #ifdef UBSEC_DEBUG
1594 		if (ubsec_debug)
1595 			printf("dst skip: %d\n", dskip);
1596 #endif
1597 		for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) {
1598 			struct ubsec_pktbuf *pb;
1599 			bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len;
1600 			bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr;
1601 
1602 			if (dskip >= packl) {
1603 				dskip -= packl;
1604 				continue;
1605 			}
1606 
1607 			packl -= dskip;
1608 			packp += dskip;
1609 			dskip = 0;
1610 
1611 			if (packl > 0xfffc) {
1612 				err = EIO;
1613 				goto errout;
1614 			}
1615 
1616 			if (j == 0)
1617 				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1618 			else
1619 				pb = &dmap->d_dma->d_dbuf[j - 1];
1620 
1621 			pb->pb_addr = htole32(packp);
1622 
1623 			if (dtheend) {
1624 				if (packl > dtheend) {
1625 					pb->pb_len = htole32(dtheend);
1626 					dtheend = 0;
1627 				} else {
1628 					pb->pb_len = htole32(packl);
1629 					dtheend -= packl;
1630 				}
1631 			} else
1632 				pb->pb_len = htole32(packl);
1633 
1634 			if ((i + 1) == q->q_dst_map->dm_nsegs) {
1635 				if (maccrd)
1636 					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1637 					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1638 				else
1639 					pb->pb_next = 0;
1640 			} else
1641 				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1642 				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1643 			j++;
1644 		}
1645 	}
1646 
1647 	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1648 	    offsetof(struct ubsec_dmachunk, d_ctx));
1649 
1650 	if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1651 		struct ubsec_pktctx_long *ctxl;
1652 
1653 		ctxl = (struct ubsec_pktctx_long *)((char *)dmap->d_alloc.dma_vaddr +
1654 		    offsetof(struct ubsec_dmachunk, d_ctx));
1655 
1656 		/* transform small context into long context */
1657 		ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
1658 		ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
1659 		ctxl->pc_flags = ctx.pc_flags;
1660 		ctxl->pc_offset = ctx.pc_offset;
1661 		for (i = 0; i < 6; i++)
1662 			ctxl->pc_deskey[i] = ctx.pc_deskey[i];
1663 		for (i = 0; i < 5; i++)
1664 			ctxl->pc_hminner[i] = ctx.pc_hminner[i];
1665 		for (i = 0; i < 5; i++)
1666 			ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
1667 		ctxl->pc_iv[0] = ctx.pc_iv[0];
1668 		ctxl->pc_iv[1] = ctx.pc_iv[1];
1669 	} else
1670 		memcpy((char *)dmap->d_alloc.dma_vaddr +
1671 		    offsetof(struct ubsec_dmachunk, d_ctx), &ctx,
1672 		    sizeof(struct ubsec_pktctx));
1673 
1674 	mutex_spin_enter(&sc->sc_mtx);
1675 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1676 	sc->sc_nqueue++;
1677 	ubsecstats.hst_ipackets++;
1678 	ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize;
1679 	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch)
1680 		ubsec_feed(sc);
1681 	mutex_spin_exit(&sc->sc_mtx);
1682 	return (0);
1683 
1684 errout:
1685 	if (q != NULL) {
1686 		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1687 			m_freem(q->q_dst_m);
1688 
1689 		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1690 			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1691 			bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1692 		}
1693 		if (q->q_src_map != NULL) {
1694 			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1695 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1696 		}
1697 
1698 		mutex_spin_enter(&sc->sc_mtx);
1699 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1700 		mutex_spin_exit(&sc->sc_mtx);
1701 	}
1702 #if 0 /* jonathan says: this openbsd code seems to be subsumed elsewhere */
1703 	if (err == EINVAL)
1704 		ubsecstats.hst_invalid++;
1705 	else
1706 		ubsecstats.hst_nomem++;
1707 #endif
1708 	if (err != ERESTART) {
1709 		crp->crp_etype = err;
1710 		crypto_done(crp);
1711 	} else {
1712 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1713 	}
1714 	return (err);
1715 }
1716 
1717 static void
1718 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1719 {
1720 	struct cryptop *crp = (struct cryptop *)q->q_crp;
1721 	struct cryptodesc *crd;
1722 	struct ubsec_dma *dmap = q->q_dma;
1723 
1724 	ubsecstats.hst_opackets++;
1725 	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1726 
1727 	bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
1728 	    dmap->d_alloc.dma_map->dm_mapsize,
1729 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1730 	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1731 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1732 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1733 		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1734 		bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1735 	}
1736 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
1737 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1738 	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1739 	bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1740 
1741 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1742 		m_freem(q->q_src_m);
1743 		crp->crp_buf = (void *)q->q_dst_m;
1744 	}
1745 
1746 	/* copy out IV for future use */
1747 	if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1748 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1749 			if (crd->crd_alg != CRYPTO_DES_CBC &&
1750 			    crd->crd_alg != CRYPTO_3DES_CBC)
1751 				continue;
1752 			if (crp->crp_flags & CRYPTO_F_IMBUF)
1753 				m_copydata((struct mbuf *)crp->crp_buf,
1754 				    crd->crd_skip + crd->crd_len - 8, 8,
1755 				    (void *)sc->sc_sessions[q->q_sesn].ses_iv);
1756 			else if (crp->crp_flags & CRYPTO_F_IOV) {
1757 				cuio_copydata((struct uio *)crp->crp_buf,
1758 				    crd->crd_skip + crd->crd_len - 8, 8,
1759 				    (void *)sc->sc_sessions[q->q_sesn].ses_iv);
1760 			}
1761 			break;
1762 		}
1763 	}
1764 
1765 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1766 		if (crd->crd_alg != CRYPTO_MD5_HMAC_96 &&
1767 		    crd->crd_alg != CRYPTO_SHA1_HMAC_96)
1768 			continue;
1769 		if (crp->crp_flags & CRYPTO_F_IMBUF)
1770 			m_copyback((struct mbuf *)crp->crp_buf,
1771 			    crd->crd_inject, 12,
1772 			    (void *)dmap->d_dma->d_macbuf);
1773 		else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1774 			bcopy((void *)dmap->d_dma->d_macbuf,
1775 			    crp->crp_mac, 12);
1776 		break;
1777 	}
1778 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1779 	crypto_done(crp);
1780 }
1781 
1782 static void
1783 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1784 {
1785 	int i, j, dlen, slen;
1786 	char *dptr, *sptr;
1787 
1788 	j = 0;
1789 	sptr = srcm->m_data;
1790 	slen = srcm->m_len;
1791 	dptr = dstm->m_data;
1792 	dlen = dstm->m_len;
1793 
1794 	while (1) {
1795 		for (i = 0; i < min(slen, dlen); i++) {
1796 			if (j < hoffset || j >= toffset)
1797 				*dptr++ = *sptr++;
1798 			slen--;
1799 			dlen--;
1800 			j++;
1801 		}
1802 		if (slen == 0) {
1803 			srcm = srcm->m_next;
1804 			if (srcm == NULL)
1805 				return;
1806 			sptr = srcm->m_data;
1807 			slen = srcm->m_len;
1808 		}
1809 		if (dlen == 0) {
1810 			dstm = dstm->m_next;
1811 			if (dstm == NULL)
1812 				return;
1813 			dptr = dstm->m_data;
1814 			dlen = dstm->m_len;
1815 		}
1816 	}
1817 }
1818 
1819 /*
1820  * feed the key generator, must be called at splnet() or higher.
1821  */
1822 static void
1823 ubsec_feed2(struct ubsec_softc *sc)
1824 {
1825 	struct ubsec_q2 *q;
1826 
1827 	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1828 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1829 			break;
1830 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1831 
1832 		bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1833 		    q->q_mcr.dma_map->dm_mapsize,
1834 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1835 		bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1836 		    q->q_ctx.dma_map->dm_mapsize,
1837 		    BUS_DMASYNC_PREWRITE);
1838 
1839 		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1840 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1841 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, /*q,*/ q_next);
1842 		--sc->sc_nqueue2;
1843 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1844 	}
1845 }
1846 
1847 /*
1848  * feed the RNG (used instead of ubsec_feed2() on 5827+ devices)
1849  */
1850 void
1851 ubsec_feed4(struct ubsec_softc *sc)
1852 {
1853 	struct ubsec_q2 *q;
1854 
1855 	while (!SIMPLEQ_EMPTY(&sc->sc_queue4)) {
1856 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR4_FULL)
1857 			break;
1858 		q = SIMPLEQ_FIRST(&sc->sc_queue4);
1859 
1860 		bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1861 		    q->q_mcr.dma_map->dm_mapsize,
1862 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1863 		bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1864 		    q->q_ctx.dma_map->dm_mapsize,
1865 		    BUS_DMASYNC_PREWRITE);
1866 
1867 		WRITE_REG(sc, BS_MCR4, q->q_mcr.dma_paddr);
1868 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue4, q_next);
1869 		--sc->sc_nqueue4;
1870 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip4, q, q_next);
1871 	}
1872 }
1873 
1874 /*
1875  * Callback for handling random numbers
1876  */
1877 static void
1878 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
1879 {
1880 	struct cryptkop *krp;
1881 	struct ubsec_ctx_keyop *ctx;
1882 
1883 	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
1884 	bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1885 	    q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1886 
1887 	switch (q->q_type) {
1888 #ifndef UBSEC_NO_RNG
1889 	case UBS_CTXOP_RNGSHA1:
1890 	case UBS_CTXOP_RNGBYPASS: {
1891 		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
1892 		u_int32_t *p;
1893 		int i;
1894 
1895 		bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
1896 		    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1897 		p = (u_int32_t *)rng->rng_buf.dma_vaddr;
1898 #ifndef __NetBSD__
1899 		for (i = 0; i < UBSEC_RNG_BUFSIZ; p++, i++)
1900 			add_true_randomness(letoh32(*p));
1901 #else
1902 		i = UBSEC_RNG_BUFSIZ * sizeof(u_int32_t);
1903 		rnd_add_data(&sc->sc_rnd_source, (char *)p, i, i * NBBY);
1904 		sc->sc_rng_need -= i;
1905 #endif
1906 		rng->rng_used = 0;
1907 #ifdef __OpenBSD__
1908 		timeout_add(&sc->sc_rngto, sc->sc_rnghz);
1909 #else
1910 		if (sc->sc_rng_need > 0) {
1911 			callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
1912 		}
1913 #endif
1914 		break;
1915 	}
1916 #endif
1917 	case UBS_CTXOP_MODEXP: {
1918 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1919 		u_int rlen, clen;
1920 
1921 		krp = me->me_krp;
1922 		rlen = (me->me_modbits + 7) / 8;
1923 		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
1924 
1925 		bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
1926 		    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1927 		bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
1928 		    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1929 		bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
1930 		    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1931 		bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
1932 		    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1933 
1934 		if (clen < rlen)
1935 			krp->krp_status = E2BIG;
1936 		else {
1937 			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
1938 				memset(krp->krp_param[krp->krp_iparams].crp_p, 0,
1939 				    (krp->krp_param[krp->krp_iparams].crp_nbits
1940 					+ 7) / 8);
1941 				bcopy(me->me_C.dma_vaddr,
1942 				    krp->krp_param[krp->krp_iparams].crp_p,
1943 				    (me->me_modbits + 7) / 8);
1944 			} else
1945 				ubsec_kshift_l(me->me_shiftbits,
1946 				    me->me_C.dma_vaddr, me->me_normbits,
1947 				    krp->krp_param[krp->krp_iparams].crp_p,
1948 				    krp->krp_param[krp->krp_iparams].crp_nbits);
1949 		}
1950 
1951 		crypto_kdone(krp);
1952 
1953 		/* bzero all potentially sensitive data */
1954 		memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
1955 		memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
1956 		memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
1957 		memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
1958 
1959 		/* Can't free here, so put us on the free list. */
1960 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
1961 		break;
1962 	}
1963 	case UBS_CTXOP_RSAPRIV: {
1964 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1965 		u_int len;
1966 
1967 		krp = rp->rpr_krp;
1968 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0,
1969 		    rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1970 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0,
1971 		    rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1972 
1973 		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
1974 		bcopy(rp->rpr_msgout.dma_vaddr,
1975 		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
1976 
1977 		crypto_kdone(krp);
1978 
1979 		memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
1980 		memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
1981 		memset(rp->rpr_q.q_ctx.dma_vaddr, 0, rp->rpr_q.q_ctx.dma_size);
1982 
1983 		/* Can't free here, so put us on the free list. */
1984 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
1985 		break;
1986 	}
1987 	default:
1988 		printf("%s: unknown ctx op: %x\n", device_xname(sc->sc_dev),
1989 		    letoh16(ctx->ctx_op));
1990 		break;
1991 	}
1992 }
1993 
1994 #ifndef UBSEC_NO_RNG
1995 
1996 static void
1997 ubsec_rng_get(size_t bytes, void *vsc)
1998 {
1999 	struct ubsec_softc *sc = vsc;
2000 
2001 	mutex_spin_enter(&sc->sc_mtx);
2002 	sc->sc_rng_need = bytes;
2003 	ubsec_rng_locked(sc);
2004 	mutex_spin_exit(&sc->sc_mtx);
2005 
2006 }
2007 
2008 static void
2009 ubsec_rng(void *vsc)
2010 {
2011 	struct ubsec_softc *sc = vsc;
2012 	mutex_spin_enter(&sc->sc_mtx);
2013 	ubsec_rng_locked(sc);
2014 	mutex_spin_exit(&sc->sc_mtx);
2015 }
2016 
2017 static void
2018 ubsec_rng_locked(void *vsc)
2019 {
2020 	struct ubsec_softc *sc = vsc;
2021 	struct ubsec_q2_rng *rng = &sc->sc_rng;
2022 	struct ubsec_mcr *mcr;
2023 	struct ubsec_ctx_rngbypass *ctx;
2024 	int *nqueue;
2025 
2026 	/* Caller is responsible to lock and release sc_mtx. */
2027 	KASSERT(mutex_owned(&sc->sc_mtx));
2028 
2029 	if (rng->rng_used) {
2030 		return;
2031 	}
2032 
2033 	if (sc->sc_rng_need < 1) {
2034 		callout_stop(&sc->sc_rngto);
2035 		return;
2036 	}
2037 
2038 	if (sc->sc_flags & UBS_FLAGS_RNG4)
2039 		nqueue = &sc->sc_nqueue4;
2040 	else
2041 		nqueue = &sc->sc_nqueue2;
2042 
2043 	(*nqueue)++;
2044 	if (*nqueue >= UBS_MAX_NQUEUE)
2045  		goto out;
2046 
2047 	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
2048 	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
2049 
2050 	mcr->mcr_pkts = htole16(1);
2051 	mcr->mcr_flags = 0;
2052 	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
2053 	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
2054 	mcr->mcr_ipktbuf.pb_len = 0;
2055 	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
2056 	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
2057 	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
2058 	    UBS_PKTBUF_LEN);
2059 	mcr->mcr_opktbuf.pb_next = 0;
2060 
2061 	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
2062 	ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1);
2063 	rng->rng_q.q_type = UBS_CTXOP_RNGSHA1;
2064 
2065 	bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
2066 	    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2067 
2068 	if (sc->sc_flags & UBS_FLAGS_RNG4) {
2069 		SIMPLEQ_INSERT_TAIL(&sc->sc_queue4, &rng->rng_q, q_next);
2070 		ubsec_feed4(sc);
2071 	} else {
2072 		SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
2073 		ubsec_feed2(sc);
2074 	}
2075 	rng->rng_used = 1;
2076 	ubsecstats.hst_rng++;
2077 
2078 	return;
2079 
2080 out:
2081 	/*
2082 	 * Something weird happened, generate our own call back.
2083 	 */
2084 	(*nqueue)--;
2085 #ifdef __OpenBSD__
2086 	timeout_add(&sc->sc_rngto, sc->sc_rnghz);
2087 #else
2088 	callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
2089 #endif
2090 }
2091 #endif /* UBSEC_NO_RNG */
2092 
2093 static int
2094 ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size,
2095 		 struct ubsec_dma_alloc *dma,int mapflags)
2096 {
2097 	int r;
2098 
2099 	if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
2100 	    &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0)
2101 		goto fail_0;
2102 
2103 	if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg,
2104 	    size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0)
2105 		goto fail_1;
2106 
2107 	if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
2108 	    BUS_DMA_NOWAIT, &dma->dma_map)) != 0)
2109 		goto fail_2;
2110 
2111 	if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
2112 	    size, NULL, BUS_DMA_NOWAIT)) != 0)
2113 		goto fail_3;
2114 
2115 	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
2116 	dma->dma_size = size;
2117 	return (0);
2118 
2119 fail_3:
2120 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
2121 fail_2:
2122 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
2123 fail_1:
2124 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
2125 fail_0:
2126 	dma->dma_map = NULL;
2127 	return (r);
2128 }
2129 
2130 static void
2131 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
2132 {
2133 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
2134 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
2135 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
2136 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
2137 }
2138 
2139 /*
2140  * Resets the board.  Values in the regesters are left as is
2141  * from the reset (i.e. initial values are assigned elsewhere).
2142  */
2143 static void
2144 ubsec_reset_board(struct ubsec_softc *sc)
2145 {
2146 	volatile u_int32_t ctrl;
2147 
2148 	ctrl = READ_REG(sc, BS_CTRL);
2149 	ctrl |= BS_CTRL_RESET;
2150 	WRITE_REG(sc, BS_CTRL, ctrl);
2151 
2152 	/*
2153 	* Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
2154 	*/
2155 	DELAY(10);
2156 
2157 	/* Enable RNG and interrupts on newer devices */
2158 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
2159 #ifndef UBSEC_NO_RNG
2160 		WRITE_REG(sc, BS_CFG, BS_CFG_RNG);
2161 #endif
2162 		WRITE_REG(sc, BS_INT, BS_INT_DMAINT);
2163 	}
2164 }
2165 
2166 /*
2167  * Init Broadcom registers
2168  */
2169 static void
2170 ubsec_init_board(struct ubsec_softc *sc)
2171 {
2172 	u_int32_t ctrl;
2173 
2174 	ctrl = READ_REG(sc, BS_CTRL);
2175 	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
2176 	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
2177 
2178 	/*
2179 	 * XXX: Sam Leffler's code has (UBS_FLAGS_KEY|UBS_FLAGS_RNG)).
2180 	 * anyone got hw docs?
2181 	 */
2182 	if (sc->sc_flags & UBS_FLAGS_KEY)
2183 		ctrl |= BS_CTRL_MCR2INT;
2184 	else
2185 		ctrl &= ~BS_CTRL_MCR2INT;
2186 
2187 	if (sc->sc_flags & UBS_FLAGS_HWNORM)
2188 		ctrl &= ~BS_CTRL_SWNORM;
2189 
2190 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
2191 		ctrl |= BS_CTRL_BSIZE240;
2192 		ctrl &= ~BS_CTRL_MCR3INT; /* MCR3 is reserved for SSL */
2193 
2194 		if (sc->sc_flags & UBS_FLAGS_RNG4)
2195 			ctrl |= BS_CTRL_MCR4INT;
2196 		else
2197 			ctrl &= ~BS_CTRL_MCR4INT;
2198 	}
2199 
2200 	WRITE_REG(sc, BS_CTRL, ctrl);
2201 }
2202 
2203 /*
2204  * Init Broadcom PCI registers
2205  */
2206 static void
2207 ubsec_init_pciregs(struct pci_attach_args *pa)
2208 {
2209 	pci_chipset_tag_t pc = pa->pa_pc;
2210 	u_int32_t misc;
2211 
2212 	/*
2213 	 * This will set the cache line size to 1, this will
2214 	 * force the BCM58xx chip just to do burst read/writes.
2215 	 * Cache line read/writes are to slow
2216 	 */
2217 	misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG);
2218 	misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT))
2219 	    | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT);
2220 	pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc);
2221 }
2222 
2223 /*
2224  * Clean up after a chip crash.
2225  * It is assumed that the caller in splnet()
2226  */
2227 static void
2228 ubsec_cleanchip(struct ubsec_softc *sc)
2229 {
2230 	struct ubsec_q *q;
2231 
2232 	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
2233 		q = SIMPLEQ_FIRST(&sc->sc_qchip);
2234 		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
2235 		ubsec_free_q(sc, q);
2236 	}
2237 	sc->sc_nqchip = 0;
2238 }
2239 
2240 /*
2241  * free a ubsec_q
2242  * It is assumed that the caller is within splnet()
2243  */
2244 static int
2245 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
2246 {
2247 	struct ubsec_q *q2;
2248 	struct cryptop *crp;
2249 	int npkts;
2250 	int i;
2251 
2252 	npkts = q->q_nstacked_mcrs;
2253 
2254 	for (i = 0; i < npkts; i++) {
2255 		if(q->q_stacked_mcr[i]) {
2256 			q2 = q->q_stacked_mcr[i];
2257 
2258 			if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
2259 				m_freem(q2->q_dst_m);
2260 
2261 			crp = (struct cryptop *)q2->q_crp;
2262 
2263 			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2264 
2265 			crp->crp_etype = EFAULT;
2266 			crypto_done(crp);
2267 		} else {
2268 			break;
2269 		}
2270 	}
2271 
2272 	/*
2273 	 * Free header MCR
2274 	 */
2275 	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2276 		m_freem(q->q_dst_m);
2277 
2278 	crp = (struct cryptop *)q->q_crp;
2279 
2280 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2281 
2282 	crp->crp_etype = EFAULT;
2283 	crypto_done(crp);
2284 	return(0);
2285 }
2286 
2287 /*
2288  * Routine to reset the chip and clean up.
2289  * It is assumed that the caller is in splnet()
2290  */
2291 static void
2292 ubsec_totalreset(struct ubsec_softc *sc)
2293 {
2294 	ubsec_reset_board(sc);
2295 	ubsec_init_board(sc);
2296 	ubsec_cleanchip(sc);
2297 }
2298 
2299 static int
2300 ubsec_dmamap_aligned(bus_dmamap_t map)
2301 {
2302 	int i;
2303 
2304 	for (i = 0; i < map->dm_nsegs; i++) {
2305 		if (map->dm_segs[i].ds_addr & 3)
2306 			return (0);
2307 		if ((i != (map->dm_nsegs - 1)) &&
2308 		    (map->dm_segs[i].ds_len & 3))
2309 			return (0);
2310 	}
2311 	return (1);
2312 }
2313 
2314 #ifdef __OpenBSD__
2315 struct ubsec_softc *
2316 ubsec_kfind(struct cryptkop *krp)
2317 {
2318 	struct ubsec_softc *sc;
2319 	int i;
2320 
2321 	for (i = 0; i < ubsec_cd.cd_ndevs; i++) {
2322 		sc = ubsec_cd.cd_devs[i];
2323 		if (sc == NULL)
2324 			continue;
2325 		if (sc->sc_cid == krp->krp_hid)
2326 			return (sc);
2327 	}
2328 	return (NULL);
2329 }
2330 #endif
2331 
2332 static void
2333 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2334 {
2335 	switch (q->q_type) {
2336 	case UBS_CTXOP_MODEXP: {
2337 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2338 
2339 		ubsec_dma_free(sc, &me->me_q.q_mcr);
2340 		ubsec_dma_free(sc, &me->me_q.q_ctx);
2341 		ubsec_dma_free(sc, &me->me_M);
2342 		ubsec_dma_free(sc, &me->me_E);
2343 		ubsec_dma_free(sc, &me->me_C);
2344 		ubsec_dma_free(sc, &me->me_epb);
2345 		free(me, M_DEVBUF);
2346 		break;
2347 	}
2348 	case UBS_CTXOP_RSAPRIV: {
2349 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2350 
2351 		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2352 		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2353 		ubsec_dma_free(sc, &rp->rpr_msgin);
2354 		ubsec_dma_free(sc, &rp->rpr_msgout);
2355 		free(rp, M_DEVBUF);
2356 		break;
2357 	}
2358 	default:
2359 		printf("%s: invalid kfree 0x%x\n", device_xname(sc->sc_dev),
2360 		    q->q_type);
2361 		break;
2362 	}
2363 }
2364 
2365 static int
2366 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2367 {
2368 	struct ubsec_softc *sc;
2369 	int r;
2370 
2371 	if (krp == NULL || krp->krp_callback == NULL)
2372 		return (EINVAL);
2373 #ifdef __OpenBSD__
2374 	if ((sc = ubsec_kfind(krp)) == NULL)
2375 		return (EINVAL);
2376 #else
2377 	sc = arg;
2378 	KASSERT(sc != NULL /*, ("ubsec_kprocess: null softc")*/);
2379 #endif
2380 
2381 	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2382 		struct ubsec_q2 *q;
2383 
2384 		q = SIMPLEQ_FIRST(&sc->sc_q2free);
2385 		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, /*q,*/ q_next);
2386 		ubsec_kfree(sc, q);
2387 	}
2388 
2389 	switch (krp->krp_op) {
2390 	case CRK_MOD_EXP:
2391 		if (sc->sc_flags & UBS_FLAGS_HWNORM)
2392 			r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2393 		else
2394 			r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2395 		break;
2396 	case CRK_MOD_EXP_CRT:
2397 		r = ubsec_kprocess_rsapriv(sc, krp, hint);
2398 		break;
2399 	default:
2400 		printf("%s: kprocess: invalid op 0x%x\n",
2401 		    device_xname(sc->sc_dev), krp->krp_op);
2402 		krp->krp_status = EOPNOTSUPP;
2403 		crypto_kdone(krp);
2404 		r = 0;
2405 	}
2406 	return (r);
2407 }
2408 
2409 /*
2410  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2411  */
2412 static int
2413 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp,
2414 			 int hint)
2415 {
2416 	struct ubsec_q2_modexp *me;
2417 	struct ubsec_mcr *mcr;
2418 	struct ubsec_ctx_modexp *ctx;
2419 	struct ubsec_pktbuf *epb;
2420 	int err = 0;
2421 	u_int nbits, normbits, mbits, shiftbits, ebits;
2422 
2423 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2424 	if (me == NULL) {
2425 		err = ENOMEM;
2426 		goto errout;
2427 	}
2428 	memset(me, 0, sizeof *me);
2429 	me->me_krp = krp;
2430 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2431 
2432 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2433 	if (nbits <= 512)
2434 		normbits = 512;
2435 	else if (nbits <= 768)
2436 		normbits = 768;
2437 	else if (nbits <= 1024)
2438 		normbits = 1024;
2439 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2440 		normbits = 1536;
2441 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2442 		normbits = 2048;
2443 	else {
2444 		err = E2BIG;
2445 		goto errout;
2446 	}
2447 
2448 	shiftbits = normbits - nbits;
2449 
2450 	me->me_modbits = nbits;
2451 	me->me_shiftbits = shiftbits;
2452 	me->me_normbits = normbits;
2453 
2454 	/* Sanity check: result bits must be >= true modulus bits. */
2455 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2456 		err = ERANGE;
2457 		goto errout;
2458 	}
2459 
2460 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2461 	    &me->me_q.q_mcr, 0)) {
2462 		err = ENOMEM;
2463 		goto errout;
2464 	}
2465 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2466 
2467 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2468 	    &me->me_q.q_ctx, 0)) {
2469 		err = ENOMEM;
2470 		goto errout;
2471 	}
2472 
2473 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2474 	if (mbits > nbits) {
2475 		err = E2BIG;
2476 		goto errout;
2477 	}
2478 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2479 		err = ENOMEM;
2480 		goto errout;
2481 	}
2482 	ubsec_kshift_r(shiftbits,
2483 	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2484 	    me->me_M.dma_vaddr, normbits);
2485 
2486 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2487 		err = ENOMEM;
2488 		goto errout;
2489 	}
2490 	memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2491 
2492 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2493 	if (ebits > nbits) {
2494 		err = E2BIG;
2495 		goto errout;
2496 	}
2497 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2498 		err = ENOMEM;
2499 		goto errout;
2500 	}
2501 	ubsec_kshift_r(shiftbits,
2502 	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2503 	    me->me_E.dma_vaddr, normbits);
2504 
2505 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2506 	    &me->me_epb, 0)) {
2507 		err = ENOMEM;
2508 		goto errout;
2509 	}
2510 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2511 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2512 	epb->pb_next = 0;
2513 	epb->pb_len = htole32(normbits / 8);
2514 
2515 #ifdef UBSEC_DEBUG
2516 	if (ubsec_debug) {
2517 		printf("Epb ");
2518 		ubsec_dump_pb(epb);
2519 	}
2520 #endif
2521 
2522 	mcr->mcr_pkts = htole16(1);
2523 	mcr->mcr_flags = 0;
2524 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2525 	mcr->mcr_reserved = 0;
2526 	mcr->mcr_pktlen = 0;
2527 
2528 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2529 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2530 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2531 
2532 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2533 	mcr->mcr_opktbuf.pb_next = 0;
2534 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2535 
2536 #ifdef DIAGNOSTIC
2537 	/* Misaligned output buffer will hang the chip. */
2538 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2539 		panic("%s: modexp invalid addr 0x%x",
2540 		    device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_addr));
2541 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2542 		panic("%s: modexp invalid len 0x%x",
2543 		    device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_len));
2544 #endif
2545 
2546 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2547 	memset(ctx, 0, sizeof(*ctx));
2548 	ubsec_kshift_r(shiftbits,
2549 	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2550 	    ctx->me_N, normbits);
2551 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2552 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2553 	ctx->me_E_len = htole16(nbits);
2554 	ctx->me_N_len = htole16(nbits);
2555 
2556 #ifdef UBSEC_DEBUG
2557 	if (ubsec_debug) {
2558 		ubsec_dump_mcr(mcr);
2559 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2560 	}
2561 #endif
2562 
2563 	/*
2564 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2565 	 * everything else.
2566 	 */
2567 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2568 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2569 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2570 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2571 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2572 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2573 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2574 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2575 
2576 	/* Enqueue and we're done... */
2577 	mutex_spin_enter(&sc->sc_mtx);
2578 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2579 	ubsec_feed2(sc);
2580 	ubsecstats.hst_modexp++;
2581 	mutex_spin_exit(&sc->sc_mtx);
2582 
2583 	return (0);
2584 
2585 errout:
2586 	if (me != NULL) {
2587 		if (me->me_q.q_mcr.dma_map != NULL)
2588 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2589 		if (me->me_q.q_ctx.dma_map != NULL) {
2590 			memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
2591 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2592 		}
2593 		if (me->me_M.dma_map != NULL) {
2594 			memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2595 			ubsec_dma_free(sc, &me->me_M);
2596 		}
2597 		if (me->me_E.dma_map != NULL) {
2598 			memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2599 			ubsec_dma_free(sc, &me->me_E);
2600 		}
2601 		if (me->me_C.dma_map != NULL) {
2602 			memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2603 			ubsec_dma_free(sc, &me->me_C);
2604 		}
2605 		if (me->me_epb.dma_map != NULL)
2606 			ubsec_dma_free(sc, &me->me_epb);
2607 		free(me, M_DEVBUF);
2608 	}
2609 	krp->krp_status = err;
2610 	crypto_kdone(krp);
2611 	return (0);
2612 }
2613 
2614 /*
2615  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2616  */
2617 static int
2618 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp,
2619 			 int hint)
2620 {
2621 	struct ubsec_q2_modexp *me;
2622 	struct ubsec_mcr *mcr;
2623 	struct ubsec_ctx_modexp *ctx;
2624 	struct ubsec_pktbuf *epb;
2625 	int err = 0;
2626 	u_int nbits, normbits, mbits, shiftbits, ebits;
2627 
2628 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2629 	if (me == NULL) {
2630 		err = ENOMEM;
2631 		goto errout;
2632 	}
2633 	memset(me, 0, sizeof *me);
2634 	me->me_krp = krp;
2635 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2636 
2637 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2638 	if (nbits <= 512)
2639 		normbits = 512;
2640 	else if (nbits <= 768)
2641 		normbits = 768;
2642 	else if (nbits <= 1024)
2643 		normbits = 1024;
2644 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2645 		normbits = 1536;
2646 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2647 		normbits = 2048;
2648 	else {
2649 		err = E2BIG;
2650 		goto errout;
2651 	}
2652 
2653 	shiftbits = normbits - nbits;
2654 
2655 	/* XXX ??? */
2656 	me->me_modbits = nbits;
2657 	me->me_shiftbits = shiftbits;
2658 	me->me_normbits = normbits;
2659 
2660 	/* Sanity check: result bits must be >= true modulus bits. */
2661 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2662 		err = ERANGE;
2663 		goto errout;
2664 	}
2665 
2666 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2667 	    &me->me_q.q_mcr, 0)) {
2668 		err = ENOMEM;
2669 		goto errout;
2670 	}
2671 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2672 
2673 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2674 	    &me->me_q.q_ctx, 0)) {
2675 		err = ENOMEM;
2676 		goto errout;
2677 	}
2678 
2679 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2680 	if (mbits > nbits) {
2681 		err = E2BIG;
2682 		goto errout;
2683 	}
2684 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2685 		err = ENOMEM;
2686 		goto errout;
2687 	}
2688 	memset(me->me_M.dma_vaddr, 0, normbits / 8);
2689 	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2690 	    me->me_M.dma_vaddr, (mbits + 7) / 8);
2691 
2692 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2693 		err = ENOMEM;
2694 		goto errout;
2695 	}
2696 	memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2697 
2698 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2699 	if (ebits > nbits) {
2700 		err = E2BIG;
2701 		goto errout;
2702 	}
2703 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2704 		err = ENOMEM;
2705 		goto errout;
2706 	}
2707 	memset(me->me_E.dma_vaddr, 0, normbits / 8);
2708 	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2709 	    me->me_E.dma_vaddr, (ebits + 7) / 8);
2710 
2711 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2712 	    &me->me_epb, 0)) {
2713 		err = ENOMEM;
2714 		goto errout;
2715 	}
2716 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2717 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2718 	epb->pb_next = 0;
2719 	epb->pb_len = htole32((ebits + 7) / 8);
2720 
2721 #ifdef UBSEC_DEBUG
2722 	if (ubsec_debug) {
2723 		printf("Epb ");
2724 		ubsec_dump_pb(epb);
2725 	}
2726 #endif
2727 
2728 	mcr->mcr_pkts = htole16(1);
2729 	mcr->mcr_flags = 0;
2730 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2731 	mcr->mcr_reserved = 0;
2732 	mcr->mcr_pktlen = 0;
2733 
2734 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2735 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2736 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2737 
2738 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2739 	mcr->mcr_opktbuf.pb_next = 0;
2740 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2741 
2742 #ifdef DIAGNOSTIC
2743 	/* Misaligned output buffer will hang the chip. */
2744 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2745 		panic("%s: modexp invalid addr 0x%x",
2746 		    device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_addr));
2747 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2748 		panic("%s: modexp invalid len 0x%x",
2749 		    device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_len));
2750 #endif
2751 
2752 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2753 	memset(ctx, 0, sizeof(*ctx));
2754 	memcpy(ctx->me_N, krp->krp_param[UBS_MODEXP_PAR_N].crp_p,
2755 	    (nbits + 7) / 8);
2756 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2757 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2758 	ctx->me_E_len = htole16(ebits);
2759 	ctx->me_N_len = htole16(nbits);
2760 
2761 #ifdef UBSEC_DEBUG
2762 	if (ubsec_debug) {
2763 		ubsec_dump_mcr(mcr);
2764 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2765 	}
2766 #endif
2767 
2768 	/*
2769 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2770 	 * everything else.
2771 	 */
2772 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2773 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2774 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2775 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2776 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2777 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2778 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2779 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2780 
2781 	/* Enqueue and we're done... */
2782 	mutex_spin_enter(&sc->sc_mtx);
2783 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2784 	ubsec_feed2(sc);
2785 	mutex_spin_exit(&sc->sc_mtx);
2786 
2787 	return (0);
2788 
2789 errout:
2790 	if (me != NULL) {
2791 		if (me->me_q.q_mcr.dma_map != NULL)
2792 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2793 		if (me->me_q.q_ctx.dma_map != NULL) {
2794 			memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
2795 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2796 		}
2797 		if (me->me_M.dma_map != NULL) {
2798 			memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2799 			ubsec_dma_free(sc, &me->me_M);
2800 		}
2801 		if (me->me_E.dma_map != NULL) {
2802 			memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2803 			ubsec_dma_free(sc, &me->me_E);
2804 		}
2805 		if (me->me_C.dma_map != NULL) {
2806 			memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2807 			ubsec_dma_free(sc, &me->me_C);
2808 		}
2809 		if (me->me_epb.dma_map != NULL)
2810 			ubsec_dma_free(sc, &me->me_epb);
2811 		free(me, M_DEVBUF);
2812 	}
2813 	krp->krp_status = err;
2814 	crypto_kdone(krp);
2815 	return (0);
2816 }
2817 
2818 static int
2819 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp,
2820 		       int hint)
2821 {
2822 	struct ubsec_q2_rsapriv *rp = NULL;
2823 	struct ubsec_mcr *mcr;
2824 	struct ubsec_ctx_rsapriv *ctx;
2825 	int err = 0;
2826 	u_int padlen, msglen;
2827 
2828 	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2829 	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2830 	if (msglen > padlen)
2831 		padlen = msglen;
2832 
2833 	if (padlen <= 256)
2834 		padlen = 256;
2835 	else if (padlen <= 384)
2836 		padlen = 384;
2837 	else if (padlen <= 512)
2838 		padlen = 512;
2839 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2840 		padlen = 768;
2841 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2842 		padlen = 1024;
2843 	else {
2844 		err = E2BIG;
2845 		goto errout;
2846 	}
2847 
2848 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2849 		err = E2BIG;
2850 		goto errout;
2851 	}
2852 
2853 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2854 		err = E2BIG;
2855 		goto errout;
2856 	}
2857 
2858 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2859 		err = E2BIG;
2860 		goto errout;
2861 	}
2862 
2863 	rp = malloc(sizeof *rp, M_DEVBUF, M_NOWAIT|M_ZERO);
2864 	if (rp == NULL)
2865 		return (ENOMEM);
2866 	rp->rpr_krp = krp;
2867 	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2868 
2869 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2870 	    &rp->rpr_q.q_mcr, 0)) {
2871 		err = ENOMEM;
2872 		goto errout;
2873 	}
2874 	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2875 
2876 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2877 	    &rp->rpr_q.q_ctx, 0)) {
2878 		err = ENOMEM;
2879 		goto errout;
2880 	}
2881 	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
2882 	memset(ctx, 0, sizeof *ctx);
2883 
2884 	/* Copy in p */
2885 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
2886 	    &ctx->rpr_buf[0 * (padlen / 8)],
2887 	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
2888 
2889 	/* Copy in q */
2890 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
2891 	    &ctx->rpr_buf[1 * (padlen / 8)],
2892 	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
2893 
2894 	/* Copy in dp */
2895 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
2896 	    &ctx->rpr_buf[2 * (padlen / 8)],
2897 	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
2898 
2899 	/* Copy in dq */
2900 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
2901 	    &ctx->rpr_buf[3 * (padlen / 8)],
2902 	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
2903 
2904 	/* Copy in pinv */
2905 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
2906 	    &ctx->rpr_buf[4 * (padlen / 8)],
2907 	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
2908 
2909 	msglen = padlen * 2;
2910 
2911 	/* Copy in input message (aligned buffer/length). */
2912 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
2913 		/* Is this likely? */
2914 		err = E2BIG;
2915 		goto errout;
2916 	}
2917 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
2918 		err = ENOMEM;
2919 		goto errout;
2920 	}
2921 	memset(rp->rpr_msgin.dma_vaddr, 0, (msglen + 7) / 8);
2922 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
2923 	    rp->rpr_msgin.dma_vaddr,
2924 	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
2925 
2926 	/* Prepare space for output message (aligned buffer/length). */
2927 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
2928 		/* Is this likely? */
2929 		err = E2BIG;
2930 		goto errout;
2931 	}
2932 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
2933 		err = ENOMEM;
2934 		goto errout;
2935 	}
2936 	memset(rp->rpr_msgout.dma_vaddr, 0, (msglen + 7) / 8);
2937 
2938 	mcr->mcr_pkts = htole16(1);
2939 	mcr->mcr_flags = 0;
2940 	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
2941 	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
2942 	mcr->mcr_ipktbuf.pb_next = 0;
2943 	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
2944 	mcr->mcr_reserved = 0;
2945 	mcr->mcr_pktlen = htole16(msglen);
2946 	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
2947 	mcr->mcr_opktbuf.pb_next = 0;
2948 	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
2949 
2950 #ifdef DIAGNOSTIC
2951 	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
2952 		panic("%s: rsapriv: invalid msgin 0x%lx(0x%lx)",
2953 		    device_xname(sc->sc_dev), (u_long) rp->rpr_msgin.dma_paddr,
2954 		    (u_long) rp->rpr_msgin.dma_size);
2955 	}
2956 	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
2957 		panic("%s: rsapriv: invalid msgout 0x%lx(0x%lx)",
2958 		    device_xname(sc->sc_dev), (u_long) rp->rpr_msgout.dma_paddr,
2959 		    (u_long) rp->rpr_msgout.dma_size);
2960 	}
2961 #endif
2962 
2963 	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
2964 	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
2965 	ctx->rpr_q_len = htole16(padlen);
2966 	ctx->rpr_p_len = htole16(padlen);
2967 
2968 	/*
2969 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2970 	 * everything else.
2971 	 */
2972 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map,
2973 	    0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2974 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map,
2975 	    0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2976 
2977 	/* Enqueue and we're done... */
2978 	mutex_spin_enter(&sc->sc_mtx);
2979 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
2980 	ubsec_feed2(sc);
2981 	ubsecstats.hst_modexpcrt++;
2982 	mutex_spin_exit(&sc->sc_mtx);
2983 	return (0);
2984 
2985 errout:
2986 	if (rp != NULL) {
2987 		if (rp->rpr_q.q_mcr.dma_map != NULL)
2988 			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2989 		if (rp->rpr_msgin.dma_map != NULL) {
2990 			memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
2991 			ubsec_dma_free(sc, &rp->rpr_msgin);
2992 		}
2993 		if (rp->rpr_msgout.dma_map != NULL) {
2994 			memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
2995 			ubsec_dma_free(sc, &rp->rpr_msgout);
2996 		}
2997 		free(rp, M_DEVBUF);
2998 	}
2999 	krp->krp_status = err;
3000 	crypto_kdone(krp);
3001 	return (0);
3002 }
3003 
3004 #ifdef UBSEC_DEBUG
3005 static void
3006 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
3007 {
3008 	printf("addr 0x%x (0x%x) next 0x%x\n",
3009 	    pb->pb_addr, pb->pb_len, pb->pb_next);
3010 }
3011 
3012 static void
3013 ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *c)
3014 {
3015 	printf("CTX (0x%x):\n", c->ctx_len);
3016 	switch (letoh16(c->ctx_op)) {
3017 	case UBS_CTXOP_RNGBYPASS:
3018 	case UBS_CTXOP_RNGSHA1:
3019 		break;
3020 	case UBS_CTXOP_MODEXP:
3021 	{
3022 		struct ubsec_ctx_modexp *cx = (void *)c;
3023 		int i, len;
3024 
3025 		printf(" Elen %u, Nlen %u\n",
3026 		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
3027 		len = (cx->me_N_len + 7)/8;
3028 		for (i = 0; i < len; i++)
3029 			printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
3030 		printf("\n");
3031 		break;
3032 	}
3033 	default:
3034 		printf("unknown context: %x\n", c->ctx_op);
3035 	}
3036 	printf("END CTX\n");
3037 }
3038 
3039 static void
3040 ubsec_dump_mcr(struct ubsec_mcr *mcr)
3041 {
3042 	volatile struct ubsec_mcr_add *ma;
3043 	int i;
3044 
3045 	printf("MCR:\n");
3046 	printf(" pkts: %u, flags 0x%x\n",
3047 	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
3048 	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
3049 	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
3050 		printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
3051 		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
3052 		    letoh16(ma->mcr_reserved));
3053 		printf(" %d: ipkt ", i);
3054 		ubsec_dump_pb(&ma->mcr_ipktbuf);
3055 		printf(" %d: opkt ", i);
3056 		ubsec_dump_pb(&ma->mcr_opktbuf);
3057 		ma++;
3058 	}
3059 	printf("END MCR\n");
3060 }
3061 #endif /* UBSEC_DEBUG */
3062 
3063 /*
3064  * Return the number of significant bits of a big number.
3065  */
3066 static int
3067 ubsec_ksigbits(struct crparam *cr)
3068 {
3069 	u_int plen = (cr->crp_nbits + 7) / 8;
3070 	int i, sig = plen * 8;
3071 	u_int8_t c, *p = cr->crp_p;
3072 
3073 	for (i = plen - 1; i >= 0; i--) {
3074 		c = p[i];
3075 		if (c != 0) {
3076 			while ((c & 0x80) == 0) {
3077 				sig--;
3078 				c <<= 1;
3079 			}
3080 			break;
3081 		}
3082 		sig -= 8;
3083 	}
3084 	return (sig);
3085 }
3086 
3087 static void
3088 ubsec_kshift_r(u_int shiftbits, u_int8_t *src, u_int srcbits,
3089     u_int8_t *dst, u_int dstbits)
3090 {
3091 	u_int slen, dlen;
3092 	int i, si, di, n;
3093 
3094 	slen = (srcbits + 7) / 8;
3095 	dlen = (dstbits + 7) / 8;
3096 
3097 	for (i = 0; i < slen; i++)
3098 		dst[i] = src[i];
3099 	for (i = 0; i < dlen - slen; i++)
3100 		dst[slen + i] = 0;
3101 
3102 	n = shiftbits / 8;
3103 	if (n != 0) {
3104 		si = dlen - n - 1;
3105 		di = dlen - 1;
3106 		while (si >= 0)
3107 			dst[di--] = dst[si--];
3108 		while (di >= 0)
3109 			dst[di--] = 0;
3110 	}
3111 
3112 	n = shiftbits % 8;
3113 	if (n != 0) {
3114 		for (i = dlen - 1; i > 0; i--)
3115 			dst[i] = (dst[i] << n) |
3116 			    (dst[i - 1] >> (8 - n));
3117 		dst[0] = dst[0] << n;
3118 	}
3119 }
3120 
3121 static void
3122 ubsec_kshift_l(u_int shiftbits, u_int8_t *src, u_int srcbits,
3123     u_int8_t *dst, u_int dstbits)
3124 {
3125 	int slen, dlen, i, n;
3126 
3127 	slen = (srcbits + 7) / 8;
3128 	dlen = (dstbits + 7) / 8;
3129 
3130 	n = shiftbits / 8;
3131 	for (i = 0; i < slen; i++)
3132 		dst[i] = src[i + n];
3133 	for (i = 0; i < dlen - slen; i++)
3134 		dst[slen + i] = 0;
3135 
3136 	n = shiftbits % 8;
3137 	if (n != 0) {
3138 		for (i = 0; i < (dlen - 1); i++)
3139 			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
3140 		dst[dlen - 1] = dst[dlen - 1] >> n;
3141 	}
3142 }
3143