xref: /netbsd-src/sys/dev/pci/ubsec.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: ubsec.c,v 1.4 2003/08/28 19:00:52 thorpej Exp $	*/
2 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.6 2003/01/23 21:06:43 sam Exp $ */
3 /*	$OpenBSD: ubsec.c,v 1.127 2003/06/04 14:04:58 jason Exp $	*/
4 
5 /*
6  * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
7  * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
8  * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
23  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
28  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  * Effort sponsored in part by the Defense Advanced Research Projects
32  * Agency (DARPA) and Air Force Research Laboratory, Air Force
33  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
34  *
35  */
36 
37 #undef UBSEC_DEBUG
38 
39 /*
40  * uBsec 5[56]01, bcm580xx, bcm582x hardware crypto accelerator
41  */
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/proc.h>
46 #include <sys/endian.h>
47 #ifdef __NetBSD__
48   #define letoh16 htole16
49   #define letoh32 htole32
50 #define UBSEC_NO_RNG		/* until statistically tested */
51 #endif
52 #include <sys/errno.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/mbuf.h>
56 #include <sys/device.h>
57 #include <sys/queue.h>
58 
59 #include <uvm/uvm_extern.h>
60 
61 #include <opencrypto/cryptodev.h>
62 #include <opencrypto/cryptosoft.h>
63 #ifdef __OpenBSD__
64  #include <dev/rndvar.h>
65  #include <sys/md5k.h>
66 #else
67  #include <sys/rnd.h>
68  #include <sys/md5.h>
69 #endif
70 #include <sys/sha1.h>
71 
72 #include <dev/pci/pcireg.h>
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcidevs.h>
75 
76 #include <dev/pci/ubsecreg.h>
77 #include <dev/pci/ubsecvar.h>
78 
79 /*
80  * Prototypes and count for the pci_device structure
81  */
82 static	int ubsec_probe(struct device *, struct cfdata *, void *);
83 static	void ubsec_attach(struct device *, struct device *, void *);
84 static	void ubsec_reset_board(struct ubsec_softc *);
85 static	void ubsec_init_board(struct ubsec_softc *);
86 static	void ubsec_init_pciregs(struct pci_attach_args *pa);
87 static	void ubsec_cleanchip(struct ubsec_softc *);
88 static	void ubsec_totalreset(struct ubsec_softc *);
89 static	int  ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
90 
91 #ifdef __OpenBSD__
92 struct cfattach ubsec_ca = {
93 	sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
94 };
95 
96 struct cfdriver ubsec_cd = {
97 	0, "ubsec", DV_DULL
98 };
99 #else
100 CFATTACH_DECL(ubsec, sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
101 	      NULL, NULL);
102 extern struct cfdriver ubsec_cd;
103 #endif
104 
105 /* patchable */
106 #ifdef	UBSEC_DEBUG
107 extern int ubsec_debug;
108 int ubsec_debug=1;
109 #endif
110 
111 static	int	ubsec_intr(void *);
112 static	int	ubsec_newsession(void*, u_int32_t *, struct cryptoini *);
113 static	int	ubsec_freesession(void*, u_int64_t);
114 static	int	ubsec_process(void*, struct cryptop *, int hint);
115 static	void	ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
116 static	void	ubsec_feed(struct ubsec_softc *);
117 static	void	ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
118 static	void	ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
119 static	void	ubsec_feed2(struct ubsec_softc *);
120 #ifndef UBSEC_NO_RNG
121 static	void	ubsec_rng(void *);
122 #endif /* UBSEC_NO_RNG */
123 static	int 	ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
124 				 struct ubsec_dma_alloc *, int);
125 static	void	ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
126 static	int	ubsec_dmamap_aligned(bus_dmamap_t);
127 
128 static	int	ubsec_kprocess(void*, struct cryptkop *, int);
129 static	int	ubsec_kprocess_modexp_sw(struct ubsec_softc *,
130 					 struct cryptkop *, int);
131 static	int	ubsec_kprocess_modexp_hw(struct ubsec_softc *,
132 					 struct cryptkop *, int);
133 static	int	ubsec_kprocess_rsapriv(struct ubsec_softc *,
134 				       struct cryptkop *, int);
135 static	void	ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
136 static	int	ubsec_ksigbits(struct crparam *);
137 static	void	ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
138 static	void	ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
139 
140 #ifdef UBSEC_DEBUG
141 static void	ubsec_dump_pb(volatile struct ubsec_pktbuf *);
142 static void	ubsec_dump_mcr(struct ubsec_mcr *);
143 static	void	ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *);
144 #endif
145 
146 #define	READ_REG(sc,r) \
147 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
148 
149 #define WRITE_REG(sc,reg,val) \
150 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
151 
152 #define	SWAP32(x) (x) = htole32(ntohl((x)))
153 #ifndef HTOLE32
154  #define	HTOLE32(x) (x) = htole32(x)
155 #endif
156 
157 struct ubsec_stats ubsecstats;
158 
159 /*
160  * ubsec_maxbatch controls the number of crypto ops to voluntarily
161  * collect into one submission to the hardware.  This batching happens
162  * when ops are dispatched from the crypto subsystem with a hint that
163  * more are to follow immediately.  These ops must also not be marked
164  * with a ``no delay'' flag.
165  */
166 static	int ubsec_maxbatch = 1;
167 #ifdef SYSCTL_INT
168 SYSCTL_INT(_kern, OID_AUTO, ubsec_maxbatch, CTLFLAG_RW, &ubsec_maxbatch,
169 	    0, "Broadcom driver: max ops to batch w/o interrupt");
170 #endif
171 
172 /*
173  * ubsec_maxaggr controls the number of crypto ops to submit to the
174  * hardware as a unit.  This aggregation reduces the number of interrupts
175  * to the host at the expense of increased latency (for all but the last
176  * operation).  For network traffic setting this to one yields the highest
177  * performance but at the expense of more interrupt processing.
178  */
179 static	int ubsec_maxaggr = 1;
180 #ifdef SYSCTL_INT
181 SYSCTL_INT(_kern, OID_AUTO, ubsec_maxaggr, CTLFLAG_RW, &ubsec_maxaggr,
182 	    0, "Broadcom driver: max ops to aggregate under one interrupt");
183 #endif
184 
185 static const struct ubsec_product {
186 	pci_vendor_id_t		ubsec_vendor;
187 	pci_product_id_t	ubsec_product;
188 	int			ubsec_flags;
189 	int			ubsec_statmask;
190 	const char		*ubsec_name;
191 } ubsec_products[] = {
192 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5501,
193 	  0,
194 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
195 	  "Bluesteel 5501"
196 	},
197 	{ PCI_VENDOR_BLUESTEEL,	PCI_PRODUCT_BLUESTEEL_5601,
198 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
199 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
200 	  "Bluesteel 5601"
201 	},
202 
203 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5801,
204 	  0,
205 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
206 	  "Broadcom BCM5801"
207 	},
208 
209 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5802,
210 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
211 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
212 	  "Broadcom BCM5802"
213 	},
214 
215 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5805,
216 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG,
217 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
218 	  "Broadcom BCM5805"
219 	},
220 
221 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5820,
222 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
223 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
224 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
225 	  "Broadcom BCM5820"
226 	},
227 
228 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5821,
229 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
230 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
231 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
232 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
233 	  "Broadcom BCM5821"
234 	},
235 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_SCA1K,
236 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
237 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
238 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
239 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
240 	  "Sun Crypto Accelerator 1000"
241 	},
242 	{ PCI_VENDOR_SUN,	PCI_PRODUCT_SUN_5821,
243 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
244 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
245 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
246 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
247 	  "Broadcom BCM5821 (Sun)"
248 	},
249 
250 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5822,
251 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
252 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
253 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
254 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
255 	  "Broadcom BCM5822"
256 	},
257 
258 	{ PCI_VENDOR_BROADCOM,	PCI_PRODUCT_BROADCOM_5823,
259 	  UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
260 	      UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
261 	  BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
262 	      BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
263 	  "Broadcom BCM5823"
264 	},
265 
266 	{ 0,			0,
267 	  0,
268 	  0,
269 	  NULL
270 	}
271 };
272 
273 static const struct ubsec_product *
274 ubsec_lookup(const struct pci_attach_args *pa)
275 {
276 	const struct ubsec_product *up;
277 
278 	for (up = ubsec_products; up->ubsec_name != NULL; up++) {
279 		if (PCI_VENDOR(pa->pa_id) == up->ubsec_vendor &&
280 		    PCI_PRODUCT(pa->pa_id) == up->ubsec_product)
281 			return (up);
282 	}
283 	return (NULL);
284 }
285 
286 static int
287 ubsec_probe(parent, match, aux)
288 	struct device *parent;
289 	struct cfdata *match;
290 	void *aux;
291 {
292 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
293 
294 	if (ubsec_lookup(pa) != NULL)
295 		return (1);
296 
297 	return (0);
298 }
299 
300 void
301 ubsec_attach(parent, self, aux)
302 	struct device *parent, *self;
303 	void *aux;
304 {
305 	struct ubsec_softc *sc = (struct ubsec_softc *)self;
306 	struct pci_attach_args *pa = aux;
307 	const struct ubsec_product *up;
308 	pci_chipset_tag_t pc = pa->pa_pc;
309 	pci_intr_handle_t ih;
310 	const char *intrstr = NULL;
311 	struct ubsec_dma *dmap;
312 	u_int32_t cmd, i;
313 
314 	up = ubsec_lookup(pa);
315 	if (up == NULL) {
316 		printf("\n");
317 		panic("ubsec_attach: impossible");
318 	}
319 
320 	aprint_naive(": Crypto processor\n");
321 	aprint_normal(": %s, rev. %d\n", up->ubsec_name,
322 	    PCI_REVISION(pa->pa_class));
323 
324 	SIMPLEQ_INIT(&sc->sc_queue);
325 	SIMPLEQ_INIT(&sc->sc_qchip);
326 	SIMPLEQ_INIT(&sc->sc_queue2);
327 	SIMPLEQ_INIT(&sc->sc_qchip2);
328 	SIMPLEQ_INIT(&sc->sc_q2free);
329 
330 	sc->sc_flags = up->ubsec_flags;
331 	sc->sc_statmask = up->ubsec_statmask;
332 
333 	cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
334 	cmd |= PCI_COMMAND_MASTER_ENABLE;
335 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd);
336 
337 	if (pci_mapreg_map(pa, BS_BAR, PCI_MAPREG_TYPE_MEM, 0,
338 	    &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
339 		aprint_error("%s: can't find mem space",
340 		    sc->sc_dv.dv_xname);
341 		return;
342 	}
343 
344 	sc->sc_dmat = pa->pa_dmat;
345 
346 	if (pci_intr_map(pa, &ih)) {
347 		aprint_error("%s: couldn't map interrupt\n",
348 		    sc->sc_dv.dv_xname);
349 		return;
350 	}
351 	intrstr = pci_intr_string(pc, ih);
352 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ubsec_intr, sc);
353 	if (sc->sc_ih == NULL) {
354 		aprint_error("%s: couldn't establish interrupt",
355 		    sc->sc_dv.dv_xname);
356 		if (intrstr != NULL)
357 			aprint_normal(" at %s", intrstr);
358 		aprint_normal("\n");
359 		return;
360 	}
361 	aprint_normal("%s: interrupting at %s\n", sc->sc_dv.dv_xname, intrstr);
362 
363 	sc->sc_cid = crypto_get_driverid(0);
364 	if (sc->sc_cid < 0) {
365 		aprint_error("%s: couldn't get crypto driver id\n",
366 		    sc->sc_dv.dv_xname);
367 		pci_intr_disestablish(pc, sc->sc_ih);
368 		return;
369 	}
370 
371 	SIMPLEQ_INIT(&sc->sc_freequeue);
372 	dmap = sc->sc_dmaa;
373 	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
374 		struct ubsec_q *q;
375 
376 		q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
377 		    M_DEVBUF, M_NOWAIT);
378 		if (q == NULL) {
379 			aprint_error("%s: can't allocate queue buffers\n",
380 			    sc->sc_dv.dv_xname);
381 			break;
382 		}
383 
384 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
385 		    &dmap->d_alloc, 0)) {
386 			aprint_error("%s: can't allocate dma buffers\n",
387 			    sc->sc_dv.dv_xname);
388 			free(q, M_DEVBUF);
389 			break;
390 		}
391 		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
392 
393 		q->q_dma = dmap;
394 		sc->sc_queuea[i] = q;
395 
396 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
397 	}
398 
399 	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
400 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
401 	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
402 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
403 	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0,
404 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
405 	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0,
406 	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
407 
408 	/*
409 	 * Reset Broadcom chip
410 	 */
411 	ubsec_reset_board(sc);
412 
413 	/*
414 	 * Init Broadcom specific PCI settings
415 	 */
416 	ubsec_init_pciregs(pa);
417 
418 	/*
419 	 * Init Broadcom chip
420 	 */
421 	ubsec_init_board(sc);
422 
423 #ifndef UBSEC_NO_RNG
424 	if (sc->sc_flags & UBS_FLAGS_RNG) {
425 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
426 
427 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
428 		    &sc->sc_rng.rng_q.q_mcr, 0))
429 			goto skip_rng;
430 
431 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
432 		    &sc->sc_rng.rng_q.q_ctx, 0)) {
433 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
434 			goto skip_rng;
435 		}
436 
437 		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
438 		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
439 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
440 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
441 			goto skip_rng;
442 		}
443 
444 		if (hz >= 100)
445 			sc->sc_rnghz = hz / 100;
446 		else
447 			sc->sc_rnghz = 1;
448 #ifdef __OpenBSD__
449 		timeout_set(&sc->sc_rngto, ubsec_rng, sc);
450 		timeout_add(&sc->sc_rngto, sc->sc_rnghz);
451 #else
452 		callout_init(&sc->sc_rngto);
453 		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
454 #endif
455  skip_rng:
456 		if (sc->sc_rnghz)
457 			aprint_normal("%s: random number generator enabled\n",
458 			    sc->sc_dv.dv_xname);
459 		else
460 			aprint_error("%s: WARNING: random number generator "
461 			    "disabled\n", sc->sc_dv.dv_xname);
462 	}
463 #endif /* UBSEC_NO_RNG */
464 
465 	if (sc->sc_flags & UBS_FLAGS_KEY) {
466 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
467 
468 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
469 				 ubsec_kprocess, sc);
470 #if 0
471 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
472 				 ubsec_kprocess, sc);
473 #endif
474 	}
475 }
476 
477 /*
478  * UBSEC Interrupt routine
479  */
480 int
481 ubsec_intr(void *arg)
482 {
483 	struct ubsec_softc *sc = arg;
484 	volatile u_int32_t stat;
485 	struct ubsec_q *q;
486 	struct ubsec_dma *dmap;
487 	int npkts = 0, i;
488 
489 	stat = READ_REG(sc, BS_STAT);
490 	stat &= sc->sc_statmask;
491 	if (stat == 0) {
492 		return (0);
493 	}
494 
495 	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
496 
497 	/*
498 	 * Check to see if we have any packets waiting for us
499 	 */
500 	if ((stat & BS_STAT_MCR1_DONE)) {
501 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
502 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
503 			dmap = q->q_dma;
504 
505 			if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
506 				break;
507 
508 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
509 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
510 
511 			npkts = q->q_nstacked_mcrs;
512 			sc->sc_nqchip -= 1+npkts;
513 			/*
514 			 * search for further sc_qchip ubsec_q's that share
515 			 * the same MCR, and complete them too, they must be
516 			 * at the top.
517 			 */
518 			for (i = 0; i < npkts; i++) {
519 				if(q->q_stacked_mcr[i])
520 					ubsec_callback(sc, q->q_stacked_mcr[i]);
521 				else
522 					break;
523 			}
524 			ubsec_callback(sc, q);
525 		}
526 
527 		/*
528 		 * Don't send any more packet to chip if there has been
529 		 * a DMAERR.
530 		 */
531 		if (!(stat & BS_STAT_DMAERR))
532 			ubsec_feed(sc);
533 	}
534 
535 	/*
536 	 * Check to see if we have any key setups/rng's waiting for us
537 	 */
538 	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
539 	    (stat & BS_STAT_MCR2_DONE)) {
540 		struct ubsec_q2 *q2;
541 		struct ubsec_mcr *mcr;
542 
543 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
544 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
545 
546 			bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
547 			    0, q2->q_mcr.dma_map->dm_mapsize,
548 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
549 
550 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
551 			if ((mcr->mcr_flags & htole16(UBS_MCR_DONE)) == 0) {
552 				bus_dmamap_sync(sc->sc_dmat,
553 				    q2->q_mcr.dma_map, 0,
554 				    q2->q_mcr.dma_map->dm_mapsize,
555 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
556 				break;
557 			}
558 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
559 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, /*q2,*/ q_next);
560 			ubsec_callback2(sc, q2);
561 			/*
562 			 * Don't send any more packet to chip if there has been
563 			 * a DMAERR.
564 			 */
565 			if (!(stat & BS_STAT_DMAERR))
566 				ubsec_feed2(sc);
567 		}
568 	}
569 
570 	/*
571 	 * Check to see if we got any DMA Error
572 	 */
573 	if (stat & BS_STAT_DMAERR) {
574 #ifdef UBSEC_DEBUG
575 		if (ubsec_debug) {
576 			volatile u_int32_t a = READ_REG(sc, BS_ERR);
577 
578 			printf("%s: dmaerr %s@%08x\n", sc->sc_dv.dv_xname,
579 			    (a & BS_ERR_READ) ? "read" : "write",
580 			       a & BS_ERR_ADDR);
581 		}
582 #endif /* UBSEC_DEBUG */
583 		ubsecstats.hst_dmaerr++;
584 		ubsec_totalreset(sc);
585 		ubsec_feed(sc);
586 	}
587 
588 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
589 		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
590 #ifdef UBSEC_DEBUG
591 		if (ubsec_debug)
592 			printf("%s: wakeup crypto (%x)\n", sc->sc_dv.dv_xname,
593 				sc->sc_needwakeup);
594 #endif /* UBSEC_DEBUG */
595 		sc->sc_needwakeup &= ~wakeup;
596 		crypto_unblock(sc->sc_cid, wakeup);
597 	}
598 	return (1);
599 }
600 
601 /*
602  * ubsec_feed() - aggregate and post requests to chip
603  * OpenBSD comments:
604  *		  It is assumed that the caller set splnet()
605  */
606 static void
607 ubsec_feed(struct ubsec_softc *sc)
608 {
609 	struct ubsec_q *q, *q2;
610 	int npkts, i;
611 	void *v;
612 	u_int32_t stat;
613 #ifdef UBSEC_DEBUG
614 	static int max;
615 #endif /* UBSEC_DEBUG */
616 
617 	npkts = sc->sc_nqueue;
618 	if (npkts > ubsecstats.hst_maxqueue)
619 		ubsecstats.hst_maxqueue = npkts;
620 	if (npkts < 2)
621 		goto feed1;
622 
623 	/*
624 	 * Decide how many ops to combine in a single MCR.  We cannot
625 	 * aggregate more than UBS_MAX_AGGR because this is the number
626 	 * of slots defined in the data structure.  Otherwise we clamp
627 	 * based on the tunable parameter ubsec_maxaggr.  Note that
628 	 * aggregation can happen in two ways: either by batching ops
629 	 * from above or because the h/w backs up and throttles us.
630 	 * Aggregating ops reduces the number of interrupts to the host
631 	 * but also (potentially) increases the latency for processing
632 	 * completed ops as we only get an interrupt when all aggregated
633 	 * ops have completed.
634 	 */
635 	if (npkts > UBS_MAX_AGGR)
636 		npkts = UBS_MAX_AGGR;
637 	if (npkts > ubsec_maxaggr)
638 		npkts = ubsec_maxaggr;
639 	if (npkts > ubsecstats.hst_maxbatch)
640 		ubsecstats.hst_maxbatch = npkts;
641 	if (npkts < 2)
642 		goto feed1;
643 	ubsecstats.hst_totbatch += npkts-1;
644 
645 	if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
646 		if (stat & BS_STAT_DMAERR) {
647 			ubsec_totalreset(sc);
648 			ubsecstats.hst_dmaerr++;
649 		} else {
650 			ubsecstats.hst_mcr1full++;
651 		}
652 		return;
653 	}
654 
655 #ifdef UBSEC_DEBUG
656 	if (ubsec_debug)
657 	    printf("merging %d records\n", npkts);
658 	/* XXX temporary aggregation statistics reporting code */
659 	if (max < npkts) {
660 		max = npkts;
661 		printf("%s: new max aggregate %d\n", sc->sc_dv.dv_xname, max);
662 	}
663 #endif /* UBSEC_DEBUG */
664 
665 	q = SIMPLEQ_FIRST(&sc->sc_queue);
666 	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
667 	--sc->sc_nqueue;
668 
669 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
670 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
671 	if (q->q_dst_map != NULL)
672 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
673 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
674 
675 	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
676 
677 	for (i = 0; i < q->q_nstacked_mcrs; i++) {
678 		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
679 		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
680 		    0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
681 		if (q2->q_dst_map != NULL)
682 			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
683 			    0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
684 		q2= SIMPLEQ_FIRST(&sc->sc_queue);
685 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q2,*/ q_next);
686 		--sc->sc_nqueue;
687 
688 		v = ((void *)&q2->q_dma->d_dma->d_mcr);
689 		v = (char*)v + (sizeof(struct ubsec_mcr) -
690 				 sizeof(struct ubsec_mcr_add));
691 		bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add));
692 		q->q_stacked_mcr[i] = q2;
693 	}
694 	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
695 	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
696 	sc->sc_nqchip += npkts;
697 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
698 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
699 	bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
700 	    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
701 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
702 	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
703 	    offsetof(struct ubsec_dmachunk, d_mcr));
704 	return;
705 
706 feed1:
707 	while (!SIMPLEQ_EMPTY(&sc->sc_queue)) {
708 		if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
709 			if (stat & BS_STAT_DMAERR) {
710 				ubsec_totalreset(sc);
711 				ubsecstats.hst_dmaerr++;
712 			} else {
713 				ubsecstats.hst_mcr1full++;
714 			}
715 			break;
716 		}
717 
718 		q = SIMPLEQ_FIRST(&sc->sc_queue);
719 
720 		bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
721 		    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
722 		if (q->q_dst_map != NULL)
723 			bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
724 			    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
725 		bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
726 		    0, q->q_dma->d_alloc.dma_map->dm_mapsize,
727 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
728 
729 		WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
730 		    offsetof(struct ubsec_dmachunk, d_mcr));
731 #ifdef UBSEC_DEBUG
732 		if (ubsec_debug)
733 			printf("feed: q->chip %p %08x stat %08x\n",
734  		    	       q, (u_int32_t)q->q_dma->d_alloc.dma_paddr,
735 			       stat);
736 #endif /* UBSEC_DEBUG */
737 		q = SIMPLEQ_FIRST(&sc->sc_queue);
738 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
739 		--sc->sc_nqueue;
740 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
741 		sc->sc_nqchip++;
742 	}
743 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
744 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
745 }
746 
747 /*
748  * Allocate a new 'session' and return an encoded session id.  'sidp'
749  * contains our registration id, and should contain an encoded session
750  * id on successful allocation.
751  */
752 static int
753 ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
754 {
755 	struct cryptoini *c, *encini = NULL, *macini = NULL;
756 	struct ubsec_softc *sc;
757 	struct ubsec_session *ses = NULL;
758 	MD5_CTX md5ctx;
759 	SHA1_CTX sha1ctx;
760 	int i, sesn;
761 
762 	sc = arg;
763 	KASSERT(sc != NULL /*, ("ubsec_newsession: null softc")*/);
764 
765 	if (sidp == NULL || cri == NULL || sc == NULL)
766 		return (EINVAL);
767 
768 	for (c = cri; c != NULL; c = c->cri_next) {
769 		if (c->cri_alg == CRYPTO_MD5_HMAC ||
770 		    c->cri_alg == CRYPTO_SHA1_HMAC) {
771 			if (macini)
772 				return (EINVAL);
773 			macini = c;
774 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
775 		    c->cri_alg == CRYPTO_3DES_CBC) {
776 			if (encini)
777 				return (EINVAL);
778 			encini = c;
779 		} else
780 			return (EINVAL);
781 	}
782 	if (encini == NULL && macini == NULL)
783 		return (EINVAL);
784 
785 	if (sc->sc_sessions == NULL) {
786 		ses = sc->sc_sessions = (struct ubsec_session *)malloc(
787 		    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
788 		if (ses == NULL)
789 			return (ENOMEM);
790 		sesn = 0;
791 		sc->sc_nsessions = 1;
792 	} else {
793 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
794 			if (sc->sc_sessions[sesn].ses_used == 0) {
795 				ses = &sc->sc_sessions[sesn];
796 				break;
797 			}
798 		}
799 
800 		if (ses == NULL) {
801 			sesn = sc->sc_nsessions;
802 			ses = (struct ubsec_session *)malloc((sesn + 1) *
803 			    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
804 			if (ses == NULL)
805 				return (ENOMEM);
806 			bcopy(sc->sc_sessions, ses, sesn *
807 			    sizeof(struct ubsec_session));
808 			bzero(sc->sc_sessions, sesn *
809 			    sizeof(struct ubsec_session));
810 			free(sc->sc_sessions, M_DEVBUF);
811 			sc->sc_sessions = ses;
812 			ses = &sc->sc_sessions[sesn];
813 			sc->sc_nsessions++;
814 		}
815 	}
816 
817 	bzero(ses, sizeof(struct ubsec_session));
818 	ses->ses_used = 1;
819 	if (encini) {
820 		/* get an IV, network byte order */
821 #ifdef __NetBSD__
822 		rnd_extract_data(ses->ses_iv,
823 		    sizeof(ses->ses_iv), RND_EXTRACT_ANY);
824 #else
825 		get_random_bytes(ses->ses_iv, sizeof(ses->ses_iv));
826 #endif
827 
828 		/* Go ahead and compute key in ubsec's byte order */
829 		if (encini->cri_alg == CRYPTO_DES_CBC) {
830 			bcopy(encini->cri_key, &ses->ses_deskey[0], 8);
831 			bcopy(encini->cri_key, &ses->ses_deskey[2], 8);
832 			bcopy(encini->cri_key, &ses->ses_deskey[4], 8);
833 		} else
834 			bcopy(encini->cri_key, ses->ses_deskey, 24);
835 
836 		SWAP32(ses->ses_deskey[0]);
837 		SWAP32(ses->ses_deskey[1]);
838 		SWAP32(ses->ses_deskey[2]);
839 		SWAP32(ses->ses_deskey[3]);
840 		SWAP32(ses->ses_deskey[4]);
841 		SWAP32(ses->ses_deskey[5]);
842 	}
843 
844 	if (macini) {
845 		for (i = 0; i < macini->cri_klen / 8; i++)
846 			macini->cri_key[i] ^= HMAC_IPAD_VAL;
847 
848 		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
849 			MD5Init(&md5ctx);
850 			MD5Update(&md5ctx, macini->cri_key,
851 			    macini->cri_klen / 8);
852 			MD5Update(&md5ctx, hmac_ipad_buffer,
853 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
854 			bcopy(md5ctx.state, ses->ses_hminner,
855 			    sizeof(md5ctx.state));
856 		} else {
857 			SHA1Init(&sha1ctx);
858 			SHA1Update(&sha1ctx, macini->cri_key,
859 			    macini->cri_klen / 8);
860 			SHA1Update(&sha1ctx, hmac_ipad_buffer,
861 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
862 			bcopy(sha1ctx.state, ses->ses_hminner,
863 			    sizeof(sha1ctx.state));
864 		}
865 
866 		for (i = 0; i < macini->cri_klen / 8; i++)
867 			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
868 
869 		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
870 			MD5Init(&md5ctx);
871 			MD5Update(&md5ctx, macini->cri_key,
872 			    macini->cri_klen / 8);
873 			MD5Update(&md5ctx, hmac_opad_buffer,
874 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
875 			bcopy(md5ctx.state, ses->ses_hmouter,
876 			    sizeof(md5ctx.state));
877 		} else {
878 			SHA1Init(&sha1ctx);
879 			SHA1Update(&sha1ctx, macini->cri_key,
880 			    macini->cri_klen / 8);
881 			SHA1Update(&sha1ctx, hmac_opad_buffer,
882 			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
883 			bcopy(sha1ctx.state, ses->ses_hmouter,
884 			    sizeof(sha1ctx.state));
885 		}
886 
887 		for (i = 0; i < macini->cri_klen / 8; i++)
888 			macini->cri_key[i] ^= HMAC_OPAD_VAL;
889 	}
890 
891 	*sidp = UBSEC_SID(sc->sc_dv.dv_unit, sesn);
892 	return (0);
893 }
894 
895 /*
896  * Deallocate a session.
897  */
898 static int
899 ubsec_freesession(void *arg, u_int64_t tid)
900 {
901 	struct ubsec_softc *sc;
902 	int session;
903 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
904 
905 	sc = arg;
906 	KASSERT(sc != NULL /*, ("ubsec_freesession: null softc")*/);
907 
908 	session = UBSEC_SESSION(sid);
909 	if (session >= sc->sc_nsessions)
910 		return (EINVAL);
911 
912 	bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
913 	return (0);
914 }
915 
916 #ifdef __FreeBSD__ /* Ugly gratuitous changes to bus_dma */
917 static void
918 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
919 {
920 	struct ubsec_operand *op = arg;
921 
922 	KASSERT(nsegs <= UBS_MAX_SCATTER
923 		/*, ("Too many DMA segments returned when mapping operand")*/);
924 #ifdef UBSEC_DEBUG
925 	if (ubsec_debug)
926 		printf("ubsec_op_cb: mapsize %u nsegs %d\n",
927 			(u_int) mapsize, nsegs);
928 #endif
929 	op->mapsize = mapsize;
930 	op->nsegs = nsegs;
931 	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
932 }
933 #endif
934 
935 static int
936 ubsec_process(void *arg, struct cryptop *crp, int hint)
937 {
938 	struct ubsec_q *q = NULL;
939 #ifdef	__OpenBSD__
940 	int card;
941 #endif
942 	int err = 0, i, j, s, nicealign;
943 	struct ubsec_softc *sc;
944 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
945 	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
946 	int sskip, dskip, stheend, dtheend;
947 	int16_t coffset;
948 	struct ubsec_session *ses;
949 	struct ubsec_pktctx ctx;
950 	struct ubsec_dma *dmap = NULL;
951 
952 	sc = arg;
953 	KASSERT(sc != NULL /*, ("ubsec_process: null softc")*/);
954 
955 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
956 		ubsecstats.hst_invalid++;
957 		return (EINVAL);
958 	}
959 	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
960 		ubsecstats.hst_badsession++;
961 		return (EINVAL);
962 	}
963 
964 	s = splnet();
965 
966 	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
967 		ubsecstats.hst_queuefull++;
968 		sc->sc_needwakeup |= CRYPTO_SYMQ;
969 		splx(s);
970 		return(ERESTART);
971 	}
972 
973 	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
974 	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, /*q,*/ q_next);
975 	splx(s);
976 
977 	dmap = q->q_dma; /* Save dma pointer */
978 	bzero(q, sizeof(struct ubsec_q));
979 	bzero(&ctx, sizeof(ctx));
980 
981 	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
982 	q->q_dma = dmap;
983 	ses = &sc->sc_sessions[q->q_sesn];
984 
985 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
986 		q->q_src_m = (struct mbuf *)crp->crp_buf;
987 		q->q_dst_m = (struct mbuf *)crp->crp_buf;
988 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
989 		q->q_src_io = (struct uio *)crp->crp_buf;
990 		q->q_dst_io = (struct uio *)crp->crp_buf;
991 	} else {
992 		ubsecstats.hst_badflags++;
993 		err = EINVAL;
994 		goto errout;	/* XXX we don't handle contiguous blocks! */
995 	}
996 
997 	bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr));
998 
999 	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1000 	dmap->d_dma->d_mcr.mcr_flags = 0;
1001 	q->q_crp = crp;
1002 
1003 	crd1 = crp->crp_desc;
1004 	if (crd1 == NULL) {
1005 		ubsecstats.hst_nodesc++;
1006 		err = EINVAL;
1007 		goto errout;
1008 	}
1009 	crd2 = crd1->crd_next;
1010 
1011 	if (crd2 == NULL) {
1012 		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
1013 		    crd1->crd_alg == CRYPTO_SHA1_HMAC) {
1014 			maccrd = crd1;
1015 			enccrd = NULL;
1016 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1017 		    crd1->crd_alg == CRYPTO_3DES_CBC) {
1018 			maccrd = NULL;
1019 			enccrd = crd1;
1020 		} else {
1021 			ubsecstats.hst_badalg++;
1022 			err = EINVAL;
1023 			goto errout;
1024 		}
1025 	} else {
1026 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
1027 		    crd1->crd_alg == CRYPTO_SHA1_HMAC) &&
1028 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
1029 			crd2->crd_alg == CRYPTO_3DES_CBC) &&
1030 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1031 			maccrd = crd1;
1032 			enccrd = crd2;
1033 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1034 		    crd1->crd_alg == CRYPTO_3DES_CBC) &&
1035 		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
1036 			crd2->crd_alg == CRYPTO_SHA1_HMAC) &&
1037 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
1038 			enccrd = crd1;
1039 			maccrd = crd2;
1040 		} else {
1041 			/*
1042 			 * We cannot order the ubsec as requested
1043 			 */
1044 			ubsecstats.hst_badalg++;
1045 			err = EINVAL;
1046 			goto errout;
1047 		}
1048 	}
1049 
1050 	if (enccrd) {
1051 		encoffset = enccrd->crd_skip;
1052 		ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1053 
1054 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1055 			q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1056 
1057 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1058 				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1059 			else {
1060 				ctx.pc_iv[0] = ses->ses_iv[0];
1061 				ctx.pc_iv[1] = ses->ses_iv[1];
1062 			}
1063 
1064 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1065 				if (crp->crp_flags & CRYPTO_F_IMBUF)
1066 					m_copyback(q->q_src_m,
1067 					    enccrd->crd_inject,
1068 					    8, (caddr_t)ctx.pc_iv);
1069 				else if (crp->crp_flags & CRYPTO_F_IOV)
1070 					cuio_copyback(q->q_src_io,
1071 					    enccrd->crd_inject,
1072 					    8, (caddr_t)ctx.pc_iv);
1073 			}
1074 		} else {
1075 			ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1076 
1077 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1078 				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1079 			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1080 				m_copydata(q->q_src_m, enccrd->crd_inject,
1081 				    8, (caddr_t)ctx.pc_iv);
1082 			else if (crp->crp_flags & CRYPTO_F_IOV)
1083 				cuio_copydata(q->q_src_io,
1084 				    enccrd->crd_inject, 8,
1085 				    (caddr_t)ctx.pc_iv);
1086 		}
1087 
1088 		ctx.pc_deskey[0] = ses->ses_deskey[0];
1089 		ctx.pc_deskey[1] = ses->ses_deskey[1];
1090 		ctx.pc_deskey[2] = ses->ses_deskey[2];
1091 		ctx.pc_deskey[3] = ses->ses_deskey[3];
1092 		ctx.pc_deskey[4] = ses->ses_deskey[4];
1093 		ctx.pc_deskey[5] = ses->ses_deskey[5];
1094 		SWAP32(ctx.pc_iv[0]);
1095 		SWAP32(ctx.pc_iv[1]);
1096 	}
1097 
1098 	if (maccrd) {
1099 		macoffset = maccrd->crd_skip;
1100 
1101 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC)
1102 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1103 		else
1104 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1105 
1106 		for (i = 0; i < 5; i++) {
1107 			ctx.pc_hminner[i] = ses->ses_hminner[i];
1108 			ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1109 
1110 			HTOLE32(ctx.pc_hminner[i]);
1111 			HTOLE32(ctx.pc_hmouter[i]);
1112 		}
1113 	}
1114 
1115 	if (enccrd && maccrd) {
1116 		/*
1117 		 * ubsec cannot handle packets where the end of encryption
1118 		 * and authentication are not the same, or where the
1119 		 * encrypted part begins before the authenticated part.
1120 		 */
1121 		if ((encoffset + enccrd->crd_len) !=
1122 		    (macoffset + maccrd->crd_len)) {
1123 			ubsecstats.hst_lenmismatch++;
1124 			err = EINVAL;
1125 			goto errout;
1126 		}
1127 		if (enccrd->crd_skip < maccrd->crd_skip) {
1128 			ubsecstats.hst_skipmismatch++;
1129 			err = EINVAL;
1130 			goto errout;
1131 		}
1132 		sskip = maccrd->crd_skip;
1133 		cpskip = dskip = enccrd->crd_skip;
1134 		stheend = maccrd->crd_len;
1135 		dtheend = enccrd->crd_len;
1136 		coffset = enccrd->crd_skip - maccrd->crd_skip;
1137 		cpoffset = cpskip + dtheend;
1138 #ifdef UBSEC_DEBUG
1139 		if (ubsec_debug) {
1140 			printf("mac: skip %d, len %d, inject %d\n",
1141 			       maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1142 			printf("enc: skip %d, len %d, inject %d\n",
1143 			       enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1144 			printf("src: skip %d, len %d\n", sskip, stheend);
1145 			printf("dst: skip %d, len %d\n", dskip, dtheend);
1146 			printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1147 			       coffset, stheend, cpskip, cpoffset);
1148 		}
1149 #endif
1150 	} else {
1151 		cpskip = dskip = sskip = macoffset + encoffset;
1152 		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1153 		cpoffset = cpskip + dtheend;
1154 		coffset = 0;
1155 	}
1156 	ctx.pc_offset = htole16(coffset >> 2);
1157 
1158 	/* XXX FIXME: jonathan asks, what the heck's that 0xfff0?  */
1159 	if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
1160 		0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
1161 		err = ENOMEM;
1162 		goto errout;
1163 	}
1164 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1165 		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1166 		    q->q_src_m, BUS_DMA_NOWAIT) != 0) {
1167 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1168 			q->q_src_map = NULL;
1169 			ubsecstats.hst_noload++;
1170 			err = ENOMEM;
1171 			goto errout;
1172 		}
1173 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1174 		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1175 		    q->q_src_io, BUS_DMA_NOWAIT) != 0) {
1176 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1177 			q->q_src_map = NULL;
1178 			ubsecstats.hst_noload++;
1179 			err = ENOMEM;
1180 			goto errout;
1181 		}
1182 	}
1183 	nicealign = ubsec_dmamap_aligned(q->q_src_map);
1184 
1185 	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1186 
1187 #ifdef UBSEC_DEBUG
1188 	if (ubsec_debug)
1189 		printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1190 #endif
1191 	for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) {
1192 		struct ubsec_pktbuf *pb;
1193 		bus_size_t packl = q->q_src_map->dm_segs[i].ds_len;
1194 		bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr;
1195 
1196 		if (sskip >= packl) {
1197 			sskip -= packl;
1198 			continue;
1199 		}
1200 
1201 		packl -= sskip;
1202 		packp += sskip;
1203 		sskip = 0;
1204 
1205 		if (packl > 0xfffc) {
1206 			err = EIO;
1207 			goto errout;
1208 		}
1209 
1210 		if (j == 0)
1211 			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1212 		else
1213 			pb = &dmap->d_dma->d_sbuf[j - 1];
1214 
1215 		pb->pb_addr = htole32(packp);
1216 
1217 		if (stheend) {
1218 			if (packl > stheend) {
1219 				pb->pb_len = htole32(stheend);
1220 				stheend = 0;
1221 			} else {
1222 				pb->pb_len = htole32(packl);
1223 				stheend -= packl;
1224 			}
1225 		} else
1226 			pb->pb_len = htole32(packl);
1227 
1228 		if ((i + 1) == q->q_src_map->dm_nsegs)
1229 			pb->pb_next = 0;
1230 		else
1231 			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1232 			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1233 		j++;
1234 	}
1235 
1236 	if (enccrd == NULL && maccrd != NULL) {
1237 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1238 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1239 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1240 		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1241 #ifdef UBSEC_DEBUG
1242 		if (ubsec_debug)
1243 			printf("opkt: %x %x %x\n",
1244 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1245 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1246 	 		    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1247 
1248 #endif
1249 	} else {
1250 		if (crp->crp_flags & CRYPTO_F_IOV) {
1251 			if (!nicealign) {
1252 				ubsecstats.hst_iovmisaligned++;
1253 				err = EINVAL;
1254 				goto errout;
1255 			}
1256 			/* XXX: ``what the heck's that'' 0xfff0? */
1257 			if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1258 			    UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1259 			    &q->q_dst_map) != 0) {
1260 				ubsecstats.hst_nomap++;
1261 				err = ENOMEM;
1262 				goto errout;
1263 			}
1264 			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1265 			    q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
1266 				bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1267 				q->q_dst_map = NULL;
1268 				ubsecstats.hst_noload++;
1269 				err = ENOMEM;
1270 				goto errout;
1271 			}
1272 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1273 			if (nicealign) {
1274 				q->q_dst_m = q->q_src_m;
1275 				q->q_dst_map = q->q_src_map;
1276 			} else {
1277 				int totlen, len;
1278 				struct mbuf *m, *top, **mp;
1279 
1280 				ubsecstats.hst_unaligned++;
1281 				totlen = q->q_src_map->dm_mapsize;
1282 				if (q->q_src_m->m_flags & M_PKTHDR) {
1283 					len = MHLEN;
1284 					MGETHDR(m, M_DONTWAIT, MT_DATA);
1285 					/*XXX FIXME: m_dup_pkthdr */
1286 					if (m && 1 /*!m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)*/) {
1287 						m_free(m);
1288 						m = NULL;
1289 					}
1290 				} else {
1291 					len = MLEN;
1292 					MGET(m, M_DONTWAIT, MT_DATA);
1293 				}
1294 				if (m == NULL) {
1295 					ubsecstats.hst_nombuf++;
1296 					err = sc->sc_nqueue ? ERESTART : ENOMEM;
1297 					goto errout;
1298 				}
1299 				if (len == MHLEN)
1300 				  /*XXX was M_DUP_PKTHDR*/
1301 				  M_COPY_PKTHDR(m, q->q_src_m);
1302 				if (totlen >= MINCLSIZE) {
1303 					MCLGET(m, M_DONTWAIT);
1304 					if ((m->m_flags & M_EXT) == 0) {
1305 						m_free(m);
1306 						ubsecstats.hst_nomcl++;
1307 						err = sc->sc_nqueue ? ERESTART : ENOMEM;
1308 						goto errout;
1309 					}
1310 					len = MCLBYTES;
1311 				}
1312 				m->m_len = len;
1313 				top = NULL;
1314 				mp = &top;
1315 
1316 				while (totlen > 0) {
1317 					if (top) {
1318 						MGET(m, M_DONTWAIT, MT_DATA);
1319 						if (m == NULL) {
1320 							m_freem(top);
1321 							ubsecstats.hst_nombuf++;
1322 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1323 							goto errout;
1324 						}
1325 						len = MLEN;
1326 					}
1327 					if (top && totlen >= MINCLSIZE) {
1328 						MCLGET(m, M_DONTWAIT);
1329 						if ((m->m_flags & M_EXT) == 0) {
1330 							*mp = m;
1331 							m_freem(top);
1332 							ubsecstats.hst_nomcl++;
1333 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1334 							goto errout;
1335 						}
1336 						len = MCLBYTES;
1337 					}
1338 					m->m_len = len = min(totlen, len);
1339 					totlen -= len;
1340 					*mp = m;
1341 					mp = &m->m_next;
1342 				}
1343 				q->q_dst_m = top;
1344 				ubsec_mcopy(q->q_src_m, q->q_dst_m,
1345 				    cpskip, cpoffset);
1346 				/* XXX again, what the heck is that 0xfff0? */
1347 				if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1348 				    UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1349 				    &q->q_dst_map) != 0) {
1350 					ubsecstats.hst_nomap++;
1351 					err = ENOMEM;
1352 					goto errout;
1353 				}
1354 				if (bus_dmamap_load_mbuf(sc->sc_dmat,
1355 				    q->q_dst_map, q->q_dst_m,
1356 				    BUS_DMA_NOWAIT) != 0) {
1357 					bus_dmamap_destroy(sc->sc_dmat,
1358 					q->q_dst_map);
1359 					q->q_dst_map = NULL;
1360 					ubsecstats.hst_noload++;
1361 					err = ENOMEM;
1362 					goto errout;
1363 				}
1364 			}
1365 		} else {
1366 			ubsecstats.hst_badflags++;
1367 			err = EINVAL;
1368 			goto errout;
1369 		}
1370 
1371 #ifdef UBSEC_DEBUG
1372 		if (ubsec_debug)
1373 			printf("dst skip: %d\n", dskip);
1374 #endif
1375 		for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) {
1376 			struct ubsec_pktbuf *pb;
1377 			bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len;
1378 			bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr;
1379 
1380 			if (dskip >= packl) {
1381 				dskip -= packl;
1382 				continue;
1383 			}
1384 
1385 			packl -= dskip;
1386 			packp += dskip;
1387 			dskip = 0;
1388 
1389 			if (packl > 0xfffc) {
1390 				err = EIO;
1391 				goto errout;
1392 			}
1393 
1394 			if (j == 0)
1395 				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1396 			else
1397 				pb = &dmap->d_dma->d_dbuf[j - 1];
1398 
1399 			pb->pb_addr = htole32(packp);
1400 
1401 			if (dtheend) {
1402 				if (packl > dtheend) {
1403 					pb->pb_len = htole32(dtheend);
1404 					dtheend = 0;
1405 				} else {
1406 					pb->pb_len = htole32(packl);
1407 					dtheend -= packl;
1408 				}
1409 			} else
1410 				pb->pb_len = htole32(packl);
1411 
1412 			if ((i + 1) == q->q_dst_map->dm_nsegs) {
1413 				if (maccrd)
1414 					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1415 					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1416 				else
1417 					pb->pb_next = 0;
1418 			} else
1419 				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1420 				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1421 			j++;
1422 		}
1423 	}
1424 
1425 	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1426 	    offsetof(struct ubsec_dmachunk, d_ctx));
1427 
1428 	if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1429 		struct ubsec_pktctx_long *ctxl;
1430 
1431 		ctxl = (struct ubsec_pktctx_long *)(dmap->d_alloc.dma_vaddr +
1432 		    offsetof(struct ubsec_dmachunk, d_ctx));
1433 
1434 		/* transform small context into long context */
1435 		ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
1436 		ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
1437 		ctxl->pc_flags = ctx.pc_flags;
1438 		ctxl->pc_offset = ctx.pc_offset;
1439 		for (i = 0; i < 6; i++)
1440 			ctxl->pc_deskey[i] = ctx.pc_deskey[i];
1441 		for (i = 0; i < 5; i++)
1442 			ctxl->pc_hminner[i] = ctx.pc_hminner[i];
1443 		for (i = 0; i < 5; i++)
1444 			ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
1445 		ctxl->pc_iv[0] = ctx.pc_iv[0];
1446 		ctxl->pc_iv[1] = ctx.pc_iv[1];
1447 	} else
1448 		bcopy(&ctx, dmap->d_alloc.dma_vaddr +
1449 		    offsetof(struct ubsec_dmachunk, d_ctx),
1450 		    sizeof(struct ubsec_pktctx));
1451 
1452 	s = splnet();
1453 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1454 	sc->sc_nqueue++;
1455 	ubsecstats.hst_ipackets++;
1456 	ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize;
1457 	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch)
1458 		ubsec_feed(sc);
1459 	splx(s);
1460 	return (0);
1461 
1462 errout:
1463 	if (q != NULL) {
1464 		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1465 			m_freem(q->q_dst_m);
1466 
1467 		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1468 			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1469 			bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1470 		}
1471 		if (q->q_src_map != NULL) {
1472 			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1473 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1474 		}
1475 
1476 		s = splnet();
1477 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1478 		splx(s);
1479 	}
1480 #if 0 /* jonathan says: this openbsd code seems to be subsumed elsewhere */
1481 	if (err == EINVAL)
1482 		ubsecstats.hst_invalid++;
1483 	else
1484 		ubsecstats.hst_nomem++;
1485 #endif
1486 	if (err != ERESTART) {
1487 		crp->crp_etype = err;
1488 		crypto_done(crp);
1489 	} else {
1490 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1491 	}
1492 	return (err);
1493 }
1494 
1495 void
1496 ubsec_callback(sc, q)
1497 	struct ubsec_softc *sc;
1498 	struct ubsec_q *q;
1499 {
1500 	struct cryptop *crp = (struct cryptop *)q->q_crp;
1501 	struct cryptodesc *crd;
1502 	struct ubsec_dma *dmap = q->q_dma;
1503 
1504 	ubsecstats.hst_opackets++;
1505 	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1506 
1507 	bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
1508 	    dmap->d_alloc.dma_map->dm_mapsize,
1509 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1510 	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1511 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1512 		    0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1513 		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1514 		bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1515 	}
1516 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
1517 	    0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1518 	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1519 	bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1520 
1521 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1522 		m_freem(q->q_src_m);
1523 		crp->crp_buf = (caddr_t)q->q_dst_m;
1524 	}
1525 
1526 	/* copy out IV for future use */
1527 	if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1528 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1529 			if (crd->crd_alg != CRYPTO_DES_CBC &&
1530 			    crd->crd_alg != CRYPTO_3DES_CBC)
1531 				continue;
1532 			if (crp->crp_flags & CRYPTO_F_IMBUF)
1533 				m_copydata((struct mbuf *)crp->crp_buf,
1534 				    crd->crd_skip + crd->crd_len - 8, 8,
1535 				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1536 			else if (crp->crp_flags & CRYPTO_F_IOV) {
1537 				cuio_copydata((struct uio *)crp->crp_buf,
1538 				    crd->crd_skip + crd->crd_len - 8, 8,
1539 				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1540 			}
1541 			break;
1542 		}
1543 	}
1544 
1545 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1546 		if (crd->crd_alg != CRYPTO_MD5_HMAC &&
1547 		    crd->crd_alg != CRYPTO_SHA1_HMAC)
1548 			continue;
1549 		if (crp->crp_flags & CRYPTO_F_IMBUF)
1550 			m_copyback((struct mbuf *)crp->crp_buf,
1551 			    crd->crd_inject, 12,
1552 			    (caddr_t)dmap->d_dma->d_macbuf);
1553 		else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1554 			bcopy((caddr_t)dmap->d_dma->d_macbuf,
1555 			    crp->crp_mac, 12);
1556 		break;
1557 	}
1558 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1559 	crypto_done(crp);
1560 }
1561 
1562 static void
1563 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1564 {
1565 	int i, j, dlen, slen;
1566 	caddr_t dptr, sptr;
1567 
1568 	j = 0;
1569 	sptr = srcm->m_data;
1570 	slen = srcm->m_len;
1571 	dptr = dstm->m_data;
1572 	dlen = dstm->m_len;
1573 
1574 	while (1) {
1575 		for (i = 0; i < min(slen, dlen); i++) {
1576 			if (j < hoffset || j >= toffset)
1577 				*dptr++ = *sptr++;
1578 			slen--;
1579 			dlen--;
1580 			j++;
1581 		}
1582 		if (slen == 0) {
1583 			srcm = srcm->m_next;
1584 			if (srcm == NULL)
1585 				return;
1586 			sptr = srcm->m_data;
1587 			slen = srcm->m_len;
1588 		}
1589 		if (dlen == 0) {
1590 			dstm = dstm->m_next;
1591 			if (dstm == NULL)
1592 				return;
1593 			dptr = dstm->m_data;
1594 			dlen = dstm->m_len;
1595 		}
1596 	}
1597 }
1598 
1599 /*
1600  * feed the key generator, must be called at splnet() or higher.
1601  */
1602 static void
1603 ubsec_feed2(struct ubsec_softc *sc)
1604 {
1605 	struct ubsec_q2 *q;
1606 
1607 	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1608 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1609 			break;
1610 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1611 
1612 		bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
1613 		    q->q_mcr.dma_map->dm_mapsize,
1614 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1615 		bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1616 		    q->q_ctx.dma_map->dm_mapsize,
1617 		    BUS_DMASYNC_PREWRITE);
1618 
1619 		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1620 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1621 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, /*q,*/ q_next);
1622 		--sc->sc_nqueue2;
1623 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1624 	}
1625 }
1626 
1627 /*
1628  * Callback for handling random numbers
1629  */
1630 static void
1631 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
1632 {
1633 	struct cryptkop *krp;
1634 	struct ubsec_ctx_keyop *ctx;
1635 
1636 	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
1637 	bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
1638 	    q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1639 
1640 	switch (q->q_type) {
1641 #ifndef UBSEC_NO_RNG
1642 	case UBS_CTXOP_RNGSHA1:
1643 	case UBS_CTXOP_RNGBYPASS: {
1644 		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
1645 		u_int32_t *p;
1646 		int i;
1647 
1648 		bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
1649 		    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1650 		p = (u_int32_t *)rng->rng_buf.dma_vaddr;
1651 #ifndef __NetBSD__
1652 		for (i = 0; i < UBSEC_RNG_BUFSIZ; p++, i++)
1653 			add_true_randomness(letoh32(*p));
1654 		rng->rng_used = 0;
1655 #else
1656 		/* XXX NetBSD rnd subsystem too weak */
1657 		i = 0; (void)i;	/* shut off gcc warnings */
1658 #endif
1659 #ifdef __OpenBSD__
1660 		timeout_add(&sc->sc_rngto, sc->sc_rnghz);
1661 #else
1662 		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1663 #endif
1664 		break;
1665 	}
1666 #endif
1667 	case UBS_CTXOP_MODEXP: {
1668 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1669 		u_int rlen, clen;
1670 
1671 		krp = me->me_krp;
1672 		rlen = (me->me_modbits + 7) / 8;
1673 		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
1674 
1675 		bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
1676 		    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1677 		bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
1678 		    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1679 		bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
1680 		    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1681 		bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
1682 		    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1683 
1684 		if (clen < rlen)
1685 			krp->krp_status = E2BIG;
1686 		else {
1687 			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
1688 				bzero(krp->krp_param[krp->krp_iparams].crp_p,
1689 				    (krp->krp_param[krp->krp_iparams].crp_nbits
1690 					+ 7) / 8);
1691 				bcopy(me->me_C.dma_vaddr,
1692 				    krp->krp_param[krp->krp_iparams].crp_p,
1693 				    (me->me_modbits + 7) / 8);
1694 			} else
1695 				ubsec_kshift_l(me->me_shiftbits,
1696 				    me->me_C.dma_vaddr, me->me_normbits,
1697 				    krp->krp_param[krp->krp_iparams].crp_p,
1698 				    krp->krp_param[krp->krp_iparams].crp_nbits);
1699 		}
1700 
1701 		crypto_kdone(krp);
1702 
1703 		/* bzero all potentially sensitive data */
1704 		bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
1705 		bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
1706 		bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
1707 		bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
1708 
1709 		/* Can't free here, so put us on the free list. */
1710 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
1711 		break;
1712 	}
1713 	case UBS_CTXOP_RSAPRIV: {
1714 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1715 		u_int len;
1716 
1717 		krp = rp->rpr_krp;
1718 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0,
1719 		    rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1720 		bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0,
1721 		    rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1722 
1723 		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
1724 		bcopy(rp->rpr_msgout.dma_vaddr,
1725 		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
1726 
1727 		crypto_kdone(krp);
1728 
1729 		bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
1730 		bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
1731 		bzero(rp->rpr_q.q_ctx.dma_vaddr, rp->rpr_q.q_ctx.dma_size);
1732 
1733 		/* Can't free here, so put us on the free list. */
1734 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
1735 		break;
1736 	}
1737 	default:
1738 		printf("%s: unknown ctx op: %x\n", sc->sc_dv.dv_xname,
1739 		    letoh16(ctx->ctx_op));
1740 		break;
1741 	}
1742 }
1743 
1744 #ifndef UBSEC_NO_RNG
1745 static void
1746 ubsec_rng(void *vsc)
1747 {
1748 	struct ubsec_softc *sc = vsc;
1749 	struct ubsec_q2_rng *rng = &sc->sc_rng;
1750 	struct ubsec_mcr *mcr;
1751 	struct ubsec_ctx_rngbypass *ctx;
1752 	int s;
1753 
1754 	s = splnet();
1755 	if (rng->rng_used) {
1756 		splx(s);
1757 		return;
1758 	}
1759 	sc->sc_nqueue2++;
1760 	if (sc->sc_nqueue2 >= UBS_MAX_NQUEUE)
1761 		goto out;
1762 
1763 	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
1764 	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
1765 
1766 	mcr->mcr_pkts = htole16(1);
1767 	mcr->mcr_flags = 0;
1768 	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
1769 	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
1770 	mcr->mcr_ipktbuf.pb_len = 0;
1771 	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
1772 	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
1773 	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
1774 	    UBS_PKTBUF_LEN);
1775 	mcr->mcr_opktbuf.pb_next = 0;
1776 
1777 	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
1778 	ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1);
1779 	rng->rng_q.q_type = UBS_CTXOP_RNGSHA1;
1780 
1781 	bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
1782 	    rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1783 
1784 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
1785 	rng->rng_used = 1;
1786 	ubsec_feed2(sc);
1787 	ubsecstats.hst_rng++;
1788 	splx(s);
1789 
1790 	return;
1791 
1792 out:
1793 	/*
1794 	 * Something weird happened, generate our own call back.
1795 	 */
1796 	sc->sc_nqueue2--;
1797 	splx(s);
1798 #ifdef __OpenBSD__
1799 	timeout_add(&sc->sc_rngto, sc->sc_rnghz);
1800 #else
1801 	callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1802 #endif
1803 }
1804 #endif /* UBSEC_NO_RNG */
1805 
1806 static int
1807 ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size,
1808 		 struct ubsec_dma_alloc *dma,int mapflags)
1809 {
1810 	int r;
1811 
1812 	if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
1813 	    &dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0)
1814 		goto fail_0;
1815 
1816 	if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg,
1817 	    size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0)
1818 		goto fail_1;
1819 
1820 	if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1821 	    BUS_DMA_NOWAIT, &dma->dma_map)) != 0)
1822 		goto fail_2;
1823 
1824 	if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
1825 	    size, NULL, BUS_DMA_NOWAIT)) != 0)
1826 		goto fail_3;
1827 
1828 	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
1829 	dma->dma_size = size;
1830 	return (0);
1831 
1832 fail_3:
1833 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
1834 fail_2:
1835 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
1836 fail_1:
1837 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
1838 fail_0:
1839 	dma->dma_map = NULL;
1840 	return (r);
1841 }
1842 
1843 static void
1844 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
1845 {
1846 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
1847 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
1848 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
1849 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
1850 }
1851 
1852 /*
1853  * Resets the board.  Values in the regesters are left as is
1854  * from the reset (i.e. initial values are assigned elsewhere).
1855  */
1856 static void
1857 ubsec_reset_board(struct ubsec_softc *sc)
1858 {
1859     volatile u_int32_t ctrl;
1860 
1861     ctrl = READ_REG(sc, BS_CTRL);
1862     ctrl |= BS_CTRL_RESET;
1863     WRITE_REG(sc, BS_CTRL, ctrl);
1864 
1865     /*
1866      * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
1867      */
1868     DELAY(10);
1869 }
1870 
1871 /*
1872  * Init Broadcom registers
1873  */
1874 static void
1875 ubsec_init_board(struct ubsec_softc *sc)
1876 {
1877 	u_int32_t ctrl;
1878 
1879 	ctrl = READ_REG(sc, BS_CTRL);
1880 	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
1881 	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
1882 
1883 	/*
1884 	 * XXX: Sam Leffler's code has (UBS_FLAGS_KEY|UBS_FLAGS_RNG)).
1885 	 * anyone got hw docs?
1886 	 */
1887 	if (sc->sc_flags & UBS_FLAGS_KEY)
1888 		ctrl |= BS_CTRL_MCR2INT;
1889 	else
1890 		ctrl &= ~BS_CTRL_MCR2INT;
1891 
1892 	if (sc->sc_flags & UBS_FLAGS_HWNORM)
1893 		ctrl &= ~BS_CTRL_SWNORM;
1894 
1895 	WRITE_REG(sc, BS_CTRL, ctrl);
1896 }
1897 
1898 /*
1899  * Init Broadcom PCI registers
1900  */
1901 static void
1902 ubsec_init_pciregs(pa)
1903 	struct pci_attach_args *pa;
1904 {
1905 	pci_chipset_tag_t pc = pa->pa_pc;
1906 	u_int32_t misc;
1907 
1908 	/*
1909 	 * This will set the cache line size to 1, this will
1910 	 * force the BCM58xx chip just to do burst read/writes.
1911 	 * Cache line read/writes are to slow
1912 	 */
1913 	misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG);
1914 	misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT))
1915 	    | ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT);
1916 	pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc);
1917 }
1918 
1919 /*
1920  * Clean up after a chip crash.
1921  * It is assumed that the caller in splnet()
1922  */
1923 static void
1924 ubsec_cleanchip(struct ubsec_softc *sc)
1925 {
1926 	struct ubsec_q *q;
1927 
1928 	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
1929 		q = SIMPLEQ_FIRST(&sc->sc_qchip);
1930 		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
1931 		ubsec_free_q(sc, q);
1932 	}
1933 	sc->sc_nqchip = 0;
1934 }
1935 
1936 /*
1937  * free a ubsec_q
1938  * It is assumed that the caller is within splnet()
1939  */
1940 static int
1941 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
1942 {
1943 	struct ubsec_q *q2;
1944 	struct cryptop *crp;
1945 	int npkts;
1946 	int i;
1947 
1948 	npkts = q->q_nstacked_mcrs;
1949 
1950 	for (i = 0; i < npkts; i++) {
1951 		if(q->q_stacked_mcr[i]) {
1952 			q2 = q->q_stacked_mcr[i];
1953 
1954 			if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
1955 				m_freem(q2->q_dst_m);
1956 
1957 			crp = (struct cryptop *)q2->q_crp;
1958 
1959 			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
1960 
1961 			crp->crp_etype = EFAULT;
1962 			crypto_done(crp);
1963 		} else {
1964 			break;
1965 		}
1966 	}
1967 
1968 	/*
1969 	 * Free header MCR
1970 	 */
1971 	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1972 		m_freem(q->q_dst_m);
1973 
1974 	crp = (struct cryptop *)q->q_crp;
1975 
1976 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1977 
1978 	crp->crp_etype = EFAULT;
1979 	crypto_done(crp);
1980 	return(0);
1981 }
1982 
1983 /*
1984  * Routine to reset the chip and clean up.
1985  * It is assumed that the caller is in splnet()
1986  */
1987 static void
1988 ubsec_totalreset(struct ubsec_softc *sc)
1989 {
1990 	ubsec_reset_board(sc);
1991 	ubsec_init_board(sc);
1992 	ubsec_cleanchip(sc);
1993 }
1994 
1995 static int
1996 ubsec_dmamap_aligned(bus_dmamap_t map)
1997 {
1998 	int i;
1999 
2000 	for (i = 0; i < map->dm_nsegs; i++) {
2001 		if (map->dm_segs[i].ds_addr & 3)
2002 			return (0);
2003 		if ((i != (map->dm_nsegs - 1)) &&
2004 		    (map->dm_segs[i].ds_len & 3))
2005 			return (0);
2006 	}
2007 	return (1);
2008 }
2009 
2010 #ifdef __OpenBSD__
2011 struct ubsec_softc *
2012 ubsec_kfind(krp)
2013 	struct cryptkop *krp;
2014 {
2015 	struct ubsec_softc *sc;
2016 	int i;
2017 
2018 	for (i = 0; i < ubsec_cd.cd_ndevs; i++) {
2019 		sc = ubsec_cd.cd_devs[i];
2020 		if (sc == NULL)
2021 			continue;
2022 		if (sc->sc_cid == krp->krp_hid)
2023 			return (sc);
2024 	}
2025 	return (NULL);
2026 }
2027 #endif
2028 
2029 static void
2030 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2031 {
2032 	switch (q->q_type) {
2033 	case UBS_CTXOP_MODEXP: {
2034 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2035 
2036 		ubsec_dma_free(sc, &me->me_q.q_mcr);
2037 		ubsec_dma_free(sc, &me->me_q.q_ctx);
2038 		ubsec_dma_free(sc, &me->me_M);
2039 		ubsec_dma_free(sc, &me->me_E);
2040 		ubsec_dma_free(sc, &me->me_C);
2041 		ubsec_dma_free(sc, &me->me_epb);
2042 		free(me, M_DEVBUF);
2043 		break;
2044 	}
2045 	case UBS_CTXOP_RSAPRIV: {
2046 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2047 
2048 		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2049 		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2050 		ubsec_dma_free(sc, &rp->rpr_msgin);
2051 		ubsec_dma_free(sc, &rp->rpr_msgout);
2052 		free(rp, M_DEVBUF);
2053 		break;
2054 	}
2055 	default:
2056 		printf("%s: invalid kfree 0x%x\n", sc->sc_dv.dv_xname,
2057 		    q->q_type);
2058 		break;
2059 	}
2060 }
2061 
2062 static int
2063 ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2064 {
2065 	struct ubsec_softc *sc;
2066 	int r;
2067 
2068 	if (krp == NULL || krp->krp_callback == NULL)
2069 		return (EINVAL);
2070 #ifdef __OpenBSD__
2071 	if ((sc = ubsec_kfind(krp)) == NULL)
2072 		return (EINVAL);
2073 #else
2074 	sc = arg;
2075 	KASSERT(sc != NULL /*, ("ubsec_kprocess: null softc")*/);
2076 #endif
2077 
2078 	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2079 		struct ubsec_q2 *q;
2080 
2081 		q = SIMPLEQ_FIRST(&sc->sc_q2free);
2082 		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, /*q,*/ q_next);
2083 		ubsec_kfree(sc, q);
2084 	}
2085 
2086 	switch (krp->krp_op) {
2087 	case CRK_MOD_EXP:
2088 		if (sc->sc_flags & UBS_FLAGS_HWNORM)
2089 			r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2090 		else
2091 			r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2092 		break;
2093 	case CRK_MOD_EXP_CRT:
2094 		r = ubsec_kprocess_rsapriv(sc, krp, hint);
2095 		break;
2096 	default:
2097 		printf("%s: kprocess: invalid op 0x%x\n",
2098 		    sc->sc_dv.dv_xname, krp->krp_op);
2099 		krp->krp_status = EOPNOTSUPP;
2100 		crypto_kdone(krp);
2101 		r = 0;
2102 	}
2103 	return (r);
2104 }
2105 
2106 /*
2107  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2108  */
2109 static int
2110 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp,
2111 			 int hint)
2112 {
2113 	struct ubsec_q2_modexp *me;
2114 	struct ubsec_mcr *mcr;
2115 	struct ubsec_ctx_modexp *ctx;
2116 	struct ubsec_pktbuf *epb;
2117 	int s, err = 0;
2118 	u_int nbits, normbits, mbits, shiftbits, ebits;
2119 
2120 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2121 	if (me == NULL) {
2122 		err = ENOMEM;
2123 		goto errout;
2124 	}
2125 	bzero(me, sizeof *me);
2126 	me->me_krp = krp;
2127 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2128 
2129 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2130 	if (nbits <= 512)
2131 		normbits = 512;
2132 	else if (nbits <= 768)
2133 		normbits = 768;
2134 	else if (nbits <= 1024)
2135 		normbits = 1024;
2136 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2137 		normbits = 1536;
2138 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2139 		normbits = 2048;
2140 	else {
2141 		err = E2BIG;
2142 		goto errout;
2143 	}
2144 
2145 	shiftbits = normbits - nbits;
2146 
2147 	me->me_modbits = nbits;
2148 	me->me_shiftbits = shiftbits;
2149 	me->me_normbits = normbits;
2150 
2151 	/* Sanity check: result bits must be >= true modulus bits. */
2152 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2153 		err = ERANGE;
2154 		goto errout;
2155 	}
2156 
2157 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2158 	    &me->me_q.q_mcr, 0)) {
2159 		err = ENOMEM;
2160 		goto errout;
2161 	}
2162 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2163 
2164 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2165 	    &me->me_q.q_ctx, 0)) {
2166 		err = ENOMEM;
2167 		goto errout;
2168 	}
2169 
2170 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2171 	if (mbits > nbits) {
2172 		err = E2BIG;
2173 		goto errout;
2174 	}
2175 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2176 		err = ENOMEM;
2177 		goto errout;
2178 	}
2179 	ubsec_kshift_r(shiftbits,
2180 	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2181 	    me->me_M.dma_vaddr, normbits);
2182 
2183 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2184 		err = ENOMEM;
2185 		goto errout;
2186 	}
2187 	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2188 
2189 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2190 	if (ebits > nbits) {
2191 		err = E2BIG;
2192 		goto errout;
2193 	}
2194 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2195 		err = ENOMEM;
2196 		goto errout;
2197 	}
2198 	ubsec_kshift_r(shiftbits,
2199 	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2200 	    me->me_E.dma_vaddr, normbits);
2201 
2202 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2203 	    &me->me_epb, 0)) {
2204 		err = ENOMEM;
2205 		goto errout;
2206 	}
2207 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2208 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2209 	epb->pb_next = 0;
2210 	epb->pb_len = htole32(normbits / 8);
2211 
2212 #ifdef UBSEC_DEBUG
2213 	if (ubsec_debug) {
2214 		printf("Epb ");
2215 		ubsec_dump_pb(epb);
2216 	}
2217 #endif
2218 
2219 	mcr->mcr_pkts = htole16(1);
2220 	mcr->mcr_flags = 0;
2221 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2222 	mcr->mcr_reserved = 0;
2223 	mcr->mcr_pktlen = 0;
2224 
2225 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2226 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2227 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2228 
2229 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2230 	mcr->mcr_opktbuf.pb_next = 0;
2231 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2232 
2233 #ifdef DIAGNOSTIC
2234 	/* Misaligned output buffer will hang the chip. */
2235 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2236 		panic("%s: modexp invalid addr 0x%x",
2237 		    sc->sc_dv.dv_xname, letoh32(mcr->mcr_opktbuf.pb_addr));
2238 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2239 		panic("%s: modexp invalid len 0x%x",
2240 		    sc->sc_dv.dv_xname, letoh32(mcr->mcr_opktbuf.pb_len));
2241 #endif
2242 
2243 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2244 	bzero(ctx, sizeof(*ctx));
2245 	ubsec_kshift_r(shiftbits,
2246 	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2247 	    ctx->me_N, normbits);
2248 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2249 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2250 	ctx->me_E_len = htole16(nbits);
2251 	ctx->me_N_len = htole16(nbits);
2252 
2253 #ifdef UBSEC_DEBUG
2254 	if (ubsec_debug) {
2255 		ubsec_dump_mcr(mcr);
2256 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2257 	}
2258 #endif
2259 
2260 	/*
2261 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2262 	 * everything else.
2263 	 */
2264 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2265 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2266 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2267 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2268 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2269 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2270 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2271 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2272 
2273 	/* Enqueue and we're done... */
2274 	s = splnet();
2275 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2276 	ubsec_feed2(sc);
2277 	ubsecstats.hst_modexp++;
2278 	splx(s);
2279 
2280 	return (0);
2281 
2282 errout:
2283 	if (me != NULL) {
2284 		if (me->me_q.q_mcr.dma_map != NULL)
2285 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2286 		if (me->me_q.q_ctx.dma_map != NULL) {
2287 			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2288 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2289 		}
2290 		if (me->me_M.dma_map != NULL) {
2291 			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2292 			ubsec_dma_free(sc, &me->me_M);
2293 		}
2294 		if (me->me_E.dma_map != NULL) {
2295 			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2296 			ubsec_dma_free(sc, &me->me_E);
2297 		}
2298 		if (me->me_C.dma_map != NULL) {
2299 			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2300 			ubsec_dma_free(sc, &me->me_C);
2301 		}
2302 		if (me->me_epb.dma_map != NULL)
2303 			ubsec_dma_free(sc, &me->me_epb);
2304 		free(me, M_DEVBUF);
2305 	}
2306 	krp->krp_status = err;
2307 	crypto_kdone(krp);
2308 	return (0);
2309 }
2310 
2311 /*
2312  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2313  */
2314 static int
2315 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp,
2316 			 int hint)
2317 {
2318 	struct ubsec_q2_modexp *me;
2319 	struct ubsec_mcr *mcr;
2320 	struct ubsec_ctx_modexp *ctx;
2321 	struct ubsec_pktbuf *epb;
2322 	int s, err = 0;
2323 	u_int nbits, normbits, mbits, shiftbits, ebits;
2324 
2325 	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2326 	if (me == NULL) {
2327 		err = ENOMEM;
2328 		goto errout;
2329 	}
2330 	bzero(me, sizeof *me);
2331 	me->me_krp = krp;
2332 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2333 
2334 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2335 	if (nbits <= 512)
2336 		normbits = 512;
2337 	else if (nbits <= 768)
2338 		normbits = 768;
2339 	else if (nbits <= 1024)
2340 		normbits = 1024;
2341 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2342 		normbits = 1536;
2343 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2344 		normbits = 2048;
2345 	else {
2346 		err = E2BIG;
2347 		goto errout;
2348 	}
2349 
2350 	shiftbits = normbits - nbits;
2351 
2352 	/* XXX ??? */
2353 	me->me_modbits = nbits;
2354 	me->me_shiftbits = shiftbits;
2355 	me->me_normbits = normbits;
2356 
2357 	/* Sanity check: result bits must be >= true modulus bits. */
2358 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2359 		err = ERANGE;
2360 		goto errout;
2361 	}
2362 
2363 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2364 	    &me->me_q.q_mcr, 0)) {
2365 		err = ENOMEM;
2366 		goto errout;
2367 	}
2368 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2369 
2370 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2371 	    &me->me_q.q_ctx, 0)) {
2372 		err = ENOMEM;
2373 		goto errout;
2374 	}
2375 
2376 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2377 	if (mbits > nbits) {
2378 		err = E2BIG;
2379 		goto errout;
2380 	}
2381 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2382 		err = ENOMEM;
2383 		goto errout;
2384 	}
2385 	bzero(me->me_M.dma_vaddr, normbits / 8);
2386 	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2387 	    me->me_M.dma_vaddr, (mbits + 7) / 8);
2388 
2389 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2390 		err = ENOMEM;
2391 		goto errout;
2392 	}
2393 	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2394 
2395 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2396 	if (ebits > nbits) {
2397 		err = E2BIG;
2398 		goto errout;
2399 	}
2400 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2401 		err = ENOMEM;
2402 		goto errout;
2403 	}
2404 	bzero(me->me_E.dma_vaddr, normbits / 8);
2405 	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2406 	    me->me_E.dma_vaddr, (ebits + 7) / 8);
2407 
2408 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2409 	    &me->me_epb, 0)) {
2410 		err = ENOMEM;
2411 		goto errout;
2412 	}
2413 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2414 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2415 	epb->pb_next = 0;
2416 	epb->pb_len = htole32((ebits + 7) / 8);
2417 
2418 #ifdef UBSEC_DEBUG
2419 	if (ubsec_debug) {
2420 		printf("Epb ");
2421 		ubsec_dump_pb(epb);
2422 	}
2423 #endif
2424 
2425 	mcr->mcr_pkts = htole16(1);
2426 	mcr->mcr_flags = 0;
2427 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2428 	mcr->mcr_reserved = 0;
2429 	mcr->mcr_pktlen = 0;
2430 
2431 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2432 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2433 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2434 
2435 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2436 	mcr->mcr_opktbuf.pb_next = 0;
2437 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2438 
2439 #ifdef DIAGNOSTIC
2440 	/* Misaligned output buffer will hang the chip. */
2441 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2442 		panic("%s: modexp invalid addr 0x%x",
2443 		    sc->sc_dv.dv_xname, letoh32(mcr->mcr_opktbuf.pb_addr));
2444 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2445 		panic("%s: modexp invalid len 0x%x",
2446 		    sc->sc_dv.dv_xname, letoh32(mcr->mcr_opktbuf.pb_len));
2447 #endif
2448 
2449 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2450 	bzero(ctx, sizeof(*ctx));
2451 	bcopy(krp->krp_param[UBS_MODEXP_PAR_N].crp_p, ctx->me_N,
2452 	    (nbits + 7) / 8);
2453 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2454 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2455 	ctx->me_E_len = htole16(ebits);
2456 	ctx->me_N_len = htole16(nbits);
2457 
2458 #ifdef UBSEC_DEBUG
2459 	if (ubsec_debug) {
2460 		ubsec_dump_mcr(mcr);
2461 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2462 	}
2463 #endif
2464 
2465 	/*
2466 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2467 	 * everything else.
2468 	 */
2469 	bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
2470 	    0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2471 	bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
2472 	    0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2473 	bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
2474 	    0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2475 	bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
2476 	    0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2477 
2478 	/* Enqueue and we're done... */
2479 	s = splnet();
2480 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2481 	ubsec_feed2(sc);
2482 	splx(s);
2483 
2484 	return (0);
2485 
2486 errout:
2487 	if (me != NULL) {
2488 		if (me->me_q.q_mcr.dma_map != NULL)
2489 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2490 		if (me->me_q.q_ctx.dma_map != NULL) {
2491 			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2492 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2493 		}
2494 		if (me->me_M.dma_map != NULL) {
2495 			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2496 			ubsec_dma_free(sc, &me->me_M);
2497 		}
2498 		if (me->me_E.dma_map != NULL) {
2499 			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2500 			ubsec_dma_free(sc, &me->me_E);
2501 		}
2502 		if (me->me_C.dma_map != NULL) {
2503 			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2504 			ubsec_dma_free(sc, &me->me_C);
2505 		}
2506 		if (me->me_epb.dma_map != NULL)
2507 			ubsec_dma_free(sc, &me->me_epb);
2508 		free(me, M_DEVBUF);
2509 	}
2510 	krp->krp_status = err;
2511 	crypto_kdone(krp);
2512 	return (0);
2513 }
2514 
2515 static int
2516 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp,
2517 		       int hint)
2518 {
2519 	struct ubsec_q2_rsapriv *rp = NULL;
2520 	struct ubsec_mcr *mcr;
2521 	struct ubsec_ctx_rsapriv *ctx;
2522 	int s, err = 0;
2523 	u_int padlen, msglen;
2524 
2525 	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2526 	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2527 	if (msglen > padlen)
2528 		padlen = msglen;
2529 
2530 	if (padlen <= 256)
2531 		padlen = 256;
2532 	else if (padlen <= 384)
2533 		padlen = 384;
2534 	else if (padlen <= 512)
2535 		padlen = 512;
2536 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2537 		padlen = 768;
2538 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2539 		padlen = 1024;
2540 	else {
2541 		err = E2BIG;
2542 		goto errout;
2543 	}
2544 
2545 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2546 		err = E2BIG;
2547 		goto errout;
2548 	}
2549 
2550 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2551 		err = E2BIG;
2552 		goto errout;
2553 	}
2554 
2555 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2556 		err = E2BIG;
2557 		goto errout;
2558 	}
2559 
2560 	rp = (struct ubsec_q2_rsapriv *)malloc(sizeof *rp, M_DEVBUF, M_NOWAIT);
2561 	if (rp == NULL)
2562 		return (ENOMEM);
2563 	bzero(rp, sizeof *rp);
2564 	rp->rpr_krp = krp;
2565 	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2566 
2567 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2568 	    &rp->rpr_q.q_mcr, 0)) {
2569 		err = ENOMEM;
2570 		goto errout;
2571 	}
2572 	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2573 
2574 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2575 	    &rp->rpr_q.q_ctx, 0)) {
2576 		err = ENOMEM;
2577 		goto errout;
2578 	}
2579 	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
2580 	bzero(ctx, sizeof *ctx);
2581 
2582 	/* Copy in p */
2583 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
2584 	    &ctx->rpr_buf[0 * (padlen / 8)],
2585 	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
2586 
2587 	/* Copy in q */
2588 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
2589 	    &ctx->rpr_buf[1 * (padlen / 8)],
2590 	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
2591 
2592 	/* Copy in dp */
2593 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
2594 	    &ctx->rpr_buf[2 * (padlen / 8)],
2595 	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
2596 
2597 	/* Copy in dq */
2598 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
2599 	    &ctx->rpr_buf[3 * (padlen / 8)],
2600 	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
2601 
2602 	/* Copy in pinv */
2603 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
2604 	    &ctx->rpr_buf[4 * (padlen / 8)],
2605 	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
2606 
2607 	msglen = padlen * 2;
2608 
2609 	/* Copy in input message (aligned buffer/length). */
2610 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
2611 		/* Is this likely? */
2612 		err = E2BIG;
2613 		goto errout;
2614 	}
2615 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
2616 		err = ENOMEM;
2617 		goto errout;
2618 	}
2619 	bzero(rp->rpr_msgin.dma_vaddr, (msglen + 7) / 8);
2620 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
2621 	    rp->rpr_msgin.dma_vaddr,
2622 	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
2623 
2624 	/* Prepare space for output message (aligned buffer/length). */
2625 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
2626 		/* Is this likely? */
2627 		err = E2BIG;
2628 		goto errout;
2629 	}
2630 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
2631 		err = ENOMEM;
2632 		goto errout;
2633 	}
2634 	bzero(rp->rpr_msgout.dma_vaddr, (msglen + 7) / 8);
2635 
2636 	mcr->mcr_pkts = htole16(1);
2637 	mcr->mcr_flags = 0;
2638 	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
2639 	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
2640 	mcr->mcr_ipktbuf.pb_next = 0;
2641 	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
2642 	mcr->mcr_reserved = 0;
2643 	mcr->mcr_pktlen = htole16(msglen);
2644 	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
2645 	mcr->mcr_opktbuf.pb_next = 0;
2646 	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
2647 
2648 #ifdef DIAGNOSTIC
2649 	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
2650 		panic("%s: rsapriv: invalid msgin 0x%lx(0x%lx)",
2651 		    sc->sc_dv.dv_xname, (u_long) rp->rpr_msgin.dma_paddr,
2652 		    (u_long) rp->rpr_msgin.dma_size);
2653 	}
2654 	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
2655 		panic("%s: rsapriv: invalid msgout 0x%lx(0x%lx)",
2656 		    sc->sc_dv.dv_xname, (u_long) rp->rpr_msgout.dma_paddr,
2657 		    (u_long) rp->rpr_msgout.dma_size);
2658 	}
2659 #endif
2660 
2661 	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
2662 	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
2663 	ctx->rpr_q_len = htole16(padlen);
2664 	ctx->rpr_p_len = htole16(padlen);
2665 
2666 	/*
2667 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2668 	 * everything else.
2669 	 */
2670 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map,
2671 	    0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2672 	bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map,
2673 	    0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2674 
2675 	/* Enqueue and we're done... */
2676 	s = splnet();
2677 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
2678 	ubsec_feed2(sc);
2679 	ubsecstats.hst_modexpcrt++;
2680 	splx(s);
2681 	return (0);
2682 
2683 errout:
2684 	if (rp != NULL) {
2685 		if (rp->rpr_q.q_mcr.dma_map != NULL)
2686 			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2687 		if (rp->rpr_msgin.dma_map != NULL) {
2688 			bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
2689 			ubsec_dma_free(sc, &rp->rpr_msgin);
2690 		}
2691 		if (rp->rpr_msgout.dma_map != NULL) {
2692 			bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
2693 			ubsec_dma_free(sc, &rp->rpr_msgout);
2694 		}
2695 		free(rp, M_DEVBUF);
2696 	}
2697 	krp->krp_status = err;
2698 	crypto_kdone(krp);
2699 	return (0);
2700 }
2701 
2702 #ifdef UBSEC_DEBUG
2703 static void
2704 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
2705 {
2706 	printf("addr 0x%x (0x%x) next 0x%x\n",
2707 	    pb->pb_addr, pb->pb_len, pb->pb_next);
2708 }
2709 
2710 static void
2711 ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *c)
2712 {
2713 	printf("CTX (0x%x):\n", c->ctx_len);
2714 	switch (letoh16(c->ctx_op)) {
2715 	case UBS_CTXOP_RNGBYPASS:
2716 	case UBS_CTXOP_RNGSHA1:
2717 		break;
2718 	case UBS_CTXOP_MODEXP:
2719 	{
2720 		struct ubsec_ctx_modexp *cx = (void *)c;
2721 		int i, len;
2722 
2723 		printf(" Elen %u, Nlen %u\n",
2724 		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
2725 		len = (cx->me_N_len + 7)/8;
2726 		for (i = 0; i < len; i++)
2727 			printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
2728 		printf("\n");
2729 		break;
2730 	}
2731 	default:
2732 		printf("unknown context: %x\n", c->ctx_op);
2733 	}
2734 	printf("END CTX\n");
2735 }
2736 
2737 static void
2738 ubsec_dump_mcr(struct ubsec_mcr *mcr)
2739 {
2740 	volatile struct ubsec_mcr_add *ma;
2741 	int i;
2742 
2743 	printf("MCR:\n");
2744 	printf(" pkts: %u, flags 0x%x\n",
2745 	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
2746 	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
2747 	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
2748 		printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
2749 		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
2750 		    letoh16(ma->mcr_reserved));
2751 		printf(" %d: ipkt ", i);
2752 		ubsec_dump_pb(&ma->mcr_ipktbuf);
2753 		printf(" %d: opkt ", i);
2754 		ubsec_dump_pb(&ma->mcr_opktbuf);
2755 		ma++;
2756 	}
2757 	printf("END MCR\n");
2758 }
2759 #endif /* UBSEC_DEBUG */
2760 
2761 /*
2762  * Return the number of significant bits of a big number.
2763  */
2764 static int
2765 ubsec_ksigbits(struct crparam *cr)
2766 {
2767 	u_int plen = (cr->crp_nbits + 7) / 8;
2768 	int i, sig = plen * 8;
2769 	u_int8_t c, *p = cr->crp_p;
2770 
2771 	for (i = plen - 1; i >= 0; i--) {
2772 		c = p[i];
2773 		if (c != 0) {
2774 			while ((c & 0x80) == 0) {
2775 				sig--;
2776 				c <<= 1;
2777 			}
2778 			break;
2779 		}
2780 		sig -= 8;
2781 	}
2782 	return (sig);
2783 }
2784 
2785 static void
2786 ubsec_kshift_r(shiftbits, src, srcbits, dst, dstbits)
2787 	u_int shiftbits, srcbits, dstbits;
2788 	u_int8_t *src, *dst;
2789 {
2790 	u_int slen, dlen;
2791 	int i, si, di, n;
2792 
2793 	slen = (srcbits + 7) / 8;
2794 	dlen = (dstbits + 7) / 8;
2795 
2796 	for (i = 0; i < slen; i++)
2797 		dst[i] = src[i];
2798 	for (i = 0; i < dlen - slen; i++)
2799 		dst[slen + i] = 0;
2800 
2801 	n = shiftbits / 8;
2802 	if (n != 0) {
2803 		si = dlen - n - 1;
2804 		di = dlen - 1;
2805 		while (si >= 0)
2806 			dst[di--] = dst[si--];
2807 		while (di >= 0)
2808 			dst[di--] = 0;
2809 	}
2810 
2811 	n = shiftbits % 8;
2812 	if (n != 0) {
2813 		for (i = dlen - 1; i > 0; i--)
2814 			dst[i] = (dst[i] << n) |
2815 			    (dst[i - 1] >> (8 - n));
2816 		dst[0] = dst[0] << n;
2817 	}
2818 }
2819 
2820 static void
2821 ubsec_kshift_l(shiftbits, src, srcbits, dst, dstbits)
2822 	u_int shiftbits, srcbits, dstbits;
2823 	u_int8_t *src, *dst;
2824 {
2825 	int slen, dlen, i, n;
2826 
2827 	slen = (srcbits + 7) / 8;
2828 	dlen = (dstbits + 7) / 8;
2829 
2830 	n = shiftbits / 8;
2831 	for (i = 0; i < slen; i++)
2832 		dst[i] = src[i + n];
2833 	for (i = 0; i < dlen - slen; i++)
2834 		dst[slen + i] = 0;
2835 
2836 	n = shiftbits % 8;
2837 	if (n != 0) {
2838 		for (i = 0; i < (dlen - 1); i++)
2839 			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
2840 		dst[dlen - 1] = dst[dlen - 1] >> n;
2841 	}
2842 }
2843