xref: /netbsd-src/sys/dev/pci/ubsec.c (revision 404ee5b9334f618040b6cdef96a0ff35a6fc4636)
1 /*	$NetBSD: ubsec.c,v 1.47 2019/11/10 21:16:36 chs Exp $	*/
2 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.6 2003/01/23 21:06:43 sam Exp $ */
3 /*	$OpenBSD: ubsec.c,v 1.143 2009/03/27 13:31:30 reyk Exp$	*/
4 
5 /*
6  * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
7  * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
8  * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
23  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
28  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  * Effort sponsored in part by the Defense Advanced Research Projects
32  * Agency (DARPA) and Air Force Research Laboratory, Air Force
33  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
34  *
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: ubsec.c,v 1.47 2019/11/10 21:16:36 chs Exp $");
39 
40 #undef UBSEC_DEBUG
41 
42 /*
43  * uBsec 5[56]01, 58xx hardware crypto accelerator
44  */
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/proc.h>
49 #include <sys/endian.h>
50 #ifdef __NetBSD__
51   #define UBSEC_NO_RNG	/* hangs on attach */
52   #define letoh16 htole16
53   #define letoh32 htole32
54 #endif
55 #include <sys/errno.h>
56 #include <sys/malloc.h>
57 #include <sys/kernel.h>
58 #include <sys/mbuf.h>
59 #include <sys/device.h>
60 #include <sys/module.h>
61 #include <sys/queue.h>
62 #include <sys/sysctl.h>
63 
64 #include <opencrypto/cryptodev.h>
65 #include <opencrypto/xform.h>
66 #ifdef __OpenBSD__
67  #include <dev/rndvar.h>
68  #include <sys/md5k.h>
69 #else
70  #include <sys/cprng.h>
71  #include <sys/md5.h>
72  #include <sys/rndpool.h>
73  #include <sys/rndsource.h>
74 #endif
75 #include <sys/sha1.h>
76 
77 #include <dev/pci/pcireg.h>
78 #include <dev/pci/pcivar.h>
79 #include <dev/pci/pcidevs.h>
80 
81 #include <dev/pci/ubsecreg.h>
82 #include <dev/pci/ubsecvar.h>
83 
84 /*
85  * Prototypes and count for the pci_device structure
86  */
87 static	int  ubsec_probe(device_t, cfdata_t, void *);
88 static	void ubsec_attach(device_t, device_t, void *);
89 static	int  ubsec_detach(device_t, int);
90 static	int  ubsec_sysctl_init(void);
91 static	void ubsec_reset_board(struct ubsec_softc *);
92 static	void ubsec_init_board(struct ubsec_softc *);
93 static	void ubsec_init_pciregs(struct pci_attach_args *pa);
94 static	void ubsec_cleanchip(struct ubsec_softc *);
95 static	void ubsec_totalreset(struct ubsec_softc *);
96 static	int  ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
97 
98 #ifdef __OpenBSD__
99 struct cfattach ubsec_ca = {
100 	sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
101 };
102 
103 struct cfdriver ubsec_cd = {
104 	0, "ubsec", DV_DULL
105 };
106 #else
107 CFATTACH_DECL_NEW(ubsec, sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
108 	      ubsec_detach, NULL);
109 extern struct cfdriver ubsec_cd;
110 #endif
111 
112 /* patchable */
113 #ifdef	UBSEC_DEBUG
114 extern int ubsec_debug;
115 int ubsec_debug=1;
116 #endif
117 
118 static	int	ubsec_intr(void *);
119 static	int	ubsec_newsession(void*, u_int32_t *, struct cryptoini *);
120 static	int	ubsec_freesession(void*, u_int64_t);
121 static	int	ubsec_process(void*, struct cryptop *, int hint);
122 static	void	ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
123 static	void	ubsec_feed(struct ubsec_softc *);
124 static	void	ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
125 static	void	ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
126 static	void	ubsec_feed2(struct ubsec_softc *);
127 static	void	ubsec_feed4(struct ubsec_softc *);
128 #ifndef UBSEC_NO_RNG
129 static  void	ubsec_rng(void *);
130 static  void	ubsec_rng_locked(void *);
131 static  void	ubsec_rng_get(size_t, void *);
132 #endif /* UBSEC_NO_RNG */
133 static	int 	ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
134 				 struct ubsec_dma_alloc *, int);
135 static	void	ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
136 static	int	ubsec_dmamap_aligned(bus_dmamap_t);
137 
138 static	int	ubsec_kprocess(void*, struct cryptkop *, int);
139 static	int	ubsec_kprocess_modexp_sw(struct ubsec_softc *,
140 					 struct cryptkop *, int);
141 static	int	ubsec_kprocess_modexp_hw(struct ubsec_softc *,
142 					 struct cryptkop *, int);
143 static	int	ubsec_kprocess_rsapriv(struct ubsec_softc *,
144 				       struct cryptkop *, int);
145 static	void	ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
146 static	int	ubsec_ksigbits(struct crparam *);
147 static	void	ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
148 static	void	ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
149 
150 #ifdef UBSEC_DEBUG
151 static void	ubsec_dump_pb(volatile struct ubsec_pktbuf *);
152 static void	ubsec_dump_mcr(struct ubsec_mcr *);
153 static	void	ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *);
154 #endif
155 
156 #define	READ_REG(sc,r) \
157 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
158 
159 #define WRITE_REG(sc,reg,val) \
160 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
161 
162 #define	SWAP32(x) (x) = htole32(ntohl((x)))
163 #ifndef HTOLE32
164  #define	HTOLE32(x) (x) = htole32(x)
165 #endif
166 
167 struct ubsec_stats ubsecstats;
168 
169 static struct sysctllog *ubsec_sysctllog;
170 
171 /*
172  * ubsec_maxbatch controls the number of crypto ops to voluntarily
173  * collect into one submission to the hardware.  This batching happens
174  * when ops are dispatched from the crypto subsystem with a hint that
175  * more are to follow immediately.  These ops must also not be marked
176  * with a ``no delay'' flag.
177  */
178 static	int ubsec_maxbatch = 1;
179 
180 /*
181  * ubsec_maxaggr controls the number of crypto ops to submit to the
182  * hardware as a unit.  This aggregation reduces the number of interrupts
183  * to the host at the expense of increased latency (for all but the last
184  * operation).  For network traffic setting this to one yields the highest
185  * performance but at the expense of more interrupt processing.
186  */
187 static	int ubsec_maxaggr = 1;
188 
189 static const struct ubsec_product {
190 	pci_vendor_id_t		ubsec_vendor;
191 	pci_product_id_t	ubsec_product;
192 	int			ubsec_flags;
193 	int			ubsec_statmask;
194 	int			ubsec_maxaggr;
195 	const char		*ubsec_name;
196 } ubsec_products[] = {
197 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5501,
198 	  0,
199 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
200 	  UBS_MIN_AGGR,
201 	  "Bluesteel 5501"
202 	},
203 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5601,
204 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
205 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
206 	  UBS_MIN_AGGR,
207 	  "Bluesteel 5601"
208 	},
209 
210 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5801,
211 	  0,
212 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
213 	  UBS_MIN_AGGR,
214 	  "Broadcom BCM5801"
215 	},
216 
217 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5802,
218 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
219 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
220 	  UBS_MIN_AGGR,
221 	  "Broadcom BCM5802"
222 	},
223 
224 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5805,
225 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
226 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
227 	  UBS_MIN_AGGR,
228 	  "Broadcom BCM5805"
229 	},
230 
231 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5820,
232 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
233 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
234 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
235 	  UBS_MIN_AGGR,
236 	  "Broadcom BCM5820"
237 	},
238 
239 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5821,
240 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
241 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
242 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
243 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
244 	  UBS_MIN_AGGR,
245 	  "Broadcom BCM5821"
246 	},
247 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_SCA1K,
248 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
249 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
250 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
251 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
252 	  UBS_MIN_AGGR,
253 	  "Sun Crypto Accelerator 1000"
254 	},
255 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_5821,
256 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
257 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
258 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
259 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
260 	  UBS_MIN_AGGR,
261 	  "Broadcom BCM5821 (Sun)"
262 	},
263 
264 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5822,
265 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
266 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
267 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
268 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
269 	  UBS_MIN_AGGR,
270 	  "Broadcom BCM5822"
271 	},
272 
273 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5823,
274 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
275 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
276 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
277 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
278 	  UBS_MIN_AGGR,
279 	  "Broadcom BCM5823"
280 	},
281 
282 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5825,
283 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
284 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
285 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
286 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
287 	  UBS_MIN_AGGR,
288 	  "Broadcom BCM5825"
289 	},
290 
291 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5860,
292 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
293 	      UBS_FLAGS_LONGCTX |
294 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
295 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
296 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
297 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
298 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
299 	  UBS_MAX_AGGR,
300 	  "Broadcom BCM5860"
301 	},
302 
303 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5861,
304 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
305 	      UBS_FLAGS_LONGCTX |
306 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
307 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
308 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
309 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
310 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
311 	  UBS_MAX_AGGR,
312 	  "Broadcom BCM5861"
313 	},
314 
315 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5862,
316 	  UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
317 	      UBS_FLAGS_LONGCTX |
318 	      UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
319 	      UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
320 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
321 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
322 	      BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
323 	  UBS_MAX_AGGR,
324 	  "Broadcom BCM5862"
325 	},
326 
327 	{ 0,			0,
328 	  0,
329 	  0,
330 	  0,
331 	  NULL
332 	}
333 };
334 
335 static const struct ubsec_product *
336 ubsec_lookup(const struct pci_attach_args *pa)
337 {
338 	const struct ubsec_product *up;
339 
340 	for (up = ubsec_products; up->ubsec_name != NULL; up++) {
341 		if (PCI_VENDOR(pa->pa_id) == up->ubsec_vendor &&
342 		    PCI_PRODUCT(pa->pa_id) == up->ubsec_product)
343 			return (up);
344 	}
345 	return (NULL);
346 }
347 
348 static int
349 ubsec_probe(device_t parent, cfdata_t match, void *aux)
350 {
351 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
352 
353 	if (ubsec_lookup(pa) != NULL)
354 		return (1);
355 
356 	return (0);
357 }
358 
359 static void
360 ubsec_attach(device_t parent, device_t self, void *aux)
361 {
362 	struct ubsec_softc *sc = device_private(self);
363 	struct pci_attach_args *pa = aux;
364 	const struct ubsec_product *up;
365 	pci_chipset_tag_t pc = pa->pa_pc;
366 	pci_intr_handle_t ih;
367 	const char *intrstr = NULL;
368 	pcireg_t memtype;
369 	struct ubsec_dma *dmap;
370 	u_int32_t cmd, i;
371 	char intrbuf[PCI_INTRSTR_LEN];
372 
373 	sc->sc_dev = self;
374 	sc->sc_pct = pc;
375 
376 	up = ubsec_lookup(pa);
377 	if (up == NULL) {
378 		printf("\n");
379 		panic("ubsec_attach: impossible");
380 	}
381 
382 	pci_aprint_devinfo_fancy(pa, "Crypto processor", up->ubsec_name, 1);
383 
384 	SIMPLEQ_INIT(&sc->sc_queue);
385 	SIMPLEQ_INIT(&sc->sc_qchip);
386 	SIMPLEQ_INIT(&sc->sc_queue2);
387 	SIMPLEQ_INIT(&sc->sc_qchip2);
388 	SIMPLEQ_INIT(&sc->sc_queue4);
389 	SIMPLEQ_INIT(&sc->sc_qchip4);
390 	SIMPLEQ_INIT(&sc->sc_q2free);
391 
392 	sc->sc_flags = up->ubsec_flags;
393 	sc->sc_statmask = up->ubsec_statmask;
394 	sc->sc_maxaggr = up->ubsec_maxaggr;
395 
396 	cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
397 	cmd |= PCI_COMMAND_MASTER_ENABLE;
398 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd);
399 
400 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BS_BAR);
401 	if (pci_mapreg_map(pa, BS_BAR, memtype, 0,
402 	    &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize)) {
403 		aprint_error_dev(self, "can't find mem space");
404 		return;
405 	}
406 
407 	sc->sc_dmat = pa->pa_dmat;
408 
409 	if (pci_intr_map(pa, &ih)) {
410 		aprint_error_dev(self, "couldn't map interrupt\n");
411 		return;
412 	}
413 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
414 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, ubsec_intr, sc,
415 	    device_xname(self));
416 	if (sc->sc_ih == NULL) {
417 		aprint_error_dev(self, "couldn't establish interrupt");
418 		if (intrstr != NULL)
419 			aprint_error(" at %s", intrstr);
420 		aprint_error("\n");
421 		return;
422 	}
423 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
424 
425 	sc->sc_cid = crypto_get_driverid(0);
426 	if (sc->sc_cid < 0) {
427 		aprint_error_dev(self, "couldn't get crypto driver id\n");
428 		pci_intr_disestablish(pc, sc->sc_ih);
429 		return;
430 	}
431 
432 	sc->sc_rng_need = RND_POOLBITS / NBBY;
433 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_VM);
434 
435 	SIMPLEQ_INIT(&sc->sc_freequeue);
436 	dmap = sc->sc_dmaa;
437 	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
438 		struct ubsec_q *q;
439 
440 		q = malloc(sizeof(struct ubsec_q), M_DEVBUF, M_ZERO|M_WAITOK);
441 
442 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
443 		    &dmap->d_alloc, 0)) {
444 			aprint_error_dev(self, "can't allocate dma buffers\n");
445 			free(q, M_DEVBUF);
446 			break;
447 		}
448 		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
449 
450 		q->q_dma = dmap;
451 		sc->sc_queuea[i] = q;
452 
453 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
454 	}
455 
456 	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
457 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
458 	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
459 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
460 	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC_96, 0, 0,
461 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
462 	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC_96, 0, 0,
463 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
464 	if (sc->sc_flags & UBS_FLAGS_AES) {
465 		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
466 		    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
467 	}
468 
469 	/*
470 	 * Reset Broadcom chip
471 	 */
472 	ubsec_reset_board(sc);
473 
474 	/*
475 	 * Init Broadcom specific PCI settings
476 	 */
477 	ubsec_init_pciregs(pa);
478 
479 	/*
480 	 * Init Broadcom chip
481 	 */
482 	ubsec_init_board(sc);
483 
484 #ifndef UBSEC_NO_RNG
485 	if (sc->sc_flags & UBS_FLAGS_RNG) {
486 		if (sc->sc_flags & UBS_FLAGS_RNG4)
487 			sc->sc_statmask |= BS_STAT_MCR4_DONE;
488 		else
489 			sc->sc_statmask |= BS_STAT_MCR2_DONE;
490 
491 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
492 		    &sc->sc_rng.rng_q.q_mcr, 0))
493 			goto skip_rng;
494 
495 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
496 		    &sc->sc_rng.rng_q.q_ctx, 0)) {
497 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
498 			goto skip_rng;
499 		}
500 
501 		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
502 		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
503 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
504 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
505 			goto skip_rng;
506 		}
507 
508 		rndsource_setcb(&sc->sc_rnd_source, ubsec_rng_get, sc);
509 		rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
510 				  RND_TYPE_RNG,
511 				  RND_FLAG_COLLECT_VALUE|RND_FLAG_HASCB);
512 		if (hz >= 100)
513 			sc->sc_rnghz = hz / 100;
514 		else
515 			sc->sc_rnghz = 1;
516 #ifdef __OpenBSD__
517 		timeout_set(&sc->sc_rngto, ubsec_rng, sc);
518 		timeout_add(&sc->sc_rngto, sc->sc_rnghz);
519 #else
520 		callout_init(&sc->sc_rngto, 0);
521 		callout_setfunc(&sc->sc_rngto, ubsec_rng, sc);
522 		callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
523 #endif
524  skip_rng:
525 		if (sc->sc_rnghz)
526 			aprint_normal_dev(self,
527 			    "random number generator enabled\n");
528 		else
529 			aprint_error_dev(self,
530 			    "WARNING: random number generator disabled\n");
531 	}
532 #endif /* UBSEC_NO_RNG */
533 
534 	if (sc->sc_flags & UBS_FLAGS_KEY) {
535 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
536 
537 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
538 				 ubsec_kprocess, sc);
539 #if 0
540 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
541 				 ubsec_kprocess, sc);
542 #endif
543 	}
544 }
545 
546 static int
547 ubsec_detach(device_t self, int flags)
548 {
549 	struct ubsec_softc *sc = device_private(self);
550 	struct ubsec_q *q, *qtmp;
551 	volatile u_int32_t ctrl;
552 
553 	/* disable interrupts */
554 	/* XXX wait/abort current ops? where is DMAERR enabled? */
555 	ctrl = READ_REG(sc, BS_CTRL);
556 
557 	ctrl &= ~(BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR);
558 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
559 		ctrl &= ~BS_CTRL_MCR4INT;
560 
561 	WRITE_REG(sc, BS_CTRL, ctrl);
562 
563 #ifndef UBSEC_NO_RNG
564 	if (sc->sc_flags & UBS_FLAGS_RNG) {
565 		callout_halt(&sc->sc_rngto, NULL);
566 		ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
567 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
568 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
569 		rnd_detach_source(&sc->sc_rnd_source);
570 	}
571 #endif /* UBSEC_NO_RNG */
572 
573 	crypto_unregister_all(sc->sc_cid);
574 
575 	mutex_spin_enter(&sc->sc_mtx);
576 
577 	ubsec_totalreset(sc);  /* XXX leaves the chip running */
578 
579 	SIMPLEQ_FOREACH_SAFE(q, &sc->sc_freequeue, q_next, qtmp) {
580 		ubsec_dma_free(sc, &q->q_dma->d_alloc);
581 		if (q->q_src_map != NULL)
582 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
583 		if (q->q_cached_dst_map != NULL)
584 			bus_dmamap_destroy(sc->sc_dmat, q->q_cached_dst_map);
585 		free(q, M_DEVBUF);
586 	}
587 
588 	mutex_spin_exit(&sc->sc_mtx);
589 
590 	if (sc->sc_ih != NULL) {
591 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
592 		sc->sc_ih = NULL;
593 	}
594 
595 	if (sc->sc_memsize != 0) {
596 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize);
597 		sc->sc_memsize = 0;
598 	}
599 
600 	return 0;
601 }
602 
603 MODULE(MODULE_CLASS_DRIVER, ubsec, "pci,opencrypto");
604 
605 #ifdef _MODULE
606 #include "ioconf.c"
607 #endif
608 
609 static int
610 ubsec_modcmd(modcmd_t cmd, void *data)
611 {
612 	int error = 0;
613 
614 	switch (cmd) {
615 	case MODULE_CMD_INIT:
616 #ifdef _MODULE
617 		error = config_init_component(cfdriver_ioconf_ubsec,
618 		    cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
619 #endif
620 		if (error == 0)
621 			error = ubsec_sysctl_init();
622 		return error;
623 	case MODULE_CMD_FINI:
624 		if (ubsec_sysctllog != NULL)
625 			sysctl_teardown(&ubsec_sysctllog);
626 #ifdef _MODULE
627 		error = config_fini_component(cfdriver_ioconf_ubsec,
628 		    cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
629 #endif
630 		return error;
631 	default:
632 		return ENOTTY;
633 	}
634 }
635 
636 static int
637 ubsec_sysctl_init(void)
638 {
639 	const struct sysctlnode *node = NULL;
640 
641 	ubsec_sysctllog = NULL;
642 
643 	sysctl_createv(&ubsec_sysctllog, 0, NULL, &node,
644 		CTLFLAG_PERMANENT,
645 		CTLTYPE_NODE, "ubsec",
646 		SYSCTL_DESCR("ubsec opetions"),
647 		NULL, 0, NULL, 0,
648 		CTL_HW, CTL_CREATE, CTL_EOL);
649 	sysctl_createv(&ubsec_sysctllog, 0, &node, NULL,
650 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
651 		CTLTYPE_INT, "maxbatch",
652 		SYSCTL_DESCR("max ops to batch w/o interrupt"),
653 		NULL, 0, &ubsec_maxbatch, 0,
654 		CTL_CREATE, CTL_EOL);
655 	sysctl_createv(&ubsec_sysctllog, 0, &node, NULL,
656 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
657 		CTLTYPE_INT, "maxaggr",
658 		SYSCTL_DESCR("max ops to aggregate under one interrupt"),
659 		NULL, 0, &ubsec_maxaggr, 0,
660 		CTL_CREATE, CTL_EOL);
661 
662 	return 0;
663 }
664 
665 /*
666  * UBSEC Interrupt routine
667  */
668 static int
669 ubsec_intr(void *arg)
670 {
671 	struct ubsec_softc *sc = arg;
672 	volatile u_int32_t stat;
673 	struct ubsec_q *q;
674 	struct ubsec_dma *dmap;
675 	int flags;
676 	int npkts = 0, i;
677 
678 	mutex_spin_enter(&sc->sc_mtx);
679 	stat = READ_REG(sc, BS_STAT);
680 	stat &= sc->sc_statmask;
681 	if (stat == 0) {
682 		mutex_spin_exit(&sc->sc_mtx);
683 		return (0);
684 	}
685 
686 	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
687 
688 	/*
689 	 * Check to see if we have any packets waiting for us
690 	 */
691 	if ((stat & BS_STAT_MCR1_DONE)) {
692 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
693 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
694 			dmap = q->q_dma;
695 
696 			if ((dmap->d_dma->d_mcr.mcr_flags
697 			    & htole16(UBS_MCR_DONE)) == 0)
698 				break;
699 
700 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
701 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
702 
703 			npkts = q->q_nstacked_mcrs;
704 			sc->sc_nqchip -= 1+npkts;
705 			/*
706 			 * search for further sc_qchip ubsec_q's that share
707 			 * the same MCR, and complete them too, they must be
708 			 * at the top.
709 			 */
710 			for (i = 0; i < npkts; i++) {
711 				if(q->q_stacked_mcr[i])
712 					ubsec_callback(sc, q->q_stacked_mcr[i]);
713 				else
714 					break;
715 			}
716 			ubsec_callback(sc, q);
717 		}
718 
719 		/*
720 		 * Don't send any more packet to chip if there has been
721 		 * a DMAERR.
722 		 */
723 		if (!(stat & BS_STAT_DMAERR))
724 			ubsec_feed(sc);
725 	}
726 
727 	/*
728 	 * Check to see if we have any key setups/rng's waiting for us
729 	 */
730 	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
731 	    (stat & BS_STAT_MCR2_DONE)) {
732 		struct ubsec_q2 *q2;
733 		struct ubsec_mcr *mcr;
734 
735 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
736 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
737 
738 			bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
739 			    0, q2->q_mcr.dma_map->dm_mapsize,
740 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
741 
742 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
743 
744 			/* A bug in new devices requires to swap this field */
745 			if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
746 				flags = htole16(mcr->mcr_flags);
747 			else
748 				flags = mcr->mcr_flags;
749 			if ((flags & htole16(UBS_MCR_DONE)) == 0) {
750 				bus_dmamap_sync(sc->sc_dmat,
751 				    q2->q_mcr.dma_map, 0,
752 				    q2->q_mcr.dma_map->dm_mapsize,
753 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
754 				break;
755 			}
756 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
757 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, /*q2,*/ q_next);
758 			ubsec_callback2(sc, q2);
759 			/*
760 			 * Don't send any more packet to chip if there has been
761 			 * a DMAERR.
762 			 */
763 			if (!(stat & BS_STAT_DMAERR))
764 				ubsec_feed2(sc);
765 		}
766 	}
767 	if ((sc->sc_flags & UBS_FLAGS_RNG4) && (stat & BS_STAT_MCR4_DONE)) {
768 		struct ubsec_q2 *q2;
769 		struct ubsec_mcr *mcr;
770 
771 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip4)) {
772 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip4);
773 
774 			bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
775 			    0, q2->q_mcr.dma_map->dm_mapsize,
776 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
777 
778 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
779 
780 			/* A bug in new devices requires to swap this field */
781 			flags = htole16(mcr->mcr_flags);
782 
783 			if ((flags & htole16(UBS_MCR_DONE)) == 0) {
784 				bus_dmamap_sync(sc->sc_dmat,
785 				    q2->q_mcr.dma_map, 0,
786 				    q2->q_mcr.dma_map->dm_mapsize,
787 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
788 				break;
789 			}
790 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip4, q_next);
791 			ubsec_callback2(sc, q2);
792 			/*
793 			 * Don't send any more packet to chip if there has been
794 			 * a DMAERR.
795 			 */
796 			if (!(stat & BS_STAT_DMAERR))
797 				ubsec_feed4(sc);
798 		}
799 	}
800 
801 	/*
802 	 * Check to see if we got any DMA Error
803 	 */
804 	if (stat & BS_STAT_DMAERR) {
805 #ifdef UBSEC_DEBUG
806 		if (ubsec_debug) {
807 			volatile u_int32_t a = READ_REG(sc, BS_ERR);
808 
809 			printf("%s: dmaerr %s@%08x\n", device_xname(sc->sc_dev),
810 			    (a & BS_ERR_READ) ? "read" : "write",
811 			       a & BS_ERR_ADDR);
812 		}
813 #endif /* UBSEC_DEBUG */
814 		ubsecstats.hst_dmaerr++;
815 		ubsec_totalreset(sc);
816 		ubsec_feed(sc);
817 	}
818 
819 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
820 		int wkeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
821 #ifdef UBSEC_DEBUG
822 		if (ubsec_debug)
823 			printf("%s: wakeup crypto (%x)\n",
824 			    device_xname(sc->sc_dev), sc->sc_needwakeup);
825 #endif /* UBSEC_DEBUG */
826 		sc->sc_needwakeup &= ~wkeup;
827 		crypto_unblock(sc->sc_cid, wkeup);
828 	}
829 	mutex_spin_exit(&sc->sc_mtx);
830 	return (1);
831 }
832 
833 /*
834  * ubsec_feed() - aggregate and post requests to chip
835  * OpenBSD comments:
836  *		  It is assumed that the caller set splnet()
837  */
838 static void
839 ubsec_feed(struct ubsec_softc *sc)
840 {
841 	struct ubsec_q *q, *q2;
842 	int npkts, i;
843 	void *v;
844 	u_int32_t stat;
845 #ifdef UBSEC_DEBUG
846 	static int max;
847 #endif /* UBSEC_DEBUG */
848 
849 	npkts = sc->sc_nqueue;
850 	if (npkts > ubsecstats.hst_maxqueue)
851 		ubsecstats.hst_maxqueue = npkts;
852 	if (npkts < 2)
853 		goto feed1;
854 
855 	/*
856 	 * Decide how many ops to combine in a single MCR.  We cannot
857 	 * aggregate more than UBS_MAX_AGGR because this is the number
858 	 * of slots defined in the data structure.  Otherwise we clamp
859 	 * based on the tunable parameter ubsec_maxaggr.  Note that
860 	 * aggregation can happen in two ways: either by batching ops
861 	 * from above or because the h/w backs up and throttles us.
862 	 * Aggregating ops reduces the number of interrupts to the host
863 	 * but also (potentially) increases the latency for processing
864 	 * completed ops as we only get an interrupt when all aggregated
865 	 * ops have completed.
866 	 */
867 	if (npkts > sc->sc_maxaggr)
868 		npkts = sc->sc_maxaggr;
869 	if (npkts > ubsec_maxaggr)
870 		npkts = ubsec_maxaggr;
871 	if (npkts > ubsecstats.hst_maxbatch)
872 		ubsecstats.hst_maxbatch = npkts;
873 	if (npkts < 2)
874 		goto feed1;
875 	ubsecstats.hst_totbatch += npkts-1;
876 
877 	if ((stat = READ_REG(sc, BS_STAT))
878 	    & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
879 		if (stat & BS_STAT_DMAERR) {
880 			ubsec_totalreset(sc);
881 			ubsecstats.hst_dmaerr++;
882 		} else {
883 			ubsecstats.hst_mcr1full++;
884 		}
885 		return;
886 	}
887 
888 #ifdef UBSEC_DEBUG
889 	if (ubsec_debug)
890 	    printf("merging %d records\n", npkts);
891 	/* XXX temporary aggregation statistics reporting code */
892 	if (max < npkts) {
893 		max = npkts;
894 		printf("%s: new max aggregate %d\n", device_xname(sc->sc_dev),
895 		    max);
896 	}
897 #endif /* UBSEC_DEBUG */
898 
899 	q = SIMPLEQ_FIRST(&sc->sc_queue);
900 	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
901 	--sc->sc_nqueue;
902 
903 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
904 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
905 	if (q->q_dst_map != NULL)
906 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
907 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
908 
909 	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
910 
911 	for (i = 0; i < q->q_nstacked_mcrs; i++) {
912 		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
913 		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
914 		    0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
915 		if (q2->q_dst_map != NULL)
916 			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
917 			    0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
918 		q2= SIMPLEQ_FIRST(&sc->sc_queue);
919 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q2,*/ q_next);
920 		--sc->sc_nqueue;
921 
922 		v = ((void *)&q2->q_dma->d_dma->d_mcr);
923 		v = (char*)v + (sizeof(struct ubsec_mcr) -
924 				 sizeof(struct ubsec_mcr_add));
925 		memcpy(&q->q_dma->d_dma->d_mcradd[i], v,
926 		    sizeof(struct ubsec_mcr_add));
927 		q->q_stacked_mcr[i] = q2;
928 	}
929 	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
930 	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
931 	sc->sc_nqchip += npkts;
932 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
933 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
934 	bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
935 	    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
936 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
937 	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
938 	    offsetof(struct ubsec_dmachunk, d_mcr));
939 	return;
940 
941 feed1:
942 	while (!SIMPLEQ_EMPTY(&sc->sc_queue)) {
943 		if ((stat = READ_REG(sc, BS_STAT))
944 		    & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
945 			if (stat & BS_STAT_DMAERR) {
946 				ubsec_totalreset(sc);
947 				ubsecstats.hst_dmaerr++;
948 			} else {
949 				ubsecstats.hst_mcr1full++;
950 			}
951 			break;
952 		}
953 
954 		q = SIMPLEQ_FIRST(&sc->sc_queue);
955 
956 		bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
957 		    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
958 		if (q->q_dst_map != NULL)
959 			bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
960 			    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
961 		bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
962 		    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
963 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
964 
965 		WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
966 		    offsetof(struct ubsec_dmachunk, d_mcr));
967 #ifdef UBSEC_DEBUG
968 		if (ubsec_debug)
969 			printf("feed: q->chip %p %08x stat %08x\n",
970  		    	       q, (u_int32_t)q->q_dma->d_alloc.dma_paddr,
971 			       stat);
972 #endif /* UBSEC_DEBUG */
973 		q = SIMPLEQ_FIRST(&sc->sc_queue);
974 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
975 		--sc->sc_nqueue;
976 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
977 		sc->sc_nqchip++;
978 	}
979 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
980 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
981 }
982 
983 /*
984  * Allocate a new 'session' and return an encoded session id.  'sidp'
985  * contains our registration id, and should contain an encoded session
986  * id on successful allocation.
987  */
988 static int
989 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
990 {
991 	struct cryptoini *c, *encini = NULL, *macini = NULL;
992 	struct ubsec_softc *sc;
993 	struct ubsec_session *ses = NULL;
994 	MD5_CTX md5ctx;
995 	SHA1_CTX sha1ctx;
996 	int i, sesn;
997 
998 	sc = arg;
999 	KASSERT(sc != NULL /*, ("ubsec_newsession: null softc")*/);
1000 
1001 	if (sidp == NULL || cri == NULL || sc == NULL)
1002 		return (EINVAL);
1003 
1004 	for (c = cri; c != NULL; c = c->cri_next) {
1005 		if (c->cri_alg == CRYPTO_MD5_HMAC_96 ||
1006 		    c->cri_alg == CRYPTO_SHA1_HMAC_96) {
1007 			if (macini)
1008 				return (EINVAL);
1009 			macini = c;
1010 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
1011 		    c->cri_alg == CRYPTO_3DES_CBC ||
1012 		    c->cri_alg == CRYPTO_AES_CBC) {
1013 			if (encini)
1014 				return (EINVAL);
1015 			encini = c;
1016 		} else
1017 			return (EINVAL);
1018 	}
1019 	if (encini == NULL && macini == NULL)
1020 		return (EINVAL);
1021 
1022 	if (encini && encini->cri_alg == CRYPTO_AES_CBC) {
1023 		switch (encini->cri_klen) {
1024 		case 128:
1025 		case 192:
1026 		case 256:
1027 			break;
1028 		default:
1029 			return (EINVAL);
1030 		}
1031 	}
1032 
1033 	if (sc->sc_sessions == NULL) {
1034 		ses = sc->sc_sessions = (struct ubsec_session *)malloc(
1035 		    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
1036 		if (ses == NULL)
1037 			return (ENOMEM);
1038 		sesn = 0;
1039 		sc->sc_nsessions = 1;
1040 	} else {
1041 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
1042 			if (sc->sc_sessions[sesn].ses_used == 0) {
1043 				ses = &sc->sc_sessions[sesn];
1044 				break;
1045 			}
1046 		}
1047 
1048 		if (ses == NULL) {
1049 			sesn = sc->sc_nsessions;
1050 			ses = (struct ubsec_session *)malloc((sesn + 1) *
1051 			    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
1052 			if (ses == NULL)
1053 				return (ENOMEM);
1054 			memcpy(ses, sc->sc_sessions, sesn *
1055 			    sizeof(struct ubsec_session));
1056 			memset(sc->sc_sessions, 0, sesn *
1057 			    sizeof(struct ubsec_session));
1058 			free(sc->sc_sessions, M_DEVBUF);
1059 			sc->sc_sessions = ses;
1060 			ses = &sc->sc_sessions[sesn];
1061 			sc->sc_nsessions++;
1062 		}
1063 	}
1064 
1065 	memset(ses, 0, sizeof(struct ubsec_session));
1066 	ses->ses_used = 1;
1067 	if (encini) {
1068 		/* get an IV, network byte order */
1069 #ifdef __NetBSD__
1070 		cprng_fast(ses->ses_iv, sizeof(ses->ses_iv));
1071 #else
1072 		get_random_bytes(ses->ses_iv, sizeof(ses->ses_iv));
1073 #endif
1074 
1075 		/* Go ahead and compute key in ubsec's byte order */
1076 		if (encini->cri_alg == CRYPTO_AES_CBC) {
1077 			memcpy(ses->ses_key, encini->cri_key,
1078 			    encini->cri_klen / 8);
1079 		}
1080 		if (encini->cri_alg == CRYPTO_DES_CBC) {
1081 			memcpy(&ses->ses_key[0], encini->cri_key, 8);
1082 			memcpy(&ses->ses_key[2], encini->cri_key, 8);
1083 			memcpy(&ses->ses_key[4], encini->cri_key, 8);
1084 		} else
1085 			memcpy(ses->ses_key, encini->cri_key, 24);
1086 
1087 		SWAP32(ses->ses_key[0]);
1088 		SWAP32(ses->ses_key[1]);
1089 		SWAP32(ses->ses_key[2]);
1090 		SWAP32(ses->ses_key[3]);
1091 		SWAP32(ses->ses_key[4]);
1092 		SWAP32(ses->ses_key[5]);
1093 	}
1094 
1095 	if (macini) {
1096 		for (i = 0; i < macini->cri_klen / 8; i++)
1097 			macini->cri_key[i] ^= HMAC_IPAD_VAL;
1098 
1099 		if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
1100 			MD5Init(&md5ctx);
1101 			MD5Update(&md5ctx, macini->cri_key,
1102 			    macini->cri_klen / 8);
1103 			MD5Update(&md5ctx, hmac_ipad_buffer,
1104 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1105 			memcpy(ses->ses_hminner, md5ctx.state,
1106 			    sizeof(md5ctx.state));
1107 		} else {
1108 			SHA1Init(&sha1ctx);
1109 			SHA1Update(&sha1ctx, macini->cri_key,
1110 			    macini->cri_klen / 8);
1111 			SHA1Update(&sha1ctx, hmac_ipad_buffer,
1112 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1113 			memcpy(ses->ses_hminner, sha1ctx.state,
1114 			    sizeof(sha1ctx.state));
1115 		}
1116 
1117 		for (i = 0; i < macini->cri_klen / 8; i++)
1118 			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
1119 
1120 		if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
1121 			MD5Init(&md5ctx);
1122 			MD5Update(&md5ctx, macini->cri_key,
1123 			    macini->cri_klen / 8);
1124 			MD5Update(&md5ctx, hmac_opad_buffer,
1125 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1126 			memcpy(ses->ses_hmouter, md5ctx.state,
1127 			    sizeof(md5ctx.state));
1128 		} else {
1129 			SHA1Init(&sha1ctx);
1130 			SHA1Update(&sha1ctx, macini->cri_key,
1131 			    macini->cri_klen / 8);
1132 			SHA1Update(&sha1ctx, hmac_opad_buffer,
1133 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
1134 			memcpy(ses->ses_hmouter, sha1ctx.state,
1135 			    sizeof(sha1ctx.state));
1136 		}
1137 
1138 		for (i = 0; i < macini->cri_klen / 8; i++)
1139 			macini->cri_key[i] ^= HMAC_OPAD_VAL;
1140 	}
1141 
1142 	*sidp = UBSEC_SID(device_unit(sc->sc_dev), sesn);
1143 	return (0);
1144 }
1145 
1146 /*
1147  * Deallocate a session.
1148  */
1149 static int
1150 ubsec_freesession(void *arg, u_int64_t tid)
1151 {
1152 	struct ubsec_softc *sc;
1153 	int session;
1154 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
1155 
1156 	sc = arg;
1157 	KASSERT(sc != NULL /*, ("ubsec_freesession: null softc")*/);
1158 
1159 	session = UBSEC_SESSION(sid);
1160 	if (session >= sc->sc_nsessions)
1161 		return (EINVAL);
1162 
1163 	memset(&sc->sc_sessions[session], 0, sizeof(sc->sc_sessions[session]));
1164 	return (0);
1165 }
1166 
1167 #ifdef __FreeBSD__ /* Ugly gratuitous changes to bus_dma */
1168 static void
1169 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize,
1170     int error)
1171 {
1172 	struct ubsec_operand *op = arg;
1173 
1174 	KASSERT(nsegs <= UBS_MAX_SCATTER
1175 		/*, ("Too many DMA segments returned when mapping operand")*/);
1176 #ifdef UBSEC_DEBUG
1177 	if (ubsec_debug)
1178 		printf("ubsec_op_cb: mapsize %u nsegs %d\n",
1179 			(u_int) mapsize, nsegs);
1180 #endif
1181 	op->mapsize = mapsize;
1182 	op->nsegs = nsegs;
1183 	memcpy(op->segs, seg, nsegs * sizeof (seg[0]));
1184 }
1185 #endif
1186 
1187 static int
1188 ubsec_process(void *arg, struct cryptop *crp, int hint)
1189 {
1190 	struct ubsec_q *q = NULL;
1191 #ifdef	__OpenBSD__
1192 	int card;
1193 #endif
1194 	int err = 0, i, j, nicealign;
1195 	struct ubsec_softc *sc;
1196 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1197 	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1198 	int sskip, dskip, stheend, dtheend;
1199 	int16_t coffset;
1200 	struct ubsec_session *ses, key;
1201 	struct ubsec_dma *dmap = NULL;
1202 	u_int16_t flags = 0;
1203 	int ivlen = 0, keylen = 0;
1204 
1205 	sc = arg;
1206 	KASSERT(sc != NULL /*, ("ubsec_process: null softc")*/);
1207 
1208 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
1209 		ubsecstats.hst_invalid++;
1210 		return (EINVAL);
1211 	}
1212 	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
1213 		ubsecstats.hst_badsession++;
1214 		return (EINVAL);
1215 	}
1216 
1217 	mutex_spin_enter(&sc->sc_mtx);
1218 
1219 	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1220 		ubsecstats.hst_queuefull++;
1221 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1222 		mutex_spin_exit(&sc->sc_mtx);
1223 		return(ERESTART);
1224 	}
1225 
1226 	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
1227 	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, /*q,*/ q_next);
1228 	mutex_spin_exit(&sc->sc_mtx);
1229 
1230 	dmap = q->q_dma; /* Save dma pointer */
1231 	/* don't lose the cached dmamaps q_src_map and q_cached_dst_map */
1232 	memset(q, 0, offsetof(struct ubsec_q, q_src_map));
1233 	memset(&key, 0, sizeof(key));
1234 
1235 	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1236 	q->q_dma = dmap;
1237 	ses = &sc->sc_sessions[q->q_sesn];
1238 
1239 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1240 		q->q_src_m = (struct mbuf *)crp->crp_buf;
1241 		q->q_dst_m = (struct mbuf *)crp->crp_buf;
1242 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1243 		q->q_src_io = (struct uio *)crp->crp_buf;
1244 		q->q_dst_io = (struct uio *)crp->crp_buf;
1245 	} else {
1246 		ubsecstats.hst_badflags++;
1247 		err = EINVAL;
1248 		goto errout;	/* XXX we don't handle contiguous blocks! */
1249 	}
1250 
1251 	memset(&dmap->d_dma->d_mcr, 0, sizeof(struct ubsec_mcr));
1252 
1253 	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1254 	dmap->d_dma->d_mcr.mcr_flags = 0;
1255 	q->q_crp = crp;
1256 
1257 	crd1 = crp->crp_desc;
1258 	if (crd1 == NULL) {
1259 		ubsecstats.hst_nodesc++;
1260 		err = EINVAL;
1261 		goto errout;
1262 	}
1263 	crd2 = crd1->crd_next;
1264 
1265 	if (crd2 == NULL) {
1266 		if (crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
1267 		    crd1->crd_alg == CRYPTO_SHA1_HMAC_96) {
1268 			maccrd = crd1;
1269 			enccrd = NULL;
1270 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1271 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
1272 		    crd1->crd_alg == CRYPTO_AES_CBC) {
1273 			maccrd = NULL;
1274 			enccrd = crd1;
1275 		} else {
1276 			ubsecstats.hst_badalg++;
1277 			err = EINVAL;
1278 			goto errout;
1279 		}
1280 	} else {
1281 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
1282 		    crd1->crd_alg == CRYPTO_SHA1_HMAC_96) &&
1283 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
1284 		    crd2->crd_alg == CRYPTO_3DES_CBC ||
1285 		    crd2->crd_alg == CRYPTO_AES_CBC) &&
1286 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1287 			maccrd = crd1;
1288 			enccrd = crd2;
1289 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1290 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
1291 		    crd1->crd_alg == CRYPTO_AES_CBC) &&
1292 		    (crd2->crd_alg == CRYPTO_MD5_HMAC_96 ||
1293 		    crd2->crd_alg == CRYPTO_SHA1_HMAC_96) &&
1294 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
1295 			enccrd = crd1;
1296 			maccrd = crd2;
1297 		} else {
1298 			/*
1299 			 * We cannot order the ubsec as requested
1300 			 */
1301 			ubsecstats.hst_badalg++;
1302 			err = EINVAL;
1303 			goto errout;
1304 		}
1305 	}
1306 
1307 	if (enccrd) {
1308 		if (enccrd->crd_alg == CRYPTO_AES_CBC) {
1309 			if ((sc->sc_flags & UBS_FLAGS_AES) == 0) {
1310 				/*
1311 				 * We cannot order the ubsec as requested
1312 				 */
1313 				ubsecstats.hst_badalg++;
1314 				err = EINVAL;
1315 				goto errout;
1316 			}
1317 			flags |= htole16(UBS_PKTCTX_ENC_AES);
1318 			switch (enccrd->crd_klen) {
1319 			case 128:
1320 			case 192:
1321 			case 256:
1322 				keylen = enccrd->crd_klen / 8;
1323 				break;
1324 			default:
1325 				err = EINVAL;
1326 				goto errout;
1327 			}
1328 			ivlen = 16;
1329 		} else {
1330 			flags |= htole16(UBS_PKTCTX_ENC_3DES);
1331 			ivlen = 8;
1332 			keylen = 24;
1333 		}
1334 
1335 		encoffset = enccrd->crd_skip;
1336 
1337 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1338 			q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1339 
1340 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1341 				memcpy(key.ses_iv, enccrd->crd_iv, ivlen);
1342 			else {
1343 				for (i = 0; i < (ivlen / 4); i++)
1344 					key.ses_iv[i] = ses->ses_iv[i];
1345 			}
1346 
1347 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1348 				if (crp->crp_flags & CRYPTO_F_IMBUF)
1349 					m_copyback(q->q_src_m,
1350 					    enccrd->crd_inject,
1351 					    ivlen, (void *)key.ses_iv);
1352 				else if (crp->crp_flags & CRYPTO_F_IOV)
1353 					cuio_copyback(q->q_src_io,
1354 					    enccrd->crd_inject,
1355 					    ivlen, (void *)key.ses_iv);
1356 			}
1357 		} else {
1358 			flags |= htole16(UBS_PKTCTX_INBOUND);
1359 
1360 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1361 				memcpy(key.ses_iv, enccrd->crd_iv, ivlen);
1362 			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1363 				m_copydata(q->q_src_m, enccrd->crd_inject,
1364 				    ivlen, (void *)key.ses_iv);
1365 			else if (crp->crp_flags & CRYPTO_F_IOV)
1366 				cuio_copydata(q->q_src_io,
1367 				    enccrd->crd_inject, 8,
1368 				    (void *)key.ses_iv);
1369 		}
1370 
1371 		for (i = 0; i < (keylen / 4); i++)
1372 			key.ses_key[i] = ses->ses_key[i];
1373 		for (i = 0; i < (ivlen / 4); i++)
1374 			SWAP32(key.ses_iv[i]);
1375 	}
1376 
1377 	if (maccrd) {
1378 		macoffset = maccrd->crd_skip;
1379 
1380 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC_96)
1381 			flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1382 		else
1383 			flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1384 
1385 		for (i = 0; i < 5; i++) {
1386 			key.ses_hminner[i] = ses->ses_hminner[i];
1387 			key.ses_hmouter[i] = ses->ses_hmouter[i];
1388 
1389 			HTOLE32(key.ses_hminner[i]);
1390 			HTOLE32(key.ses_hmouter[i]);
1391 		}
1392 	}
1393 
1394 	if (enccrd && maccrd) {
1395 		/*
1396 		 * ubsec cannot handle packets where the end of encryption
1397 		 * and authentication are not the same, or where the
1398 		 * encrypted part begins before the authenticated part.
1399 		 */
1400 		if ((encoffset + enccrd->crd_len) !=
1401 		    (macoffset + maccrd->crd_len)) {
1402 			ubsecstats.hst_lenmismatch++;
1403 			err = EINVAL;
1404 			goto errout;
1405 		}
1406 		if (enccrd->crd_skip < maccrd->crd_skip) {
1407 			ubsecstats.hst_skipmismatch++;
1408 			err = EINVAL;
1409 			goto errout;
1410 		}
1411 		sskip = maccrd->crd_skip;
1412 		cpskip = dskip = enccrd->crd_skip;
1413 		stheend = maccrd->crd_len;
1414 		dtheend = enccrd->crd_len;
1415 		coffset = enccrd->crd_skip - maccrd->crd_skip;
1416 		cpoffset = cpskip + dtheend;
1417 #ifdef UBSEC_DEBUG
1418 		if (ubsec_debug) {
1419 			printf("mac: skip %d, len %d, inject %d\n",
1420 			    maccrd->crd_skip, maccrd->crd_len,
1421 			    maccrd->crd_inject);
1422 			printf("enc: skip %d, len %d, inject %d\n",
1423 			    enccrd->crd_skip, enccrd->crd_len,
1424 			    enccrd->crd_inject);
1425 			printf("src: skip %d, len %d\n", sskip, stheend);
1426 			printf("dst: skip %d, len %d\n", dskip, dtheend);
1427 			printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1428 			       coffset, stheend, cpskip, cpoffset);
1429 		}
1430 #endif
1431 	} else {
1432 		cpskip = dskip = sskip = macoffset + encoffset;
1433 		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1434 		cpoffset = cpskip + dtheend;
1435 		coffset = 0;
1436 	}
1437 
1438 	if (q->q_src_map == NULL) {
1439 		/* XXX FIXME: jonathan asks, what the heck's that 0xfff0?  */
1440 		if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
1441 			0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
1442 			err = ENOMEM;
1443 			goto errout;
1444 		}
1445 	}
1446 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1447 		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1448 		    q->q_src_m, BUS_DMA_NOWAIT) != 0) {
1449 			ubsecstats.hst_noload++;
1450 			err = ENOMEM;
1451 			goto errout;
1452 		}
1453 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1454 		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1455 		    q->q_src_io, BUS_DMA_NOWAIT) != 0) {
1456 			ubsecstats.hst_noload++;
1457 			err = ENOMEM;
1458 			goto errout;
1459 		}
1460 	}
1461 	nicealign = ubsec_dmamap_aligned(q->q_src_map);
1462 
1463 	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1464 
1465 #ifdef UBSEC_DEBUG
1466 	if (ubsec_debug)
1467 		printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1468 #endif
1469 	for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) {
1470 		struct ubsec_pktbuf *pb;
1471 		bus_size_t packl = q->q_src_map->dm_segs[i].ds_len;
1472 		bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr;
1473 
1474 		if (sskip >= packl) {
1475 			sskip -= packl;
1476 			continue;
1477 		}
1478 
1479 		packl -= sskip;
1480 		packp += sskip;
1481 		sskip = 0;
1482 
1483 		if (packl > 0xfffc) {
1484 			err = EIO;
1485 			goto errout;
1486 		}
1487 
1488 		if (j == 0)
1489 			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1490 		else
1491 			pb = &dmap->d_dma->d_sbuf[j - 1];
1492 
1493 		pb->pb_addr = htole32(packp);
1494 
1495 		if (stheend) {
1496 			if (packl > stheend) {
1497 				pb->pb_len = htole32(stheend);
1498 				stheend = 0;
1499 			} else {
1500 				pb->pb_len = htole32(packl);
1501 				stheend -= packl;
1502 			}
1503 		} else
1504 			pb->pb_len = htole32(packl);
1505 
1506 		if ((i + 1) == q->q_src_map->dm_nsegs)
1507 			pb->pb_next = 0;
1508 		else
1509 			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1510 			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1511 		j++;
1512 	}
1513 
1514 	if (enccrd == NULL && maccrd != NULL) {
1515 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1516 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1517 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1518 		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1519 #ifdef UBSEC_DEBUG
1520 		if (ubsec_debug)
1521 			printf("opkt: %x %x %x\n",
1522 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1523 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1524 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1525 
1526 #endif
1527 	} else {
1528 		if (crp->crp_flags & CRYPTO_F_IOV) {
1529 			if (!nicealign) {
1530 				ubsecstats.hst_iovmisaligned++;
1531 				err = EINVAL;
1532 				goto errout;
1533 			}
1534 			if (q->q_dst_map == NULL) {
1535 				if (q->q_cached_dst_map == NULL) {
1536 					/*
1537 					 * XXX: ``what the heck's that''
1538 					 * 0xfff0?
1539 					 */
1540 					if (bus_dmamap_create(sc->sc_dmat,
1541 					    0xfff0, UBS_MAX_SCATTER, 0xfff0, 0,
1542 					    BUS_DMA_NOWAIT,
1543 					    &q->q_cached_dst_map) != 0) {
1544 						ubsecstats.hst_nomap++;
1545 						err = ENOMEM;
1546 						goto errout;
1547 					}
1548 				}
1549 				q->q_dst_map = q->q_cached_dst_map;
1550 			}
1551 			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1552 			    q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
1553 				ubsecstats.hst_noload++;
1554 				err = ENOMEM;
1555 				goto errout;
1556 			}
1557 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1558 			if (nicealign) {
1559 				q->q_dst_m = q->q_src_m;
1560 				q->q_dst_map = q->q_src_map;
1561 			} else {
1562 				int totlen, len;
1563 				struct mbuf *m, *top, **mp;
1564 
1565 				ubsecstats.hst_unaligned++;
1566 				totlen = q->q_src_map->dm_mapsize;
1567 				if (q->q_src_m->m_flags & M_PKTHDR) {
1568 					len = MHLEN;
1569 					MGETHDR(m, M_DONTWAIT, MT_DATA);
1570 					/*XXX FIXME: m_dup_pkthdr */
1571 					if (m && 1 /*!m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)*/) {
1572 						m_free(m);
1573 						m = NULL;
1574 					}
1575 				} else {
1576 					len = MLEN;
1577 					MGET(m, M_DONTWAIT, MT_DATA);
1578 				}
1579 				if (m == NULL) {
1580 					ubsecstats.hst_nombuf++;
1581 					err = sc->sc_nqueue ? ERESTART : ENOMEM;
1582 					goto errout;
1583 				}
1584 				if (len == MHLEN)
1585 				  /*XXX was M_DUP_PKTHDR*/
1586 				  m_copy_pkthdr(m, q->q_src_m);
1587 				if (totlen >= MINCLSIZE) {
1588 					MCLGET(m, M_DONTWAIT);
1589 					if ((m->m_flags & M_EXT) == 0) {
1590 						m_free(m);
1591 						ubsecstats.hst_nomcl++;
1592 						err = sc->sc_nqueue
1593 						    ? ERESTART : ENOMEM;
1594 						goto errout;
1595 					}
1596 					len = MCLBYTES;
1597 				}
1598 				m->m_len = len;
1599 				top = NULL;
1600 				mp = &top;
1601 
1602 				while (totlen > 0) {
1603 					if (top) {
1604 						MGET(m, M_DONTWAIT, MT_DATA);
1605 						if (m == NULL) {
1606 							m_freem(top);
1607 							ubsecstats.hst_nombuf++;
1608 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1609 							goto errout;
1610 						}
1611 						len = MLEN;
1612 					}
1613 					if (top && totlen >= MINCLSIZE) {
1614 						MCLGET(m, M_DONTWAIT);
1615 						if ((m->m_flags & M_EXT) == 0) {
1616 							*mp = m;
1617 							m_freem(top);
1618 							ubsecstats.hst_nomcl++;
1619 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1620 							goto errout;
1621 						}
1622 						len = MCLBYTES;
1623 					}
1624 					m->m_len = len = uimin(totlen, len);
1625 					totlen -= len;
1626 					*mp = m;
1627 					mp = &m->m_next;
1628 				}
1629 				q->q_dst_m = top;
1630 				ubsec_mcopy(q->q_src_m, q->q_dst_m,
1631 				    cpskip, cpoffset);
1632 				if (q->q_dst_map == NULL) {
1633 					if (q->q_cached_dst_map == NULL) {
1634 						/* XXX again, what the heck is that 0xfff0? */
1635 						if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1636 						    UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1637 						    &q->q_cached_dst_map) != 0) {
1638 							ubsecstats.hst_nomap++;
1639 							err = ENOMEM;
1640 							goto errout;
1641 						}
1642 					}
1643 					q->q_dst_map = q->q_cached_dst_map;
1644 				}
1645 				if (bus_dmamap_load_mbuf(sc->sc_dmat,
1646 				    q->q_dst_map, q->q_dst_m,
1647 				    BUS_DMA_NOWAIT) != 0) {
1648 					ubsecstats.hst_noload++;
1649 					err = ENOMEM;
1650 					goto errout;
1651 				}
1652 			}
1653 		} else {
1654 			ubsecstats.hst_badflags++;
1655 			err = EINVAL;
1656 			goto errout;
1657 		}
1658 
1659 #ifdef UBSEC_DEBUG
1660 		if (ubsec_debug)
1661 			printf("dst skip: %d\n", dskip);
1662 #endif
1663 		for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) {
1664 			struct ubsec_pktbuf *pb;
1665 			bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len;
1666 			bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr;
1667 
1668 			if (dskip >= packl) {
1669 				dskip -= packl;
1670 				continue;
1671 			}
1672 
1673 			packl -= dskip;
1674 			packp += dskip;
1675 			dskip = 0;
1676 
1677 			if (packl > 0xfffc) {
1678 				err = EIO;
1679 				goto errout;
1680 			}
1681 
1682 			if (j == 0)
1683 				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1684 			else
1685 				pb = &dmap->d_dma->d_dbuf[j - 1];
1686 
1687 			pb->pb_addr = htole32(packp);
1688 
1689 			if (dtheend) {
1690 				if (packl > dtheend) {
1691 					pb->pb_len = htole32(dtheend);
1692 					dtheend = 0;
1693 				} else {
1694 					pb->pb_len = htole32(packl);
1695 					dtheend -= packl;
1696 				}
1697 			} else
1698 				pb->pb_len = htole32(packl);
1699 
1700 			if ((i + 1) == q->q_dst_map->dm_nsegs) {
1701 				if (maccrd)
1702 					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1703 					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1704 				else
1705 					pb->pb_next = 0;
1706 			} else
1707 				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1708 				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1709 			j++;
1710 		}
1711 	}
1712 
1713 	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1714 	    offsetof(struct ubsec_dmachunk, d_ctx));
1715 
1716 	if (enccrd && enccrd->crd_alg == CRYPTO_AES_CBC) {
1717 		struct ubsec_pktctx_aes128	*aes128;
1718 		struct ubsec_pktctx_aes192	*aes192;
1719 		struct ubsec_pktctx_aes256	*aes256;
1720 		struct ubsec_pktctx_hdr		*ph;
1721 		u_int8_t			*ctx;
1722 
1723 		ctx = (u_int8_t *)(dmap->d_alloc.dma_vaddr) +
1724 		    offsetof(struct ubsec_dmachunk, d_ctx);
1725 
1726 		ph = (struct ubsec_pktctx_hdr *)ctx;
1727 		ph->ph_type = htole16(UBS_PKTCTX_TYPE_IPSEC_AES);
1728 		ph->ph_flags = flags;
1729 		ph->ph_offset = htole16(coffset >> 2);
1730 
1731 		switch (enccrd->crd_klen) {
1732 		case 128:
1733 			aes128 = (struct ubsec_pktctx_aes128 *)ctx;
1734  			ph->ph_len = htole16(sizeof(*aes128));
1735 			ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_128);
1736 			for (i = 0; i < 4; i++)
1737 				aes128->pc_aeskey[i] = key.ses_key[i];
1738 			for (i = 0; i < 5; i++)
1739 				aes128->pc_hminner[i] = key.ses_hminner[i];
1740 			for (i = 0; i < 5; i++)
1741 				aes128->pc_hmouter[i] = key.ses_hmouter[i];
1742 			for (i = 0; i < 4; i++)
1743 				aes128->pc_iv[i] = key.ses_iv[i];
1744 			break;
1745 		case 192:
1746 			aes192 = (struct ubsec_pktctx_aes192 *)ctx;
1747 			ph->ph_len = htole16(sizeof(*aes192));
1748 			ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_192);
1749 			for (i = 0; i < 6; i++)
1750 				aes192->pc_aeskey[i] = key.ses_key[i];
1751 			for (i = 0; i < 5; i++)
1752 				aes192->pc_hminner[i] = key.ses_hminner[i];
1753 			for (i = 0; i < 5; i++)
1754 				aes192->pc_hmouter[i] = key.ses_hmouter[i];
1755 			for (i = 0; i < 4; i++)
1756 				aes192->pc_iv[i] = key.ses_iv[i];
1757 			break;
1758 		case 256:
1759 			aes256 = (struct ubsec_pktctx_aes256 *)ctx;
1760 			ph->ph_len = htole16(sizeof(*aes256));
1761 			ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_256);
1762 			for (i = 0; i < 8; i++)
1763 				aes256->pc_aeskey[i] = key.ses_key[i];
1764 			for (i = 0; i < 5; i++)
1765 				aes256->pc_hminner[i] = key.ses_hminner[i];
1766 			for (i = 0; i < 5; i++)
1767 				aes256->pc_hmouter[i] = key.ses_hmouter[i];
1768 			for (i = 0; i < 4; i++)
1769 				aes256->pc_iv[i] = key.ses_iv[i];
1770 			break;
1771 		}
1772 	} else if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1773 		struct ubsec_pktctx_3des	*ctx;
1774 		struct ubsec_pktctx_hdr		*ph;
1775 
1776 		ctx = (struct ubsec_pktctx_3des *)
1777 		    ((u_int8_t *)(dmap->d_alloc.dma_vaddr) +
1778 		    offsetof(struct ubsec_dmachunk, d_ctx));
1779 
1780 		ph = (struct ubsec_pktctx_hdr *)ctx;
1781 		ph->ph_len = htole16(sizeof(*ctx));
1782 		ph->ph_type = htole16(UBS_PKTCTX_TYPE_IPSEC_3DES);
1783 		ph->ph_flags = flags;
1784 		ph->ph_offset = htole16(coffset >> 2);
1785 
1786 		for (i = 0; i < 6; i++)
1787 			ctx->pc_deskey[i] = key.ses_key[i];
1788 		for (i = 0; i < 5; i++)
1789 			ctx->pc_hminner[i] = key.ses_hminner[i];
1790 		for (i = 0; i < 5; i++)
1791 			ctx->pc_hmouter[i] = key.ses_hmouter[i];
1792 		for (i = 0; i < 2; i++)
1793 			ctx->pc_iv[i] = key.ses_iv[i];
1794 	} else {
1795 		struct ubsec_pktctx *ctx = (struct ubsec_pktctx *)
1796 		    ((u_int8_t *)dmap->d_alloc.dma_vaddr +
1797 		    offsetof(struct ubsec_dmachunk, d_ctx));
1798 
1799 		ctx->pc_flags = flags;
1800 		ctx->pc_offset = htole16(coffset >> 2);
1801 		for (i = 0; i < 6; i++)
1802 			ctx->pc_deskey[i] = key.ses_key[i];
1803 		for (i = 0; i < 5; i++)
1804 			ctx->pc_hminner[i] = key.ses_hminner[i];
1805 		for (i = 0; i < 5; i++)
1806 			ctx->pc_hmouter[i] = key.ses_hmouter[i];
1807 		for (i = 0; i < 2; i++)
1808 			ctx->pc_iv[i] = key.ses_iv[i];
1809 	}
1810 
1811 	mutex_spin_enter(&sc->sc_mtx);
1812 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1813 	sc->sc_nqueue++;
1814 	ubsecstats.hst_ipackets++;
1815 	ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize;
1816 	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch)
1817 		ubsec_feed(sc);
1818 	mutex_spin_exit(&sc->sc_mtx);
1819 	return (0);
1820 
1821 errout:
1822 	if (q != NULL) {
1823 		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1824 			m_freem(q->q_dst_m);
1825 
1826 		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1827 			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1828 		}
1829 		if (q->q_src_map != NULL) {
1830 			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1831 		}
1832 
1833 		mutex_spin_enter(&sc->sc_mtx);
1834 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1835 		mutex_spin_exit(&sc->sc_mtx);
1836 	}
1837 #if 0 /* jonathan says: this openbsd code seems to be subsumed elsewhere */
1838 	if (err == EINVAL)
1839 		ubsecstats.hst_invalid++;
1840 	else
1841 		ubsecstats.hst_nomem++;
1842 #endif
1843 	if (err != ERESTART) {
1844 		crp->crp_etype = err;
1845 		crypto_done(crp);
1846 	} else {
1847 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1848 	}
1849 	return (err);
1850 }
1851 
1852 static void
1853 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1854 {
1855 	struct cryptop *crp = (struct cryptop *)q->q_crp;
1856 	struct cryptodesc *crd;
1857 	struct ubsec_dma *dmap = q->q_dma;
1858 
1859 	ubsecstats.hst_opackets++;
1860 	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1861 
1862 	bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
1863 	    dmap->d_alloc.dma_map->dm_mapsize,
1864 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1865 	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1866 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1867 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1868 		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1869 	}
1870 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
1871 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1872 	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1873 
1874 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1875 		m_freem(q->q_src_m);
1876 		crp->crp_buf = (void *)q->q_dst_m;
1877 	}
1878 
1879 	/* copy out IV for future use */
1880 	if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1881 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1882 			if (crd->crd_alg != CRYPTO_DES_CBC &&
1883 			    crd->crd_alg != CRYPTO_3DES_CBC &&
1884 			    crd->crd_alg != CRYPTO_AES_CBC)
1885 				continue;
1886 			if (crp->crp_flags & CRYPTO_F_IMBUF)
1887 				m_copydata((struct mbuf *)crp->crp_buf,
1888 				    crd->crd_skip + crd->crd_len - 8, 8,
1889 				    (void *)sc->sc_sessions[q->q_sesn].ses_iv);
1890 			else if (crp->crp_flags & CRYPTO_F_IOV) {
1891 				cuio_copydata((struct uio *)crp->crp_buf,
1892 				    crd->crd_skip + crd->crd_len - 8, 8,
1893 				    (void *)sc->sc_sessions[q->q_sesn].ses_iv);
1894 			}
1895 			break;
1896 		}
1897 	}
1898 
1899 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1900 		if (crd->crd_alg != CRYPTO_MD5_HMAC_96 &&
1901 		    crd->crd_alg != CRYPTO_SHA1_HMAC_96)
1902 			continue;
1903 		if (crp->crp_flags & CRYPTO_F_IMBUF)
1904 			m_copyback((struct mbuf *)crp->crp_buf,
1905 			    crd->crd_inject, 12,
1906 			    (void *)dmap->d_dma->d_macbuf);
1907 		else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1908 			bcopy((void *)dmap->d_dma->d_macbuf,
1909 			    crp->crp_mac, 12);
1910 		break;
1911 	}
1912 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1913 	crypto_done(crp);
1914 }
1915 
1916 static void
1917 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1918 {
1919 	int i, j, dlen, slen;
1920 	char *dptr, *sptr;
1921 
1922 	j = 0;
1923 	sptr = srcm->m_data;
1924 	slen = srcm->m_len;
1925 	dptr = dstm->m_data;
1926 	dlen = dstm->m_len;
1927 
1928 	while (1) {
1929 		for (i = 0; i < uimin(slen, dlen); i++) {
1930 			if (j < hoffset || j >= toffset)
1931 				*dptr++ = *sptr++;
1932 			slen--;
1933 			dlen--;
1934 			j++;
1935 		}
1936 		if (slen == 0) {
1937 			srcm = srcm->m_next;
1938 			if (srcm == NULL)
1939 				return;
1940 			sptr = srcm->m_data;
1941 			slen = srcm->m_len;
1942 		}
1943 		if (dlen == 0) {
1944 			dstm = dstm->m_next;
1945 			if (dstm == NULL)
1946 				return;
1947 			dptr = dstm->m_data;
1948 			dlen = dstm->m_len;
1949 		}
1950 	}
1951 }
1952 
1953 /*
1954  * feed the key generator, must be called at splnet() or higher.
1955  */
1956 static void
1957 ubsec_feed2(struct ubsec_softc *sc)
1958 {
1959 	struct ubsec_q2 *q;
1960 
1961 	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1962 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1963 			break;
1964 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1965 
1966 		bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1967 		    q->q_mcr.dma_map->dm_mapsize,
1968 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1969 		bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1970 		    q->q_ctx.dma_map->dm_mapsize,
1971 		    BUS_DMASYNC_PREWRITE);
1972 
1973 		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1974 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1975 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, /*q,*/ q_next);
1976 		--sc->sc_nqueue2;
1977 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1978 	}
1979 }
1980 
1981 /*
1982  * feed the RNG (used instead of ubsec_feed2() on 5827+ devices)
1983  */
1984 void
1985 ubsec_feed4(struct ubsec_softc *sc)
1986 {
1987 	struct ubsec_q2 *q;
1988 
1989 	while (!SIMPLEQ_EMPTY(&sc->sc_queue4)) {
1990 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR4_FULL)
1991 			break;
1992 		q = SIMPLEQ_FIRST(&sc->sc_queue4);
1993 
1994 		bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1995 		    q->q_mcr.dma_map->dm_mapsize,
1996 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1997 		bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1998 		    q->q_ctx.dma_map->dm_mapsize,
1999 		    BUS_DMASYNC_PREWRITE);
2000 
2001 		WRITE_REG(sc, BS_MCR4, q->q_mcr.dma_paddr);
2002 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue4, q_next);
2003 		--sc->sc_nqueue4;
2004 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip4, q, q_next);
2005 	}
2006 }
2007 
2008 /*
2009  * Callback for handling random numbers
2010  */
2011 static void
2012 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
2013 {
2014 	struct cryptkop *krp;
2015 	struct ubsec_ctx_keyop *ctx;
2016 
2017 	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
2018 	bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
2019 	    q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2020 
2021 	switch (q->q_type) {
2022 #ifndef UBSEC_NO_RNG
2023 	case UBS_CTXOP_RNGSHA1:
2024 	case UBS_CTXOP_RNGBYPASS: {
2025 		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
2026 		u_int32_t *p;
2027 		int i;
2028 
2029 		bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
2030 		    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2031 		p = (u_int32_t *)rng->rng_buf.dma_vaddr;
2032 #ifndef __NetBSD__
2033 		for (i = 0; i < UBSEC_RNG_BUFSIZ; p++, i++)
2034 			add_true_randomness(letoh32(*p));
2035 #else
2036 		i = UBSEC_RNG_BUFSIZ * sizeof(u_int32_t);
2037 		rnd_add_data(&sc->sc_rnd_source, (char *)p, i, i * NBBY);
2038 		sc->sc_rng_need -= i;
2039 #endif
2040 		rng->rng_used = 0;
2041 #ifdef __OpenBSD__
2042 		timeout_add(&sc->sc_rngto, sc->sc_rnghz);
2043 #else
2044 		if (sc->sc_rng_need > 0) {
2045 			callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
2046 		}
2047 #endif
2048 		break;
2049 	}
2050 #endif
2051 	case UBS_CTXOP_MODEXP: {
2052 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2053 		u_int rlen, clen;
2054 
2055 		krp = me->me_krp;
2056 		rlen = (me->me_modbits + 7) / 8;
2057 		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
2058 
2059 		bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2060 		    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2061 		bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2062 		    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2063 		bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2064 		    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2065 		bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2066 		    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2067 
2068 		if (clen < rlen)
2069 			krp->krp_status = E2BIG;
2070 		else {
2071 			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
2072 				memset(krp->krp_param[krp->krp_iparams].crp_p, 0,
2073 				    (krp->krp_param[krp->krp_iparams].crp_nbits
2074 					+ 7) / 8);
2075 				bcopy(me->me_C.dma_vaddr,
2076 				    krp->krp_param[krp->krp_iparams].crp_p,
2077 				    (me->me_modbits + 7) / 8);
2078 			} else
2079 				ubsec_kshift_l(me->me_shiftbits,
2080 				    me->me_C.dma_vaddr, me->me_normbits,
2081 				    krp->krp_param[krp->krp_iparams].crp_p,
2082 				    krp->krp_param[krp->krp_iparams].crp_nbits);
2083 		}
2084 
2085 		crypto_kdone(krp);
2086 
2087 		/* bzero all potentially sensitive data */
2088 		memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2089 		memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2090 		memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2091 		memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
2092 
2093 		/* Can't free here, so put us on the free list. */
2094 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
2095 		break;
2096 	}
2097 	case UBS_CTXOP_RSAPRIV: {
2098 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2099 		u_int len;
2100 
2101 		krp = rp->rpr_krp;
2102 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0,
2103 		    rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2104 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0,
2105 		    rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2106 
2107 		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7)
2108 		    / 8;
2109 		bcopy(rp->rpr_msgout.dma_vaddr,
2110 		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
2111 
2112 		crypto_kdone(krp);
2113 
2114 		memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
2115 		memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
2116 		memset(rp->rpr_q.q_ctx.dma_vaddr, 0, rp->rpr_q.q_ctx.dma_size);
2117 
2118 		/* Can't free here, so put us on the free list. */
2119 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
2120 		break;
2121 	}
2122 	default:
2123 		printf("%s: unknown ctx op: %x\n", device_xname(sc->sc_dev),
2124 		    letoh16(ctx->ctx_op));
2125 		break;
2126 	}
2127 }
2128 
2129 #ifndef UBSEC_NO_RNG
2130 
2131 static void
2132 ubsec_rng_get(size_t bytes, void *vsc)
2133 {
2134 	struct ubsec_softc *sc = vsc;
2135 
2136 	mutex_spin_enter(&sc->sc_mtx);
2137 	sc->sc_rng_need = bytes;
2138 	ubsec_rng_locked(sc);
2139 	mutex_spin_exit(&sc->sc_mtx);
2140 
2141 }
2142 
2143 static void
2144 ubsec_rng(void *vsc)
2145 {
2146 	struct ubsec_softc *sc = vsc;
2147 	mutex_spin_enter(&sc->sc_mtx);
2148 	ubsec_rng_locked(sc);
2149 	mutex_spin_exit(&sc->sc_mtx);
2150 }
2151 
2152 static void
2153 ubsec_rng_locked(void *vsc)
2154 {
2155 	struct ubsec_softc *sc = vsc;
2156 	struct ubsec_q2_rng *rng = &sc->sc_rng;
2157 	struct ubsec_mcr *mcr;
2158 	struct ubsec_ctx_rngbypass *ctx;
2159 	int *nqueue;
2160 
2161 	/* Caller is responsible to lock and release sc_mtx. */
2162 	KASSERT(mutex_owned(&sc->sc_mtx));
2163 
2164 	if (rng->rng_used) {
2165 		return;
2166 	}
2167 
2168 	if (sc->sc_rng_need < 1) {
2169 		callout_stop(&sc->sc_rngto);
2170 		return;
2171 	}
2172 
2173 	if (sc->sc_flags & UBS_FLAGS_RNG4)
2174 		nqueue = &sc->sc_nqueue4;
2175 	else
2176 		nqueue = &sc->sc_nqueue2;
2177 
2178 	(*nqueue)++;
2179 	if (*nqueue >= UBS_MAX_NQUEUE)
2180  		goto out;
2181 
2182 	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
2183 	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
2184 
2185 	mcr->mcr_pkts = htole16(1);
2186 	mcr->mcr_flags = 0;
2187 	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
2188 	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
2189 	mcr->mcr_ipktbuf.pb_len = 0;
2190 	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
2191 	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
2192 	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
2193 	    UBS_PKTBUF_LEN);
2194 	mcr->mcr_opktbuf.pb_next = 0;
2195 
2196 	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
2197 	ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1);
2198 	rng->rng_q.q_type = UBS_CTXOP_RNGSHA1;
2199 
2200 	bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
2201 	    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2202 
2203 	if (sc->sc_flags & UBS_FLAGS_RNG4) {
2204 		SIMPLEQ_INSERT_TAIL(&sc->sc_queue4, &rng->rng_q, q_next);
2205 		ubsec_feed4(sc);
2206 	} else {
2207 		SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
2208 		ubsec_feed2(sc);
2209 	}
2210 	rng->rng_used = 1;
2211 	ubsecstats.hst_rng++;
2212 
2213 	return;
2214 
2215 out:
2216 	/*
2217 	 * Something weird happened, generate our own call back.
2218 	 */
2219 	(*nqueue)--;
2220 #ifdef __OpenBSD__
2221 	timeout_add(&sc->sc_rngto, sc->sc_rnghz);
2222 #else
2223 	callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
2224 #endif
2225 }
2226 #endif /* UBSEC_NO_RNG */
2227 
2228 static int
2229 ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size,
2230 		 struct ubsec_dma_alloc *dma,int mapflags)
2231 {
2232 	int r;
2233 
2234 	if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
2235 	    &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0)
2236 		goto fail_0;
2237 
2238 	if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg,
2239 	    size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0)
2240 		goto fail_1;
2241 
2242 	if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
2243 	    BUS_DMA_NOWAIT, &dma->dma_map)) != 0)
2244 		goto fail_2;
2245 
2246 	if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
2247 	    size, NULL, BUS_DMA_NOWAIT)) != 0)
2248 		goto fail_3;
2249 
2250 	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
2251 	dma->dma_size = size;
2252 	return (0);
2253 
2254 fail_3:
2255 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
2256 fail_2:
2257 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
2258 fail_1:
2259 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
2260 fail_0:
2261 	dma->dma_map = NULL;
2262 	return (r);
2263 }
2264 
2265 static void
2266 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
2267 {
2268 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
2269 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
2270 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
2271 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
2272 }
2273 
2274 /*
2275  * Resets the board.  Values in the regesters are left as is
2276  * from the reset (i.e. initial values are assigned elsewhere).
2277  */
2278 static void
2279 ubsec_reset_board(struct ubsec_softc *sc)
2280 {
2281 	volatile u_int32_t ctrl;
2282 
2283 	ctrl = READ_REG(sc, BS_CTRL);
2284 	ctrl |= BS_CTRL_RESET;
2285 	WRITE_REG(sc, BS_CTRL, ctrl);
2286 
2287 	/*
2288 	* Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
2289 	*/
2290 	DELAY(10);
2291 
2292 	/* Enable RNG and interrupts on newer devices */
2293 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
2294 #ifndef UBSEC_NO_RNG
2295 		WRITE_REG(sc, BS_CFG, BS_CFG_RNG);
2296 #endif
2297 		WRITE_REG(sc, BS_INT, BS_INT_DMAINT);
2298 	}
2299 }
2300 
2301 /*
2302  * Init Broadcom registers
2303  */
2304 static void
2305 ubsec_init_board(struct ubsec_softc *sc)
2306 {
2307 	u_int32_t ctrl;
2308 
2309 	ctrl = READ_REG(sc, BS_CTRL);
2310 	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
2311 	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
2312 
2313 	/*
2314 	 * XXX: Sam Leffler's code has (UBS_FLAGS_KEY|UBS_FLAGS_RNG)).
2315 	 * anyone got hw docs?
2316 	 */
2317 	if (sc->sc_flags & UBS_FLAGS_KEY)
2318 		ctrl |= BS_CTRL_MCR2INT;
2319 	else
2320 		ctrl &= ~BS_CTRL_MCR2INT;
2321 
2322 	if (sc->sc_flags & UBS_FLAGS_HWNORM)
2323 		ctrl &= ~BS_CTRL_SWNORM;
2324 
2325 	if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
2326 		ctrl |= BS_CTRL_BSIZE240;
2327 		ctrl &= ~BS_CTRL_MCR3INT; /* MCR3 is reserved for SSL */
2328 
2329 		if (sc->sc_flags & UBS_FLAGS_RNG4)
2330 			ctrl |= BS_CTRL_MCR4INT;
2331 		else
2332 			ctrl &= ~BS_CTRL_MCR4INT;
2333 	}
2334 
2335 	WRITE_REG(sc, BS_CTRL, ctrl);
2336 }
2337 
2338 /*
2339  * Init Broadcom PCI registers
2340  */
2341 static void
2342 ubsec_init_pciregs(struct pci_attach_args *pa)
2343 {
2344 	pci_chipset_tag_t pc = pa->pa_pc;
2345 	u_int32_t misc;
2346 
2347 	/*
2348 	 * This will set the cache line size to 1, this will
2349 	 * force the BCM58xx chip just to do burst read/writes.
2350 	 * Cache line read/writes are to slow
2351 	 */
2352 	misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG);
2353 	misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT))
2354 	    | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT);
2355 	pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc);
2356 }
2357 
2358 /*
2359  * Clean up after a chip crash.
2360  * It is assumed that the caller in splnet()
2361  */
2362 static void
2363 ubsec_cleanchip(struct ubsec_softc *sc)
2364 {
2365 	struct ubsec_q *q;
2366 
2367 	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
2368 		q = SIMPLEQ_FIRST(&sc->sc_qchip);
2369 		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
2370 		ubsec_free_q(sc, q);
2371 	}
2372 	sc->sc_nqchip = 0;
2373 }
2374 
2375 /*
2376  * free a ubsec_q
2377  * It is assumed that the caller is within splnet()
2378  */
2379 static int
2380 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
2381 {
2382 	struct ubsec_q *q2;
2383 	struct cryptop *crp;
2384 	int npkts;
2385 	int i;
2386 
2387 	npkts = q->q_nstacked_mcrs;
2388 
2389 	for (i = 0; i < npkts; i++) {
2390 		if(q->q_stacked_mcr[i]) {
2391 			q2 = q->q_stacked_mcr[i];
2392 
2393 			if ((q2->q_dst_m != NULL)
2394 			    && (q2->q_src_m != q2->q_dst_m))
2395 				m_freem(q2->q_dst_m);
2396 
2397 			crp = (struct cryptop *)q2->q_crp;
2398 
2399 			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2400 
2401 			crp->crp_etype = EFAULT;
2402 			crypto_done(crp);
2403 		} else {
2404 			break;
2405 		}
2406 	}
2407 
2408 	/*
2409 	 * Free header MCR
2410 	 */
2411 	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2412 		m_freem(q->q_dst_m);
2413 
2414 	crp = (struct cryptop *)q->q_crp;
2415 
2416 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2417 
2418 	crp->crp_etype = EFAULT;
2419 	crypto_done(crp);
2420 	return(0);
2421 }
2422 
2423 /*
2424  * Routine to reset the chip and clean up.
2425  * It is assumed that the caller is in splnet()
2426  */
2427 static void
2428 ubsec_totalreset(struct ubsec_softc *sc)
2429 {
2430 	ubsec_reset_board(sc);
2431 	ubsec_init_board(sc);
2432 	ubsec_cleanchip(sc);
2433 }
2434 
2435 static int
2436 ubsec_dmamap_aligned(bus_dmamap_t map)
2437 {
2438 	int i;
2439 
2440 	for (i = 0; i < map->dm_nsegs; i++) {
2441 		if (map->dm_segs[i].ds_addr & 3)
2442 			return (0);
2443 		if ((i != (map->dm_nsegs - 1)) &&
2444 		    (map->dm_segs[i].ds_len & 3))
2445 			return (0);
2446 	}
2447 	return (1);
2448 }
2449 
2450 #ifdef __OpenBSD__
2451 struct ubsec_softc *
2452 ubsec_kfind(struct cryptkop *krp)
2453 {
2454 	struct ubsec_softc *sc;
2455 	int i;
2456 
2457 	for (i = 0; i < ubsec_cd.cd_ndevs; i++) {
2458 		sc = ubsec_cd.cd_devs[i];
2459 		if (sc == NULL)
2460 			continue;
2461 		if (sc->sc_cid == krp->krp_hid)
2462 			return (sc);
2463 	}
2464 	return (NULL);
2465 }
2466 #endif
2467 
2468 static void
2469 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2470 {
2471 	switch (q->q_type) {
2472 	case UBS_CTXOP_MODEXP: {
2473 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2474 
2475 		ubsec_dma_free(sc, &me->me_q.q_mcr);
2476 		ubsec_dma_free(sc, &me->me_q.q_ctx);
2477 		ubsec_dma_free(sc, &me->me_M);
2478 		ubsec_dma_free(sc, &me->me_E);
2479 		ubsec_dma_free(sc, &me->me_C);
2480 		ubsec_dma_free(sc, &me->me_epb);
2481 		free(me, M_DEVBUF);
2482 		break;
2483 	}
2484 	case UBS_CTXOP_RSAPRIV: {
2485 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2486 
2487 		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2488 		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2489 		ubsec_dma_free(sc, &rp->rpr_msgin);
2490 		ubsec_dma_free(sc, &rp->rpr_msgout);
2491 		free(rp, M_DEVBUF);
2492 		break;
2493 	}
2494 	default:
2495 		printf("%s: invalid kfree 0x%x\n", device_xname(sc->sc_dev),
2496 		    q->q_type);
2497 		break;
2498 	}
2499 }
2500 
2501 static int
2502 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2503 {
2504 	struct ubsec_softc *sc;
2505 	int r;
2506 
2507 	if (krp == NULL || krp->krp_callback == NULL)
2508 		return (EINVAL);
2509 #ifdef __OpenBSD__
2510 	if ((sc = ubsec_kfind(krp)) == NULL)
2511 		return (EINVAL);
2512 #else
2513 	sc = arg;
2514 	KASSERT(sc != NULL /*, ("ubsec_kprocess: null softc")*/);
2515 #endif
2516 
2517 	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2518 		struct ubsec_q2 *q;
2519 
2520 		q = SIMPLEQ_FIRST(&sc->sc_q2free);
2521 		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, /*q,*/ q_next);
2522 		ubsec_kfree(sc, q);
2523 	}
2524 
2525 	switch (krp->krp_op) {
2526 	case CRK_MOD_EXP:
2527 		if (sc->sc_flags & UBS_FLAGS_HWNORM)
2528 			r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2529 		else
2530 			r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2531 		break;
2532 	case CRK_MOD_EXP_CRT:
2533 		r = ubsec_kprocess_rsapriv(sc, krp, hint);
2534 		break;
2535 	default:
2536 		printf("%s: kprocess: invalid op 0x%x\n",
2537 		    device_xname(sc->sc_dev), krp->krp_op);
2538 		krp->krp_status = EOPNOTSUPP;
2539 		crypto_kdone(krp);
2540 		r = 0;
2541 	}
2542 	return (r);
2543 }
2544 
2545 /*
2546  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2547  */
2548 static int
2549 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp,
2550 			 int hint)
2551 {
2552 	struct ubsec_q2_modexp *me;
2553 	struct ubsec_mcr *mcr;
2554 	struct ubsec_ctx_modexp *ctx;
2555 	struct ubsec_pktbuf *epb;
2556 	int err = 0;
2557 	u_int nbits, normbits, mbits, shiftbits, ebits;
2558 
2559 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2560 	if (me == NULL) {
2561 		err = ENOMEM;
2562 		goto errout;
2563 	}
2564 	memset(me, 0, sizeof *me);
2565 	me->me_krp = krp;
2566 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2567 
2568 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2569 	if (nbits <= 512)
2570 		normbits = 512;
2571 	else if (nbits <= 768)
2572 		normbits = 768;
2573 	else if (nbits <= 1024)
2574 		normbits = 1024;
2575 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2576 		normbits = 1536;
2577 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2578 		normbits = 2048;
2579 	else {
2580 		err = E2BIG;
2581 		goto errout;
2582 	}
2583 
2584 	shiftbits = normbits - nbits;
2585 
2586 	me->me_modbits = nbits;
2587 	me->me_shiftbits = shiftbits;
2588 	me->me_normbits = normbits;
2589 
2590 	/* Sanity check: result bits must be >= true modulus bits. */
2591 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2592 		err = ERANGE;
2593 		goto errout;
2594 	}
2595 
2596 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2597 	    &me->me_q.q_mcr, 0)) {
2598 		err = ENOMEM;
2599 		goto errout;
2600 	}
2601 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2602 
2603 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2604 	    &me->me_q.q_ctx, 0)) {
2605 		err = ENOMEM;
2606 		goto errout;
2607 	}
2608 
2609 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2610 	if (mbits > nbits) {
2611 		err = E2BIG;
2612 		goto errout;
2613 	}
2614 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2615 		err = ENOMEM;
2616 		goto errout;
2617 	}
2618 	ubsec_kshift_r(shiftbits,
2619 	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2620 	    me->me_M.dma_vaddr, normbits);
2621 
2622 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2623 		err = ENOMEM;
2624 		goto errout;
2625 	}
2626 	memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2627 
2628 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2629 	if (ebits > nbits) {
2630 		err = E2BIG;
2631 		goto errout;
2632 	}
2633 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2634 		err = ENOMEM;
2635 		goto errout;
2636 	}
2637 	ubsec_kshift_r(shiftbits,
2638 	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2639 	    me->me_E.dma_vaddr, normbits);
2640 
2641 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2642 	    &me->me_epb, 0)) {
2643 		err = ENOMEM;
2644 		goto errout;
2645 	}
2646 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2647 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2648 	epb->pb_next = 0;
2649 	epb->pb_len = htole32(normbits / 8);
2650 
2651 #ifdef UBSEC_DEBUG
2652 	if (ubsec_debug) {
2653 		printf("Epb ");
2654 		ubsec_dump_pb(epb);
2655 	}
2656 #endif
2657 
2658 	mcr->mcr_pkts = htole16(1);
2659 	mcr->mcr_flags = 0;
2660 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2661 	mcr->mcr_reserved = 0;
2662 	mcr->mcr_pktlen = 0;
2663 
2664 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2665 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2666 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2667 
2668 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2669 	mcr->mcr_opktbuf.pb_next = 0;
2670 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2671 
2672 #ifdef DIAGNOSTIC
2673 	/* Misaligned output buffer will hang the chip. */
2674 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2675 		panic("%s: modexp invalid addr 0x%x", device_xname(sc->sc_dev),
2676 		    letoh32(mcr->mcr_opktbuf.pb_addr));
2677 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2678 		panic("%s: modexp invalid len 0x%x",  device_xname(sc->sc_dev),
2679 		    letoh32(mcr->mcr_opktbuf.pb_len));
2680 #endif
2681 
2682 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2683 	memset(ctx, 0, sizeof(*ctx));
2684 	ubsec_kshift_r(shiftbits,
2685 	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2686 	    ctx->me_N, normbits);
2687 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2688 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2689 	ctx->me_E_len = htole16(nbits);
2690 	ctx->me_N_len = htole16(nbits);
2691 
2692 #ifdef UBSEC_DEBUG
2693 	if (ubsec_debug) {
2694 		ubsec_dump_mcr(mcr);
2695 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2696 	}
2697 #endif
2698 
2699 	/*
2700 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2701 	 * everything else.
2702 	 */
2703 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2704 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2705 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2706 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2707 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2708 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2709 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2710 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2711 
2712 	/* Enqueue and we're done... */
2713 	mutex_spin_enter(&sc->sc_mtx);
2714 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2715 	ubsec_feed2(sc);
2716 	ubsecstats.hst_modexp++;
2717 	mutex_spin_exit(&sc->sc_mtx);
2718 
2719 	return (0);
2720 
2721 errout:
2722 	if (me != NULL) {
2723 		if (me->me_q.q_mcr.dma_map != NULL)
2724 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2725 		if (me->me_q.q_ctx.dma_map != NULL) {
2726 			memset(me->me_q.q_ctx.dma_vaddr, 0,
2727 			    me->me_q.q_ctx.dma_size);
2728 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2729 		}
2730 		if (me->me_M.dma_map != NULL) {
2731 			memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2732 			ubsec_dma_free(sc, &me->me_M);
2733 		}
2734 		if (me->me_E.dma_map != NULL) {
2735 			memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2736 			ubsec_dma_free(sc, &me->me_E);
2737 		}
2738 		if (me->me_C.dma_map != NULL) {
2739 			memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2740 			ubsec_dma_free(sc, &me->me_C);
2741 		}
2742 		if (me->me_epb.dma_map != NULL)
2743 			ubsec_dma_free(sc, &me->me_epb);
2744 		free(me, M_DEVBUF);
2745 	}
2746 	krp->krp_status = err;
2747 	crypto_kdone(krp);
2748 	return (0);
2749 }
2750 
2751 /*
2752  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2753  */
2754 static int
2755 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp,
2756 			 int hint)
2757 {
2758 	struct ubsec_q2_modexp *me;
2759 	struct ubsec_mcr *mcr;
2760 	struct ubsec_ctx_modexp *ctx;
2761 	struct ubsec_pktbuf *epb;
2762 	int err = 0;
2763 	u_int nbits, normbits, mbits, shiftbits, ebits;
2764 
2765 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2766 	if (me == NULL) {
2767 		err = ENOMEM;
2768 		goto errout;
2769 	}
2770 	memset(me, 0, sizeof *me);
2771 	me->me_krp = krp;
2772 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2773 
2774 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2775 	if (nbits <= 512)
2776 		normbits = 512;
2777 	else if (nbits <= 768)
2778 		normbits = 768;
2779 	else if (nbits <= 1024)
2780 		normbits = 1024;
2781 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2782 		normbits = 1536;
2783 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2784 		normbits = 2048;
2785 	else {
2786 		err = E2BIG;
2787 		goto errout;
2788 	}
2789 
2790 	shiftbits = normbits - nbits;
2791 
2792 	/* XXX ??? */
2793 	me->me_modbits = nbits;
2794 	me->me_shiftbits = shiftbits;
2795 	me->me_normbits = normbits;
2796 
2797 	/* Sanity check: result bits must be >= true modulus bits. */
2798 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2799 		err = ERANGE;
2800 		goto errout;
2801 	}
2802 
2803 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2804 	    &me->me_q.q_mcr, 0)) {
2805 		err = ENOMEM;
2806 		goto errout;
2807 	}
2808 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2809 
2810 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2811 	    &me->me_q.q_ctx, 0)) {
2812 		err = ENOMEM;
2813 		goto errout;
2814 	}
2815 
2816 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2817 	if (mbits > nbits) {
2818 		err = E2BIG;
2819 		goto errout;
2820 	}
2821 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2822 		err = ENOMEM;
2823 		goto errout;
2824 	}
2825 	memset(me->me_M.dma_vaddr, 0, normbits / 8);
2826 	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2827 	    me->me_M.dma_vaddr, (mbits + 7) / 8);
2828 
2829 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2830 		err = ENOMEM;
2831 		goto errout;
2832 	}
2833 	memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2834 
2835 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2836 	if (ebits > nbits) {
2837 		err = E2BIG;
2838 		goto errout;
2839 	}
2840 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2841 		err = ENOMEM;
2842 		goto errout;
2843 	}
2844 	memset(me->me_E.dma_vaddr, 0, normbits / 8);
2845 	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2846 	    me->me_E.dma_vaddr, (ebits + 7) / 8);
2847 
2848 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2849 	    &me->me_epb, 0)) {
2850 		err = ENOMEM;
2851 		goto errout;
2852 	}
2853 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2854 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2855 	epb->pb_next = 0;
2856 	epb->pb_len = htole32((ebits + 7) / 8);
2857 
2858 #ifdef UBSEC_DEBUG
2859 	if (ubsec_debug) {
2860 		printf("Epb ");
2861 		ubsec_dump_pb(epb);
2862 	}
2863 #endif
2864 
2865 	mcr->mcr_pkts = htole16(1);
2866 	mcr->mcr_flags = 0;
2867 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2868 	mcr->mcr_reserved = 0;
2869 	mcr->mcr_pktlen = 0;
2870 
2871 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2872 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2873 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2874 
2875 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2876 	mcr->mcr_opktbuf.pb_next = 0;
2877 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2878 
2879 #ifdef DIAGNOSTIC
2880 	/* Misaligned output buffer will hang the chip. */
2881 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2882 		panic("%s: modexp invalid addr 0x%x", device_xname(sc->sc_dev),
2883 		    letoh32(mcr->mcr_opktbuf.pb_addr));
2884 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2885 		panic("%s: modexp invalid len 0x%x", device_xname(sc->sc_dev),
2886 		    letoh32(mcr->mcr_opktbuf.pb_len));
2887 #endif
2888 
2889 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2890 	memset(ctx, 0, sizeof(*ctx));
2891 	memcpy(ctx->me_N, krp->krp_param[UBS_MODEXP_PAR_N].crp_p,
2892 	    (nbits + 7) / 8);
2893 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2894 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2895 	ctx->me_E_len = htole16(ebits);
2896 	ctx->me_N_len = htole16(nbits);
2897 
2898 #ifdef UBSEC_DEBUG
2899 	if (ubsec_debug) {
2900 		ubsec_dump_mcr(mcr);
2901 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2902 	}
2903 #endif
2904 
2905 	/*
2906 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2907 	 * everything else.
2908 	 */
2909 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2910 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2911 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2912 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2913 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2914 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2915 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2916 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2917 
2918 	/* Enqueue and we're done... */
2919 	mutex_spin_enter(&sc->sc_mtx);
2920 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2921 	ubsec_feed2(sc);
2922 	mutex_spin_exit(&sc->sc_mtx);
2923 
2924 	return (0);
2925 
2926 errout:
2927 	if (me != NULL) {
2928 		if (me->me_q.q_mcr.dma_map != NULL)
2929 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2930 		if (me->me_q.q_ctx.dma_map != NULL) {
2931 			memset(me->me_q.q_ctx.dma_vaddr, 0,
2932 			    me->me_q.q_ctx.dma_size);
2933 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2934 		}
2935 		if (me->me_M.dma_map != NULL) {
2936 			memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
2937 			ubsec_dma_free(sc, &me->me_M);
2938 		}
2939 		if (me->me_E.dma_map != NULL) {
2940 			memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
2941 			ubsec_dma_free(sc, &me->me_E);
2942 		}
2943 		if (me->me_C.dma_map != NULL) {
2944 			memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
2945 			ubsec_dma_free(sc, &me->me_C);
2946 		}
2947 		if (me->me_epb.dma_map != NULL)
2948 			ubsec_dma_free(sc, &me->me_epb);
2949 		free(me, M_DEVBUF);
2950 	}
2951 	krp->krp_status = err;
2952 	crypto_kdone(krp);
2953 	return (0);
2954 }
2955 
2956 static int
2957 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp,
2958 		       int hint)
2959 {
2960 	struct ubsec_q2_rsapriv *rp = NULL;
2961 	struct ubsec_mcr *mcr;
2962 	struct ubsec_ctx_rsapriv *ctx;
2963 	int err = 0;
2964 	u_int padlen, msglen;
2965 
2966 	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2967 	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2968 	if (msglen > padlen)
2969 		padlen = msglen;
2970 
2971 	if (padlen <= 256)
2972 		padlen = 256;
2973 	else if (padlen <= 384)
2974 		padlen = 384;
2975 	else if (padlen <= 512)
2976 		padlen = 512;
2977 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2978 		padlen = 768;
2979 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2980 		padlen = 1024;
2981 	else {
2982 		err = E2BIG;
2983 		goto errout;
2984 	}
2985 
2986 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2987 		err = E2BIG;
2988 		goto errout;
2989 	}
2990 
2991 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2992 		err = E2BIG;
2993 		goto errout;
2994 	}
2995 
2996 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2997 		err = E2BIG;
2998 		goto errout;
2999 	}
3000 
3001 	rp = malloc(sizeof *rp, M_DEVBUF, M_NOWAIT|M_ZERO);
3002 	if (rp == NULL)
3003 		return (ENOMEM);
3004 	rp->rpr_krp = krp;
3005 	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
3006 
3007 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
3008 	    &rp->rpr_q.q_mcr, 0)) {
3009 		err = ENOMEM;
3010 		goto errout;
3011 	}
3012 	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
3013 
3014 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
3015 	    &rp->rpr_q.q_ctx, 0)) {
3016 		err = ENOMEM;
3017 		goto errout;
3018 	}
3019 	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
3020 	memset(ctx, 0, sizeof *ctx);
3021 
3022 	/* Copy in p */
3023 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
3024 	    &ctx->rpr_buf[0 * (padlen / 8)],
3025 	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
3026 
3027 	/* Copy in q */
3028 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
3029 	    &ctx->rpr_buf[1 * (padlen / 8)],
3030 	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
3031 
3032 	/* Copy in dp */
3033 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
3034 	    &ctx->rpr_buf[2 * (padlen / 8)],
3035 	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
3036 
3037 	/* Copy in dq */
3038 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
3039 	    &ctx->rpr_buf[3 * (padlen / 8)],
3040 	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
3041 
3042 	/* Copy in pinv */
3043 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
3044 	    &ctx->rpr_buf[4 * (padlen / 8)],
3045 	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
3046 
3047 	msglen = padlen * 2;
3048 
3049 	/* Copy in input message (aligned buffer/length). */
3050 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
3051 		/* Is this likely? */
3052 		err = E2BIG;
3053 		goto errout;
3054 	}
3055 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
3056 		err = ENOMEM;
3057 		goto errout;
3058 	}
3059 	memset(rp->rpr_msgin.dma_vaddr, 0, (msglen + 7) / 8);
3060 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
3061 	    rp->rpr_msgin.dma_vaddr,
3062 	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
3063 
3064 	/* Prepare space for output message (aligned buffer/length). */
3065 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
3066 		/* Is this likely? */
3067 		err = E2BIG;
3068 		goto errout;
3069 	}
3070 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
3071 		err = ENOMEM;
3072 		goto errout;
3073 	}
3074 	memset(rp->rpr_msgout.dma_vaddr, 0, (msglen + 7) / 8);
3075 
3076 	mcr->mcr_pkts = htole16(1);
3077 	mcr->mcr_flags = 0;
3078 	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
3079 	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
3080 	mcr->mcr_ipktbuf.pb_next = 0;
3081 	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
3082 	mcr->mcr_reserved = 0;
3083 	mcr->mcr_pktlen = htole16(msglen);
3084 	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
3085 	mcr->mcr_opktbuf.pb_next = 0;
3086 	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
3087 
3088 #ifdef DIAGNOSTIC
3089 	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
3090 		panic("%s: rsapriv: invalid msgin 0x%lx(0x%lx)",
3091 		    device_xname(sc->sc_dev), (u_long) rp->rpr_msgin.dma_paddr,
3092 		    (u_long) rp->rpr_msgin.dma_size);
3093 	}
3094 	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
3095 		panic("%s: rsapriv: invalid msgout 0x%lx(0x%lx)",
3096 		    device_xname(sc->sc_dev), (u_long) rp->rpr_msgout.dma_paddr,
3097 		    (u_long) rp->rpr_msgout.dma_size);
3098 	}
3099 #endif
3100 
3101 	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
3102 	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
3103 	ctx->rpr_q_len = htole16(padlen);
3104 	ctx->rpr_p_len = htole16(padlen);
3105 
3106 	/*
3107 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
3108 	 * everything else.
3109 	 */
3110 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map,
3111 	    0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
3112 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map,
3113 	    0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
3114 
3115 	/* Enqueue and we're done... */
3116 	mutex_spin_enter(&sc->sc_mtx);
3117 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
3118 	ubsec_feed2(sc);
3119 	ubsecstats.hst_modexpcrt++;
3120 	mutex_spin_exit(&sc->sc_mtx);
3121 	return (0);
3122 
3123 errout:
3124 	if (rp != NULL) {
3125 		if (rp->rpr_q.q_mcr.dma_map != NULL)
3126 			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
3127 		if (rp->rpr_msgin.dma_map != NULL) {
3128 			memset(rp->rpr_msgin.dma_vaddr, 0,
3129 			    rp->rpr_msgin.dma_size);
3130 			ubsec_dma_free(sc, &rp->rpr_msgin);
3131 		}
3132 		if (rp->rpr_msgout.dma_map != NULL) {
3133 			memset(rp->rpr_msgout.dma_vaddr, 0,
3134 			    rp->rpr_msgout.dma_size);
3135 			ubsec_dma_free(sc, &rp->rpr_msgout);
3136 		}
3137 		free(rp, M_DEVBUF);
3138 	}
3139 	krp->krp_status = err;
3140 	crypto_kdone(krp);
3141 	return (0);
3142 }
3143 
3144 #ifdef UBSEC_DEBUG
3145 static void
3146 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
3147 {
3148 	printf("addr 0x%x (0x%x) next 0x%x\n",
3149 	    pb->pb_addr, pb->pb_len, pb->pb_next);
3150 }
3151 
3152 static void
3153 ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *c)
3154 {
3155 	printf("CTX (0x%x):\n", c->ctx_len);
3156 	switch (letoh16(c->ctx_op)) {
3157 	case UBS_CTXOP_RNGBYPASS:
3158 	case UBS_CTXOP_RNGSHA1:
3159 		break;
3160 	case UBS_CTXOP_MODEXP:
3161 	{
3162 		struct ubsec_ctx_modexp *cx = (void *)c;
3163 		int i, len;
3164 
3165 		printf(" Elen %u, Nlen %u\n",
3166 		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
3167 		len = (cx->me_N_len + 7)/8;
3168 		for (i = 0; i < len; i++)
3169 			printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
3170 		printf("\n");
3171 		break;
3172 	}
3173 	default:
3174 		printf("unknown context: %x\n", c->ctx_op);
3175 	}
3176 	printf("END CTX\n");
3177 }
3178 
3179 static void
3180 ubsec_dump_mcr(struct ubsec_mcr *mcr)
3181 {
3182 	volatile struct ubsec_mcr_add *ma;
3183 	int i;
3184 
3185 	printf("MCR:\n");
3186 	printf(" pkts: %u, flags 0x%x\n",
3187 	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
3188 	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
3189 	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
3190 		printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
3191 		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
3192 		    letoh16(ma->mcr_reserved));
3193 		printf(" %d: ipkt ", i);
3194 		ubsec_dump_pb(&ma->mcr_ipktbuf);
3195 		printf(" %d: opkt ", i);
3196 		ubsec_dump_pb(&ma->mcr_opktbuf);
3197 		ma++;
3198 	}
3199 	printf("END MCR\n");
3200 }
3201 #endif /* UBSEC_DEBUG */
3202 
3203 /*
3204  * Return the number of significant bits of a big number.
3205  */
3206 static int
3207 ubsec_ksigbits(struct crparam *cr)
3208 {
3209 	u_int plen = (cr->crp_nbits + 7) / 8;
3210 	int i, sig = plen * 8;
3211 	u_int8_t c, *p = cr->crp_p;
3212 
3213 	for (i = plen - 1; i >= 0; i--) {
3214 		c = p[i];
3215 		if (c != 0) {
3216 			while ((c & 0x80) == 0) {
3217 				sig--;
3218 				c <<= 1;
3219 			}
3220 			break;
3221 		}
3222 		sig -= 8;
3223 	}
3224 	return (sig);
3225 }
3226 
3227 static void
3228 ubsec_kshift_r(u_int shiftbits, u_int8_t *src, u_int srcbits,
3229     u_int8_t *dst, u_int dstbits)
3230 {
3231 	u_int slen, dlen;
3232 	int i, si, di, n;
3233 
3234 	slen = (srcbits + 7) / 8;
3235 	dlen = (dstbits + 7) / 8;
3236 
3237 	for (i = 0; i < slen; i++)
3238 		dst[i] = src[i];
3239 	for (i = 0; i < dlen - slen; i++)
3240 		dst[slen + i] = 0;
3241 
3242 	n = shiftbits / 8;
3243 	if (n != 0) {
3244 		si = dlen - n - 1;
3245 		di = dlen - 1;
3246 		while (si >= 0)
3247 			dst[di--] = dst[si--];
3248 		while (di >= 0)
3249 			dst[di--] = 0;
3250 	}
3251 
3252 	n = shiftbits % 8;
3253 	if (n != 0) {
3254 		for (i = dlen - 1; i > 0; i--)
3255 			dst[i] = (dst[i] << n) |
3256 			    (dst[i - 1] >> (8 - n));
3257 		dst[0] = dst[0] << n;
3258 	}
3259 }
3260 
3261 static void
3262 ubsec_kshift_l(u_int shiftbits, u_int8_t *src, u_int srcbits,
3263     u_int8_t *dst, u_int dstbits)
3264 {
3265 	int slen, dlen, i, n;
3266 
3267 	slen = (srcbits + 7) / 8;
3268 	dlen = (dstbits + 7) / 8;
3269 
3270 	n = shiftbits / 8;
3271 	for (i = 0; i < slen; i++)
3272 		dst[i] = src[i + n];
3273 	for (i = 0; i < dlen - slen; i++)
3274 		dst[slen + i] = 0;
3275 
3276 	n = shiftbits % 8;
3277 	if (n != 0) {
3278 		for (i = 0; i < (dlen - 1); i++)
3279 			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
3280 		dst[dlen - 1] = dst[dlen - 1] >> n;
3281 	}
3282 }
3283