xref: /netbsd-src/sys/dev/pci/ubsec.c (revision 4391d5e9d4f291db41e3b3ba26a01b5e51364aae)
1 /*	$NetBSD: ubsec.c,v 1.34 2013/11/17 23:20:18 bad Exp $	*/
2 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.6 2003/01/23 21:06:43 sam Exp $ */
3 /*	$OpenBSD: ubsec.c,v 1.127 2003/06/04 14:04:58 jason Exp $	*/
4 
5 /*
6  * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
7  * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
8  * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
23  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
28  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  * Effort sponsored in part by the Defense Advanced Research Projects
32  * Agency (DARPA) and Air Force Research Laboratory, Air Force
33  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
34  *
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: ubsec.c,v 1.34 2013/11/17 23:20:18 bad Exp $");
39 
40 #undef UBSEC_DEBUG
41 
42 /*
43  * uBsec 5[56]01, bcm580xx, bcm582x hardware crypto accelerator
44  */
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/proc.h>
49 #include <sys/endian.h>
50 #ifdef __NetBSD__
51   #define UBSEC_NO_RNG	/* hangs on attach */
52   #define letoh16 htole16
53   #define letoh32 htole32
54 #endif
55 #include <sys/errno.h>
56 #include <sys/malloc.h>
57 #include <sys/kernel.h>
58 #include <sys/mbuf.h>
59 #include <sys/device.h>
60 #include <sys/module.h>
61 #include <sys/queue.h>
62 #include <sys/sysctl.h>
63 
64 #include <opencrypto/cryptodev.h>
65 #include <opencrypto/xform.h>
66 #ifdef __OpenBSD__
67  #include <dev/rndvar.h>
68  #include <sys/md5k.h>
69 #else
70  #include <sys/cprng.h>
71  #include <sys/md5.h>
72 #endif
73 #include <sys/sha1.h>
74 
75 #include <dev/pci/pcireg.h>
76 #include <dev/pci/pcivar.h>
77 #include <dev/pci/pcidevs.h>
78 
79 #include <dev/pci/ubsecreg.h>
80 #include <dev/pci/ubsecvar.h>
81 
82 /*
83  * Prototypes and count for the pci_device structure
84  */
85 static	int ubsec_probe(device_t, cfdata_t, void *);
86 static	void ubsec_attach(device_t, device_t, void *);
87 static	int  ubsec_detach(device_t, int);
88 static	int  ubsec_sysctl_init(void);
89 static	void ubsec_reset_board(struct ubsec_softc *);
90 static	void ubsec_init_board(struct ubsec_softc *);
91 static	void ubsec_init_pciregs(struct pci_attach_args *pa);
92 static	void ubsec_cleanchip(struct ubsec_softc *);
93 static	void ubsec_totalreset(struct ubsec_softc *);
94 static	int  ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
95 
96 #ifdef __OpenBSD__
97 struct cfattach ubsec_ca = {
98 	sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
99 };
100 
101 struct cfdriver ubsec_cd = {
102 	0, "ubsec", DV_DULL
103 };
104 #else
105 CFATTACH_DECL_NEW(ubsec, sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
106 	      ubsec_detach, NULL);
107 extern struct cfdriver ubsec_cd;
108 #endif
109 
110 /* patchable */
111 #ifdef	UBSEC_DEBUG
112 extern int ubsec_debug;
113 int ubsec_debug=1;
114 #endif
115 
116 static	int	ubsec_intr(void *);
117 static	int	ubsec_newsession(void*, u_int32_t *, struct cryptoini *);
118 static	int	ubsec_freesession(void*, u_int64_t);
119 static	int	ubsec_process(void*, struct cryptop *, int hint);
120 static	void	ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
121 static	void	ubsec_feed(struct ubsec_softc *);
122 static	void	ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
123 static	void	ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
124 static	void	ubsec_feed2(struct ubsec_softc *);
125 static	void	ubsec_feed4(struct ubsec_softc *);
126 #ifndef UBSEC_NO_RNG
127 static  void	ubsec_rng(void *);
128 static  void	ubsec_rng_locked(void *);
129 static  void	ubsec_rng_get(size_t, void *);
130 #endif /* UBSEC_NO_RNG */
131 static	int 	ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
132 				 struct ubsec_dma_alloc *, int);
133 static	void	ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
134 static	int	ubsec_dmamap_aligned(bus_dmamap_t);
135 
136 static	int	ubsec_kprocess(void*, struct cryptkop *, int);
137 static	int	ubsec_kprocess_modexp_sw(struct ubsec_softc *,
138 					 struct cryptkop *, int);
139 static	int	ubsec_kprocess_modexp_hw(struct ubsec_softc *,
140 					 struct cryptkop *, int);
141 static	int	ubsec_kprocess_rsapriv(struct ubsec_softc *,
142 				       struct cryptkop *, int);
143 static	void	ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
144 static	int	ubsec_ksigbits(struct crparam *);
145 static	void	ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
146 static	void	ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
147 
148 #ifdef UBSEC_DEBUG
149 static void	ubsec_dump_pb(volatile struct ubsec_pktbuf *);
150 static void	ubsec_dump_mcr(struct ubsec_mcr *);
151 static	void	ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *);
152 #endif
153 
154 #define	READ_REG(sc,r) \
155 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
156 
157 #define WRITE_REG(sc,reg,val) \
158 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
159 
160 #define	SWAP32(x) (x) = htole32(ntohl((x)))
161 #ifndef HTOLE32
162  #define	HTOLE32(x) (x) = htole32(x)
163 #endif
164 
165 struct ubsec_stats ubsecstats;
166 
167 static struct sysctllog *ubsec_sysctllog;
168 
169 /*
170  * ubsec_maxbatch controls the number of crypto ops to voluntarily
171  * collect into one submission to the hardware.  This batching happens
172  * when ops are dispatched from the crypto subsystem with a hint that
173  * more are to follow immediately.  These ops must also not be marked
174  * with a ``no delay'' flag.
175  */
176 static	int ubsec_maxbatch = 1;
177 
178 /*
179  * ubsec_maxaggr controls the number of crypto ops to submit to the
180  * hardware as a unit.  This aggregation reduces the number of interrupts
181  * to the host at the expense of increased latency (for all but the last
182  * operation).  For network traffic setting this to one yields the highest
183  * performance but at the expense of more interrupt processing.
184  */
185 static	int ubsec_maxaggr = 1;
186 
187 static const struct ubsec_product {
188 	pci_vendor_id_t		ubsec_vendor;
189 	pci_product_id_t	ubsec_product;
190 	int			ubsec_flags;
191 	int			ubsec_statmask;
192 	int			ubsec_maxaggr;
193 	const char		*ubsec_name;
194 } ubsec_products[] = {
195 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5501,
196 	  0,
197 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
198 	  UBS_MIN_AGGR,
199 	  "Bluesteel 5501"
200 	},
201 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5601,
202 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
203 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
204 	  UBS_MIN_AGGR,
205 	  "Bluesteel 5601"
206 	},
207 
208 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5801,
209 	  0,
210 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
211 	  UBS_MIN_AGGR,
212 	  "Broadcom BCM5801"
213 	},
214 
215 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5802,
216 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
217 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
218 	  UBS_MIN_AGGR,
219 	  "Broadcom BCM5802"
220 	},
221 
222 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5805,
223 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
224 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
225 	  UBS_MIN_AGGR,
226 	  "Broadcom BCM5805"
227 	},
228 
229 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5820,
230 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
231 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
232 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
233 	  UBS_MIN_AGGR,
234 	  "Broadcom BCM5820"
235 	},
236 
237 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5821,
238 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
239 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
240 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
241 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
242 	  UBS_MIN_AGGR,
243 	  "Broadcom BCM5821"
244 	},
245 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_SCA1K,
246 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
247 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
248 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
249 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
250 	  UBS_MIN_AGGR,
251 	  "Sun Crypto Accelerator 1000"
252 	},
253 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_5821,
254 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
255 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
256 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
257 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
258 	  UBS_MIN_AGGR,
259 	  "Broadcom BCM5821 (Sun)"
260 	},
261 
262 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5822,
263 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
264 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
265 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
266 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
267 	  UBS_MIN_AGGR,
268 	  "Broadcom BCM5822"
269 	},
270 
271 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5823,
272 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
273 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
274 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
275 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
276 	  UBS_MIN_AGGR,
277 	  "Broadcom BCM5823"
278 	},
279 
280 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5825,
281 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
282 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
283 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
284 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
285 	  UBS_MIN_AGGR,
286 	  "Broadcom BCM5825"
287 	},
288 
289 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5860,
290 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
291 	      UBS_FLAGS_LONGCTX |
292 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
293 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY,
294 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
295 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
296 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
297 	  UBS_MAX_AGGR,
298 	  "Broadcom BCM5860"
299 	},
300 
301 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5861,
302 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
303 	      UBS_FLAGS_LONGCTX |
304 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
305 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY,
306 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
307 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
308 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
309 	  UBS_MAX_AGGR,
310 	  "Broadcom BCM5861"
311 	},
312 
313 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5862,
314 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
315 	      UBS_FLAGS_LONGCTX |
316 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
317 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY,
318 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
319 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
320 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
321 	  UBS_MAX_AGGR,
322 	  "Broadcom BCM5862"
323 	},
324 
325 	{ 0,			0,
326 	  0,
327 	  0,
328 	  0,
329 	  NULL
330 	}
331 };
332 
333 static const struct ubsec_product *
334 ubsec_lookup(const struct pci_attach_args *pa)
335 {
336 	const struct ubsec_product *up;
337 
338 	for (up = ubsec_products; up->ubsec_name != NULL; up++) {
339 		if (PCI_VENDOR(pa->pa_id) == up->ubsec_vendor &&
340 		    PCI_PRODUCT(pa->pa_id) == up->ubsec_product)
341 			return (up);
342 	}
343 	return (NULL);
344 }
345 
346 static int
347 ubsec_probe(device_t parent, cfdata_t match, void *aux)
348 {
349 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
350 
351 	if (ubsec_lookup(pa) != NULL)
352 		return (1);
353 
354 	return (0);
355 }
356 
357 static void
358 ubsec_attach(device_t parent, device_t self, void *aux)
359 {
360 	struct ubsec_softc *sc = device_private(self);
361 	struct pci_attach_args *pa = aux;
362 	const struct ubsec_product *up;
363 	pci_chipset_tag_t pc = pa->pa_pc;
364 	pci_intr_handle_t ih;
365 	const char *intrstr = NULL;
366 	pcireg_t memtype;
367 	struct ubsec_dma *dmap;
368 	u_int32_t cmd, i;
369 
370 	sc->sc_dev = self;
371 	sc->sc_pct = pc;
372 
373 	up = ubsec_lookup(pa);
374 	if (up == NULL) {
375 		printf("\n");
376 		panic("ubsec_attach: impossible");
377 	}
378 
379 	pci_aprint_devinfo_fancy(pa, "Crypto processor", up->ubsec_name, 1);
380 
381 	SIMPLEQ_INIT(&sc->sc_queue);
382 	SIMPLEQ_INIT(&sc->sc_qchip);
383 	SIMPLEQ_INIT(&sc->sc_queue2);
384 	SIMPLEQ_INIT(&sc->sc_qchip2);
385 	SIMPLEQ_INIT(&sc->sc_queue4);
386 	SIMPLEQ_INIT(&sc->sc_qchip4);
387 	SIMPLEQ_INIT(&sc->sc_q2free);
388 
389 	sc->sc_flags = up->ubsec_flags;
390 	sc->sc_statmask = up->ubsec_statmask;
391 	sc->sc_maxaggr = up->ubsec_maxaggr;
392 
393 	cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
394 	cmd |= PCI_COMMAND_MASTER_ENABLE;
395 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd);
396 
397 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BS_BAR);
398 	if (pci_mapreg_map(pa, BS_BAR, memtype, 0,
399 	    &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize)) {
400 		aprint_error_dev(self, "can't find mem space");
401 		return;
402 	}
403 
404 	sc->sc_dmat = pa->pa_dmat;
405 
406 	if (pci_intr_map(pa, &ih)) {
407 		aprint_error_dev(self, "couldn't map interrupt\n");
408 		return;
409 	}
410 	intrstr = pci_intr_string(pc, ih);
411 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ubsec_intr, sc);
412 	if (sc->sc_ih == NULL) {
413 		aprint_error_dev(self, "couldn't establish interrupt");
414 		if (intrstr != NULL)
415 			aprint_error(" at %s", intrstr);
416 		aprint_error("\n");
417 		return;
418 	}
419 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
420 
421 	sc->sc_cid = crypto_get_driverid(0);
422 	if (sc->sc_cid < 0) {
423 		aprint_error_dev(self, "couldn't get crypto driver id\n");
424 		pci_intr_disestablish(pc, sc->sc_ih);
425 		return;
426 	}
427 
428 	sc->sc_rng_need = RND_POOLBITS / NBBY;
429 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_VM);
430 
431 	SIMPLEQ_INIT(&sc->sc_freequeue);
432 	dmap = sc->sc_dmaa;
433 	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
434 		struct ubsec_q *q;
435 
436 		q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
437 		    M_DEVBUF, M_NOWAIT);
438 		if (q == NULL) {
439 			aprint_error_dev(self, "can't allocate queue buffers\n");
440 			break;
441 		}
442 
443 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
444 		    &dmap->d_alloc, 0)) {
445 			aprint_error_dev(self, "can't allocate dma buffers\n");
446 			free(q, M_DEVBUF);
447 			break;
448 		}
449 		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
450 
451 		q->q_dma = dmap;
452 		sc->sc_queuea[i] = q;
453 
454 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
455 	}
456 
457 	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
458 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
459 	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
460 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
461 	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC_96, 0, 0,
462 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
463 	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC_96, 0, 0,
464 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
465 
466 	/*
467 	 * Reset Broadcom chip
468 	 */
469 	ubsec_reset_board(sc);
470 
471 	/*
472 	 * Init Broadcom specific PCI settings
473 	 */
474 	ubsec_init_pciregs(pa);
475 
476 	/*
477 	 * Init Broadcom chip
478 	 */
479 	ubsec_init_board(sc);
480 
481 #ifndef UBSEC_NO_RNG
482 	if (sc->sc_flags & UBS_FLAGS_RNG) {
483 		if (sc->sc_flags & UBS_FLAGS_RNG4)
484 			sc->sc_statmask |= BS_STAT_MCR4_DONE;
485 		else
486 			sc->sc_statmask |= BS_STAT_MCR2_DONE;
487 
488 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
489 		    &sc->sc_rng.rng_q.q_mcr, 0))
490 			goto skip_rng;
491 
492 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
493 		    &sc->sc_rng.rng_q.q_ctx, 0)) {
494 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
495 			goto skip_rng;
496 		}
497 
498 		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
499 		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
500 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
501 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
502 			goto skip_rng;
503 		}
504 
505 		rndsource_setcb(&sc->sc_rnd_source, ubsec_rng_get, sc);
506 		rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
507 				  RND_TYPE_RNG,
508 				  RND_FLAG_NO_ESTIMATE|RND_FLAG_HASCB);
509 		if (hz >= 100)
510 			sc->sc_rnghz = hz / 100;
511 		else
512 			sc->sc_rnghz = 1;
513 #ifdef __OpenBSD__
514 		timeout_set(&sc->sc_rngto, ubsec_rng, sc);
515 		timeout_add(&sc->sc_rngto, sc->sc_rnghz);
516 #else
517 		callout_init(&sc->sc_rngto, 0);
518 		callout_setfunc(&sc->sc_rngto, ubsec_rng, sc);
519 		callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
520 #endif
521  skip_rng:
522 		if (sc->sc_rnghz)
523 			aprint_normal_dev(self, "random number generator enabled\n");
524 		else
525 			aprint_error_dev(self, "WARNING: random number generator "
526 			    "disabled\n");
527 	}
528 #endif /* UBSEC_NO_RNG */
529 
530 	if (sc->sc_flags & UBS_FLAGS_KEY) {
531 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
532 
533 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
534 				 ubsec_kprocess, sc);
535 #if 0
536 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
537 				 ubsec_kprocess, sc);
538 #endif
539 	}
540 }
541 
542 static int
543 ubsec_detach(device_t self, int flags)
544 {
545 	struct ubsec_softc *sc = device_private(self);
546 	struct ubsec_q *q, *qtmp;
547 
548 	/* disable interrupts */
549 	/* XXX wait/abort current ops? where is DMAERR enabled? */
550 	WRITE_REG(sc, BS_CTRL, READ_REG(sc, BS_CTRL) &~
551 	    (BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR));
552 
553 #ifndef UBSEC_NO_RNG
554 	if (sc->sc_flags & UBS_FLAGS_RNG) {
555 		callout_halt(&sc->sc_rngto, NULL);
556 		ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
557 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
558 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
559 		rnd_detach_source(&sc->sc_rnd_source);
560 	}
561 #endif /* UBSEC_NO_RNG */
562 
563 	crypto_unregister_all(sc->sc_cid);
564 
565 	mutex_spin_enter(&sc->sc_mtx);
566 
567 	ubsec_totalreset(sc);  /* XXX leaves the chip running */
568 
569 	SIMPLEQ_FOREACH_SAFE(q, &sc->sc_freequeue, q_next, qtmp) {
570 		ubsec_dma_free(sc, &q->q_dma->d_alloc);
571 		free(q, M_DEVBUF);
572 	}
573 
574 	mutex_spin_exit(&sc->sc_mtx);
575 
576 	if (sc->sc_ih != NULL) {
577 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
578 		sc->sc_ih = NULL;
579 	}
580 
581 	if (sc->sc_memsize != 0) {
582 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize);
583 		sc->sc_memsize = 0;
584 	}
585 
586 	return 0;
587 }
588 
589 MODULE(MODULE_CLASS_DRIVER, ubsec, "pci");
590 
591 #ifdef _MODULE
592 #include "ioconf.c"
593 #endif
594 
595 static int
596 ubsec_modcmd(modcmd_t cmd, void *data)
597 {
598 	int error = 0;
599 
600 	switch (cmd) {
601 	case MODULE_CMD_INIT:
602 #ifdef _MODULE
603 		error = config_init_component(cfdriver_ioconf_ubsec,
604 		    cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
605 #endif
606 		if (error == 0)
607 			error = ubsec_sysctl_init();
608 		return error;
609 	case MODULE_CMD_FINI:
610 		if (ubsec_sysctllog != NULL)
611 			sysctl_teardown(&ubsec_sysctllog);
612 #ifdef _MODULE
613 		error = config_fini_component(cfdriver_ioconf_ubsec,
614 		    cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
615 #endif
616 		return error;
617 	default:
618 		return ENOTTY;
619 	}
620 }
621 
622 static int
623 ubsec_sysctl_init(void)
624 {
625 	const struct sysctlnode *node = NULL;
626 
627 	ubsec_sysctllog = NULL;
628 
629 	sysctl_createv(&ubsec_sysctllog, 0, NULL, NULL,
630 		CTLFLAG_PERMANENT,
631 		CTLTYPE_NODE, "hw", NULL,
632 		NULL, 0, NULL, 0,
633 		CTL_HW, CTL_EOL);
634 	sysctl_createv(&ubsec_sysctllog, 0, NULL, &node,
635 		CTLFLAG_PERMANENT,
636 		CTLTYPE_NODE, "ubsec",
637 		SYSCTL_DESCR("ubsec opetions"),
638 		NULL, 0, NULL, 0,
639 		CTL_HW, CTL_CREATE, CTL_EOL);
640 	sysctl_createv(&ubsec_sysctllog, 0, &node, NULL,
641 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
642 		CTLTYPE_INT, "maxbatch",
643 		SYSCTL_DESCR("max ops to batch w/o interrupt"),
644 		NULL, 0, &ubsec_maxbatch, 0,
645 		CTL_CREATE, CTL_EOL);
646 	sysctl_createv(&ubsec_sysctllog, 0, &node, NULL,
647 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
648 		CTLTYPE_INT, "maxaggr",
649 		SYSCTL_DESCR("max ops to aggregate under one interrupt"),
650 		NULL, 0, &ubsec_maxaggr, 0,
651 		CTL_CREATE, CTL_EOL);
652 
653 	return 0;
654 }
655 
656 /*
657  * UBSEC Interrupt routine
658  */
659 static int
660 ubsec_intr(void *arg)
661 {
662 	struct ubsec_softc *sc = arg;
663 	volatile u_int32_t stat;
664 	struct ubsec_q *q;
665 	struct ubsec_dma *dmap;
666 	int flags;
667 	int npkts = 0, i;
668 
669 	mutex_spin_enter(&sc->sc_mtx);
670 	stat = READ_REG(sc, BS_STAT);
671 	stat &= sc->sc_statmask;
672 	if (stat == 0) {
673 		mutex_spin_exit(&sc->sc_mtx);
674 		return (0);
675 	}
676 
677 	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
678 
679 	/*
680 	 * Check to see if we have any packets waiting for us
681 	 */
682 	if ((stat & BS_STAT_MCR1_DONE)) {
683 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
684 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
685 			dmap = q->q_dma;
686 
687 			if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
688 				break;
689 
690 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
691 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
692 
693 			npkts = q->q_nstacked_mcrs;
694 			sc->sc_nqchip -= 1+npkts;
695 			/*
696 			 * search for further sc_qchip ubsec_q's that share
697 			 * the same MCR, and complete them too, they must be
698 			 * at the top.
699 			 */
700 			for (i = 0; i < npkts; i++) {
701 				if(q->q_stacked_mcr[i])
702 					ubsec_callback(sc, q->q_stacked_mcr[i]);
703 				else
704 					break;
705 			}
706 			ubsec_callback(sc, q);
707 		}
708 
709 		/*
710 		 * Don't send any more packet to chip if there has been
711 		 * a DMAERR.
712 		 */
713 		if (!(stat & BS_STAT_DMAERR))
714 			ubsec_feed(sc);
715 	}
716 
717 	/*
718 	 * Check to see if we have any key setups/rng's waiting for us
719 	 */
720 	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
721 	    (stat & BS_STAT_MCR2_DONE)) {
722 		struct ubsec_q2 *q2;
723 		struct ubsec_mcr *mcr;
724 
725 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
726 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
727 
728 			bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
729 			    0, q2->q_mcr.dma_map->dm_mapsize,
730 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
731 
732 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
733 
734 			/* A bug in new devices requires to swap this field */
735 			if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
736 				flags = htole16(mcr->mcr_flags);
737 			else
738 				flags = mcr->mcr_flags;
739 			if ((flags & htole16(UBS_MCR_DONE)) == 0) {
740 				bus_dmamap_sync(sc->sc_dmat,
741 				    q2->q_mcr.dma_map, 0,
742 				    q2->q_mcr.dma_map->dm_mapsize,
743 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
744 				break;
745 			}
746 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
747 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, /*q2,*/ q_next);
748 			ubsec_callback2(sc, q2);
749 			/*
750 			 * Don't send any more packet to chip if there has been
751 			 * a DMAERR.
752 			 */
753 			if (!(stat & BS_STAT_DMAERR))
754 				ubsec_feed2(sc);
755 		}
756 	}
757 	if ((sc->sc_flags & UBS_FLAGS_RNG4) && (stat & BS_STAT_MCR4_DONE)) {
758 		struct ubsec_q2 *q2;
759 		struct ubsec_mcr *mcr;
760 
761 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip4)) {
762 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip4);
763 
764 			bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
765 			    0, q2->q_mcr.dma_map->dm_mapsize,
766 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
767 
768 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
769 
770 			/* A bug in new devices requires to swap this field */
771 			flags = htole16(mcr->mcr_flags);
772 
773 			if ((flags & htole16(UBS_MCR_DONE)) == 0) {
774 				bus_dmamap_sync(sc->sc_dmat,
775 				    q2->q_mcr.dma_map, 0,
776 				    q2->q_mcr.dma_map->dm_mapsize,
777 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
778 				break;
779 			}
780 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip4, q_next);
781 			ubsec_callback2(sc, q2);
782 			/*
783 			 * Don't send any more packet to chip if there has been
784 			 * a DMAERR.
785 			 */
786 			if (!(stat & BS_STAT_DMAERR))
787 				ubsec_feed4(sc);
788 		}
789 	}
790 
791 	/*
792 	 * Check to see if we got any DMA Error
793 	 */
794 	if (stat & BS_STAT_DMAERR) {
795 #ifdef UBSEC_DEBUG
796 		if (ubsec_debug) {
797 			volatile u_int32_t a = READ_REG(sc, BS_ERR);
798 
799 			printf("%s: dmaerr %s@%08x\n", device_xname(sc->sc_dev),
800 			    (a & BS_ERR_READ) ? "read" : "write",
801 			       a & BS_ERR_ADDR);
802 		}
803 #endif /* UBSEC_DEBUG */
804 		ubsecstats.hst_dmaerr++;
805 		ubsec_totalreset(sc);
806 		ubsec_feed(sc);
807 	}
808 
809 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
810 		int wkeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
811 #ifdef UBSEC_DEBUG
812 		if (ubsec_debug)
813 			printf("%s: wakeup crypto (%x)\n", device_xname(sc->sc_dev),
814 				sc->sc_needwakeup);
815 #endif /* UBSEC_DEBUG */
816 		sc->sc_needwakeup &= ~wkeup;
817 		crypto_unblock(sc->sc_cid, wkeup);
818 	}
819 	mutex_spin_exit(&sc->sc_mtx);
820 	return (1);
821 }
822 
823 /*
824  * ubsec_feed() - aggregate and post requests to chip
825  * OpenBSD comments:
826  *		  It is assumed that the caller set splnet()
827  */
828 static void
829 ubsec_feed(struct ubsec_softc *sc)
830 {
831 	struct ubsec_q *q, *q2;
832 	int npkts, i;
833 	void *v;
834 	u_int32_t stat;
835 #ifdef UBSEC_DEBUG
836 	static int max;
837 #endif /* UBSEC_DEBUG */
838 
839 	npkts = sc->sc_nqueue;
840 	if (npkts > ubsecstats.hst_maxqueue)
841 		ubsecstats.hst_maxqueue = npkts;
842 	if (npkts < 2)
843 		goto feed1;
844 
845 	/*
846 	 * Decide how many ops to combine in a single MCR.  We cannot
847 	 * aggregate more than UBS_MAX_AGGR because this is the number
848 	 * of slots defined in the data structure.  Otherwise we clamp
849 	 * based on the tunable parameter ubsec_maxaggr.  Note that
850 	 * aggregation can happen in two ways: either by batching ops
851 	 * from above or because the h/w backs up and throttles us.
852 	 * Aggregating ops reduces the number of interrupts to the host
853 	 * but also (potentially) increases the latency for processing
854 	 * completed ops as we only get an interrupt when all aggregated
855 	 * ops have completed.
856 	 */
857 	if (npkts > sc->sc_maxaggr)
858 		npkts = sc->sc_maxaggr;
859 	if (npkts > ubsec_maxaggr)
860 		npkts = ubsec_maxaggr;
861 	if (npkts > ubsecstats.hst_maxbatch)
862 		ubsecstats.hst_maxbatch = npkts;
863 	if (npkts < 2)
864 		goto feed1;
865 	ubsecstats.hst_totbatch += npkts-1;
866 
867 	if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
868 		if (stat & BS_STAT_DMAERR) {
869 			ubsec_totalreset(sc);
870 			ubsecstats.hst_dmaerr++;
871 		} else {
872 			ubsecstats.hst_mcr1full++;
873 		}
874 		return;
875 	}
876 
877 #ifdef UBSEC_DEBUG
878 	if (ubsec_debug)
879 	    printf("merging %d records\n", npkts);
880 	/* XXX temporary aggregation statistics reporting code */
881 	if (max < npkts) {
882 		max = npkts;
883 		printf("%s: new max aggregate %d\n", device_xname(sc->sc_dev), max);
884 	}
885 #endif /* UBSEC_DEBUG */
886 
887 	q = SIMPLEQ_FIRST(&sc->sc_queue);
888 	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
889 	--sc->sc_nqueue;
890 
891 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
892 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
893 	if (q->q_dst_map != NULL)
894 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
895 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
896 
897 	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
898 
899 	for (i = 0; i < q->q_nstacked_mcrs; i++) {
900 		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
901 		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
902 		    0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
903 		if (q2->q_dst_map != NULL)
904 			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
905 			    0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
906 		q2= SIMPLEQ_FIRST(&sc->sc_queue);
907 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q2,*/ q_next);
908 		--sc->sc_nqueue;
909 
910 		v = ((void *)&q2->q_dma->d_dma->d_mcr);
911 		v = (char*)v + (sizeof(struct ubsec_mcr) -
912 				 sizeof(struct ubsec_mcr_add));
913 		memcpy(&q->q_dma->d_dma->d_mcradd[i], v, sizeof(struct ubsec_mcr_add));
914 		q->q_stacked_mcr[i] = q2;
915 	}
916 	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
917 	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
918 	sc->sc_nqchip += npkts;
919 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
920 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
921 	bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
922 	    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
923 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
924 	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
925 	    offsetof(struct ubsec_dmachunk, d_mcr));
926 	return;
927 
928 feed1:
929 	while (!SIMPLEQ_EMPTY(&sc->sc_queue)) {
930 		if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
931 			if (stat & BS_STAT_DMAERR) {
932 				ubsec_totalreset(sc);
933 				ubsecstats.hst_dmaerr++;
934 			} else {
935 				ubsecstats.hst_mcr1full++;
936 			}
937 			break;
938 		}
939 
940 		q = SIMPLEQ_FIRST(&sc->sc_queue);
941 
942 		bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
943 		    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
944 		if (q->q_dst_map != NULL)
945 			bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
946 			    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
947 		bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
948 		    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
949 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
950 
951 		WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
952 		    offsetof(struct ubsec_dmachunk, d_mcr));
953 #ifdef UBSEC_DEBUG
954 		if (ubsec_debug)
955 			printf("feed: q->chip %p %08x stat %08x\n",
956  		    	       q, (u_int32_t)q->q_dma->d_alloc.dma_paddr,
957 			       stat);
958 #endif /* UBSEC_DEBUG */
959 		q = SIMPLEQ_FIRST(&sc->sc_queue);
960 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
961 		--sc->sc_nqueue;
962 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
963 		sc->sc_nqchip++;
964 	}
965 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
966 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
967 }
968 
969 /*
970  * Allocate a new 'session' and return an encoded session id.  'sidp'
971  * contains our registration id, and should contain an encoded session
972  * id on successful allocation.
973  */
974 static int
975 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
976 {
977 	struct cryptoini *c, *encini = NULL, *macini = NULL;
978 	struct ubsec_softc *sc;
979 	struct ubsec_session *ses = NULL;
980 	MD5_CTX md5ctx;
981 	SHA1_CTX sha1ctx;
982 	int i, sesn;
983 
984 	sc = arg;
985 	KASSERT(sc != NULL /*, ("ubsec_newsession: null softc")*/);
986 
987 	if (sidp == NULL || cri == NULL || sc == NULL)
988 		return (EINVAL);
989 
990 	for (c = cri; c != NULL; c = c->cri_next) {
991 		if (c->cri_alg == CRYPTO_MD5_HMAC_96 ||
992 		    c->cri_alg == CRYPTO_SHA1_HMAC_96) {
993 			if (macini)
994 				return (EINVAL);
995 			macini = c;
996 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
997 		    c->cri_alg == CRYPTO_3DES_CBC) {
998 			if (encini)
999 				return (EINVAL);
1000 			encini = c;
1001 		} else
1002 			return (EINVAL);
1003 	}
1004 	if (encini == NULL && macini == NULL)
1005 		return (EINVAL);
1006 
1007 	if (sc->sc_sessions == NULL) {
1008 		ses = sc->sc_sessions = (struct ubsec_session *)malloc(
1009 		    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
1010 		if (ses == NULL)
1011 			return (ENOMEM);
1012 		sesn = 0;
1013 		sc->sc_nsessions = 1;
1014 	} else {
1015 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
1016 			if (sc->sc_sessions[sesn].ses_used == 0) {
1017 				ses = &sc->sc_sessions[sesn];
1018 				break;
1019 			}
1020 		}
1021 
1022 		if (ses == NULL) {
1023 			sesn = sc->sc_nsessions;
1024 			ses = (struct ubsec_session *)malloc((sesn + 1) *
1025 			    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
1026 			if (ses == NULL)
1027 				return (ENOMEM);
1028 			memcpy(ses, sc->sc_sessions, sesn *
1029 			    sizeof(struct ubsec_session));
1030 			memset(sc->sc_sessions, 0, sesn *
1031 			    sizeof(struct ubsec_session));
1032 			free(sc->sc_sessions, M_DEVBUF);
1033 			sc->sc_sessions = ses;
1034 			ses = &sc->sc_sessions[sesn];
1035 			sc->sc_nsessions++;
1036 		}
1037 	}
1038 
1039 	memset(ses, 0, sizeof(struct ubsec_session));
1040 	ses->ses_used = 1;
1041 	if (encini) {
1042 		/* get an IV, network byte order */
1043 #ifdef __NetBSD__
1044 		cprng_fast(ses->ses_iv, sizeof(ses->ses_iv));
1045 #else
1046 		get_random_bytes(ses->ses_iv, sizeof(ses->ses_iv));
1047 #endif
1048 
1049 		/* Go ahead and compute key in ubsec's byte order */
1050 		if (encini->cri_alg == CRYPTO_DES_CBC) {
1051 			memcpy(&ses->ses_deskey[0], encini->cri_key, 8);
1052 			memcpy(&ses->ses_deskey[2], encini->cri_key, 8);
1053 			memcpy(&ses->ses_deskey[4], encini->cri_key, 8);
1054 		} else
1055 			memcpy(ses->ses_deskey, encini->cri_key, 24);
1056 
1057 		SWAP32(ses->ses_deskey[0]);
1058 		SWAP32(ses->ses_deskey[1]);
1059 		SWAP32(ses->ses_deskey[2]);
1060 		SWAP32(ses->ses_deskey[3]);
1061 		SWAP32(ses->ses_deskey[4]);
1062 		SWAP32(ses->ses_deskey[5]);
1063 	}
1064 
1065 	if (macini) {
1066 		for (i = 0; i < macini->cri_klen / 8; i++)
1067 			macini->cri_key[i] ^= HMAC_IPAD_VAL;
1068 
1069 		if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
1070 			MD5Init(&md5ctx);
1071 			MD5Update(&md5ctx, macini->cri_key,
1072 			    macini->cri_klen / 8);
1073 			MD5Update(&md5ctx, hmac_ipad_buffer,
1074 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1075 			memcpy(ses->ses_hminner, md5ctx.state,
1076 			    sizeof(md5ctx.state));
1077 		} else {
1078 			SHA1Init(&sha1ctx);
1079 			SHA1Update(&sha1ctx, macini->cri_key,
1080 			    macini->cri_klen / 8);
1081 			SHA1Update(&sha1ctx, hmac_ipad_buffer,
1082 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1083 			memcpy(ses->ses_hminner, sha1ctx.state,
1084 			    sizeof(sha1ctx.state));
1085 		}
1086 
1087 		for (i = 0; i < macini->cri_klen / 8; i++)
1088 			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
1089 
1090 		if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
1091 			MD5Init(&md5ctx);
1092 			MD5Update(&md5ctx, macini->cri_key,
1093 			    macini->cri_klen / 8);
1094 			MD5Update(&md5ctx, hmac_opad_buffer,
1095 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1096 			memcpy(ses->ses_hmouter, md5ctx.state,
1097 			    sizeof(md5ctx.state));
1098 		} else {
1099 			SHA1Init(&sha1ctx);
1100 			SHA1Update(&sha1ctx, macini->cri_key,
1101 			    macini->cri_klen / 8);
1102 			SHA1Update(&sha1ctx, hmac_opad_buffer,
1103 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1104 			memcpy(ses->ses_hmouter, sha1ctx.state,
1105 			    sizeof(sha1ctx.state));
1106 		}
1107 
1108 		for (i = 0; i < macini->cri_klen / 8; i++)
1109 			macini->cri_key[i] ^= HMAC_OPAD_VAL;
1110 	}
1111 
1112 	*sidp = UBSEC_SID(device_unit(sc->sc_dev), sesn);
1113 	return (0);
1114 }
1115 
1116 /*
1117  * Deallocate a session.
1118  */
1119 static int
1120 ubsec_freesession(void *arg, u_int64_t tid)
1121 {
1122 	struct ubsec_softc *sc;
1123 	int session;
1124 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
1125 
1126 	sc = arg;
1127 	KASSERT(sc != NULL /*, ("ubsec_freesession: null softc")*/);
1128 
1129 	session = UBSEC_SESSION(sid);
1130 	if (session >= sc->sc_nsessions)
1131 		return (EINVAL);
1132 
1133 	memset(&sc->sc_sessions[session], 0, sizeof(sc->sc_sessions[session]));
1134 	return (0);
1135 }
1136 
1137 #ifdef __FreeBSD__ /* Ugly gratuitous changes to bus_dma */
1138 static void
1139 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
1140 {
1141 	struct ubsec_operand *op = arg;
1142 
1143 	KASSERT(nsegs <= UBS_MAX_SCATTER
1144 		/*, ("Too many DMA segments returned when mapping operand")*/);
1145 #ifdef UBSEC_DEBUG
1146 	if (ubsec_debug)
1147 		printf("ubsec_op_cb: mapsize %u nsegs %d\n",
1148 			(u_int) mapsize, nsegs);
1149 #endif
1150 	op->mapsize = mapsize;
1151 	op->nsegs = nsegs;
1152 	memcpy(op->segs, seg, nsegs * sizeof (seg[0]));
1153 }
1154 #endif
1155 
1156 static int
1157 ubsec_process(void *arg, struct cryptop *crp, int hint)
1158 {
1159 	struct ubsec_q *q = NULL;
1160 #ifdef	__OpenBSD__
1161 	int card;
1162 #endif
1163 	int err = 0, i, j, nicealign;
1164 	struct ubsec_softc *sc;
1165 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1166 	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1167 	int sskip, dskip, stheend, dtheend;
1168 	int16_t coffset;
1169 	struct ubsec_session *ses;
1170 	struct ubsec_pktctx ctx;
1171 	struct ubsec_dma *dmap = NULL;
1172 
1173 	sc = arg;
1174 	KASSERT(sc != NULL /*, ("ubsec_process: null softc")*/);
1175 
1176 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
1177 		ubsecstats.hst_invalid++;
1178 		return (EINVAL);
1179 	}
1180 	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
1181 		ubsecstats.hst_badsession++;
1182 		return (EINVAL);
1183 	}
1184 
1185 	mutex_spin_enter(&sc->sc_mtx);
1186 
1187 	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1188 		ubsecstats.hst_queuefull++;
1189 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1190 		mutex_spin_exit(&sc->sc_mtx);
1191 		return(ERESTART);
1192 	}
1193 
1194 	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
1195 	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, /*q,*/ q_next);
1196 	mutex_spin_exit(&sc->sc_mtx);
1197 
1198 	dmap = q->q_dma; /* Save dma pointer */
1199 	memset(q, 0, sizeof(struct ubsec_q));
1200 	memset(&ctx, 0, sizeof(ctx));
1201 
1202 	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1203 	q->q_dma = dmap;
1204 	ses = &sc->sc_sessions[q->q_sesn];
1205 
1206 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1207 		q->q_src_m = (struct mbuf *)crp->crp_buf;
1208 		q->q_dst_m = (struct mbuf *)crp->crp_buf;
1209 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1210 		q->q_src_io = (struct uio *)crp->crp_buf;
1211 		q->q_dst_io = (struct uio *)crp->crp_buf;
1212 	} else {
1213 		ubsecstats.hst_badflags++;
1214 		err = EINVAL;
1215 		goto errout;	/* XXX we don't handle contiguous blocks! */
1216 	}
1217 
1218 	memset(&dmap->d_dma->d_mcr, 0, sizeof(struct ubsec_mcr));
1219 
1220 	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1221 	dmap->d_dma->d_mcr.mcr_flags = 0;
1222 	q->q_crp = crp;
1223 
1224 	crd1 = crp->crp_desc;
1225 	if (crd1 == NULL) {
1226 		ubsecstats.hst_nodesc++;
1227 		err = EINVAL;
1228 		goto errout;
1229 	}
1230 	crd2 = crd1->crd_next;
1231 
1232 	if (crd2 == NULL) {
1233 		if (crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
1234 		    crd1->crd_alg == CRYPTO_SHA1_HMAC_96) {
1235 			maccrd = crd1;
1236 			enccrd = NULL;
1237 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1238 		    crd1->crd_alg == CRYPTO_3DES_CBC) {
1239 			maccrd = NULL;
1240 			enccrd = crd1;
1241 		} else {
1242 			ubsecstats.hst_badalg++;
1243 			err = EINVAL;
1244 			goto errout;
1245 		}
1246 	} else {
1247 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
1248 		    crd1->crd_alg == CRYPTO_SHA1_HMAC_96) &&
1249 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
1250 			crd2->crd_alg == CRYPTO_3DES_CBC) &&
1251 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1252 			maccrd = crd1;
1253 			enccrd = crd2;
1254 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1255 		    crd1->crd_alg == CRYPTO_3DES_CBC) &&
1256 		    (crd2->crd_alg == CRYPTO_MD5_HMAC_96 ||
1257 			crd2->crd_alg == CRYPTO_SHA1_HMAC_96) &&
1258 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
1259 			enccrd = crd1;
1260 			maccrd = crd2;
1261 		} else {
1262 			/*
1263 			 * We cannot order the ubsec as requested
1264 			 */
1265 			ubsecstats.hst_badalg++;
1266 			err = EINVAL;
1267 			goto errout;
1268 		}
1269 	}
1270 
1271 	if (enccrd) {
1272 		encoffset = enccrd->crd_skip;
1273 		ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1274 
1275 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1276 			q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1277 
1278 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1279 				memcpy(ctx.pc_iv, enccrd->crd_iv, 8);
1280 			else {
1281 				ctx.pc_iv[0] = ses->ses_iv[0];
1282 				ctx.pc_iv[1] = ses->ses_iv[1];
1283 			}
1284 
1285 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1286 				if (crp->crp_flags & CRYPTO_F_IMBUF)
1287 					m_copyback(q->q_src_m,
1288 					    enccrd->crd_inject,
1289 					    8, (void *)ctx.pc_iv);
1290 				else if (crp->crp_flags & CRYPTO_F_IOV)
1291 					cuio_copyback(q->q_src_io,
1292 					    enccrd->crd_inject,
1293 					    8, (void *)ctx.pc_iv);
1294 			}
1295 		} else {
1296 			ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1297 
1298 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1299 				memcpy(ctx.pc_iv, enccrd->crd_iv, 8);
1300 			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1301 				m_copydata(q->q_src_m, enccrd->crd_inject,
1302 				    8, (void *)ctx.pc_iv);
1303 			else if (crp->crp_flags & CRYPTO_F_IOV)
1304 				cuio_copydata(q->q_src_io,
1305 				    enccrd->crd_inject, 8,
1306 				    (void *)ctx.pc_iv);
1307 		}
1308 
1309 		ctx.pc_deskey[0] = ses->ses_deskey[0];
1310 		ctx.pc_deskey[1] = ses->ses_deskey[1];
1311 		ctx.pc_deskey[2] = ses->ses_deskey[2];
1312 		ctx.pc_deskey[3] = ses->ses_deskey[3];
1313 		ctx.pc_deskey[4] = ses->ses_deskey[4];
1314 		ctx.pc_deskey[5] = ses->ses_deskey[5];
1315 		SWAP32(ctx.pc_iv[0]);
1316 		SWAP32(ctx.pc_iv[1]);
1317 	}
1318 
1319 	if (maccrd) {
1320 		macoffset = maccrd->crd_skip;
1321 
1322 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC_96)
1323 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1324 		else
1325 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1326 
1327 		for (i = 0; i < 5; i++) {
1328 			ctx.pc_hminner[i] = ses->ses_hminner[i];
1329 			ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1330 
1331 			HTOLE32(ctx.pc_hminner[i]);
1332 			HTOLE32(ctx.pc_hmouter[i]);
1333 		}
1334 	}
1335 
1336 	if (enccrd && maccrd) {
1337 		/*
1338 		 * ubsec cannot handle packets where the end of encryption
1339 		 * and authentication are not the same, or where the
1340 		 * encrypted part begins before the authenticated part.
1341 		 */
1342 		if ((encoffset + enccrd->crd_len) !=
1343 		    (macoffset + maccrd->crd_len)) {
1344 			ubsecstats.hst_lenmismatch++;
1345 			err = EINVAL;
1346 			goto errout;
1347 		}
1348 		if (enccrd->crd_skip < maccrd->crd_skip) {
1349 			ubsecstats.hst_skipmismatch++;
1350 			err = EINVAL;
1351 			goto errout;
1352 		}
1353 		sskip = maccrd->crd_skip;
1354 		cpskip = dskip = enccrd->crd_skip;
1355 		stheend = maccrd->crd_len;
1356 		dtheend = enccrd->crd_len;
1357 		coffset = enccrd->crd_skip - maccrd->crd_skip;
1358 		cpoffset = cpskip + dtheend;
1359 #ifdef UBSEC_DEBUG
1360 		if (ubsec_debug) {
1361 			printf("mac: skip %d, len %d, inject %d\n",
1362 			       maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1363 			printf("enc: skip %d, len %d, inject %d\n",
1364 			       enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1365 			printf("src: skip %d, len %d\n", sskip, stheend);
1366 			printf("dst: skip %d, len %d\n", dskip, dtheend);
1367 			printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1368 			       coffset, stheend, cpskip, cpoffset);
1369 		}
1370 #endif
1371 	} else {
1372 		cpskip = dskip = sskip = macoffset + encoffset;
1373 		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1374 		cpoffset = cpskip + dtheend;
1375 		coffset = 0;
1376 	}
1377 	ctx.pc_offset = htole16(coffset >> 2);
1378 
1379 	/* XXX FIXME: jonathan asks, what the heck's that 0xfff0?  */
1380 	if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
1381 		0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
1382 		err = ENOMEM;
1383 		goto errout;
1384 	}
1385 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1386 		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1387 		    q->q_src_m, BUS_DMA_NOWAIT) != 0) {
1388 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1389 			q->q_src_map = NULL;
1390 			ubsecstats.hst_noload++;
1391 			err = ENOMEM;
1392 			goto errout;
1393 		}
1394 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1395 		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1396 		    q->q_src_io, BUS_DMA_NOWAIT) != 0) {
1397 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1398 			q->q_src_map = NULL;
1399 			ubsecstats.hst_noload++;
1400 			err = ENOMEM;
1401 			goto errout;
1402 		}
1403 	}
1404 	nicealign = ubsec_dmamap_aligned(q->q_src_map);
1405 
1406 	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1407 
1408 #ifdef UBSEC_DEBUG
1409 	if (ubsec_debug)
1410 		printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1411 #endif
1412 	for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) {
1413 		struct ubsec_pktbuf *pb;
1414 		bus_size_t packl = q->q_src_map->dm_segs[i].ds_len;
1415 		bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr;
1416 
1417 		if (sskip >= packl) {
1418 			sskip -= packl;
1419 			continue;
1420 		}
1421 
1422 		packl -= sskip;
1423 		packp += sskip;
1424 		sskip = 0;
1425 
1426 		if (packl > 0xfffc) {
1427 			err = EIO;
1428 			goto errout;
1429 		}
1430 
1431 		if (j == 0)
1432 			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1433 		else
1434 			pb = &dmap->d_dma->d_sbuf[j - 1];
1435 
1436 		pb->pb_addr = htole32(packp);
1437 
1438 		if (stheend) {
1439 			if (packl > stheend) {
1440 				pb->pb_len = htole32(stheend);
1441 				stheend = 0;
1442 			} else {
1443 				pb->pb_len = htole32(packl);
1444 				stheend -= packl;
1445 			}
1446 		} else
1447 			pb->pb_len = htole32(packl);
1448 
1449 		if ((i + 1) == q->q_src_map->dm_nsegs)
1450 			pb->pb_next = 0;
1451 		else
1452 			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1453 			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1454 		j++;
1455 	}
1456 
1457 	if (enccrd == NULL && maccrd != NULL) {
1458 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1459 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1460 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1461 		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1462 #ifdef UBSEC_DEBUG
1463 		if (ubsec_debug)
1464 			printf("opkt: %x %x %x\n",
1465 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1466 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1467 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1468 
1469 #endif
1470 	} else {
1471 		if (crp->crp_flags & CRYPTO_F_IOV) {
1472 			if (!nicealign) {
1473 				ubsecstats.hst_iovmisaligned++;
1474 				err = EINVAL;
1475 				goto errout;
1476 			}
1477 			/* XXX: ``what the heck's that'' 0xfff0? */
1478 			if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1479 			    UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1480 			    &q->q_dst_map) != 0) {
1481 				ubsecstats.hst_nomap++;
1482 				err = ENOMEM;
1483 				goto errout;
1484 			}
1485 			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1486 			    q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
1487 				bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1488 				q->q_dst_map = NULL;
1489 				ubsecstats.hst_noload++;
1490 				err = ENOMEM;
1491 				goto errout;
1492 			}
1493 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1494 			if (nicealign) {
1495 				q->q_dst_m = q->q_src_m;
1496 				q->q_dst_map = q->q_src_map;
1497 			} else {
1498 				int totlen, len;
1499 				struct mbuf *m, *top, **mp;
1500 
1501 				ubsecstats.hst_unaligned++;
1502 				totlen = q->q_src_map->dm_mapsize;
1503 				if (q->q_src_m->m_flags & M_PKTHDR) {
1504 					len = MHLEN;
1505 					MGETHDR(m, M_DONTWAIT, MT_DATA);
1506 					/*XXX FIXME: m_dup_pkthdr */
1507 					if (m && 1 /*!m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)*/) {
1508 						m_free(m);
1509 						m = NULL;
1510 					}
1511 				} else {
1512 					len = MLEN;
1513 					MGET(m, M_DONTWAIT, MT_DATA);
1514 				}
1515 				if (m == NULL) {
1516 					ubsecstats.hst_nombuf++;
1517 					err = sc->sc_nqueue ? ERESTART : ENOMEM;
1518 					goto errout;
1519 				}
1520 				if (len == MHLEN)
1521 				  /*XXX was M_DUP_PKTHDR*/
1522 				  M_COPY_PKTHDR(m, q->q_src_m);
1523 				if (totlen >= MINCLSIZE) {
1524 					MCLGET(m, M_DONTWAIT);
1525 					if ((m->m_flags & M_EXT) == 0) {
1526 						m_free(m);
1527 						ubsecstats.hst_nomcl++;
1528 						err = sc->sc_nqueue ? ERESTART : ENOMEM;
1529 						goto errout;
1530 					}
1531 					len = MCLBYTES;
1532 				}
1533 				m->m_len = len;
1534 				top = NULL;
1535 				mp = &top;
1536 
1537 				while (totlen > 0) {
1538 					if (top) {
1539 						MGET(m, M_DONTWAIT, MT_DATA);
1540 						if (m == NULL) {
1541 							m_freem(top);
1542 							ubsecstats.hst_nombuf++;
1543 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1544 							goto errout;
1545 						}
1546 						len = MLEN;
1547 					}
1548 					if (top && totlen >= MINCLSIZE) {
1549 						MCLGET(m, M_DONTWAIT);
1550 						if ((m->m_flags & M_EXT) == 0) {
1551 							*mp = m;
1552 							m_freem(top);
1553 							ubsecstats.hst_nomcl++;
1554 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1555 							goto errout;
1556 						}
1557 						len = MCLBYTES;
1558 					}
1559 					m->m_len = len = min(totlen, len);
1560 					totlen -= len;
1561 					*mp = m;
1562 					mp = &m->m_next;
1563 				}
1564 				q->q_dst_m = top;
1565 				ubsec_mcopy(q->q_src_m, q->q_dst_m,
1566 				    cpskip, cpoffset);
1567 				/* XXX again, what the heck is that 0xfff0? */
1568 				if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1569 				    UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1570 				    &q->q_dst_map) != 0) {
1571 					ubsecstats.hst_nomap++;
1572 					err = ENOMEM;
1573 					goto errout;
1574 				}
1575 				if (bus_dmamap_load_mbuf(sc->sc_dmat,
1576 				    q->q_dst_map, q->q_dst_m,
1577 				    BUS_DMA_NOWAIT) != 0) {
1578 					bus_dmamap_destroy(sc->sc_dmat,
1579 					q->q_dst_map);
1580 					q->q_dst_map = NULL;
1581 					ubsecstats.hst_noload++;
1582 					err = ENOMEM;
1583 					goto errout;
1584 				}
1585 			}
1586 		} else {
1587 			ubsecstats.hst_badflags++;
1588 			err = EINVAL;
1589 			goto errout;
1590 		}
1591 
1592 #ifdef UBSEC_DEBUG
1593 		if (ubsec_debug)
1594 			printf("dst skip: %d\n", dskip);
1595 #endif
1596 		for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) {
1597 			struct ubsec_pktbuf *pb;
1598 			bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len;
1599 			bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr;
1600 
1601 			if (dskip >= packl) {
1602 				dskip -= packl;
1603 				continue;
1604 			}
1605 
1606 			packl -= dskip;
1607 			packp += dskip;
1608 			dskip = 0;
1609 
1610 			if (packl > 0xfffc) {
1611 				err = EIO;
1612 				goto errout;
1613 			}
1614 
1615 			if (j == 0)
1616 				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1617 			else
1618 				pb = &dmap->d_dma->d_dbuf[j - 1];
1619 
1620 			pb->pb_addr = htole32(packp);
1621 
1622 			if (dtheend) {
1623 				if (packl > dtheend) {
1624 					pb->pb_len = htole32(dtheend);
1625 					dtheend = 0;
1626 				} else {
1627 					pb->pb_len = htole32(packl);
1628 					dtheend -= packl;
1629 				}
1630 			} else
1631 				pb->pb_len = htole32(packl);
1632 
1633 			if ((i + 1) == q->q_dst_map->dm_nsegs) {
1634 				if (maccrd)
1635 					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1636 					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1637 				else
1638 					pb->pb_next = 0;
1639 			} else
1640 				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1641 				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1642 			j++;
1643 		}
1644 	}
1645 
1646 	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1647 	    offsetof(struct ubsec_dmachunk, d_ctx));
1648 
1649 	if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1650 		struct ubsec_pktctx_long *ctxl;
1651 
1652 		ctxl = (struct ubsec_pktctx_long *)((char *)dmap->d_alloc.dma_vaddr +
1653 		    offsetof(struct ubsec_dmachunk, d_ctx));
1654 
1655 		/* transform small context into long context */
1656 		ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
1657 		ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
1658 		ctxl->pc_flags = ctx.pc_flags;
1659 		ctxl->pc_offset = ctx.pc_offset;
1660 		for (i = 0; i < 6; i++)
1661 			ctxl->pc_deskey[i] = ctx.pc_deskey[i];
1662 		for (i = 0; i < 5; i++)
1663 			ctxl->pc_hminner[i] = ctx.pc_hminner[i];
1664 		for (i = 0; i < 5; i++)
1665 			ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
1666 		ctxl->pc_iv[0] = ctx.pc_iv[0];
1667 		ctxl->pc_iv[1] = ctx.pc_iv[1];
1668 	} else
1669 		memcpy((char *)dmap->d_alloc.dma_vaddr +
1670 		    offsetof(struct ubsec_dmachunk, d_ctx), &ctx,
1671 		    sizeof(struct ubsec_pktctx));
1672 
1673 	mutex_spin_enter(&sc->sc_mtx);
1674 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1675 	sc->sc_nqueue++;
1676 	ubsecstats.hst_ipackets++;
1677 	ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize;
1678 	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch)
1679 		ubsec_feed(sc);
1680 	mutex_spin_exit(&sc->sc_mtx);
1681 	return (0);
1682 
1683 errout:
1684 	if (q != NULL) {
1685 		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1686 			m_freem(q->q_dst_m);
1687 
1688 		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1689 			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1690 			bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1691 		}
1692 		if (q->q_src_map != NULL) {
1693 			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1694 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1695 		}
1696 
1697 		mutex_spin_enter(&sc->sc_mtx);
1698 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1699 		mutex_spin_exit(&sc->sc_mtx);
1700 	}
1701 #if 0 /* jonathan says: this openbsd code seems to be subsumed elsewhere */
1702 	if (err == EINVAL)
1703 		ubsecstats.hst_invalid++;
1704 	else
1705 		ubsecstats.hst_nomem++;
1706 #endif
1707 	if (err != ERESTART) {
1708 		crp->crp_etype = err;
1709 		crypto_done(crp);
1710 	} else {
1711 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1712 	}
1713 	return (err);
1714 }
1715 
1716 static void
1717 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1718 {
1719 	struct cryptop *crp = (struct cryptop *)q->q_crp;
1720 	struct cryptodesc *crd;
1721 	struct ubsec_dma *dmap = q->q_dma;
1722 
1723 	ubsecstats.hst_opackets++;
1724 	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1725 
1726 	bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
1727 	    dmap->d_alloc.dma_map->dm_mapsize,
1728 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1729 	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1730 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1731 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1732 		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1733 		bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1734 	}
1735 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
1736 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1737 	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1738 	bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1739 
1740 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1741 		m_freem(q->q_src_m);
1742 		crp->crp_buf = (void *)q->q_dst_m;
1743 	}
1744 
1745 	/* copy out IV for future use */
1746 	if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1747 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1748 			if (crd->crd_alg != CRYPTO_DES_CBC &&
1749 			    crd->crd_alg != CRYPTO_3DES_CBC)
1750 				continue;
1751 			if (crp->crp_flags & CRYPTO_F_IMBUF)
1752 				m_copydata((struct mbuf *)crp->crp_buf,
1753 				    crd->crd_skip + crd->crd_len - 8, 8,
1754 				    (void *)sc->sc_sessions[q->q_sesn].ses_iv);
1755 			else if (crp->crp_flags & CRYPTO_F_IOV) {
1756 				cuio_copydata((struct uio *)crp->crp_buf,
1757 				    crd->crd_skip + crd->crd_len - 8, 8,
1758 				    (void *)sc->sc_sessions[q->q_sesn].ses_iv);
1759 			}
1760 			break;
1761 		}
1762 	}
1763 
1764 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1765 		if (crd->crd_alg != CRYPTO_MD5_HMAC_96 &&
1766 		    crd->crd_alg != CRYPTO_SHA1_HMAC_96)
1767 			continue;
1768 		if (crp->crp_flags & CRYPTO_F_IMBUF)
1769 			m_copyback((struct mbuf *)crp->crp_buf,
1770 			    crd->crd_inject, 12,
1771 			    (void *)dmap->d_dma->d_macbuf);
1772 		else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1773 			bcopy((void *)dmap->d_dma->d_macbuf,
1774 			    crp->crp_mac, 12);
1775 		break;
1776 	}
1777 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1778 	crypto_done(crp);
1779 }
1780 
1781 static void
1782 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1783 {
1784 	int i, j, dlen, slen;
1785 	char *dptr, *sptr;
1786 
1787 	j = 0;
1788 	sptr = srcm->m_data;
1789 	slen = srcm->m_len;
1790 	dptr = dstm->m_data;
1791 	dlen = dstm->m_len;
1792 
1793 	while (1) {
1794 		for (i = 0; i < min(slen, dlen); i++) {
1795 			if (j < hoffset || j >= toffset)
1796 				*dptr++ = *sptr++;
1797 			slen--;
1798 			dlen--;
1799 			j++;
1800 		}
1801 		if (slen == 0) {
1802 			srcm = srcm->m_next;
1803 			if (srcm == NULL)
1804 				return;
1805 			sptr = srcm->m_data;
1806 			slen = srcm->m_len;
1807 		}
1808 		if (dlen == 0) {
1809 			dstm = dstm->m_next;
1810 			if (dstm == NULL)
1811 				return;
1812 			dptr = dstm->m_data;
1813 			dlen = dstm->m_len;
1814 		}
1815 	}
1816 }
1817 
1818 /*
1819  * feed the key generator, must be called at splnet() or higher.
1820  */
1821 static void
1822 ubsec_feed2(struct ubsec_softc *sc)
1823 {
1824 	struct ubsec_q2 *q;
1825 
1826 	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1827 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1828 			break;
1829 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1830 
1831 		bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1832 		    q->q_mcr.dma_map->dm_mapsize,
1833 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1834 		bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1835 		    q->q_ctx.dma_map->dm_mapsize,
1836 		    BUS_DMASYNC_PREWRITE);
1837 
1838 		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1839 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1840 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, /*q,*/ q_next);
1841 		--sc->sc_nqueue2;
1842 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1843 	}
1844 }
1845 
1846 /*
1847  * feed the RNG (used instead of ubsec_feed2() on 5827+ devices)
1848  */
1849 void
1850 ubsec_feed4(struct ubsec_softc *sc)
1851 {
1852 	struct ubsec_q2 *q;
1853 
1854 	while (!SIMPLEQ_EMPTY(&sc->sc_queue4)) {
1855 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR4_FULL)
1856 			break;
1857 		q = SIMPLEQ_FIRST(&sc->sc_queue4);
1858 
1859 		bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1860 		    q->q_mcr.dma_map->dm_mapsize,
1861 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1862 		bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1863 		    q->q_ctx.dma_map->dm_mapsize,
1864 		    BUS_DMASYNC_PREWRITE);
1865 
1866 		WRITE_REG(sc, BS_MCR4, q->q_mcr.dma_paddr);
1867 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue4, q_next);
1868 		--sc->sc_nqueue4;
1869 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip4, q, q_next);
1870 	}
1871 }
1872 
1873 /*
1874  * Callback for handling random numbers
1875  */
1876 static void
1877 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
1878 {
1879 	struct cryptkop *krp;
1880 	struct ubsec_ctx_keyop *ctx;
1881 
1882 	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
1883 	bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1884 	    q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1885 
1886 	switch (q->q_type) {
1887 #ifndef UBSEC_NO_RNG
1888 	case UBS_CTXOP_RNGSHA1:
1889 	case UBS_CTXOP_RNGBYPASS: {
1890 		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
1891 		u_int32_t *p;
1892 		int i;
1893 
1894 		bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
1895 		    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1896 		p = (u_int32_t *)rng->rng_buf.dma_vaddr;
1897 #ifndef __NetBSD__
1898 		for (i = 0; i < UBSEC_RNG_BUFSIZ; p++, i++)
1899 			add_true_randomness(letoh32(*p));
1900 #else
1901 		i = UBSEC_RNG_BUFSIZ * sizeof(u_int32_t);
1902 		rnd_add_data(&sc->sc_rnd_source, (char *)p, i, i * NBBY);
1903 		sc->sc_rng_need -= i;
1904 #endif
1905 		rng->rng_used = 0;
1906 #ifdef __OpenBSD__
1907 		timeout_add(&sc->sc_rngto, sc->sc_rnghz);
1908 #else
1909 		if (sc->sc_rng_need > 0) {
1910 			callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
1911 		}
1912 #endif
1913 		break;
1914 	}
1915 #endif
1916 	case UBS_CTXOP_MODEXP: {
1917 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1918 		u_int rlen, clen;
1919 
1920 		krp = me->me_krp;
1921 		rlen = (me->me_modbits + 7) / 8;
1922 		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
1923 
1924 		bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
1925 		    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1926 		bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
1927 		    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1928 		bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
1929 		    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1930 		bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
1931 		    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1932 
1933 		if (clen < rlen)
1934 			krp->krp_status = E2BIG;
1935 		else {
1936 			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
1937 				memset(krp->krp_param[krp->krp_iparams].crp_p, 0,
1938 				    (krp->krp_param[krp->krp_iparams].crp_nbits
1939 					+ 7) / 8);
1940 				bcopy(me->me_C.dma_vaddr,
1941 				    krp->krp_param[krp->krp_iparams].crp_p,
1942 				    (me->me_modbits + 7) / 8);
1943 			} else
1944 				ubsec_kshift_l(me->me_shiftbits,
1945 				    me->me_C.dma_vaddr, me->me_normbits,
1946 				    krp->krp_param[krp->krp_iparams].crp_p,
1947 				    krp->krp_param[krp->krp_iparams].crp_nbits);
1948 		}
1949 
1950 		crypto_kdone(krp);
1951 
1952 		/* bzero all potentially sensitive data */
1953 		memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
1954 		memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
1955 		memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
1956 		memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
1957 
1958 		/* Can't free here, so put us on the free list. */
1959 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
1960 		break;
1961 	}
1962 	case UBS_CTXOP_RSAPRIV: {
1963 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1964 		u_int len;
1965 
1966 		krp = rp->rpr_krp;
1967 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0,
1968 		    rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1969 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0,
1970 		    rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1971 
1972 		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
1973 		bcopy(rp->rpr_msgout.dma_vaddr,
1974 		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
1975 
1976 		crypto_kdone(krp);
1977 
1978 		memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
1979 		memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
1980 		memset(rp->rpr_q.q_ctx.dma_vaddr, 0, rp->rpr_q.q_ctx.dma_size);
1981 
1982 		/* Can't free here, so put us on the free list. */
1983 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
1984 		break;
1985 	}
1986 	default:
1987 		printf("%s: unknown ctx op: %x\n", device_xname(sc->sc_dev),
1988 		    letoh16(ctx->ctx_op));
1989 		break;
1990 	}
1991 }
1992 
1993 #ifndef UBSEC_NO_RNG
1994 
1995 static void
1996 ubsec_rng_get(size_t bytes, void *vsc)
1997 {
1998 	struct ubsec_softc *sc = vsc;
1999 
2000 	mutex_spin_enter(&sc->sc_mtx);
2001 	sc->sc_rng_need = bytes;
2002 	ubsec_rng_locked(sc);
2003 	mutex_spin_exit(&sc->sc_mtx);
2004 
2005 }
2006 
2007 static void
2008 ubsec_rng(void *vsc)
2009 {
2010 	struct ubsec_softc *sc = vsc;
2011 	mutex_spin_enter(&sc->sc_mtx);
2012 	ubsec_rng_locked(sc);
2013 	mutex_spin_exit(&sc->sc_mtx);
2014 }
2015 
2016 static void
2017 ubsec_rng_locked(void *vsc)
2018 {
2019 	struct ubsec_softc *sc = vsc;
2020 	struct ubsec_q2_rng *rng = &sc->sc_rng;
2021 	struct ubsec_mcr *mcr;
2022 	struct ubsec_ctx_rngbypass *ctx;
2023 	int *nqueue;
2024 
2025 	/* Caller is responsible to lock and release sc_mtx. */
2026 	KASSERT(mutex_owned(&sc->sc_mtx));
2027 
2028 	if (rng->rng_used) {
2029 		return;
2030 	}
2031 
2032 	if (sc->sc_rng_need < 1) {
2033 		callout_stop(&sc->sc_rngto);
2034 		return;
2035 	}
2036 
2037 	if (sc->sc_flags & UBS_FLAGS_RNG4)
2038 		nqueue = &sc->sc_nqueue4;
2039 	else
2040 		nqueue = &sc->sc_nqueue2;
2041 
2042 	(*nqueue)++;
2043 	if (*nqueue >= UBS_MAX_NQUEUE)
2044  		goto out;
2045 
2046 	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
2047 	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
2048 
2049 	mcr->mcr_pkts = htole16(1);
2050 	mcr->mcr_flags = 0;
2051 	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
2052 	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
2053 	mcr->mcr_ipktbuf.pb_len = 0;
2054 	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
2055 	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
2056 	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
2057 	    UBS_PKTBUF_LEN);
2058 	mcr->mcr_opktbuf.pb_next = 0;
2059 
2060 	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
2061 	ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1);
2062 	rng->rng_q.q_type = UBS_CTXOP_RNGSHA1;
2063 
2064 	bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
2065 	    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2066 
2067 	if (sc->sc_flags & UBS_FLAGS_RNG4) {
2068 		SIMPLEQ_INSERT_TAIL(&sc->sc_queue4, &rng->rng_q, q_next);
2069 		ubsec_feed4(sc);
2070 	} else {
2071 		SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
2072 		ubsec_feed2(sc);
2073 	}
2074 	rng->rng_used = 1;
2075 	ubsecstats.hst_rng++;
2076 
2077 	return;
2078 
2079 out:
2080 	/*
2081 	 * Something weird happened, generate our own call back.
2082 	 */
2083 	(*nqueue)--;
2084 #ifdef __OpenBSD__
2085 	timeout_add(&sc->sc_rngto, sc->sc_rnghz);
2086 #else
2087 	callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
2088 #endif
2089 }
2090 #endif /* UBSEC_NO_RNG */
2091 
2092 static int
2093 ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size,
2094 		 struct ubsec_dma_alloc *dma,int mapflags)
2095 {
2096 	int r;
2097 
2098 	if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
2099 	    &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0)
2100 		goto fail_0;
2101 
2102 	if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg,
2103 	    size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0)
2104 		goto fail_1;
2105 
2106 	if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
2107 	    BUS_DMA_NOWAIT, &dma->dma_map)) != 0)
2108 		goto fail_2;
2109 
2110 	if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
2111 	    size, NULL, BUS_DMA_NOWAIT)) != 0)
2112 		goto fail_3;
2113 
2114 	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
2115 	dma->dma_size = size;
2116 	return (0);
2117 
2118 fail_3:
2119 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
2120 fail_2:
2121 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
2122 fail_1:
2123 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
2124 fail_0:
2125 	dma->dma_map = NULL;
2126 	return (r);
2127 }
2128 
2129 static void
2130 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
2131 {
2132 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
2133 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
2134 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
2135 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
2136 }
2137 
2138 /*
2139  * Resets the board.  Values in the regesters are left as is
2140  * from the reset (i.e. initial values are assigned elsewhere).
2141  */
2142 static void
2143 ubsec_reset_board(struct ubsec_softc *sc)
2144 {
2145 	volatile u_int32_t ctrl;
2146 
2147 	ctrl = READ_REG(sc, BS_CTRL);
2148 	ctrl |= BS_CTRL_RESET;
2149 	WRITE_REG(sc, BS_CTRL, ctrl);
2150 
2151 	/*
2152 	* Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
2153 	*/
2154 	DELAY(10);
2155 
2156 	/* Enable RNG and interrupts on newer devices */
2157 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
2158 #ifndef UBSEC_NO_RNG
2159 		WRITE_REG(sc, BS_CFG, BS_CFG_RNG);
2160 #endif
2161 		WRITE_REG(sc, BS_INT, BS_INT_DMAINT);
2162 	}
2163 }
2164 
2165 /*
2166  * Init Broadcom registers
2167  */
2168 static void
2169 ubsec_init_board(struct ubsec_softc *sc)
2170 {
2171 	u_int32_t ctrl;
2172 
2173 	ctrl = READ_REG(sc, BS_CTRL);
2174 	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
2175 	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
2176 
2177 	/*
2178 	 * XXX: Sam Leffler's code has (UBS_FLAGS_KEY|UBS_FLAGS_RNG)).
2179 	 * anyone got hw docs?
2180 	 */
2181 	if (sc->sc_flags & UBS_FLAGS_KEY)
2182 		ctrl |= BS_CTRL_MCR2INT;
2183 	else
2184 		ctrl &= ~BS_CTRL_MCR2INT;
2185 
2186 	if (sc->sc_flags & UBS_FLAGS_HWNORM)
2187 		ctrl &= ~BS_CTRL_SWNORM;
2188 
2189 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
2190 		ctrl |= BS_CTRL_BSIZE240;
2191 		ctrl &= ~BS_CTRL_MCR3INT; /* MCR3 is reserved for SSL */
2192 
2193 		if (sc->sc_flags & UBS_FLAGS_RNG4)
2194 			ctrl |= BS_CTRL_MCR4INT;
2195 		else
2196 			ctrl &= ~BS_CTRL_MCR4INT;
2197 	}
2198 
2199 	WRITE_REG(sc, BS_CTRL, ctrl);
2200 }
2201 
2202 /*
2203  * Init Broadcom PCI registers
2204  */
2205 static void
2206 ubsec_init_pciregs(struct pci_attach_args *pa)
2207 {
2208 	pci_chipset_tag_t pc = pa->pa_pc;
2209 	u_int32_t misc;
2210 
2211 	/*
2212 	 * This will set the cache line size to 1, this will
2213 	 * force the BCM58xx chip just to do burst read/writes.
2214 	 * Cache line read/writes are to slow
2215 	 */
2216 	misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG);
2217 	misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT))
2218 	    | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT);
2219 	pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc);
2220 }
2221 
2222 /*
2223  * Clean up after a chip crash.
2224  * It is assumed that the caller in splnet()
2225  */
2226 static void
2227 ubsec_cleanchip(struct ubsec_softc *sc)
2228 {
2229 	struct ubsec_q *q;
2230 
2231 	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
2232 		q = SIMPLEQ_FIRST(&sc->sc_qchip);
2233 		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
2234 		ubsec_free_q(sc, q);
2235 	}
2236 	sc->sc_nqchip = 0;
2237 }
2238 
2239 /*
2240  * free a ubsec_q
2241  * It is assumed that the caller is within splnet()
2242  */
2243 static int
2244 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
2245 {
2246 	struct ubsec_q *q2;
2247 	struct cryptop *crp;
2248 	int npkts;
2249 	int i;
2250 
2251 	npkts = q->q_nstacked_mcrs;
2252 
2253 	for (i = 0; i < npkts; i++) {
2254 		if(q->q_stacked_mcr[i]) {
2255 			q2 = q->q_stacked_mcr[i];
2256 
2257 			if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
2258 				m_freem(q2->q_dst_m);
2259 
2260 			crp = (struct cryptop *)q2->q_crp;
2261 
2262 			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2263 
2264 			crp->crp_etype = EFAULT;
2265 			crypto_done(crp);
2266 		} else {
2267 			break;
2268 		}
2269 	}
2270 
2271 	/*
2272 	 * Free header MCR
2273 	 */
2274 	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2275 		m_freem(q->q_dst_m);
2276 
2277 	crp = (struct cryptop *)q->q_crp;
2278 
2279 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2280 
2281 	crp->crp_etype = EFAULT;
2282 	crypto_done(crp);
2283 	return(0);
2284 }
2285 
2286 /*
2287  * Routine to reset the chip and clean up.
2288  * It is assumed that the caller is in splnet()
2289  */
2290 static void
2291 ubsec_totalreset(struct ubsec_softc *sc)
2292 {
2293 	ubsec_reset_board(sc);
2294 	ubsec_init_board(sc);
2295 	ubsec_cleanchip(sc);
2296 }
2297 
2298 static int
2299 ubsec_dmamap_aligned(bus_dmamap_t map)
2300 {
2301 	int i;
2302 
2303 	for (i = 0; i < map->dm_nsegs; i++) {
2304 		if (map->dm_segs[i].ds_addr & 3)
2305 			return (0);
2306 		if ((i != (map->dm_nsegs - 1)) &&
2307 		    (map->dm_segs[i].ds_len & 3))
2308 			return (0);
2309 	}
2310 	return (1);
2311 }
2312 
2313 #ifdef __OpenBSD__
2314 struct ubsec_softc *
2315 ubsec_kfind(struct cryptkop *krp)
2316 {
2317 	struct ubsec_softc *sc;
2318 	int i;
2319 
2320 	for (i = 0; i < ubsec_cd.cd_ndevs; i++) {
2321 		sc = ubsec_cd.cd_devs[i];
2322 		if (sc == NULL)
2323 			continue;
2324 		if (sc->sc_cid == krp->krp_hid)
2325 			return (sc);
2326 	}
2327 	return (NULL);
2328 }
2329 #endif
2330 
2331 static void
2332 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2333 {
2334 	switch (q->q_type) {
2335 	case UBS_CTXOP_MODEXP: {
2336 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2337 
2338 		ubsec_dma_free(sc, &me->me_q.q_mcr);
2339 		ubsec_dma_free(sc, &me->me_q.q_ctx);
2340 		ubsec_dma_free(sc, &me->me_M);
2341 		ubsec_dma_free(sc, &me->me_E);
2342 		ubsec_dma_free(sc, &me->me_C);
2343 		ubsec_dma_free(sc, &me->me_epb);
2344 		free(me, M_DEVBUF);
2345 		break;
2346 	}
2347 	case UBS_CTXOP_RSAPRIV: {
2348 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2349 
2350 		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2351 		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2352 		ubsec_dma_free(sc, &rp->rpr_msgin);
2353 		ubsec_dma_free(sc, &rp->rpr_msgout);
2354 		free(rp, M_DEVBUF);
2355 		break;
2356 	}
2357 	default:
2358 		printf("%s: invalid kfree 0x%x\n", device_xname(sc->sc_dev),
2359 		    q->q_type);
2360 		break;
2361 	}
2362 }
2363 
2364 static int
2365 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2366 {
2367 	struct ubsec_softc *sc;
2368 	int r;
2369 
2370 	if (krp == NULL || krp->krp_callback == NULL)
2371 		return (EINVAL);
2372 #ifdef __OpenBSD__
2373 	if ((sc = ubsec_kfind(krp)) == NULL)
2374 		return (EINVAL);
2375 #else
2376 	sc = arg;
2377 	KASSERT(sc != NULL /*, ("ubsec_kprocess: null softc")*/);
2378 #endif
2379 
2380 	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2381 		struct ubsec_q2 *q;
2382 
2383 		q = SIMPLEQ_FIRST(&sc->sc_q2free);
2384 		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, /*q,*/ q_next);
2385 		ubsec_kfree(sc, q);
2386 	}
2387 
2388 	switch (krp->krp_op) {
2389 	case CRK_MOD_EXP:
2390 		if (sc->sc_flags & UBS_FLAGS_HWNORM)
2391 			r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2392 		else
2393 			r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2394 		break;
2395 	case CRK_MOD_EXP_CRT:
2396 		r = ubsec_kprocess_rsapriv(sc, krp, hint);
2397 		break;
2398 	default:
2399 		printf("%s: kprocess: invalid op 0x%x\n",
2400 		    device_xname(sc->sc_dev), krp->krp_op);
2401 		krp->krp_status = EOPNOTSUPP;
2402 		crypto_kdone(krp);
2403 		r = 0;
2404 	}
2405 	return (r);
2406 }
2407 
2408 /*
2409  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2410  */
2411 static int
2412 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp,
2413 			 int hint)
2414 {
2415 	struct ubsec_q2_modexp *me;
2416 	struct ubsec_mcr *mcr;
2417 	struct ubsec_ctx_modexp *ctx;
2418 	struct ubsec_pktbuf *epb;
2419 	int err = 0;
2420 	u_int nbits, normbits, mbits, shiftbits, ebits;
2421 
2422 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2423 	if (me == NULL) {
2424 		err = ENOMEM;
2425 		goto errout;
2426 	}
2427 	memset(me, 0, sizeof *me);
2428 	me->me_krp = krp;
2429 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2430 
2431 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2432 	if (nbits <= 512)
2433 		normbits = 512;
2434 	else if (nbits <= 768)
2435 		normbits = 768;
2436 	else if (nbits <= 1024)
2437 		normbits = 1024;
2438 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2439 		normbits = 1536;
2440 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2441 		normbits = 2048;
2442 	else {
2443 		err = E2BIG;
2444 		goto errout;
2445 	}
2446 
2447 	shiftbits = normbits - nbits;
2448 
2449 	me->me_modbits = nbits;
2450 	me->me_shiftbits = shiftbits;
2451 	me->me_normbits = normbits;
2452 
2453 	/* Sanity check: result bits must be >= true modulus bits. */
2454 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2455 		err = ERANGE;
2456 		goto errout;
2457 	}
2458 
2459 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2460 	    &me->me_q.q_mcr, 0)) {
2461 		err = ENOMEM;
2462 		goto errout;
2463 	}
2464 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2465 
2466 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2467 	    &me->me_q.q_ctx, 0)) {
2468 		err = ENOMEM;
2469 		goto errout;
2470 	}
2471 
2472 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2473 	if (mbits > nbits) {
2474 		err = E2BIG;
2475 		goto errout;
2476 	}
2477 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2478 		err = ENOMEM;
2479 		goto errout;
2480 	}
2481 	ubsec_kshift_r(shiftbits,
2482 	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2483 	    me->me_M.dma_vaddr, normbits);
2484 
2485 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2486 		err = ENOMEM;
2487 		goto errout;
2488 	}
2489 	memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2490 
2491 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2492 	if (ebits > nbits) {
2493 		err = E2BIG;
2494 		goto errout;
2495 	}
2496 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2497 		err = ENOMEM;
2498 		goto errout;
2499 	}
2500 	ubsec_kshift_r(shiftbits,
2501 	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2502 	    me->me_E.dma_vaddr, normbits);
2503 
2504 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2505 	    &me->me_epb, 0)) {
2506 		err = ENOMEM;
2507 		goto errout;
2508 	}
2509 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2510 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2511 	epb->pb_next = 0;
2512 	epb->pb_len = htole32(normbits / 8);
2513 
2514 #ifdef UBSEC_DEBUG
2515 	if (ubsec_debug) {
2516 		printf("Epb ");
2517 		ubsec_dump_pb(epb);
2518 	}
2519 #endif
2520 
2521 	mcr->mcr_pkts = htole16(1);
2522 	mcr->mcr_flags = 0;
2523 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2524 	mcr->mcr_reserved = 0;
2525 	mcr->mcr_pktlen = 0;
2526 
2527 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2528 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2529 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2530 
2531 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2532 	mcr->mcr_opktbuf.pb_next = 0;
2533 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2534 
2535 #ifdef DIAGNOSTIC
2536 	/* Misaligned output buffer will hang the chip. */
2537 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2538 		panic("%s: modexp invalid addr 0x%x",
2539 		    device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_addr));
2540 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2541 		panic("%s: modexp invalid len 0x%x",
2542 		    device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_len));
2543 #endif
2544 
2545 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2546 	memset(ctx, 0, sizeof(*ctx));
2547 	ubsec_kshift_r(shiftbits,
2548 	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2549 	    ctx->me_N, normbits);
2550 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2551 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2552 	ctx->me_E_len = htole16(nbits);
2553 	ctx->me_N_len = htole16(nbits);
2554 
2555 #ifdef UBSEC_DEBUG
2556 	if (ubsec_debug) {
2557 		ubsec_dump_mcr(mcr);
2558 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2559 	}
2560 #endif
2561 
2562 	/*
2563 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2564 	 * everything else.
2565 	 */
2566 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2567 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2568 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2569 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2570 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2571 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2572 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2573 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2574 
2575 	/* Enqueue and we're done... */
2576 	mutex_spin_enter(&sc->sc_mtx);
2577 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2578 	ubsec_feed2(sc);
2579 	ubsecstats.hst_modexp++;
2580 	mutex_spin_exit(&sc->sc_mtx);
2581 
2582 	return (0);
2583 
2584 errout:
2585 	if (me != NULL) {
2586 		if (me->me_q.q_mcr.dma_map != NULL)
2587 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2588 		if (me->me_q.q_ctx.dma_map != NULL) {
2589 			memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
2590 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2591 		}
2592 		if (me->me_M.dma_map != NULL) {
2593 			memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2594 			ubsec_dma_free(sc, &me->me_M);
2595 		}
2596 		if (me->me_E.dma_map != NULL) {
2597 			memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2598 			ubsec_dma_free(sc, &me->me_E);
2599 		}
2600 		if (me->me_C.dma_map != NULL) {
2601 			memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2602 			ubsec_dma_free(sc, &me->me_C);
2603 		}
2604 		if (me->me_epb.dma_map != NULL)
2605 			ubsec_dma_free(sc, &me->me_epb);
2606 		free(me, M_DEVBUF);
2607 	}
2608 	krp->krp_status = err;
2609 	crypto_kdone(krp);
2610 	return (0);
2611 }
2612 
2613 /*
2614  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2615  */
2616 static int
2617 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp,
2618 			 int hint)
2619 {
2620 	struct ubsec_q2_modexp *me;
2621 	struct ubsec_mcr *mcr;
2622 	struct ubsec_ctx_modexp *ctx;
2623 	struct ubsec_pktbuf *epb;
2624 	int err = 0;
2625 	u_int nbits, normbits, mbits, shiftbits, ebits;
2626 
2627 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2628 	if (me == NULL) {
2629 		err = ENOMEM;
2630 		goto errout;
2631 	}
2632 	memset(me, 0, sizeof *me);
2633 	me->me_krp = krp;
2634 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2635 
2636 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2637 	if (nbits <= 512)
2638 		normbits = 512;
2639 	else if (nbits <= 768)
2640 		normbits = 768;
2641 	else if (nbits <= 1024)
2642 		normbits = 1024;
2643 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2644 		normbits = 1536;
2645 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2646 		normbits = 2048;
2647 	else {
2648 		err = E2BIG;
2649 		goto errout;
2650 	}
2651 
2652 	shiftbits = normbits - nbits;
2653 
2654 	/* XXX ??? */
2655 	me->me_modbits = nbits;
2656 	me->me_shiftbits = shiftbits;
2657 	me->me_normbits = normbits;
2658 
2659 	/* Sanity check: result bits must be >= true modulus bits. */
2660 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2661 		err = ERANGE;
2662 		goto errout;
2663 	}
2664 
2665 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2666 	    &me->me_q.q_mcr, 0)) {
2667 		err = ENOMEM;
2668 		goto errout;
2669 	}
2670 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2671 
2672 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2673 	    &me->me_q.q_ctx, 0)) {
2674 		err = ENOMEM;
2675 		goto errout;
2676 	}
2677 
2678 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2679 	if (mbits > nbits) {
2680 		err = E2BIG;
2681 		goto errout;
2682 	}
2683 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2684 		err = ENOMEM;
2685 		goto errout;
2686 	}
2687 	memset(me->me_M.dma_vaddr, 0, normbits / 8);
2688 	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2689 	    me->me_M.dma_vaddr, (mbits + 7) / 8);
2690 
2691 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2692 		err = ENOMEM;
2693 		goto errout;
2694 	}
2695 	memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2696 
2697 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2698 	if (ebits > nbits) {
2699 		err = E2BIG;
2700 		goto errout;
2701 	}
2702 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2703 		err = ENOMEM;
2704 		goto errout;
2705 	}
2706 	memset(me->me_E.dma_vaddr, 0, normbits / 8);
2707 	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2708 	    me->me_E.dma_vaddr, (ebits + 7) / 8);
2709 
2710 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2711 	    &me->me_epb, 0)) {
2712 		err = ENOMEM;
2713 		goto errout;
2714 	}
2715 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2716 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2717 	epb->pb_next = 0;
2718 	epb->pb_len = htole32((ebits + 7) / 8);
2719 
2720 #ifdef UBSEC_DEBUG
2721 	if (ubsec_debug) {
2722 		printf("Epb ");
2723 		ubsec_dump_pb(epb);
2724 	}
2725 #endif
2726 
2727 	mcr->mcr_pkts = htole16(1);
2728 	mcr->mcr_flags = 0;
2729 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2730 	mcr->mcr_reserved = 0;
2731 	mcr->mcr_pktlen = 0;
2732 
2733 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2734 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2735 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2736 
2737 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2738 	mcr->mcr_opktbuf.pb_next = 0;
2739 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2740 
2741 #ifdef DIAGNOSTIC
2742 	/* Misaligned output buffer will hang the chip. */
2743 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2744 		panic("%s: modexp invalid addr 0x%x",
2745 		    device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_addr));
2746 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2747 		panic("%s: modexp invalid len 0x%x",
2748 		    device_xname(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_len));
2749 #endif
2750 
2751 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2752 	memset(ctx, 0, sizeof(*ctx));
2753 	memcpy(ctx->me_N, krp->krp_param[UBS_MODEXP_PAR_N].crp_p,
2754 	    (nbits + 7) / 8);
2755 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2756 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2757 	ctx->me_E_len = htole16(ebits);
2758 	ctx->me_N_len = htole16(nbits);
2759 
2760 #ifdef UBSEC_DEBUG
2761 	if (ubsec_debug) {
2762 		ubsec_dump_mcr(mcr);
2763 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2764 	}
2765 #endif
2766 
2767 	/*
2768 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2769 	 * everything else.
2770 	 */
2771 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2772 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2773 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2774 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2775 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2776 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2777 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2778 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2779 
2780 	/* Enqueue and we're done... */
2781 	mutex_spin_enter(&sc->sc_mtx);
2782 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2783 	ubsec_feed2(sc);
2784 	mutex_spin_exit(&sc->sc_mtx);
2785 
2786 	return (0);
2787 
2788 errout:
2789 	if (me != NULL) {
2790 		if (me->me_q.q_mcr.dma_map != NULL)
2791 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2792 		if (me->me_q.q_ctx.dma_map != NULL) {
2793 			memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
2794 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2795 		}
2796 		if (me->me_M.dma_map != NULL) {
2797 			memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2798 			ubsec_dma_free(sc, &me->me_M);
2799 		}
2800 		if (me->me_E.dma_map != NULL) {
2801 			memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2802 			ubsec_dma_free(sc, &me->me_E);
2803 		}
2804 		if (me->me_C.dma_map != NULL) {
2805 			memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2806 			ubsec_dma_free(sc, &me->me_C);
2807 		}
2808 		if (me->me_epb.dma_map != NULL)
2809 			ubsec_dma_free(sc, &me->me_epb);
2810 		free(me, M_DEVBUF);
2811 	}
2812 	krp->krp_status = err;
2813 	crypto_kdone(krp);
2814 	return (0);
2815 }
2816 
2817 static int
2818 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp,
2819 		       int hint)
2820 {
2821 	struct ubsec_q2_rsapriv *rp = NULL;
2822 	struct ubsec_mcr *mcr;
2823 	struct ubsec_ctx_rsapriv *ctx;
2824 	int err = 0;
2825 	u_int padlen, msglen;
2826 
2827 	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2828 	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2829 	if (msglen > padlen)
2830 		padlen = msglen;
2831 
2832 	if (padlen <= 256)
2833 		padlen = 256;
2834 	else if (padlen <= 384)
2835 		padlen = 384;
2836 	else if (padlen <= 512)
2837 		padlen = 512;
2838 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2839 		padlen = 768;
2840 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2841 		padlen = 1024;
2842 	else {
2843 		err = E2BIG;
2844 		goto errout;
2845 	}
2846 
2847 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2848 		err = E2BIG;
2849 		goto errout;
2850 	}
2851 
2852 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2853 		err = E2BIG;
2854 		goto errout;
2855 	}
2856 
2857 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2858 		err = E2BIG;
2859 		goto errout;
2860 	}
2861 
2862 	rp = malloc(sizeof *rp, M_DEVBUF, M_NOWAIT|M_ZERO);
2863 	if (rp == NULL)
2864 		return (ENOMEM);
2865 	rp->rpr_krp = krp;
2866 	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2867 
2868 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2869 	    &rp->rpr_q.q_mcr, 0)) {
2870 		err = ENOMEM;
2871 		goto errout;
2872 	}
2873 	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2874 
2875 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2876 	    &rp->rpr_q.q_ctx, 0)) {
2877 		err = ENOMEM;
2878 		goto errout;
2879 	}
2880 	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
2881 	memset(ctx, 0, sizeof *ctx);
2882 
2883 	/* Copy in p */
2884 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
2885 	    &ctx->rpr_buf[0 * (padlen / 8)],
2886 	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
2887 
2888 	/* Copy in q */
2889 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
2890 	    &ctx->rpr_buf[1 * (padlen / 8)],
2891 	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
2892 
2893 	/* Copy in dp */
2894 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
2895 	    &ctx->rpr_buf[2 * (padlen / 8)],
2896 	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
2897 
2898 	/* Copy in dq */
2899 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
2900 	    &ctx->rpr_buf[3 * (padlen / 8)],
2901 	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
2902 
2903 	/* Copy in pinv */
2904 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
2905 	    &ctx->rpr_buf[4 * (padlen / 8)],
2906 	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
2907 
2908 	msglen = padlen * 2;
2909 
2910 	/* Copy in input message (aligned buffer/length). */
2911 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
2912 		/* Is this likely? */
2913 		err = E2BIG;
2914 		goto errout;
2915 	}
2916 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
2917 		err = ENOMEM;
2918 		goto errout;
2919 	}
2920 	memset(rp->rpr_msgin.dma_vaddr, 0, (msglen + 7) / 8);
2921 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
2922 	    rp->rpr_msgin.dma_vaddr,
2923 	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
2924 
2925 	/* Prepare space for output message (aligned buffer/length). */
2926 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
2927 		/* Is this likely? */
2928 		err = E2BIG;
2929 		goto errout;
2930 	}
2931 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
2932 		err = ENOMEM;
2933 		goto errout;
2934 	}
2935 	memset(rp->rpr_msgout.dma_vaddr, 0, (msglen + 7) / 8);
2936 
2937 	mcr->mcr_pkts = htole16(1);
2938 	mcr->mcr_flags = 0;
2939 	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
2940 	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
2941 	mcr->mcr_ipktbuf.pb_next = 0;
2942 	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
2943 	mcr->mcr_reserved = 0;
2944 	mcr->mcr_pktlen = htole16(msglen);
2945 	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
2946 	mcr->mcr_opktbuf.pb_next = 0;
2947 	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
2948 
2949 #ifdef DIAGNOSTIC
2950 	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
2951 		panic("%s: rsapriv: invalid msgin 0x%lx(0x%lx)",
2952 		    device_xname(sc->sc_dev), (u_long) rp->rpr_msgin.dma_paddr,
2953 		    (u_long) rp->rpr_msgin.dma_size);
2954 	}
2955 	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
2956 		panic("%s: rsapriv: invalid msgout 0x%lx(0x%lx)",
2957 		    device_xname(sc->sc_dev), (u_long) rp->rpr_msgout.dma_paddr,
2958 		    (u_long) rp->rpr_msgout.dma_size);
2959 	}
2960 #endif
2961 
2962 	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
2963 	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
2964 	ctx->rpr_q_len = htole16(padlen);
2965 	ctx->rpr_p_len = htole16(padlen);
2966 
2967 	/*
2968 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2969 	 * everything else.
2970 	 */
2971 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map,
2972 	    0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2973 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map,
2974 	    0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2975 
2976 	/* Enqueue and we're done... */
2977 	mutex_spin_enter(&sc->sc_mtx);
2978 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
2979 	ubsec_feed2(sc);
2980 	ubsecstats.hst_modexpcrt++;
2981 	mutex_spin_exit(&sc->sc_mtx);
2982 	return (0);
2983 
2984 errout:
2985 	if (rp != NULL) {
2986 		if (rp->rpr_q.q_mcr.dma_map != NULL)
2987 			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2988 		if (rp->rpr_msgin.dma_map != NULL) {
2989 			memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
2990 			ubsec_dma_free(sc, &rp->rpr_msgin);
2991 		}
2992 		if (rp->rpr_msgout.dma_map != NULL) {
2993 			memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
2994 			ubsec_dma_free(sc, &rp->rpr_msgout);
2995 		}
2996 		free(rp, M_DEVBUF);
2997 	}
2998 	krp->krp_status = err;
2999 	crypto_kdone(krp);
3000 	return (0);
3001 }
3002 
3003 #ifdef UBSEC_DEBUG
3004 static void
3005 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
3006 {
3007 	printf("addr 0x%x (0x%x) next 0x%x\n",
3008 	    pb->pb_addr, pb->pb_len, pb->pb_next);
3009 }
3010 
3011 static void
3012 ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *c)
3013 {
3014 	printf("CTX (0x%x):\n", c->ctx_len);
3015 	switch (letoh16(c->ctx_op)) {
3016 	case UBS_CTXOP_RNGBYPASS:
3017 	case UBS_CTXOP_RNGSHA1:
3018 		break;
3019 	case UBS_CTXOP_MODEXP:
3020 	{
3021 		struct ubsec_ctx_modexp *cx = (void *)c;
3022 		int i, len;
3023 
3024 		printf(" Elen %u, Nlen %u\n",
3025 		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
3026 		len = (cx->me_N_len + 7)/8;
3027 		for (i = 0; i < len; i++)
3028 			printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
3029 		printf("\n");
3030 		break;
3031 	}
3032 	default:
3033 		printf("unknown context: %x\n", c->ctx_op);
3034 	}
3035 	printf("END CTX\n");
3036 }
3037 
3038 static void
3039 ubsec_dump_mcr(struct ubsec_mcr *mcr)
3040 {
3041 	volatile struct ubsec_mcr_add *ma;
3042 	int i;
3043 
3044 	printf("MCR:\n");
3045 	printf(" pkts: %u, flags 0x%x\n",
3046 	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
3047 	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
3048 	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
3049 		printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
3050 		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
3051 		    letoh16(ma->mcr_reserved));
3052 		printf(" %d: ipkt ", i);
3053 		ubsec_dump_pb(&ma->mcr_ipktbuf);
3054 		printf(" %d: opkt ", i);
3055 		ubsec_dump_pb(&ma->mcr_opktbuf);
3056 		ma++;
3057 	}
3058 	printf("END MCR\n");
3059 }
3060 #endif /* UBSEC_DEBUG */
3061 
3062 /*
3063  * Return the number of significant bits of a big number.
3064  */
3065 static int
3066 ubsec_ksigbits(struct crparam *cr)
3067 {
3068 	u_int plen = (cr->crp_nbits + 7) / 8;
3069 	int i, sig = plen * 8;
3070 	u_int8_t c, *p = cr->crp_p;
3071 
3072 	for (i = plen - 1; i >= 0; i--) {
3073 		c = p[i];
3074 		if (c != 0) {
3075 			while ((c & 0x80) == 0) {
3076 				sig--;
3077 				c <<= 1;
3078 			}
3079 			break;
3080 		}
3081 		sig -= 8;
3082 	}
3083 	return (sig);
3084 }
3085 
3086 static void
3087 ubsec_kshift_r(u_int shiftbits, u_int8_t *src, u_int srcbits,
3088     u_int8_t *dst, u_int dstbits)
3089 {
3090 	u_int slen, dlen;
3091 	int i, si, di, n;
3092 
3093 	slen = (srcbits + 7) / 8;
3094 	dlen = (dstbits + 7) / 8;
3095 
3096 	for (i = 0; i < slen; i++)
3097 		dst[i] = src[i];
3098 	for (i = 0; i < dlen - slen; i++)
3099 		dst[slen + i] = 0;
3100 
3101 	n = shiftbits / 8;
3102 	if (n != 0) {
3103 		si = dlen - n - 1;
3104 		di = dlen - 1;
3105 		while (si >= 0)
3106 			dst[di--] = dst[si--];
3107 		while (di >= 0)
3108 			dst[di--] = 0;
3109 	}
3110 
3111 	n = shiftbits % 8;
3112 	if (n != 0) {
3113 		for (i = dlen - 1; i > 0; i--)
3114 			dst[i] = (dst[i] << n) |
3115 			    (dst[i - 1] >> (8 - n));
3116 		dst[0] = dst[0] << n;
3117 	}
3118 }
3119 
3120 static void
3121 ubsec_kshift_l(u_int shiftbits, u_int8_t *src, u_int srcbits,
3122     u_int8_t *dst, u_int dstbits)
3123 {
3124 	int slen, dlen, i, n;
3125 
3126 	slen = (srcbits + 7) / 8;
3127 	dlen = (dstbits + 7) / 8;
3128 
3129 	n = shiftbits / 8;
3130 	for (i = 0; i < slen; i++)
3131 		dst[i] = src[i + n];
3132 	for (i = 0; i < dlen - slen; i++)
3133 		dst[slen + i] = 0;
3134 
3135 	n = shiftbits % 8;
3136 	if (n != 0) {
3137 		for (i = 0; i < (dlen - 1); i++)
3138 			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
3139 		dst[dlen - 1] = dst[dlen - 1] >> n;
3140 	}
3141 }
3142