1 /* $NetBSD: twe.c,v 1.105 2016/07/14 04:19:27 msaitoh Exp $ */ 2 3 /*- 4 * Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c) 2000 Michael Smith 34 * Copyright (c) 2000 BSDi 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 56 * SUCH DAMAGE. 57 * 58 * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp 59 */ 60 61 /* 62 * Driver for the 3ware Escalade family of RAID controllers. 63 */ 64 65 #include <sys/cdefs.h> 66 __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.105 2016/07/14 04:19:27 msaitoh Exp $"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/device.h> 72 #include <sys/queue.h> 73 #include <sys/proc.h> 74 #include <sys/buf.h> 75 #include <sys/endian.h> 76 #include <sys/malloc.h> 77 #include <sys/conf.h> 78 #include <sys/disk.h> 79 #include <sys/sysctl.h> 80 #include <sys/syslog.h> 81 #include <sys/kauth.h> 82 83 #include <sys/bswap.h> 84 #include <sys/bus.h> 85 86 #include <dev/pci/pcireg.h> 87 #include <dev/pci/pcivar.h> 88 #include <dev/pci/pcidevs.h> 89 #include <dev/pci/twereg.h> 90 #include <dev/pci/twevar.h> 91 #include <dev/pci/tweio.h> 92 93 #include "locators.h" 94 95 #define PCI_CBIO 0x10 96 97 static int twe_aen_get(struct twe_softc *, uint16_t *); 98 static void twe_aen_handler(struct twe_ccb *, int); 99 static void twe_aen_enqueue(struct twe_softc *sc, uint16_t, int); 100 static uint16_t twe_aen_dequeue(struct twe_softc *); 101 102 static void twe_attach(device_t, device_t, void *); 103 static int twe_init_connection(struct twe_softc *); 104 static int twe_intr(void *); 105 static int twe_match(device_t, cfdata_t, void *); 106 static int twe_param_set(struct twe_softc *, int, int, size_t, void *); 107 static void twe_poll(struct twe_softc *); 108 static int twe_print(void *, const char *); 109 static int twe_reset(struct twe_softc *); 110 static int twe_status_check(struct twe_softc *, u_int); 111 static int twe_status_wait(struct twe_softc *, u_int, int); 112 static void twe_describe_controller(struct twe_softc *); 113 static void twe_clear_pci_abort(struct twe_softc *sc); 114 static void twe_clear_pci_parity_error(struct twe_softc *sc); 115 116 static int twe_add_unit(struct twe_softc *, int); 117 static int twe_del_unit(struct twe_softc *, int); 118 static int twe_init_connection(struct twe_softc *); 119 120 static inline u_int32_t twe_inl(struct twe_softc *, int); 121 static inline void twe_outl(struct twe_softc *, int, u_int32_t); 122 123 extern struct cfdriver twe_cd; 124 125 CFATTACH_DECL_NEW(twe, sizeof(struct twe_softc), 126 twe_match, twe_attach, NULL, NULL); 127 128 /* FreeBSD driver revision for sysctl expected by the 3ware cli */ 129 const char twever[] = "1.50.01.002"; 130 131 /* 132 * Tables to convert numeric codes to strings. 133 */ 134 const struct twe_code_table twe_table_status[] = { 135 { 0x00, "successful completion" }, 136 137 /* info */ 138 { 0x42, "command in progress" }, 139 { 0x6c, "retrying interface CRC error from UDMA command" }, 140 141 /* warning */ 142 { 0x81, "redundant/inconsequential request ignored" }, 143 { 0x8e, "failed to write zeroes to LBA 0" }, 144 { 0x8f, "failed to profile TwinStor zones" }, 145 146 /* fatal */ 147 { 0xc1, "aborted due to system command or reconfiguration" }, 148 { 0xc4, "aborted" }, 149 { 0xc5, "access error" }, 150 { 0xc6, "access violation" }, 151 { 0xc7, "device failure" }, /* high byte may be port # */ 152 { 0xc8, "controller error" }, 153 { 0xc9, "timed out" }, 154 { 0xcb, "invalid unit number" }, 155 { 0xcf, "unit not available" }, 156 { 0xd2, "undefined opcode" }, 157 { 0xdb, "request incompatible with unit" }, 158 { 0xdc, "invalid request" }, 159 { 0xff, "firmware error, reset requested" }, 160 161 { 0, NULL } 162 }; 163 164 const struct twe_code_table twe_table_unitstate[] = { 165 { TWE_PARAM_UNITSTATUS_Normal, "Normal" }, 166 { TWE_PARAM_UNITSTATUS_Initialising, "Initializing" }, 167 { TWE_PARAM_UNITSTATUS_Degraded, "Degraded" }, 168 { TWE_PARAM_UNITSTATUS_Rebuilding, "Rebuilding" }, 169 { TWE_PARAM_UNITSTATUS_Verifying, "Verifying" }, 170 { TWE_PARAM_UNITSTATUS_Corrupt, "Corrupt" }, 171 { TWE_PARAM_UNITSTATUS_Missing, "Missing" }, 172 173 { 0, NULL } 174 }; 175 176 const struct twe_code_table twe_table_unittype[] = { 177 /* array descriptor configuration */ 178 { TWE_AD_CONFIG_RAID0, "RAID0" }, 179 { TWE_AD_CONFIG_RAID1, "RAID1" }, 180 { TWE_AD_CONFIG_TwinStor, "TwinStor" }, 181 { TWE_AD_CONFIG_RAID5, "RAID5" }, 182 { TWE_AD_CONFIG_RAID10, "RAID10" }, 183 { TWE_UD_CONFIG_JBOD, "JBOD" }, 184 185 { 0, NULL } 186 }; 187 188 const struct twe_code_table twe_table_stripedepth[] = { 189 { TWE_AD_STRIPE_4k, "4K" }, 190 { TWE_AD_STRIPE_8k, "8K" }, 191 { TWE_AD_STRIPE_16k, "16K" }, 192 { TWE_AD_STRIPE_32k, "32K" }, 193 { TWE_AD_STRIPE_64k, "64K" }, 194 { TWE_AD_STRIPE_128k, "128K" }, 195 { TWE_AD_STRIPE_256k, "256K" }, 196 { TWE_AD_STRIPE_512k, "512K" }, 197 { TWE_AD_STRIPE_1024k, "1024K" }, 198 199 { 0, NULL } 200 }; 201 202 /* 203 * Asynchronous event notification messages are qualified: 204 * a - not unit/port specific 205 * u - unit specific 206 * p - port specific 207 * 208 * They are further qualified with a severity: 209 * E - LOG_EMERG 210 * a - LOG_ALERT 211 * c - LOG_CRIT 212 * e - LOG_ERR 213 * w - LOG_WARNING 214 * n - LOG_NOTICE 215 * i - LOG_INFO 216 * d - LOG_DEBUG 217 * blank - just use printf 218 */ 219 const struct twe_code_table twe_table_aen[] = { 220 { 0x00, "a queue empty" }, 221 { 0x01, "a soft reset" }, 222 { 0x02, "uc degraded mode" }, 223 { 0x03, "aa controller error" }, 224 { 0x04, "uE rebuild fail" }, 225 { 0x05, "un rebuild done" }, 226 { 0x06, "ue incomplete unit" }, 227 { 0x07, "un initialization done" }, 228 { 0x08, "uw unclean shutdown detected" }, 229 { 0x09, "pe drive timeout" }, 230 { 0x0a, "pc drive error" }, 231 { 0x0b, "un rebuild started" }, 232 { 0x0c, "un initialization started" }, 233 { 0x0d, "ui logical unit deleted" }, 234 { 0x0f, "pc SMART threshold exceeded" }, 235 { 0x15, "a table undefined" }, /* XXX: Not in FreeBSD's table */ 236 { 0x21, "pe ATA UDMA downgrade" }, 237 { 0x22, "pi ATA UDMA upgrade" }, 238 { 0x23, "pw sector repair occurred" }, 239 { 0x24, "aa SBUF integrity check failure" }, 240 { 0x25, "pa lost cached write" }, 241 { 0x26, "pa drive ECC error detected" }, 242 { 0x27, "pe DCB checksum error" }, 243 { 0x28, "pn DCB unsupported version" }, 244 { 0x29, "ui verify started" }, 245 { 0x2a, "ua verify failed" }, 246 { 0x2b, "ui verify complete" }, 247 { 0x2c, "pw overwrote bad sector during rebuild" }, 248 { 0x2d, "pa encountered bad sector during rebuild" }, 249 { 0x2e, "pe replacement drive too small" }, 250 { 0x2f, "ue array not previously initialized" }, 251 { 0x30, "p drive not supported" }, 252 { 0xff, "a aen queue full" }, 253 254 { 0, NULL }, 255 }; 256 257 const char * 258 twe_describe_code(const struct twe_code_table *table, uint32_t code) 259 { 260 261 for (; table->string != NULL; table++) { 262 if (table->code == code) 263 return (table->string); 264 } 265 return (NULL); 266 } 267 268 static inline u_int32_t 269 twe_inl(struct twe_softc *sc, int off) 270 { 271 272 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4, 273 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ); 274 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off)); 275 } 276 277 static inline void 278 twe_outl(struct twe_softc *sc, int off, u_int32_t val) 279 { 280 281 bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val); 282 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4, 283 BUS_SPACE_BARRIER_WRITE); 284 } 285 286 /* 287 * Match a supported board. 288 */ 289 static int 290 twe_match(device_t parent, cfdata_t cfdata, void *aux) 291 { 292 struct pci_attach_args *pa; 293 294 pa = aux; 295 296 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE && 297 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE || 298 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC)); 299 } 300 301 /* 302 * Attach a supported board. 303 * 304 * XXX This doesn't fail gracefully. 305 */ 306 static void 307 twe_attach(device_t parent, device_t self, void *aux) 308 { 309 struct pci_attach_args *pa; 310 struct twe_softc *sc; 311 pci_chipset_tag_t pc; 312 pci_intr_handle_t ih; 313 pcireg_t csr; 314 const char *intrstr; 315 int s, size, i, rv, rseg; 316 size_t max_segs, max_xfer; 317 bus_dma_segment_t seg; 318 const struct sysctlnode *node; 319 struct twe_cmd *tc; 320 struct twe_ccb *ccb; 321 char intrbuf[PCI_INTRSTR_LEN]; 322 323 sc = device_private(self); 324 sc->sc_dev = self; 325 pa = aux; 326 pc = pa->pa_pc; 327 sc->sc_dmat = pa->pa_dmat; 328 SIMPLEQ_INIT(&sc->sc_ccb_queue); 329 SLIST_INIT(&sc->sc_ccb_freelist); 330 331 aprint_naive(": RAID controller\n"); 332 aprint_normal(": 3ware Escalade\n"); 333 334 335 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0, 336 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) { 337 aprint_error_dev(self, "can't map i/o space\n"); 338 return; 339 } 340 341 /* Enable the device. */ 342 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 343 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 344 csr | PCI_COMMAND_MASTER_ENABLE); 345 346 /* Map and establish the interrupt. */ 347 if (pci_intr_map(pa, &ih)) { 348 aprint_error_dev(self, "can't map interrupt\n"); 349 return; 350 } 351 352 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf)); 353 sc->sc_ih = pci_intr_establish(pc, ih, IPL_BIO, twe_intr, sc); 354 if (sc->sc_ih == NULL) { 355 aprint_error_dev(self, "can't establish interrupt%s%s\n", 356 (intrstr) ? " at " : "", 357 (intrstr) ? intrstr : ""); 358 return; 359 } 360 361 if (intrstr != NULL) 362 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 363 364 /* 365 * Allocate and initialise the command blocks and CCBs. 366 */ 367 size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT; 368 369 if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1, 370 &rseg, BUS_DMA_NOWAIT)) != 0) { 371 aprint_error_dev(self, 372 "unable to allocate commands, rv = %d\n", rv); 373 return; 374 } 375 376 if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size, 377 (void **)&sc->sc_cmds, 378 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { 379 aprint_error_dev(self, 380 "unable to map commands, rv = %d\n", rv); 381 return; 382 } 383 384 if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0, 385 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) { 386 aprint_error_dev(self, 387 "unable to create command DMA map, rv = %d\n", rv); 388 return; 389 } 390 391 if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds, 392 size, NULL, BUS_DMA_NOWAIT)) != 0) { 393 aprint_error_dev(self, 394 "unable to load command DMA map, rv = %d\n", rv); 395 return; 396 } 397 398 ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_NOWAIT); 399 if (ccb == NULL) { 400 aprint_error_dev(self, "unable to allocate memory for ccbs\n"); 401 return; 402 } 403 404 sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr; 405 memset(sc->sc_cmds, 0, size); 406 407 sc->sc_ccbs = ccb; 408 tc = (struct twe_cmd *)sc->sc_cmds; 409 max_segs = twe_get_maxsegs(); 410 max_xfer = twe_get_maxxfer(max_segs); 411 412 for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) { 413 ccb->ccb_cmd = tc; 414 ccb->ccb_cmdid = i; 415 ccb->ccb_flags = 0; 416 rv = bus_dmamap_create(sc->sc_dmat, max_xfer, 417 max_segs, PAGE_SIZE, 0, 418 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 419 &ccb->ccb_dmamap_xfer); 420 if (rv != 0) { 421 aprint_error_dev(self, 422 "can't create dmamap, rv = %d\n", rv); 423 return; 424 } 425 426 /* Save the first CCB for AEN retrieval. */ 427 if (i != 0) 428 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, 429 ccb_chain.slist); 430 } 431 432 /* Wait for the controller to become ready. */ 433 if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) { 434 aprint_error_dev(self, "microcontroller not ready\n"); 435 return; 436 } 437 438 twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS); 439 440 /* Reset the controller. */ 441 s = splbio(); 442 rv = twe_reset(sc); 443 splx(s); 444 if (rv) { 445 aprint_error_dev(self, "reset failed\n"); 446 return; 447 } 448 449 /* Initialise connection with controller. */ 450 twe_init_connection(sc); 451 452 twe_describe_controller(sc); 453 454 /* Find and attach RAID array units. */ 455 sc->sc_nunits = 0; 456 for (i = 0; i < TWE_MAX_UNITS; i++) 457 (void) twe_add_unit(sc, i); 458 459 /* ...and finally, enable interrupts. */ 460 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR | 461 TWE_CTL_UNMASK_RESP_INTR | 462 TWE_CTL_ENABLE_INTRS); 463 464 /* sysctl set-up for 3ware cli */ 465 if (sysctl_createv(NULL, 0, NULL, &node, 466 0, CTLTYPE_NODE, device_xname(self), 467 SYSCTL_DESCR("twe driver information"), 468 NULL, 0, NULL, 0, 469 CTL_HW, CTL_CREATE, CTL_EOL) != 0) { 470 aprint_error_dev(self, "could not create %s.%s sysctl node\n", 471 "hw", device_xname(self)); 472 return; 473 } 474 if ((i = sysctl_createv(NULL, 0, NULL, NULL, 475 0, CTLTYPE_STRING, "driver_version", 476 SYSCTL_DESCR("twe0 driver version"), 477 NULL, 0, __UNCONST(&twever), 0, 478 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL)) 479 != 0) { 480 aprint_error_dev(self, 481 "could not create %s.%s.driver_version sysctl\n", 482 "hw", device_xname(self)); 483 return; 484 } 485 } 486 487 void 488 twe_register_callbacks(struct twe_softc *sc, int unit, 489 const struct twe_callbacks *tcb) 490 { 491 492 sc->sc_units[unit].td_callbacks = tcb; 493 } 494 495 static void 496 twe_recompute_openings(struct twe_softc *sc) 497 { 498 struct twe_drive *td; 499 int unit, openings; 500 501 if (sc->sc_nunits != 0) 502 openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits; 503 else 504 openings = 0; 505 if (openings == sc->sc_openings) 506 return; 507 sc->sc_openings = openings; 508 509 #ifdef TWE_DEBUG 510 printf("%s: %d array%s, %d openings per array\n", 511 device_xname(sc->sc_dev), sc->sc_nunits, 512 sc->sc_nunits == 1 ? "" : "s", sc->sc_openings); 513 #endif 514 515 for (unit = 0; unit < TWE_MAX_UNITS; unit++) { 516 td = &sc->sc_units[unit]; 517 if (td->td_dev != NULL) 518 (*td->td_callbacks->tcb_openings)(td->td_dev, 519 sc->sc_openings); 520 } 521 } 522 523 static int 524 twe_add_unit(struct twe_softc *sc, int unit) 525 { 526 struct twe_param *dtp, *atp; 527 struct twe_array_descriptor *ad; 528 struct twe_drive *td; 529 struct twe_attach_args twea; 530 uint32_t newsize; 531 int rv; 532 uint16_t dsize; 533 uint8_t newtype, newstripe; 534 int locs[TWECF_NLOCS]; 535 536 if (unit < 0 || unit >= TWE_MAX_UNITS) 537 return (EINVAL); 538 539 /* Find attached units. */ 540 rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY, 541 TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp); 542 if (rv != 0) { 543 aprint_error_dev(sc->sc_dev, 544 "error %d fetching unit summary\n", rv); 545 return (rv); 546 } 547 548 /* For each detected unit, collect size and store in an array. */ 549 td = &sc->sc_units[unit]; 550 551 /* Unit present? */ 552 if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) { 553 /* 554 * XXX Should we check to see if a device has been 555 * XXX attached at this index and detach it if it 556 * XXX has? ("rescan" semantics) 557 */ 558 rv = 0; 559 goto out; 560 } 561 562 rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit, 563 TWE_PARAM_UNITINFO_DescriptorSize, &dsize); 564 if (rv != 0) { 565 aprint_error_dev(sc->sc_dev, 566 "error %d fetching descriptor size for unit %d\n", 567 rv, unit); 568 goto out; 569 } 570 571 rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit, 572 TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp); 573 if (rv != 0) { 574 aprint_error_dev(sc->sc_dev, 575 "error %d fetching array descriptor for unit %d\n", 576 rv, unit); 577 goto out; 578 } 579 580 ad = (struct twe_array_descriptor *)atp->tp_data; 581 newtype = ad->configuration; 582 newstripe = ad->stripe_size; 583 free(atp, M_DEVBUF); 584 585 rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit, 586 TWE_PARAM_UNITINFO_Capacity, &newsize); 587 if (rv != 0) { 588 aprint_error_dev(sc->sc_dev, 589 "error %d fetching capacity for unit %d\n", 590 rv, unit); 591 goto out; 592 } 593 594 /* 595 * Have a device, so we need to attach it. If there is currently 596 * something sitting at the slot, and the parameters are different, 597 * then we detach the old device before attaching the new one. 598 */ 599 if (td->td_dev != NULL && 600 td->td_size == newsize && 601 td->td_type == newtype && 602 td->td_stripe == newstripe) { 603 /* Same as the old device; just keep using it. */ 604 rv = 0; 605 goto out; 606 } else if (td->td_dev != NULL) { 607 /* Detach the old device first. */ 608 (void) config_detach(td->td_dev, DETACH_FORCE); 609 td->td_dev = NULL; 610 } else if (td->td_size == 0) 611 sc->sc_nunits++; 612 613 /* 614 * Committed to the new array unit; assign its parameters and 615 * recompute the number of available command openings. 616 */ 617 td->td_size = newsize; 618 td->td_type = newtype; 619 td->td_stripe = newstripe; 620 twe_recompute_openings(sc); 621 622 twea.twea_unit = unit; 623 624 locs[TWECF_UNIT] = unit; 625 626 td->td_dev = config_found_sm_loc(sc->sc_dev, "twe", locs, &twea, 627 twe_print, config_stdsubmatch); 628 629 rv = 0; 630 out: 631 free(dtp, M_DEVBUF); 632 return (rv); 633 } 634 635 static int 636 twe_del_unit(struct twe_softc *sc, int unit) 637 { 638 struct twe_drive *td; 639 640 if (unit < 0 || unit >= TWE_MAX_UNITS) 641 return (EINVAL); 642 643 td = &sc->sc_units[unit]; 644 if (td->td_size != 0) 645 sc->sc_nunits--; 646 td->td_size = 0; 647 td->td_type = 0; 648 td->td_stripe = 0; 649 if (td->td_dev != NULL) { 650 (void) config_detach(td->td_dev, DETACH_FORCE); 651 td->td_dev = NULL; 652 } 653 twe_recompute_openings(sc); 654 return (0); 655 } 656 657 /* 658 * Reset the controller. 659 * MUST BE CALLED AT splbio()! 660 */ 661 static int 662 twe_reset(struct twe_softc *sc) 663 { 664 uint16_t aen; 665 u_int status; 666 int got, rv; 667 668 /* Issue a soft reset. */ 669 twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET | 670 TWE_CTL_CLEAR_HOST_INTR | 671 TWE_CTL_CLEAR_ATTN_INTR | 672 TWE_CTL_MASK_CMD_INTR | 673 TWE_CTL_MASK_RESP_INTR | 674 TWE_CTL_CLEAR_ERROR_STS | 675 TWE_CTL_DISABLE_INTRS); 676 677 /* Wait for attention... */ 678 if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) { 679 aprint_error_dev(sc->sc_dev, 680 "timeout waiting for attention interrupt\n"); 681 return (-1); 682 } 683 684 /* ...and ACK it. */ 685 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR); 686 687 /* 688 * Pull AENs out of the controller; look for a soft reset AEN. 689 * Open code this, since we want to detect reset even if the 690 * queue for management tools is full. 691 * 692 * Note that since: 693 * - interrupts are blocked 694 * - we have reset the controller 695 * - acknowledged the pending ATTENTION 696 * that there is no way a pending asynchronous AEN fetch would 697 * finish, so clear the flag. 698 */ 699 sc->sc_flags &= ~TWEF_AEN; 700 for (got = 0;;) { 701 rv = twe_aen_get(sc, &aen); 702 if (rv != 0) 703 printf("%s: error %d while draining event queue\n", 704 device_xname(sc->sc_dev), rv); 705 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) 706 break; 707 if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET) 708 got = 1; 709 twe_aen_enqueue(sc, aen, 1); 710 } 711 712 if (!got) { 713 printf("%s: reset not reported\n", device_xname(sc->sc_dev)); 714 return (-1); 715 } 716 717 /* Check controller status. */ 718 status = twe_inl(sc, TWE_REG_STS); 719 if (twe_status_check(sc, status)) { 720 printf("%s: controller errors detected\n", 721 device_xname(sc->sc_dev)); 722 return (-1); 723 } 724 725 /* Drain the response queue. */ 726 for (;;) { 727 status = twe_inl(sc, TWE_REG_STS); 728 if (twe_status_check(sc, status) != 0) { 729 aprint_error_dev(sc->sc_dev, 730 "can't drain response queue\n"); 731 return (-1); 732 } 733 if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0) 734 break; 735 (void)twe_inl(sc, TWE_REG_RESP_QUEUE); 736 } 737 738 return (0); 739 } 740 741 /* 742 * Print autoconfiguration message for a sub-device. 743 */ 744 static int 745 twe_print(void *aux, const char *pnp) 746 { 747 struct twe_attach_args *twea; 748 749 twea = aux; 750 751 if (pnp != NULL) 752 aprint_normal("block device at %s", pnp); 753 aprint_normal(" unit %d", twea->twea_unit); 754 return (UNCONF); 755 } 756 757 /* 758 * Interrupt service routine. 759 */ 760 static int 761 twe_intr(void *arg) 762 { 763 struct twe_softc *sc; 764 u_int status; 765 int caught, rv; 766 767 sc = arg; 768 caught = 0; 769 status = twe_inl(sc, TWE_REG_STS); 770 twe_status_check(sc, status); 771 772 /* Host interrupts - purpose unknown. */ 773 if ((status & TWE_STS_HOST_INTR) != 0) { 774 #ifdef DEBUG 775 printf("%s: host interrupt\n", device_xname(sc->sc_dev)); 776 #endif 777 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR); 778 caught = 1; 779 } 780 781 /* 782 * Attention interrupts, signalled when a controller or child device 783 * state change has occurred. 784 */ 785 if ((status & TWE_STS_ATTN_INTR) != 0) { 786 rv = twe_aen_get(sc, NULL); 787 if (rv != 0) 788 aprint_error_dev(sc->sc_dev, 789 "unable to retrieve AEN (%d)\n", rv); 790 else 791 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR); 792 caught = 1; 793 } 794 795 /* 796 * Command interrupts, signalled when the controller can accept more 797 * commands. We don't use this; instead, we try to submit commands 798 * when we receive them, and when other commands have completed. 799 * Mask it so we don't get another one. 800 */ 801 if ((status & TWE_STS_CMD_INTR) != 0) { 802 #ifdef DEBUG 803 printf("%s: command interrupt\n", device_xname(sc->sc_dev)); 804 #endif 805 twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR); 806 caught = 1; 807 } 808 809 if ((status & TWE_STS_RESP_INTR) != 0) { 810 twe_poll(sc); 811 caught = 1; 812 } 813 814 return (caught); 815 } 816 817 /* 818 * Fetch an AEN. Even though this is really like parameter 819 * retrieval, we handle this specially, because we issue this 820 * AEN retrieval command from interrupt context, and thus 821 * reserve a CCB for it to avoid resource shortage. 822 * 823 * XXX There are still potential resource shortages we could 824 * XXX encounter. Consider pre-allocating all AEN-related 825 * XXX resources. 826 * 827 * MUST BE CALLED AT splbio()! 828 */ 829 static int 830 twe_aen_get(struct twe_softc *sc, uint16_t *aenp) 831 { 832 struct twe_ccb *ccb; 833 struct twe_cmd *tc; 834 struct twe_param *tp; 835 int rv; 836 837 /* 838 * If we're already retrieving an AEN, just wait; another 839 * retrieval will be chained after the current one completes. 840 */ 841 if (sc->sc_flags & TWEF_AEN) { 842 /* 843 * It is a fatal software programming error to attempt 844 * to fetch an AEN synchronously when an AEN fetch is 845 * already pending. 846 */ 847 KASSERT(aenp == NULL); 848 return (0); 849 } 850 851 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT); 852 if (tp == NULL) 853 return (ENOMEM); 854 855 ccb = twe_ccb_alloc(sc, 856 TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); 857 KASSERT(ccb != NULL); 858 859 ccb->ccb_data = tp; 860 ccb->ccb_datasize = TWE_SECTOR_SIZE; 861 ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL; 862 ccb->ccb_tx.tx_context = tp; 863 ccb->ccb_tx.tx_dv = sc->sc_dev; 864 865 tc = ccb->ccb_cmd; 866 tc->tc_size = 2; 867 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5); 868 tc->tc_unit = 0; 869 tc->tc_count = htole16(1); 870 871 /* Fill in the outbound parameter data. */ 872 tp->tp_table_id = htole16(TWE_PARAM_AEN); 873 tp->tp_param_id = TWE_PARAM_AEN_UnitCode; 874 tp->tp_param_size = 2; 875 876 /* Map the transfer. */ 877 if ((rv = twe_ccb_map(sc, ccb)) != 0) { 878 twe_ccb_free(sc, ccb); 879 goto done; 880 } 881 882 /* Enqueue the command and wait. */ 883 if (aenp != NULL) { 884 rv = twe_ccb_poll(sc, ccb, 5); 885 twe_ccb_unmap(sc, ccb); 886 twe_ccb_free(sc, ccb); 887 if (rv == 0) 888 *aenp = le16toh(*(uint16_t *)tp->tp_data); 889 free(tp, M_DEVBUF); 890 } else { 891 sc->sc_flags |= TWEF_AEN; 892 twe_ccb_enqueue(sc, ccb); 893 rv = 0; 894 } 895 896 done: 897 return (rv); 898 } 899 900 /* 901 * Handle an AEN returned by the controller. 902 * MUST BE CALLED AT splbio()! 903 */ 904 static void 905 twe_aen_handler(struct twe_ccb *ccb, int error) 906 { 907 struct twe_softc *sc; 908 struct twe_param *tp; 909 uint16_t aen; 910 int rv; 911 912 sc = device_private(ccb->ccb_tx.tx_dv); 913 tp = ccb->ccb_tx.tx_context; 914 twe_ccb_unmap(sc, ccb); 915 916 sc->sc_flags &= ~TWEF_AEN; 917 918 if (error) { 919 aprint_error_dev(sc->sc_dev, "error retrieving AEN\n"); 920 aen = TWE_AEN_QUEUE_EMPTY; 921 } else 922 aen = le16toh(*(u_int16_t *)tp->tp_data); 923 free(tp, M_DEVBUF); 924 twe_ccb_free(sc, ccb); 925 926 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) { 927 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR); 928 return; 929 } 930 931 twe_aen_enqueue(sc, aen, 0); 932 933 /* 934 * Chain another retrieval in case interrupts have been 935 * coalesced. 936 */ 937 rv = twe_aen_get(sc, NULL); 938 if (rv != 0) 939 aprint_error_dev(sc->sc_dev, 940 "unable to retrieve AEN (%d)\n", rv); 941 } 942 943 static void 944 twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet) 945 { 946 const char *str, *msg; 947 int s, next, nextnext, level; 948 949 /* 950 * First report the AEN on the console. Maybe. 951 */ 952 if (! quiet) { 953 str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen)); 954 if (str == NULL) { 955 aprint_error_dev(sc->sc_dev, 956 "unknown AEN 0x%04x\n", aen); 957 } else { 958 msg = str + 3; 959 switch (str[1]) { 960 case 'E': level = LOG_EMERG; break; 961 case 'a': level = LOG_ALERT; break; 962 case 'c': level = LOG_CRIT; break; 963 case 'e': level = LOG_ERR; break; 964 case 'w': level = LOG_WARNING; break; 965 case 'n': level = LOG_NOTICE; break; 966 case 'i': level = LOG_INFO; break; 967 case 'd': level = LOG_DEBUG; break; 968 default: 969 /* Don't use syslog. */ 970 level = -1; 971 } 972 973 if (level < 0) { 974 switch (str[0]) { 975 case 'u': 976 case 'p': 977 printf("%s: %s %d: %s\n", 978 device_xname(sc->sc_dev), 979 str[0] == 'u' ? "unit" : "port", 980 TWE_AEN_UNIT(aen), msg); 981 break; 982 983 default: 984 printf("%s: %s\n", 985 device_xname(sc->sc_dev), msg); 986 } 987 } else { 988 switch (str[0]) { 989 case 'u': 990 case 'p': 991 log(level, "%s: %s %d: %s\n", 992 device_xname(sc->sc_dev), 993 str[0] == 'u' ? "unit" : "port", 994 TWE_AEN_UNIT(aen), msg); 995 break; 996 997 default: 998 log(level, "%s: %s\n", 999 device_xname(sc->sc_dev), msg); 1000 } 1001 } 1002 } 1003 } 1004 1005 /* Now enqueue the AEN for mangement tools. */ 1006 s = splbio(); 1007 1008 next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH; 1009 nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH; 1010 1011 /* 1012 * If this is the last free slot, then queue up a "queue 1013 * full" message. 1014 */ 1015 if (nextnext == sc->sc_aen_tail) 1016 aen = TWE_AEN_QUEUE_FULL; 1017 1018 if (next != sc->sc_aen_tail) { 1019 sc->sc_aen_queue[sc->sc_aen_head] = aen; 1020 sc->sc_aen_head = next; 1021 } 1022 1023 if (sc->sc_flags & TWEF_AENQ_WAIT) { 1024 sc->sc_flags &= ~TWEF_AENQ_WAIT; 1025 wakeup(&sc->sc_aen_queue); 1026 } 1027 1028 splx(s); 1029 } 1030 1031 /* NOTE: Must be called at splbio(). */ 1032 static uint16_t 1033 twe_aen_dequeue(struct twe_softc *sc) 1034 { 1035 uint16_t aen; 1036 1037 if (sc->sc_aen_tail == sc->sc_aen_head) 1038 aen = TWE_AEN_QUEUE_EMPTY; 1039 else { 1040 aen = sc->sc_aen_queue[sc->sc_aen_tail]; 1041 sc->sc_aen_tail = (sc->sc_aen_tail + 1) % TWE_AEN_Q_LENGTH; 1042 } 1043 1044 return (aen); 1045 } 1046 1047 /* 1048 * These are short-hand functions that execute TWE_OP_GET_PARAM to 1049 * fetch 1, 2, and 4 byte parameter values, respectively. 1050 */ 1051 int 1052 twe_param_get_1(struct twe_softc *sc, int table_id, int param_id, 1053 uint8_t *valp) 1054 { 1055 struct twe_param *tp; 1056 int rv; 1057 1058 rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp); 1059 if (rv != 0) 1060 return (rv); 1061 *valp = *(uint8_t *)tp->tp_data; 1062 free(tp, M_DEVBUF); 1063 return (0); 1064 } 1065 1066 int 1067 twe_param_get_2(struct twe_softc *sc, int table_id, int param_id, 1068 uint16_t *valp) 1069 { 1070 struct twe_param *tp; 1071 int rv; 1072 1073 rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp); 1074 if (rv != 0) 1075 return (rv); 1076 *valp = le16toh(*(uint16_t *)tp->tp_data); 1077 free(tp, M_DEVBUF); 1078 return (0); 1079 } 1080 1081 int 1082 twe_param_get_4(struct twe_softc *sc, int table_id, int param_id, 1083 uint32_t *valp) 1084 { 1085 struct twe_param *tp; 1086 int rv; 1087 1088 rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp); 1089 if (rv != 0) 1090 return (rv); 1091 *valp = le32toh(*(uint32_t *)tp->tp_data); 1092 free(tp, M_DEVBUF); 1093 return (0); 1094 } 1095 1096 /* 1097 * Execute a TWE_OP_GET_PARAM command. If a callback function is provided, 1098 * it will be called with generated context when the command has completed. 1099 * If no callback is provided, the command will be executed synchronously 1100 * and a pointer to a buffer containing the data returned. 1101 * 1102 * The caller or callback is responsible for freeing the buffer. 1103 * 1104 * NOTE: We assume we can sleep here to wait for a CCB to become available. 1105 */ 1106 int 1107 twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size, 1108 void (*func)(struct twe_ccb *, int), struct twe_param **pbuf) 1109 { 1110 struct twe_ccb *ccb; 1111 struct twe_cmd *tc; 1112 struct twe_param *tp; 1113 int rv, s; 1114 1115 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT); 1116 if (tp == NULL) 1117 return ENOMEM; 1118 1119 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); 1120 KASSERT(ccb != NULL); 1121 1122 ccb->ccb_data = tp; 1123 ccb->ccb_datasize = TWE_SECTOR_SIZE; 1124 ccb->ccb_tx.tx_handler = func; 1125 ccb->ccb_tx.tx_context = tp; 1126 ccb->ccb_tx.tx_dv = sc->sc_dev; 1127 1128 tc = ccb->ccb_cmd; 1129 tc->tc_size = 2; 1130 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5); 1131 tc->tc_unit = 0; 1132 tc->tc_count = htole16(1); 1133 1134 /* Fill in the outbound parameter data. */ 1135 tp->tp_table_id = htole16(table_id); 1136 tp->tp_param_id = param_id; 1137 tp->tp_param_size = size; 1138 1139 /* Map the transfer. */ 1140 if ((rv = twe_ccb_map(sc, ccb)) != 0) { 1141 twe_ccb_free(sc, ccb); 1142 goto done; 1143 } 1144 1145 /* Submit the command and either wait or let the callback handle it. */ 1146 if (func == NULL) { 1147 s = splbio(); 1148 rv = twe_ccb_poll(sc, ccb, 5); 1149 twe_ccb_unmap(sc, ccb); 1150 twe_ccb_free(sc, ccb); 1151 splx(s); 1152 } else { 1153 #ifdef DEBUG 1154 if (pbuf != NULL) 1155 panic("both func and pbuf defined"); 1156 #endif 1157 twe_ccb_enqueue(sc, ccb); 1158 return 0; 1159 } 1160 1161 done: 1162 if (pbuf == NULL || rv != 0) 1163 free(tp, M_DEVBUF); 1164 else if (pbuf != NULL && rv == 0) 1165 *pbuf = tp; 1166 return rv; 1167 } 1168 1169 /* 1170 * Execute a TWE_OP_SET_PARAM command. 1171 * 1172 * NOTE: We assume we can sleep here to wait for a CCB to become available. 1173 */ 1174 static int 1175 twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size, 1176 void *sbuf) 1177 { 1178 struct twe_ccb *ccb; 1179 struct twe_cmd *tc; 1180 struct twe_param *tp; 1181 int rv, s; 1182 1183 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT); 1184 if (tp == NULL) 1185 return ENOMEM; 1186 1187 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); 1188 KASSERT(ccb != NULL); 1189 1190 ccb->ccb_data = tp; 1191 ccb->ccb_datasize = TWE_SECTOR_SIZE; 1192 ccb->ccb_tx.tx_handler = 0; 1193 ccb->ccb_tx.tx_context = tp; 1194 ccb->ccb_tx.tx_dv = sc->sc_dev; 1195 1196 tc = ccb->ccb_cmd; 1197 tc->tc_size = 2; 1198 tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5); 1199 tc->tc_unit = 0; 1200 tc->tc_count = htole16(1); 1201 1202 /* Fill in the outbound parameter data. */ 1203 tp->tp_table_id = htole16(table_id); 1204 tp->tp_param_id = param_id; 1205 tp->tp_param_size = size; 1206 memcpy(tp->tp_data, sbuf, size); 1207 1208 /* Map the transfer. */ 1209 if ((rv = twe_ccb_map(sc, ccb)) != 0) { 1210 twe_ccb_free(sc, ccb); 1211 goto done; 1212 } 1213 1214 /* Submit the command and wait. */ 1215 s = splbio(); 1216 rv = twe_ccb_poll(sc, ccb, 5); 1217 twe_ccb_unmap(sc, ccb); 1218 twe_ccb_free(sc, ccb); 1219 splx(s); 1220 done: 1221 free(tp, M_DEVBUF); 1222 return (rv); 1223 } 1224 1225 /* 1226 * Execute a TWE_OP_INIT_CONNECTION command. Return non-zero on error. 1227 * Must be called with interrupts blocked. 1228 */ 1229 static int 1230 twe_init_connection(struct twe_softc *sc) 1231 { 1232 struct twe_ccb *ccb; 1233 struct twe_cmd *tc; 1234 int rv; 1235 1236 if ((ccb = twe_ccb_alloc(sc, 0)) == NULL) 1237 return (EAGAIN); 1238 1239 /* Build the command. */ 1240 tc = ccb->ccb_cmd; 1241 tc->tc_size = 3; 1242 tc->tc_opcode = TWE_OP_INIT_CONNECTION; 1243 tc->tc_unit = 0; 1244 tc->tc_count = htole16(TWE_MAX_CMDS); 1245 tc->tc_args.init_connection.response_queue_pointer = 0; 1246 1247 /* Submit the command for immediate execution. */ 1248 rv = twe_ccb_poll(sc, ccb, 5); 1249 twe_ccb_free(sc, ccb); 1250 return (rv); 1251 } 1252 1253 /* 1254 * Poll the controller for completed commands. Must be called with 1255 * interrupts blocked. 1256 */ 1257 static void 1258 twe_poll(struct twe_softc *sc) 1259 { 1260 struct twe_ccb *ccb; 1261 int found; 1262 u_int status, cmdid; 1263 1264 found = 0; 1265 1266 for (;;) { 1267 status = twe_inl(sc, TWE_REG_STS); 1268 twe_status_check(sc, status); 1269 1270 if ((status & TWE_STS_RESP_QUEUE_EMPTY)) 1271 break; 1272 1273 found = 1; 1274 cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE); 1275 cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT; 1276 if (cmdid >= TWE_MAX_QUEUECNT) { 1277 aprint_error_dev(sc->sc_dev, "bad cmdid %d\n", cmdid); 1278 continue; 1279 } 1280 1281 ccb = sc->sc_ccbs + cmdid; 1282 if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) { 1283 printf("%s: CCB for cmdid %d not active\n", 1284 device_xname(sc->sc_dev), cmdid); 1285 continue; 1286 } 1287 ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE; 1288 1289 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, 1290 (char *)ccb->ccb_cmd - (char *)sc->sc_cmds, 1291 sizeof(struct twe_cmd), 1292 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1293 1294 /* Pass notification to upper layers. */ 1295 if (ccb->ccb_tx.tx_handler != NULL) 1296 (*ccb->ccb_tx.tx_handler)(ccb, 1297 ccb->ccb_cmd->tc_status != 0 ? EIO : 0); 1298 } 1299 1300 /* If any commands have completed, run the software queue. */ 1301 if (found) 1302 twe_ccb_enqueue(sc, NULL); 1303 } 1304 1305 /* 1306 * Wait for `status' to be set in the controller status register. Return 1307 * zero if found, non-zero if the operation timed out. 1308 */ 1309 static int 1310 twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo) 1311 { 1312 1313 for (timo *= 10; timo != 0; timo--) { 1314 if ((twe_inl(sc, TWE_REG_STS) & status) == status) 1315 break; 1316 delay(100000); 1317 } 1318 1319 return (timo == 0); 1320 } 1321 1322 /* 1323 * Clear a PCI parity error. 1324 */ 1325 static void 1326 twe_clear_pci_parity_error(struct twe_softc *sc) 1327 { 1328 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, 1329 TWE_CTL_CLEAR_PARITY_ERROR); 1330 1331 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2); 1332 } 1333 1334 1335 /* 1336 * Clear a PCI abort. 1337 */ 1338 static void 1339 twe_clear_pci_abort(struct twe_softc *sc) 1340 { 1341 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PCI_ABORT); 1342 1343 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2); 1344 } 1345 1346 /* 1347 * Complain if the status bits aren't what we expect. 1348 */ 1349 static int 1350 twe_status_check(struct twe_softc *sc, u_int status) 1351 { 1352 int rv; 1353 1354 rv = 0; 1355 1356 if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) { 1357 aprint_error_dev(sc->sc_dev, "missing status bits: 0x%08x\n", 1358 status & ~TWE_STS_EXPECTED_BITS); 1359 rv = -1; 1360 } 1361 1362 if ((status & TWE_STS_UNEXPECTED_BITS) != 0) { 1363 aprint_error_dev(sc->sc_dev, "unexpected status bits: 0x%08x\n", 1364 status & TWE_STS_UNEXPECTED_BITS); 1365 rv = -1; 1366 if (status & TWE_STS_PCI_PARITY_ERROR) { 1367 aprint_error_dev(sc->sc_dev, "PCI parity error: Reseat" 1368 " card, move card or buggy device present.\n"); 1369 twe_clear_pci_parity_error(sc); 1370 } 1371 if (status & TWE_STS_PCI_ABORT) { 1372 aprint_error_dev(sc->sc_dev, "PCI abort, clearing.\n"); 1373 twe_clear_pci_abort(sc); 1374 } 1375 } 1376 1377 return (rv); 1378 } 1379 1380 /* 1381 * Allocate and initialise a CCB. 1382 */ 1383 static inline void 1384 twe_ccb_init(struct twe_softc *sc, struct twe_ccb *ccb, int flags) 1385 { 1386 struct twe_cmd *tc; 1387 1388 ccb->ccb_tx.tx_handler = NULL; 1389 ccb->ccb_flags = flags; 1390 tc = ccb->ccb_cmd; 1391 tc->tc_status = 0; 1392 tc->tc_flags = 0; 1393 tc->tc_cmdid = ccb->ccb_cmdid; 1394 } 1395 1396 struct twe_ccb * 1397 twe_ccb_alloc(struct twe_softc *sc, int flags) 1398 { 1399 struct twe_ccb *ccb; 1400 int s; 1401 1402 s = splbio(); 1403 if (__predict_false((flags & TWE_CCB_AEN) != 0)) { 1404 /* Use the reserved CCB. */ 1405 ccb = sc->sc_ccbs; 1406 } else { 1407 /* Allocate a CCB and command block. */ 1408 if (__predict_false((ccb = 1409 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) { 1410 splx(s); 1411 return (NULL); 1412 } 1413 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist); 1414 } 1415 #ifdef DIAGNOSTIC 1416 if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0) 1417 panic("twe_ccb_alloc: got reserved CCB for non-AEN"); 1418 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0) 1419 panic("twe_ccb_alloc: CCB %ld already allocated", 1420 (long)(ccb - sc->sc_ccbs)); 1421 flags |= TWE_CCB_ALLOCED; 1422 #endif 1423 splx(s); 1424 1425 twe_ccb_init(sc, ccb, flags); 1426 return (ccb); 1427 } 1428 1429 struct twe_ccb * 1430 twe_ccb_alloc_wait(struct twe_softc *sc, int flags) 1431 { 1432 struct twe_ccb *ccb; 1433 int s; 1434 1435 KASSERT((flags & TWE_CCB_AEN) == 0); 1436 1437 s = splbio(); 1438 while (__predict_false((ccb = 1439 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) { 1440 sc->sc_flags |= TWEF_WAIT_CCB; 1441 (void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0); 1442 } 1443 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist); 1444 #ifdef DIAGNOSTIC 1445 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0) 1446 panic("twe_ccb_alloc_wait: CCB %ld already allocated", 1447 (long)(ccb - sc->sc_ccbs)); 1448 flags |= TWE_CCB_ALLOCED; 1449 #endif 1450 splx(s); 1451 1452 twe_ccb_init(sc, ccb, flags); 1453 return (ccb); 1454 } 1455 1456 /* 1457 * Free a CCB. 1458 */ 1459 void 1460 twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb) 1461 { 1462 int s; 1463 1464 s = splbio(); 1465 if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) { 1466 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist); 1467 if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) { 1468 sc->sc_flags &= ~TWEF_WAIT_CCB; 1469 wakeup(&sc->sc_ccb_freelist); 1470 } 1471 } 1472 ccb->ccb_flags = 0; 1473 splx(s); 1474 } 1475 1476 /* 1477 * Map the specified CCB's command block and data buffer (if any) into 1478 * controller visible space. Perform DMA synchronisation. 1479 */ 1480 int 1481 twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb) 1482 { 1483 struct twe_cmd *tc; 1484 int flags, nsegs, i, s, rv; 1485 void *data; 1486 1487 /* 1488 * The data as a whole must be 512-byte aligned. 1489 */ 1490 if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) { 1491 s = splvm(); 1492 /* XXX */ 1493 rv = uvm_km_kmem_alloc(kmem_va_arena, 1494 ccb->ccb_datasize, (VM_NOSLEEP | VM_INSTANTFIT), 1495 (vmem_addr_t *)&ccb->ccb_abuf); 1496 splx(s); 1497 data = (void *)ccb->ccb_abuf; 1498 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0) 1499 memcpy(data, ccb->ccb_data, ccb->ccb_datasize); 1500 } else { 1501 ccb->ccb_abuf = (vaddr_t)0; 1502 data = ccb->ccb_data; 1503 } 1504 1505 /* 1506 * Map the data buffer into bus space and build the S/G list. 1507 */ 1508 rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data, 1509 ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING | 1510 ((ccb->ccb_flags & TWE_CCB_DATA_IN) ? 1511 BUS_DMA_READ : BUS_DMA_WRITE)); 1512 if (rv != 0) { 1513 if (ccb->ccb_abuf != (vaddr_t)0) { 1514 s = splvm(); 1515 /* XXX */ 1516 uvm_km_kmem_free(kmem_va_arena, ccb->ccb_abuf, 1517 ccb->ccb_datasize); 1518 splx(s); 1519 } 1520 return (rv); 1521 } 1522 1523 nsegs = ccb->ccb_dmamap_xfer->dm_nsegs; 1524 tc = ccb->ccb_cmd; 1525 tc->tc_size += 2 * nsegs; 1526 1527 /* The location of the S/G list is dependent upon command type. */ 1528 switch (tc->tc_opcode >> 5) { 1529 case 2: 1530 for (i = 0; i < nsegs; i++) { 1531 tc->tc_args.param.sgl[i].tsg_address = 1532 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr); 1533 tc->tc_args.param.sgl[i].tsg_length = 1534 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len); 1535 } 1536 /* XXX Needed? */ 1537 for (; i < TWE_SG_SIZE; i++) { 1538 tc->tc_args.param.sgl[i].tsg_address = 0; 1539 tc->tc_args.param.sgl[i].tsg_length = 0; 1540 } 1541 break; 1542 case 3: 1543 for (i = 0; i < nsegs; i++) { 1544 tc->tc_args.io.sgl[i].tsg_address = 1545 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr); 1546 tc->tc_args.io.sgl[i].tsg_length = 1547 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len); 1548 } 1549 /* XXX Needed? */ 1550 for (; i < TWE_SG_SIZE; i++) { 1551 tc->tc_args.io.sgl[i].tsg_address = 0; 1552 tc->tc_args.io.sgl[i].tsg_length = 0; 1553 } 1554 break; 1555 default: 1556 /* 1557 * In all likelihood, this is a command passed from 1558 * management tools in userspace where no S/G list is 1559 * necessary because no data is being passed. 1560 */ 1561 break; 1562 } 1563 1564 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0) 1565 flags = BUS_DMASYNC_PREREAD; 1566 else 1567 flags = 0; 1568 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0) 1569 flags |= BUS_DMASYNC_PREWRITE; 1570 1571 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0, 1572 ccb->ccb_datasize, flags); 1573 return (0); 1574 } 1575 1576 /* 1577 * Unmap the specified CCB's command block and data buffer (if any) and 1578 * perform DMA synchronisation. 1579 */ 1580 void 1581 twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb) 1582 { 1583 int flags, s; 1584 1585 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0) 1586 flags = BUS_DMASYNC_POSTREAD; 1587 else 1588 flags = 0; 1589 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0) 1590 flags |= BUS_DMASYNC_POSTWRITE; 1591 1592 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0, 1593 ccb->ccb_datasize, flags); 1594 bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer); 1595 1596 if (ccb->ccb_abuf != (vaddr_t)0) { 1597 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0) 1598 memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf, 1599 ccb->ccb_datasize); 1600 s = splvm(); 1601 /* XXX */ 1602 uvm_km_kmem_free(kmem_va_arena, ccb->ccb_abuf, 1603 ccb->ccb_datasize); 1604 splx(s); 1605 } 1606 } 1607 1608 /* 1609 * Submit a command to the controller and poll on completion. Return 1610 * non-zero on timeout (but don't check status, as some command types don't 1611 * return status). Must be called with interrupts blocked. 1612 */ 1613 int 1614 twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo) 1615 { 1616 int rv; 1617 1618 if ((rv = twe_ccb_submit(sc, ccb)) != 0) 1619 return (rv); 1620 1621 for (timo *= 1000; timo != 0; timo--) { 1622 twe_poll(sc); 1623 if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0) 1624 break; 1625 DELAY(100); 1626 } 1627 1628 return (timo == 0); 1629 } 1630 1631 /* 1632 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in 1633 * the order that they were enqueued and try to submit their command blocks 1634 * to the controller for execution. 1635 */ 1636 void 1637 twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb) 1638 { 1639 int s; 1640 1641 s = splbio(); 1642 1643 if (ccb != NULL) 1644 SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq); 1645 1646 while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) { 1647 if (twe_ccb_submit(sc, ccb)) 1648 break; 1649 SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq); 1650 } 1651 1652 splx(s); 1653 } 1654 1655 /* 1656 * Submit the command block associated with the specified CCB to the 1657 * controller for execution. Must be called with interrupts blocked. 1658 */ 1659 int 1660 twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb) 1661 { 1662 bus_addr_t pa; 1663 int rv; 1664 u_int status; 1665 1666 /* Check to see if we can post a command. */ 1667 status = twe_inl(sc, TWE_REG_STS); 1668 twe_status_check(sc, status); 1669 1670 if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) { 1671 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, 1672 (char *)ccb->ccb_cmd - (char *)sc->sc_cmds, 1673 sizeof(struct twe_cmd), 1674 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 1675 #ifdef DIAGNOSTIC 1676 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0) 1677 panic("%s: CCB %ld not ALLOCED\n", 1678 device_xname(sc->sc_dev), (long)(ccb - sc->sc_ccbs)); 1679 #endif 1680 ccb->ccb_flags |= TWE_CCB_ACTIVE; 1681 pa = sc->sc_cmds_paddr + 1682 ccb->ccb_cmdid * sizeof(struct twe_cmd); 1683 twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa); 1684 rv = 0; 1685 } else 1686 rv = EBUSY; 1687 1688 return (rv); 1689 } 1690 1691 1692 /* 1693 * Accept an open operation on the control device. 1694 */ 1695 static int 1696 tweopen(dev_t dev, int flag, int mode, struct lwp *l) 1697 { 1698 struct twe_softc *twe; 1699 1700 if ((twe = device_lookup_private(&twe_cd, minor(dev))) == NULL) 1701 return (ENXIO); 1702 if ((twe->sc_flags & TWEF_OPEN) != 0) 1703 return (EBUSY); 1704 1705 twe->sc_flags |= TWEF_OPEN; 1706 return (0); 1707 } 1708 1709 /* 1710 * Accept the last close on the control device. 1711 */ 1712 static int 1713 tweclose(dev_t dev, int flag, int mode, 1714 struct lwp *l) 1715 { 1716 struct twe_softc *twe; 1717 1718 twe = device_lookup_private(&twe_cd, minor(dev)); 1719 twe->sc_flags &= ~TWEF_OPEN; 1720 return (0); 1721 } 1722 1723 void 1724 twe_ccb_wait_handler(struct twe_ccb *ccb, int error) 1725 { 1726 1727 /* Just wake up the sleeper. */ 1728 wakeup(ccb); 1729 } 1730 1731 /* 1732 * Handle control operations. 1733 */ 1734 static int 1735 tweioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l) 1736 { 1737 struct twe_softc *twe; 1738 struct twe_ccb *ccb; 1739 struct twe_param *param; 1740 struct twe_usercommand *tu; 1741 struct twe_paramcommand *tp; 1742 struct twe_drivecommand *td; 1743 void *pdata = NULL; 1744 int s, error = 0; 1745 u_int8_t cmdid; 1746 1747 twe = device_lookup_private(&twe_cd, minor(dev)); 1748 tu = (struct twe_usercommand *)data; 1749 tp = (struct twe_paramcommand *)data; 1750 td = (struct twe_drivecommand *)data; 1751 1752 /* This is intended to be compatible with the FreeBSD interface. */ 1753 switch (cmd) { 1754 case TWEIO_COMMAND: 1755 error = kauth_authorize_device_passthru(l->l_cred, dev, 1756 KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data); 1757 if (error) 1758 return (error); 1759 1760 /* XXX mutex */ 1761 if (tu->tu_size > 0) { 1762 /* 1763 * XXX Handle > TWE_SECTOR_SIZE? Let's see if 1764 * it's really necessary, first. 1765 */ 1766 if (tu->tu_size > TWE_SECTOR_SIZE) { 1767 #ifdef TWE_DEBUG 1768 printf("%s: TWEIO_COMMAND: tu_size = %zu\n", 1769 device_xname(twe->sc_dev), tu->tu_size); 1770 #endif 1771 return EINVAL; 1772 } 1773 pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK); 1774 error = copyin(tu->tu_data, pdata, tu->tu_size); 1775 if (error != 0) 1776 goto done; 1777 ccb = twe_ccb_alloc_wait(twe, 1778 TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); 1779 KASSERT(ccb != NULL); 1780 ccb->ccb_data = pdata; 1781 ccb->ccb_datasize = TWE_SECTOR_SIZE; 1782 } else { 1783 ccb = twe_ccb_alloc_wait(twe, 0); 1784 KASSERT(ccb != NULL); 1785 } 1786 1787 ccb->ccb_tx.tx_handler = twe_ccb_wait_handler; 1788 ccb->ccb_tx.tx_context = NULL; 1789 ccb->ccb_tx.tx_dv = twe->sc_dev; 1790 1791 cmdid = ccb->ccb_cmdid; 1792 memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd)); 1793 ccb->ccb_cmd->tc_cmdid = cmdid; 1794 1795 /* Map the transfer. */ 1796 if ((error = twe_ccb_map(twe, ccb)) != 0) { 1797 twe_ccb_free(twe, ccb); 1798 goto done; 1799 } 1800 1801 /* Submit the command and wait up to 1 minute. */ 1802 error = 0; 1803 twe_ccb_enqueue(twe, ccb); 1804 s = splbio(); 1805 while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0) 1806 if ((error = tsleep(ccb, PRIBIO, "tweioctl", 1807 60 * hz)) != 0) 1808 break; 1809 splx(s); 1810 1811 /* Copy the command back to the ioctl argument. */ 1812 memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd)); 1813 #ifdef TWE_DEBUG 1814 printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, " 1815 "tc_status = 0x%02x\n", device_xname(twe->sc_dev), 1816 tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status); 1817 #endif 1818 1819 s = splbio(); 1820 twe_ccb_free(twe, ccb); 1821 splx(s); 1822 1823 if (tu->tu_size > 0) 1824 error = copyout(pdata, tu->tu_data, tu->tu_size); 1825 goto done; 1826 1827 case TWEIO_STATS: 1828 return (ENOENT); 1829 1830 case TWEIO_AEN_POLL: 1831 s = splbio(); 1832 *(u_int *)data = twe_aen_dequeue(twe); 1833 splx(s); 1834 return (0); 1835 1836 case TWEIO_AEN_WAIT: 1837 s = splbio(); 1838 while ((*(u_int *)data = 1839 twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) { 1840 twe->sc_flags |= TWEF_AENQ_WAIT; 1841 error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH, 1842 "tweaen", 0); 1843 if (error == EINTR) { 1844 splx(s); 1845 return (error); 1846 } 1847 } 1848 splx(s); 1849 return (0); 1850 1851 case TWEIO_GET_PARAM: 1852 error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id, 1853 tp->tp_size, 0, ¶m); 1854 if (error != 0) 1855 return (error); 1856 if (param->tp_param_size > tp->tp_size) { 1857 error = EFAULT; 1858 goto done; 1859 } 1860 error = copyout(param->tp_data, tp->tp_data, 1861 param->tp_param_size); 1862 free(param, M_DEVBUF); 1863 goto done; 1864 1865 case TWEIO_SET_PARAM: 1866 pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK); 1867 if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0) 1868 goto done; 1869 error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id, 1870 tp->tp_size, pdata); 1871 goto done; 1872 1873 case TWEIO_RESET: 1874 s = splbio(); 1875 twe_reset(twe); 1876 splx(s); 1877 return (0); 1878 1879 case TWEIO_ADD_UNIT: 1880 /* XXX mutex */ 1881 return (twe_add_unit(twe, td->td_unit)); 1882 1883 case TWEIO_DEL_UNIT: 1884 /* XXX mutex */ 1885 return (twe_del_unit(twe, td->td_unit)); 1886 1887 default: 1888 return EINVAL; 1889 } 1890 done: 1891 if (pdata) 1892 free(pdata, M_DEVBUF); 1893 return error; 1894 } 1895 1896 const struct cdevsw twe_cdevsw = { 1897 .d_open = tweopen, 1898 .d_close = tweclose, 1899 .d_read = noread, 1900 .d_write = nowrite, 1901 .d_ioctl = tweioctl, 1902 .d_stop = nostop, 1903 .d_tty = notty, 1904 .d_poll = nopoll, 1905 .d_mmap = nommap, 1906 .d_kqfilter = nokqfilter, 1907 .d_discard = nodiscard, 1908 .d_flag = D_OTHER 1909 }; 1910 1911 /* 1912 * Print some information about the controller 1913 */ 1914 static void 1915 twe_describe_controller(struct twe_softc *sc) 1916 { 1917 struct twe_param *p[6]; 1918 int i, rv = 0; 1919 uint32_t dsize; 1920 uint8_t ports; 1921 1922 ports = 0; 1923 1924 /* get the port count */ 1925 rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER, 1926 TWE_PARAM_CONTROLLER_PortCount, &ports); 1927 1928 /* get version strings */ 1929 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon, 1930 16, NULL, &p[0]); 1931 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW, 1932 16, NULL, &p[1]); 1933 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS, 1934 16, NULL, &p[2]); 1935 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB, 1936 8, NULL, &p[3]); 1937 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA, 1938 8, NULL, &p[4]); 1939 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI, 1940 8, NULL, &p[5]); 1941 1942 if (rv) { 1943 /* some error occurred */ 1944 aprint_error_dev(sc->sc_dev, 1945 "failed to fetch version information\n"); 1946 return; 1947 } 1948 1949 aprint_normal_dev(sc->sc_dev, "%d ports, Firmware %.16s, BIOS %.16s\n", 1950 ports, p[1]->tp_data, p[2]->tp_data); 1951 1952 aprint_verbose_dev(sc->sc_dev, 1953 "Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n", 1954 p[0]->tp_data, p[3]->tp_data, 1955 p[4]->tp_data, p[5]->tp_data); 1956 1957 free(p[0], M_DEVBUF); 1958 free(p[1], M_DEVBUF); 1959 free(p[2], M_DEVBUF); 1960 free(p[3], M_DEVBUF); 1961 free(p[4], M_DEVBUF); 1962 free(p[5], M_DEVBUF); 1963 1964 rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY, 1965 TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]); 1966 if (rv) { 1967 aprint_error_dev(sc->sc_dev, 1968 "failed to get drive status summary\n"); 1969 return; 1970 } 1971 for (i = 0; i < ports; i++) { 1972 if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present) 1973 continue; 1974 rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i, 1975 TWE_PARAM_DRIVEINFO_Size, &dsize); 1976 if (rv) { 1977 aprint_error_dev(sc->sc_dev, 1978 "unable to get drive size for port %d\n", i); 1979 continue; 1980 } 1981 rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i, 1982 TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]); 1983 if (rv) { 1984 aprint_error_dev(sc->sc_dev, 1985 "unable to get drive model for port %d\n", i); 1986 continue; 1987 } 1988 aprint_verbose_dev(sc->sc_dev, "port %d: %.40s %d MB\n", 1989 i, p[1]->tp_data, dsize / 2048); 1990 free(p[1], M_DEVBUF); 1991 } 1992 free(p[0], M_DEVBUF); 1993 } 1994