xref: /netbsd-src/sys/dev/pci/twe.c (revision ce2c90c7c172d95d2402a5b3d96d8f8e6d138a21)
1 /*	$NetBSD: twe.c,v 1.79 2006/10/12 01:31:33 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 2000 Michael Smith
41  * Copyright (c) 2000 BSDi
42  * All rights reserved.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp
66  */
67 
68 /*
69  * Driver for the 3ware Escalade family of RAID controllers.
70  */
71 
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.79 2006/10/12 01:31:33 christos Exp $");
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/kernel.h>
78 #include <sys/device.h>
79 #include <sys/queue.h>
80 #include <sys/proc.h>
81 #include <sys/buf.h>
82 #include <sys/endian.h>
83 #include <sys/malloc.h>
84 #include <sys/conf.h>
85 #include <sys/disk.h>
86 #include <sys/sysctl.h>
87 #include <sys/syslog.h>
88 
89 #include <uvm/uvm_extern.h>
90 
91 #include <sys/bswap.h>
92 #include <machine/bus.h>
93 
94 #include <dev/pci/pcireg.h>
95 #include <dev/pci/pcivar.h>
96 #include <dev/pci/pcidevs.h>
97 #include <dev/pci/twereg.h>
98 #include <dev/pci/twevar.h>
99 #include <dev/pci/tweio.h>
100 
101 #include "locators.h"
102 
103 #define	PCI_CBIO	0x10
104 
105 static int	twe_aen_get(struct twe_softc *, uint16_t *);
106 static void	twe_aen_handler(struct twe_ccb *, int);
107 static void	twe_aen_enqueue(struct twe_softc *sc, uint16_t, int);
108 static uint16_t	twe_aen_dequeue(struct twe_softc *);
109 
110 static void	twe_attach(struct device *, struct device *, void *);
111 static int	twe_init_connection(struct twe_softc *);
112 static int	twe_intr(void *);
113 static int	twe_match(struct device *, struct cfdata *, void *);
114 static int	twe_param_set(struct twe_softc *, int, int, size_t, void *);
115 static void	twe_poll(struct twe_softc *);
116 static int	twe_print(void *, const char *);
117 static int	twe_reset(struct twe_softc *);
118 static int	twe_status_check(struct twe_softc *, u_int);
119 static int	twe_status_wait(struct twe_softc *, u_int, int);
120 static void	twe_describe_controller(struct twe_softc *);
121 static void twe_clear_pci_abort(struct twe_softc *sc);
122 static void twe_clear_pci_parity_error(struct twe_softc *sc);
123 
124 static int	twe_add_unit(struct twe_softc *, int);
125 static int	twe_del_unit(struct twe_softc *, int);
126 static int	twe_init_connection(struct twe_softc *);
127 
128 static inline u_int32_t	twe_inl(struct twe_softc *, int);
129 static inline void twe_outl(struct twe_softc *, int, u_int32_t);
130 
131 extern struct	cfdriver twe_cd;
132 
133 CFATTACH_DECL(twe, sizeof(struct twe_softc),
134     twe_match, twe_attach, NULL, NULL);
135 
136 /* FreeBSD driver revision for sysctl expected by the 3ware cli */
137 const char twever[] = "1.50.01.002";
138 
139 /*
140  * Tables to convert numeric codes to strings.
141  */
142 const struct twe_code_table twe_table_status[] = {
143 	{ 0x00,	"successful completion" },
144 
145 	/* info */
146 	{ 0x42,	"command in progress" },
147 	{ 0x6c,	"retrying interface CRC error from UDMA command" },
148 
149 	/* warning */
150 	{ 0x81,	"redundant/inconsequential request ignored" },
151 	{ 0x8e,	"failed to write zeroes to LBA 0" },
152 	{ 0x8f,	"failed to profile TwinStor zones" },
153 
154 	/* fatal */
155 	{ 0xc1,	"aborted due to system command or reconfiguration" },
156 	{ 0xc4,	"aborted" },
157 	{ 0xc5,	"access error" },
158 	{ 0xc6,	"access violation" },
159 	{ 0xc7,	"device failure" },	/* high byte may be port # */
160 	{ 0xc8,	"controller error" },
161 	{ 0xc9,	"timed out" },
162 	{ 0xcb,	"invalid unit number" },
163 	{ 0xcf,	"unit not available" },
164 	{ 0xd2,	"undefined opcode" },
165 	{ 0xdb,	"request incompatible with unit" },
166 	{ 0xdc,	"invalid request" },
167 	{ 0xff,	"firmware error, reset requested" },
168 
169 	{ 0,	NULL }
170 };
171 
172 const struct twe_code_table twe_table_unitstate[] = {
173 	{ TWE_PARAM_UNITSTATUS_Normal,		"Normal" },
174 	{ TWE_PARAM_UNITSTATUS_Initialising,	"Initializing" },
175 	{ TWE_PARAM_UNITSTATUS_Degraded,	"Degraded" },
176 	{ TWE_PARAM_UNITSTATUS_Rebuilding,	"Rebuilding" },
177 	{ TWE_PARAM_UNITSTATUS_Verifying,	"Verifying" },
178 	{ TWE_PARAM_UNITSTATUS_Corrupt,		"Corrupt" },
179 	{ TWE_PARAM_UNITSTATUS_Missing,		"Missing" },
180 
181 	{ 0,					NULL }
182 };
183 
184 const struct twe_code_table twe_table_unittype[] = {
185 	/* array descriptor configuration */
186 	{ TWE_AD_CONFIG_RAID0,			"RAID0" },
187 	{ TWE_AD_CONFIG_RAID1,			"RAID1" },
188 	{ TWE_AD_CONFIG_TwinStor,		"TwinStor" },
189 	{ TWE_AD_CONFIG_RAID5,			"RAID5" },
190 	{ TWE_AD_CONFIG_RAID10,			"RAID10" },
191 	{ TWE_UD_CONFIG_JBOD,			"JBOD" },
192 
193 	{ 0,					NULL }
194 };
195 
196 const struct twe_code_table twe_table_stripedepth[] = {
197 	{ TWE_AD_STRIPE_4k,			"4K" },
198 	{ TWE_AD_STRIPE_8k,			"8K" },
199 	{ TWE_AD_STRIPE_16k,			"16K" },
200 	{ TWE_AD_STRIPE_32k,			"32K" },
201 	{ TWE_AD_STRIPE_64k,			"64K" },
202 	{ TWE_AD_STRIPE_128k,			"128K" },
203 	{ TWE_AD_STRIPE_256k,			"256K" },
204 	{ TWE_AD_STRIPE_512k,			"512K" },
205 	{ TWE_AD_STRIPE_1024k,			"1024K" },
206 
207 	{ 0,					NULL }
208 };
209 
210 /*
211  * Asynchronous event notification messages are qualified:
212  *	a - not unit/port specific
213  *	u - unit specific
214  *	p - port specific
215  *
216  * They are further qualified with a severity:
217  *	E - LOG_EMERG
218  *	a - LOG_ALERT
219  *	c - LOG_CRIT
220  *	e - LOG_ERR
221  *	w - LOG_WARNING
222  *	n - LOG_NOTICE
223  *	i - LOG_INFO
224  *	d - LOG_DEBUG
225  *	blank - just use printf
226  */
227 const struct twe_code_table twe_table_aen[] = {
228 	{ 0x00,	"a  queue empty" },
229 	{ 0x01,	"a  soft reset" },
230 	{ 0x02,	"uc degraded mode" },
231 	{ 0x03,	"aa controller error" },
232 	{ 0x04,	"uE rebuild fail" },
233 	{ 0x05,	"un rebuild done" },
234 	{ 0x06,	"ue incomplete unit" },
235 	{ 0x07,	"un initialization done" },
236 	{ 0x08,	"uw unclean shutdown detected" },
237 	{ 0x09,	"pe drive timeout" },
238 	{ 0x0a,	"pc drive error" },
239 	{ 0x0b,	"un rebuild started" },
240 	{ 0x0c,	"un initialization started" },
241 	{ 0x0d,	"ui logical unit deleted" },
242 	{ 0x0f,	"pc SMART threshold exceeded" },
243 	{ 0x15,	"a  table undefined" },	/* XXX: Not in FreeBSD's table */
244 	{ 0x21,	"pe ATA UDMA downgrade" },
245 	{ 0x22,	"pi ATA UDMA upgrade" },
246 	{ 0x23,	"pw sector repair occurred" },
247 	{ 0x24,	"aa SBUF integrity check failure" },
248 	{ 0x25,	"pa lost cached write" },
249 	{ 0x26,	"pa drive ECC error detected" },
250 	{ 0x27,	"pe DCB checksum error" },
251 	{ 0x28,	"pn DCB unsupported version" },
252 	{ 0x29,	"ui verify started" },
253 	{ 0x2a,	"ua verify failed" },
254 	{ 0x2b,	"ui verify complete" },
255 	{ 0x2c,	"pw overwrote bad sector during rebuild" },
256 	{ 0x2d,	"pa encountered bad sector during rebuild" },
257 	{ 0x2e,	"pe replacement drive too small" },
258 	{ 0x2f,	"ue array not previously initialized" },
259 	{ 0x30,	"p  drive not supported" },
260 	{ 0xff,	"a  aen queue full" },
261 
262 	{ 0,	NULL },
263 };
264 
265 const char *
266 twe_describe_code(const struct twe_code_table *table, uint32_t code)
267 {
268 
269 	for (; table->string != NULL; table++) {
270 		if (table->code == code)
271 			return (table->string);
272 	}
273 	return (NULL);
274 }
275 
276 static inline u_int32_t
277 twe_inl(struct twe_softc *sc, int off)
278 {
279 
280 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
281 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
282 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off));
283 }
284 
285 static inline void
286 twe_outl(struct twe_softc *sc, int off, u_int32_t val)
287 {
288 
289 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
290 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
291 	    BUS_SPACE_BARRIER_WRITE);
292 }
293 
294 /*
295  * Match a supported board.
296  */
297 static int
298 twe_match(struct device *parent __unused, struct cfdata *cfdata __unused,
299     void *aux)
300 {
301 	struct pci_attach_args *pa;
302 
303 	pa = aux;
304 
305 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE &&
306 	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE ||
307 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC));
308 }
309 
310 /*
311  * Attach a supported board.
312  *
313  * XXX This doesn't fail gracefully.
314  */
315 static void
316 twe_attach(struct device *parent __unused, struct device *self, void *aux)
317 {
318 	struct pci_attach_args *pa;
319 	struct twe_softc *sc;
320 	pci_chipset_tag_t pc;
321 	pci_intr_handle_t ih;
322 	pcireg_t csr;
323 	const char *intrstr;
324 	int s, size, i, rv, rseg;
325 	size_t max_segs, max_xfer;
326 	bus_dma_segment_t seg;
327         struct ctlname ctlnames[] = CTL_NAMES;
328         const struct sysctlnode *node;
329 	struct twe_cmd *tc;
330 	struct twe_ccb *ccb;
331 
332 	sc = (struct twe_softc *)self;
333 	pa = aux;
334 	pc = pa->pa_pc;
335 	sc->sc_dmat = pa->pa_dmat;
336 	SIMPLEQ_INIT(&sc->sc_ccb_queue);
337 	SLIST_INIT(&sc->sc_ccb_freelist);
338 
339 	aprint_naive(": RAID controller\n");
340 	aprint_normal(": 3ware Escalade\n");
341 
342 
343 	if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
344 	    &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
345 		aprint_error("%s: can't map i/o space\n", sc->sc_dv.dv_xname);
346 		return;
347 	}
348 
349 	/* Enable the device. */
350 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
351 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
352 	    csr | PCI_COMMAND_MASTER_ENABLE);
353 
354 	/* Map and establish the interrupt. */
355 	if (pci_intr_map(pa, &ih)) {
356 		aprint_error("%s: can't map interrupt\n", sc->sc_dv.dv_xname);
357 		return;
358 	}
359 
360 	intrstr = pci_intr_string(pc, ih);
361 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_BIO, twe_intr, sc);
362 	if (sc->sc_ih == NULL) {
363 		aprint_error("%s: can't establish interrupt%s%s\n",
364 			sc->sc_dv.dv_xname,
365 			(intrstr) ? " at " : "",
366 			(intrstr) ? intrstr : "");
367 		return;
368 	}
369 
370 	if (intrstr != NULL)
371 		aprint_normal("%s: interrupting at %s\n",
372 			sc->sc_dv.dv_xname, intrstr);
373 
374 	/*
375 	 * Allocate and initialise the command blocks and CCBs.
376 	 */
377         size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT;
378 
379 	if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
380 	    &rseg, BUS_DMA_NOWAIT)) != 0) {
381 		aprint_error("%s: unable to allocate commands, rv = %d\n",
382 		    sc->sc_dv.dv_xname, rv);
383 		return;
384 	}
385 
386 	if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size,
387 	    (caddr_t *)&sc->sc_cmds,
388 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
389 		aprint_error("%s: unable to map commands, rv = %d\n",
390 		    sc->sc_dv.dv_xname, rv);
391 		return;
392 	}
393 
394 	if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0,
395 	    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
396 		aprint_error("%s: unable to create command DMA map, rv = %d\n",
397 		    sc->sc_dv.dv_xname, rv);
398 		return;
399 	}
400 
401 	if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds,
402 	    size, NULL, BUS_DMA_NOWAIT)) != 0) {
403 		aprint_error("%s: unable to load command DMA map, rv = %d\n",
404 		    sc->sc_dv.dv_xname, rv);
405 		return;
406 	}
407 
408 	ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_NOWAIT);
409 	if (ccb == NULL) {
410 		aprint_error("%s: unable to allocate memory for ccbs\n",
411 		    sc->sc_dv.dv_xname);
412 		return;
413 	}
414 
415 	sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr;
416 	memset(sc->sc_cmds, 0, size);
417 
418 	sc->sc_ccbs = ccb;
419 	tc = (struct twe_cmd *)sc->sc_cmds;
420 	max_segs = twe_get_maxsegs();
421 	max_xfer = twe_get_maxxfer(max_segs);
422 
423 	for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) {
424 		ccb->ccb_cmd = tc;
425 		ccb->ccb_cmdid = i;
426 		ccb->ccb_flags = 0;
427 		rv = bus_dmamap_create(sc->sc_dmat, max_xfer,
428 		    max_segs, PAGE_SIZE, 0,
429 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
430 		    &ccb->ccb_dmamap_xfer);
431 		if (rv != 0) {
432 			aprint_error("%s: can't create dmamap, rv = %d\n",
433 			    sc->sc_dv.dv_xname, rv);
434 			return;
435 		}
436 
437 		/* Save the first CCB for AEN retrieval. */
438 		if (i != 0)
439 			SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb,
440 			    ccb_chain.slist);
441 	}
442 
443 	/* Wait for the controller to become ready. */
444 	if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) {
445 		aprint_error("%s: microcontroller not ready\n",
446 			sc->sc_dv.dv_xname);
447 		return;
448 	}
449 
450 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS);
451 
452 	/* Reset the controller. */
453 	s = splbio();
454 	rv = twe_reset(sc);
455 	splx(s);
456 	if (rv) {
457 		aprint_error("%s: reset failed\n", sc->sc_dv.dv_xname);
458 		return;
459 	}
460 
461 	/* Initialise connection with controller. */
462 	twe_init_connection(sc);
463 
464 	twe_describe_controller(sc);
465 
466 	/* Find and attach RAID array units. */
467 	sc->sc_nunits = 0;
468 	for (i = 0; i < TWE_MAX_UNITS; i++)
469 		(void) twe_add_unit(sc, i);
470 
471 	/* ...and finally, enable interrupts. */
472 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR |
473 	    TWE_CTL_UNMASK_RESP_INTR |
474 	    TWE_CTL_ENABLE_INTRS);
475 
476 	/* sysctl set-up for 3ware cli */
477 	if (sysctl_createv(NULL, 0, NULL, NULL,
478 				CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw",
479 				NULL, NULL, 0, NULL, 0,
480 				CTL_HW, CTL_EOL) != 0) {
481 		printf("%s: could not create %s sysctl node\n",
482 			sc->sc_dv.dv_xname, ctlnames[CTL_HW].ctl_name);
483 		return;
484 	}
485 	if (sysctl_createv(NULL, 0, NULL, &node,
486         			0, CTLTYPE_NODE, sc->sc_dv.dv_xname,
487         			SYSCTL_DESCR("twe driver information"),
488         			NULL, 0, NULL, 0,
489 				CTL_HW, CTL_CREATE, CTL_EOL) != 0) {
490                 printf("%s: could not create %s.%s sysctl node\n",
491 			sc->sc_dv.dv_xname, ctlnames[CTL_HW].ctl_name,
492 			sc->sc_dv.dv_xname);
493 		return;
494 	}
495 	if ((i = sysctl_createv(NULL, 0, NULL, NULL,
496         			0, CTLTYPE_STRING, "driver_version",
497         			SYSCTL_DESCR("twe0 driver version"),
498         			NULL, 0, &twever, 0,
499 				CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL))
500 				!= 0) {
501                 printf("%s: could not create %s.%s.driver_version sysctl\n",
502 			sc->sc_dv.dv_xname, ctlnames[CTL_HW].ctl_name,
503 			sc->sc_dv.dv_xname);
504 		return;
505 	}
506 }
507 
508 void
509 twe_register_callbacks(struct twe_softc *sc, int unit,
510     const struct twe_callbacks *tcb)
511 {
512 
513 	sc->sc_units[unit].td_callbacks = tcb;
514 }
515 
516 static void
517 twe_recompute_openings(struct twe_softc *sc)
518 {
519 	struct twe_drive *td;
520 	int unit, openings;
521 
522 	if (sc->sc_nunits != 0)
523 		openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits;
524 	else
525 		openings = 0;
526 	if (openings == sc->sc_openings)
527 		return;
528 	sc->sc_openings = openings;
529 
530 #ifdef TWE_DEBUG
531 	printf("%s: %d array%s, %d openings per array\n",
532 	    sc->sc_dv.dv_xname, sc->sc_nunits,
533 	    sc->sc_nunits == 1 ? "" : "s", sc->sc_openings);
534 #endif
535 
536 	for (unit = 0; unit < TWE_MAX_UNITS; unit++) {
537 		td = &sc->sc_units[unit];
538 		if (td->td_dev != NULL)
539 			(*td->td_callbacks->tcb_openings)(td->td_dev,
540 			    sc->sc_openings);
541 	}
542 }
543 
544 static int
545 twe_add_unit(struct twe_softc *sc, int unit)
546 {
547 	struct twe_param *dtp, *atp;
548 	struct twe_array_descriptor *ad;
549 	struct twe_drive *td;
550 	struct twe_attach_args twea;
551 	uint32_t newsize;
552 	int rv;
553 	uint16_t dsize;
554 	uint8_t newtype, newstripe;
555 	int locs[TWECF_NLOCS];
556 
557 	if (unit < 0 || unit >= TWE_MAX_UNITS)
558 		return (EINVAL);
559 
560 	/* Find attached units. */
561 	rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY,
562 	    TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp);
563 	if (rv != 0) {
564 		aprint_error("%s: error %d fetching unit summary\n",
565 		    sc->sc_dv.dv_xname, rv);
566 		return (rv);
567 	}
568 
569 	/* For each detected unit, collect size and store in an array. */
570 	td = &sc->sc_units[unit];
571 
572 	/* Unit present? */
573 	if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) {
574 		/*
575 		 * XXX Should we check to see if a device has been
576 		 * XXX attached at this index and detach it if it
577 		 * XXX has?  ("rescan" semantics)
578 		 */
579 		rv = 0;
580 		goto out;
581    	}
582 
583 	rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit,
584 	    TWE_PARAM_UNITINFO_DescriptorSize, &dsize);
585 	if (rv != 0) {
586 		aprint_error("%s: error %d fetching descriptor size "
587 		    "for unit %d\n", sc->sc_dv.dv_xname, rv, unit);
588 		goto out;
589 	}
590 
591 	rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit,
592 	    TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp);
593 	if (rv != 0) {
594 		aprint_error("%s: error %d fetching array descriptor "
595 		    "for unit %d\n", sc->sc_dv.dv_xname, rv, unit);
596 		goto out;
597 	}
598 
599 	ad = (struct twe_array_descriptor *)atp->tp_data;
600 	newtype = ad->configuration;
601 	newstripe = ad->stripe_size;
602 	free(atp, M_DEVBUF);
603 
604 	rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit,
605 	    TWE_PARAM_UNITINFO_Capacity, &newsize);
606 	if (rv != 0) {
607 		aprint_error(
608 		    "%s: error %d fetching capacity for unit %d\n",
609 		    sc->sc_dv.dv_xname, rv, unit);
610 		goto out;
611 	}
612 
613 	/*
614 	 * Have a device, so we need to attach it.  If there is currently
615 	 * something sitting at the slot, and the parameters are different,
616 	 * then we detach the old device before attaching the new one.
617 	 */
618 	if (td->td_dev != NULL &&
619 	    td->td_size == newsize &&
620 	    td->td_type == newtype &&
621 	    td->td_stripe == newstripe) {
622 		/* Same as the old device; just keep using it. */
623 		rv = 0;
624 		goto out;
625 	} else if (td->td_dev != NULL) {
626 		/* Detach the old device first. */
627 		(void) config_detach(td->td_dev, DETACH_FORCE);
628 		td->td_dev = NULL;
629 	} else if (td->td_size == 0)
630 		sc->sc_nunits++;
631 
632 	/*
633 	 * Committed to the new array unit; assign its parameters and
634 	 * recompute the number of available command openings.
635 	 */
636 	td->td_size = newsize;
637 	td->td_type = newtype;
638 	td->td_stripe = newstripe;
639 	twe_recompute_openings(sc);
640 
641 	twea.twea_unit = unit;
642 
643 	locs[TWECF_UNIT] = unit;
644 
645 	td->td_dev = config_found_sm_loc(&sc->sc_dv, "twe", locs, &twea,
646 					 twe_print, config_stdsubmatch);
647 
648 	rv = 0;
649  out:
650 	free(dtp, M_DEVBUF);
651 	return (rv);
652 }
653 
654 static int
655 twe_del_unit(struct twe_softc *sc, int unit)
656 {
657 	struct twe_drive *td;
658 
659 	if (unit < 0 || unit >= TWE_MAX_UNITS)
660 		return (EINVAL);
661 
662 	td = &sc->sc_units[unit];
663 	if (td->td_size != 0)
664 		sc->sc_nunits--;
665 	td->td_size = 0;
666 	td->td_type = 0;
667 	td->td_stripe = 0;
668 	if (td->td_dev != NULL) {
669 		(void) config_detach(td->td_dev, DETACH_FORCE);
670 		td->td_dev = NULL;
671 	}
672 	twe_recompute_openings(sc);
673 	return (0);
674 }
675 
676 /*
677  * Reset the controller.
678  * MUST BE CALLED AT splbio()!
679  */
680 static int
681 twe_reset(struct twe_softc *sc)
682 {
683 	uint16_t aen;
684 	u_int status;
685 	volatile u_int32_t junk;
686 	int got, rv;
687 
688 	/* Issue a soft reset. */
689 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET |
690 	    TWE_CTL_CLEAR_HOST_INTR |
691 	    TWE_CTL_CLEAR_ATTN_INTR |
692 	    TWE_CTL_MASK_CMD_INTR |
693 	    TWE_CTL_MASK_RESP_INTR |
694 	    TWE_CTL_CLEAR_ERROR_STS |
695 	    TWE_CTL_DISABLE_INTRS);
696 
697 	/* Wait for attention... */
698 	if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) {
699 		printf("%s: timeout waiting for attention interrupt\n",
700 		    sc->sc_dv.dv_xname);
701 		return (-1);
702 	}
703 
704 	/* ...and ACK it. */
705 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
706 
707 	/*
708 	 * Pull AENs out of the controller; look for a soft reset AEN.
709 	 * Open code this, since we want to detect reset even if the
710 	 * queue for management tools is full.
711 	 *
712 	 * Note that since:
713 	 *	- interrupts are blocked
714 	 *	- we have reset the controller
715 	 *	- acknowledged the pending ATTENTION
716 	 * that there is no way a pending asynchronous AEN fetch would
717 	 * finish, so clear the flag.
718 	 */
719 	sc->sc_flags &= ~TWEF_AEN;
720 	for (got = 0;;) {
721 		rv = twe_aen_get(sc, &aen);
722 		if (rv != 0)
723 			printf("%s: error %d while draining event queue\n",
724 			    sc->sc_dv.dv_xname, rv);
725 		if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY)
726 			break;
727 		if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET)
728 			got = 1;
729 		twe_aen_enqueue(sc, aen, 1);
730 	}
731 
732 	if (!got) {
733 		printf("%s: reset not reported\n", sc->sc_dv.dv_xname);
734 		return (-1);
735 	}
736 
737 	/* Check controller status. */
738 	status = twe_inl(sc, TWE_REG_STS);
739 	if (twe_status_check(sc, status)) {
740 		printf("%s: controller errors detected\n",
741 		    sc->sc_dv.dv_xname);
742 		return (-1);
743 	}
744 
745 	/* Drain the response queue. */
746 	for (;;) {
747 		status = twe_inl(sc, TWE_REG_STS);
748 		if (twe_status_check(sc, status) != 0) {
749 			printf("%s: can't drain response queue\n",
750 			    sc->sc_dv.dv_xname);
751 			return (-1);
752 		}
753 		if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0)
754 			break;
755 		junk = twe_inl(sc, TWE_REG_RESP_QUEUE);
756 	}
757 
758 	return (0);
759 }
760 
761 /*
762  * Print autoconfiguration message for a sub-device.
763  */
764 static int
765 twe_print(void *aux, const char *pnp)
766 {
767 	struct twe_attach_args *twea;
768 
769 	twea = aux;
770 
771 	if (pnp != NULL)
772 		aprint_normal("block device at %s", pnp);
773 	aprint_normal(" unit %d", twea->twea_unit);
774 	return (UNCONF);
775 }
776 
777 /*
778  * Interrupt service routine.
779  */
780 static int
781 twe_intr(void *arg)
782 {
783 	struct twe_softc *sc;
784 	u_int status;
785 	int caught, rv;
786 
787 	sc = arg;
788 	caught = 0;
789 	status = twe_inl(sc, TWE_REG_STS);
790 	twe_status_check(sc, status);
791 
792 	/* Host interrupts - purpose unknown. */
793 	if ((status & TWE_STS_HOST_INTR) != 0) {
794 #ifdef DEBUG
795 		printf("%s: host interrupt\n", sc->sc_dv.dv_xname);
796 #endif
797 		twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR);
798 		caught = 1;
799 	}
800 
801 	/*
802 	 * Attention interrupts, signalled when a controller or child device
803 	 * state change has occurred.
804 	 */
805 	if ((status & TWE_STS_ATTN_INTR) != 0) {
806 		rv = twe_aen_get(sc, NULL);
807 		if (rv != 0)
808 			printf("%s: unable to retrieve AEN (%d)\n",
809 			    sc->sc_dv.dv_xname, rv);
810 		else
811 			twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
812 		caught = 1;
813 	}
814 
815 	/*
816 	 * Command interrupts, signalled when the controller can accept more
817 	 * commands.  We don't use this; instead, we try to submit commands
818 	 * when we receive them, and when other commands have completed.
819 	 * Mask it so we don't get another one.
820 	 */
821 	if ((status & TWE_STS_CMD_INTR) != 0) {
822 #ifdef DEBUG
823 		printf("%s: command interrupt\n", sc->sc_dv.dv_xname);
824 #endif
825 		twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR);
826 		caught = 1;
827 	}
828 
829 	if ((status & TWE_STS_RESP_INTR) != 0) {
830 		twe_poll(sc);
831 		caught = 1;
832 	}
833 
834 	return (caught);
835 }
836 
837 /*
838  * Fetch an AEN.  Even though this is really like parameter
839  * retrieval, we handle this specially, because we issue this
840  * AEN retrieval command from interrupt context, and thus
841  * reserve a CCB for it to avoid resource shortage.
842  *
843  * XXX There are still potential resource shortages we could
844  * XXX encounter.  Consider pre-allocating all AEN-related
845  * XXX resources.
846  *
847  * MUST BE CALLED AT splbio()!
848  */
849 static int
850 twe_aen_get(struct twe_softc *sc, uint16_t *aenp)
851 {
852 	struct twe_ccb *ccb;
853 	struct twe_cmd *tc;
854 	struct twe_param *tp;
855 	int rv;
856 
857 	/*
858 	 * If we're already retrieving an AEN, just wait; another
859 	 * retrieval will be chained after the current one completes.
860 	 */
861 	if (sc->sc_flags & TWEF_AEN) {
862 		/*
863 		 * It is a fatal software programming error to attempt
864 		 * to fetch an AEN synchronously when an AEN fetch is
865 		 * already pending.
866 		 */
867 		KASSERT(aenp == NULL);
868 		return (0);
869 	}
870 
871 	tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
872 	if (tp == NULL)
873 		return (ENOMEM);
874 
875 	ccb = twe_ccb_alloc(sc,
876 	    TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
877 	KASSERT(ccb != NULL);
878 
879 	ccb->ccb_data = tp;
880 	ccb->ccb_datasize = TWE_SECTOR_SIZE;
881 	ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL;
882 	ccb->ccb_tx.tx_context = tp;
883 	ccb->ccb_tx.tx_dv = &sc->sc_dv;
884 
885 	tc = ccb->ccb_cmd;
886 	tc->tc_size = 2;
887 	tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
888 	tc->tc_unit = 0;
889 	tc->tc_count = htole16(1);
890 
891 	/* Fill in the outbound parameter data. */
892 	tp->tp_table_id = htole16(TWE_PARAM_AEN);
893 	tp->tp_param_id = TWE_PARAM_AEN_UnitCode;
894 	tp->tp_param_size = 2;
895 
896 	/* Map the transfer. */
897 	if ((rv = twe_ccb_map(sc, ccb)) != 0) {
898 		twe_ccb_free(sc, ccb);
899 		goto done;
900 	}
901 
902 	/* Enqueue the command and wait. */
903 	if (aenp != NULL) {
904 		rv = twe_ccb_poll(sc, ccb, 5);
905 		twe_ccb_unmap(sc, ccb);
906 		twe_ccb_free(sc, ccb);
907 		if (rv == 0)
908 			*aenp = le16toh(*(uint16_t *)tp->tp_data);
909 		free(tp, M_DEVBUF);
910 	} else {
911 		sc->sc_flags |= TWEF_AEN;
912 		twe_ccb_enqueue(sc, ccb);
913 		rv = 0;
914 	}
915 
916  done:
917 	return (rv);
918 }
919 
920 /*
921  * Handle an AEN returned by the controller.
922  * MUST BE CALLED AT splbio()!
923  */
924 static void
925 twe_aen_handler(struct twe_ccb *ccb, int error)
926 {
927 	struct twe_softc *sc;
928 	struct twe_param *tp;
929 	uint16_t aen;
930 	int rv;
931 
932 	sc = (struct twe_softc *)ccb->ccb_tx.tx_dv;
933 	tp = ccb->ccb_tx.tx_context;
934 	twe_ccb_unmap(sc, ccb);
935 
936 	sc->sc_flags &= ~TWEF_AEN;
937 
938 	if (error) {
939 		printf("%s: error retrieving AEN\n", sc->sc_dv.dv_xname);
940 		aen = TWE_AEN_QUEUE_EMPTY;
941 	} else
942 		aen = le16toh(*(u_int16_t *)tp->tp_data);
943 	free(tp, M_DEVBUF);
944 	twe_ccb_free(sc, ccb);
945 
946 	if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) {
947 		twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
948 		return;
949 	}
950 
951 	twe_aen_enqueue(sc, aen, 0);
952 
953 	/*
954 	 * Chain another retrieval in case interrupts have been
955 	 * coalesced.
956 	 */
957 	rv = twe_aen_get(sc, NULL);
958 	if (rv != 0)
959 		printf("%s: unable to retrieve AEN (%d)\n",
960 		    sc->sc_dv.dv_xname, rv);
961 }
962 
963 static void
964 twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet)
965 {
966 	const char *str, *msg;
967 	int s, next, nextnext, level;
968 
969 	/*
970 	 * First report the AEN on the console.  Maybe.
971 	 */
972 	if (! quiet) {
973 		str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen));
974 		if (str == NULL) {
975 			printf("%s: unknown AEN 0x%04x\n",
976 			    sc->sc_dv.dv_xname, aen);
977 		} else {
978 			msg = str + 3;
979 			switch (str[1]) {
980 			case 'E':	level = LOG_EMERG; break;
981 			case 'a':	level = LOG_ALERT; break;
982 			case 'c':	level = LOG_CRIT; break;
983 			case 'e':	level = LOG_ERR; break;
984 			case 'w':	level = LOG_WARNING; break;
985 			case 'n':	level = LOG_NOTICE; break;
986 			case 'i':	level = LOG_INFO; break;
987 			case 'd':	level = LOG_DEBUG; break;
988 			default:
989 				/* Don't use syslog. */
990 				level = -1;
991 			}
992 
993 			if (level < 0) {
994 				switch (str[0]) {
995 				case 'u':
996 				case 'p':
997 					printf("%s: %s %d: %s\n",
998 					    sc->sc_dv.dv_xname,
999 					    str[0] == 'u' ? "unit" : "port",
1000 					    TWE_AEN_UNIT(aen), msg);
1001 					break;
1002 
1003 				default:
1004 					printf("%s: %s\n",
1005 					    sc->sc_dv.dv_xname, msg);
1006 				}
1007 			} else {
1008 				switch (str[0]) {
1009 				case 'u':
1010 				case 'p':
1011 					log(level, "%s: %s %d: %s\n",
1012 					    sc->sc_dv.dv_xname,
1013 					    str[0] == 'u' ? "unit" : "port",
1014 					    TWE_AEN_UNIT(aen), msg);
1015 					break;
1016 
1017 				default:
1018 					log(level, "%s: %s\n",
1019 					    sc->sc_dv.dv_xname, msg);
1020 				}
1021 			}
1022 		}
1023 	}
1024 
1025 	/* Now enqueue the AEN for mangement tools. */
1026 	s = splbio();
1027 
1028 	next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH;
1029 	nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH;
1030 
1031 	/*
1032 	 * If this is the last free slot, then queue up a "queue
1033 	 * full" message.
1034 	 */
1035 	if (nextnext == sc->sc_aen_tail)
1036 		aen = TWE_AEN_QUEUE_FULL;
1037 
1038 	if (next != sc->sc_aen_tail) {
1039 		sc->sc_aen_queue[sc->sc_aen_head] = aen;
1040 		sc->sc_aen_head = next;
1041 	}
1042 
1043 	if (sc->sc_flags & TWEF_AENQ_WAIT) {
1044 		sc->sc_flags &= ~TWEF_AENQ_WAIT;
1045 		wakeup(&sc->sc_aen_queue);
1046 	}
1047 
1048 	splx(s);
1049 }
1050 
1051 /* NOTE: Must be called at splbio(). */
1052 static uint16_t
1053 twe_aen_dequeue(struct twe_softc *sc)
1054 {
1055 	uint16_t aen;
1056 
1057 	if (sc->sc_aen_tail == sc->sc_aen_head)
1058 		aen = TWE_AEN_QUEUE_EMPTY;
1059 	else {
1060 		aen = sc->sc_aen_queue[sc->sc_aen_tail];
1061 		sc->sc_aen_tail = (sc->sc_aen_tail + 1) % TWE_AEN_Q_LENGTH;
1062 	}
1063 
1064 	return (aen);
1065 }
1066 
1067 /*
1068  * These are short-hand functions that execute TWE_OP_GET_PARAM to
1069  * fetch 1, 2, and 4 byte parameter values, respectively.
1070  */
1071 int
1072 twe_param_get_1(struct twe_softc *sc, int table_id, int param_id,
1073     uint8_t *valp)
1074 {
1075 	struct twe_param *tp;
1076 	int rv;
1077 
1078 	rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp);
1079 	if (rv != 0)
1080 		return (rv);
1081 	*valp = *(uint8_t *)tp->tp_data;
1082 	free(tp, M_DEVBUF);
1083 	return (0);
1084 }
1085 
1086 int
1087 twe_param_get_2(struct twe_softc *sc, int table_id, int param_id,
1088     uint16_t *valp)
1089 {
1090 	struct twe_param *tp;
1091 	int rv;
1092 
1093 	rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp);
1094 	if (rv != 0)
1095 		return (rv);
1096 	*valp = le16toh(*(uint16_t *)tp->tp_data);
1097 	free(tp, M_DEVBUF);
1098 	return (0);
1099 }
1100 
1101 int
1102 twe_param_get_4(struct twe_softc *sc, int table_id, int param_id,
1103     uint32_t *valp)
1104 {
1105 	struct twe_param *tp;
1106 	int rv;
1107 
1108 	rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp);
1109 	if (rv != 0)
1110 		return (rv);
1111 	*valp = le32toh(*(uint32_t *)tp->tp_data);
1112 	free(tp, M_DEVBUF);
1113 	return (0);
1114 }
1115 
1116 /*
1117  * Execute a TWE_OP_GET_PARAM command.  If a callback function is provided,
1118  * it will be called with generated context when the command has completed.
1119  * If no callback is provided, the command will be executed synchronously
1120  * and a pointer to a buffer containing the data returned.
1121  *
1122  * The caller or callback is responsible for freeing the buffer.
1123  *
1124  * NOTE: We assume we can sleep here to wait for a CCB to become available.
1125  */
1126 int
1127 twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size,
1128 	      void (*func)(struct twe_ccb *, int), struct twe_param **pbuf)
1129 {
1130 	struct twe_ccb *ccb;
1131 	struct twe_cmd *tc;
1132 	struct twe_param *tp;
1133 	int rv, s;
1134 
1135 	tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1136 	if (tp == NULL)
1137 		return ENOMEM;
1138 
1139 	ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1140 	KASSERT(ccb != NULL);
1141 
1142 	ccb->ccb_data = tp;
1143 	ccb->ccb_datasize = TWE_SECTOR_SIZE;
1144 	ccb->ccb_tx.tx_handler = func;
1145 	ccb->ccb_tx.tx_context = tp;
1146 	ccb->ccb_tx.tx_dv = &sc->sc_dv;
1147 
1148 	tc = ccb->ccb_cmd;
1149 	tc->tc_size = 2;
1150 	tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
1151 	tc->tc_unit = 0;
1152 	tc->tc_count = htole16(1);
1153 
1154 	/* Fill in the outbound parameter data. */
1155 	tp->tp_table_id = htole16(table_id);
1156 	tp->tp_param_id = param_id;
1157 	tp->tp_param_size = size;
1158 
1159 	/* Map the transfer. */
1160 	if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1161 		twe_ccb_free(sc, ccb);
1162 		goto done;
1163 	}
1164 
1165 	/* Submit the command and either wait or let the callback handle it. */
1166 	if (func == NULL) {
1167 		s = splbio();
1168 		rv = twe_ccb_poll(sc, ccb, 5);
1169 		twe_ccb_unmap(sc, ccb);
1170 		twe_ccb_free(sc, ccb);
1171 		splx(s);
1172 	} else {
1173 #ifdef DEBUG
1174 		if (pbuf != NULL)
1175 			panic("both func and pbuf defined");
1176 #endif
1177 		twe_ccb_enqueue(sc, ccb);
1178 		return 0;
1179 	}
1180 
1181 done:
1182 	if (pbuf == NULL || rv != 0)
1183 		free(tp, M_DEVBUF);
1184 	else if (pbuf != NULL && rv == 0)
1185 		*pbuf = tp;
1186 	return rv;
1187 }
1188 
1189 /*
1190  * Execute a TWE_OP_SET_PARAM command.
1191  *
1192  * NOTE: We assume we can sleep here to wait for a CCB to become available.
1193  */
1194 static int
1195 twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size,
1196 	      void *sbuf)
1197 {
1198 	struct twe_ccb *ccb;
1199 	struct twe_cmd *tc;
1200 	struct twe_param *tp;
1201 	int rv, s;
1202 
1203 	tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1204 	if (tp == NULL)
1205 		return ENOMEM;
1206 
1207 	ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1208 	KASSERT(ccb != NULL);
1209 
1210 	ccb->ccb_data = tp;
1211 	ccb->ccb_datasize = TWE_SECTOR_SIZE;
1212 	ccb->ccb_tx.tx_handler = 0;
1213 	ccb->ccb_tx.tx_context = tp;
1214 	ccb->ccb_tx.tx_dv = &sc->sc_dv;
1215 
1216 	tc = ccb->ccb_cmd;
1217 	tc->tc_size = 2;
1218 	tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5);
1219 	tc->tc_unit = 0;
1220 	tc->tc_count = htole16(1);
1221 
1222 	/* Fill in the outbound parameter data. */
1223 	tp->tp_table_id = htole16(table_id);
1224 	tp->tp_param_id = param_id;
1225 	tp->tp_param_size = size;
1226 	memcpy(tp->tp_data, sbuf, size);
1227 
1228 	/* Map the transfer. */
1229 	if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1230 		twe_ccb_free(sc, ccb);
1231 		goto done;
1232 	}
1233 
1234 	/* Submit the command and wait. */
1235 	s = splbio();
1236 	rv = twe_ccb_poll(sc, ccb, 5);
1237 	twe_ccb_unmap(sc, ccb);
1238 	twe_ccb_free(sc, ccb);
1239 	splx(s);
1240 done:
1241 	free(tp, M_DEVBUF);
1242 	return (rv);
1243 }
1244 
1245 /*
1246  * Execute a TWE_OP_INIT_CONNECTION command.  Return non-zero on error.
1247  * Must be called with interrupts blocked.
1248  */
1249 static int
1250 twe_init_connection(struct twe_softc *sc)
1251 {
1252 	struct twe_ccb *ccb;
1253 	struct twe_cmd *tc;
1254 	int rv;
1255 
1256 	if ((ccb = twe_ccb_alloc(sc, 0)) == NULL)
1257 		return (EAGAIN);
1258 
1259 	/* Build the command. */
1260 	tc = ccb->ccb_cmd;
1261 	tc->tc_size = 3;
1262 	tc->tc_opcode = TWE_OP_INIT_CONNECTION;
1263 	tc->tc_unit = 0;
1264 	tc->tc_count = htole16(TWE_MAX_CMDS);
1265 	tc->tc_args.init_connection.response_queue_pointer = 0;
1266 
1267 	/* Submit the command for immediate execution. */
1268 	rv = twe_ccb_poll(sc, ccb, 5);
1269 	twe_ccb_free(sc, ccb);
1270 	return (rv);
1271 }
1272 
1273 /*
1274  * Poll the controller for completed commands.  Must be called with
1275  * interrupts blocked.
1276  */
1277 static void
1278 twe_poll(struct twe_softc *sc)
1279 {
1280 	struct twe_ccb *ccb;
1281 	int found;
1282 	u_int status, cmdid;
1283 
1284 	found = 0;
1285 
1286 	for (;;) {
1287 		status = twe_inl(sc, TWE_REG_STS);
1288 		twe_status_check(sc, status);
1289 
1290 		if ((status & TWE_STS_RESP_QUEUE_EMPTY))
1291 			break;
1292 
1293 		found = 1;
1294 		cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE);
1295 		cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT;
1296 		if (cmdid >= TWE_MAX_QUEUECNT) {
1297 			printf("%s: bad cmdid %d\n", sc->sc_dv.dv_xname, cmdid);
1298 			continue;
1299 		}
1300 
1301 		ccb = sc->sc_ccbs + cmdid;
1302 		if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) {
1303 			printf("%s: CCB for cmdid %d not active\n",
1304 			    sc->sc_dv.dv_xname, cmdid);
1305 			continue;
1306 		}
1307 		ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE;
1308 
1309 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1310 		    (caddr_t)ccb->ccb_cmd - sc->sc_cmds,
1311 		    sizeof(struct twe_cmd),
1312 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1313 
1314 		/* Pass notification to upper layers. */
1315 		if (ccb->ccb_tx.tx_handler != NULL)
1316 			(*ccb->ccb_tx.tx_handler)(ccb,
1317 			    ccb->ccb_cmd->tc_status != 0 ? EIO : 0);
1318 	}
1319 
1320 	/* If any commands have completed, run the software queue. */
1321 	if (found)
1322 		twe_ccb_enqueue(sc, NULL);
1323 }
1324 
1325 /*
1326  * Wait for `status' to be set in the controller status register.  Return
1327  * zero if found, non-zero if the operation timed out.
1328  */
1329 static int
1330 twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo)
1331 {
1332 
1333 	for (timo *= 10; timo != 0; timo--) {
1334 		if ((twe_inl(sc, TWE_REG_STS) & status) == status)
1335 			break;
1336 		delay(100000);
1337 	}
1338 
1339 	return (timo == 0);
1340 }
1341 
1342 /*
1343  * Clear a PCI parity error.
1344  */
1345 static void
1346 twe_clear_pci_parity_error(struct twe_softc *sc)
1347 {
1348 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PARITY_ERROR);
1349 
1350 	//FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2);
1351 }
1352 
1353 
1354 /*
1355  * Clear a PCI abort.
1356  */
1357 static void
1358 twe_clear_pci_abort(struct twe_softc *sc)
1359 {
1360 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PCI_ABORT);
1361 
1362 	//FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2);
1363 }
1364 
1365 /*
1366  * Complain if the status bits aren't what we expect.
1367  */
1368 static int
1369 twe_status_check(struct twe_softc *sc, u_int status)
1370 {
1371 	int rv;
1372 
1373 	rv = 0;
1374 
1375 	if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) {
1376 		printf("%s: missing status bits: 0x%08x\n", sc->sc_dv.dv_xname,
1377 		    status & ~TWE_STS_EXPECTED_BITS);
1378 		rv = -1;
1379 	}
1380 
1381 	if ((status & TWE_STS_UNEXPECTED_BITS) != 0) {
1382 		printf("%s: unexpected status bits: 0x%08x\n",
1383 		    sc->sc_dv.dv_xname, status & TWE_STS_UNEXPECTED_BITS);
1384 		rv = -1;
1385 		if (status & TWE_STS_PCI_PARITY_ERROR) {
1386 			printf("%s: PCI parity error: Reseat card, move card "
1387 			       "or buggy device present.\n",
1388 			       sc->sc_dv.dv_xname);
1389 			twe_clear_pci_parity_error(sc);
1390 		}
1391 		if (status & TWE_STS_PCI_ABORT) {
1392 			printf("%s: PCI abort, clearing.\n",
1393 			       sc->sc_dv.dv_xname);
1394 			twe_clear_pci_abort(sc);
1395 		}
1396 	}
1397 
1398 	return (rv);
1399 }
1400 
1401 /*
1402  * Allocate and initialise a CCB.
1403  */
1404 static inline void
1405 twe_ccb_init(struct twe_softc *sc __unused, struct twe_ccb *ccb, int flags)
1406 {
1407 	struct twe_cmd *tc;
1408 
1409 	ccb->ccb_tx.tx_handler = NULL;
1410 	ccb->ccb_flags = flags;
1411 	tc = ccb->ccb_cmd;
1412 	tc->tc_status = 0;
1413 	tc->tc_flags = 0;
1414 	tc->tc_cmdid = ccb->ccb_cmdid;
1415 }
1416 
1417 struct twe_ccb *
1418 twe_ccb_alloc(struct twe_softc *sc, int flags)
1419 {
1420 	struct twe_ccb *ccb;
1421 	int s;
1422 
1423 	s = splbio();
1424 	if (__predict_false((flags & TWE_CCB_AEN) != 0)) {
1425 		/* Use the reserved CCB. */
1426 		ccb = sc->sc_ccbs;
1427 	} else {
1428 		/* Allocate a CCB and command block. */
1429 		if (__predict_false((ccb =
1430 				SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1431 			splx(s);
1432 			return (NULL);
1433 		}
1434 		SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1435 	}
1436 #ifdef DIAGNOSTIC
1437 	if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0)
1438 		panic("twe_ccb_alloc: got reserved CCB for non-AEN");
1439 	if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1440 		panic("twe_ccb_alloc: CCB %ld already allocated",
1441 		    (long)(ccb - sc->sc_ccbs));
1442 	flags |= TWE_CCB_ALLOCED;
1443 #endif
1444 	splx(s);
1445 
1446 	twe_ccb_init(sc, ccb, flags);
1447 	return (ccb);
1448 }
1449 
1450 struct twe_ccb *
1451 twe_ccb_alloc_wait(struct twe_softc *sc, int flags)
1452 {
1453 	struct twe_ccb *ccb;
1454 	int s;
1455 
1456 	KASSERT((flags & TWE_CCB_AEN) == 0);
1457 
1458 	s = splbio();
1459 	while (__predict_false((ccb =
1460 				SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1461 		sc->sc_flags |= TWEF_WAIT_CCB;
1462 		(void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0);
1463 	}
1464 	SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1465 #ifdef DIAGNOSTIC
1466 	if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1467 		panic("twe_ccb_alloc_wait: CCB %ld already allocated",
1468 		    (long)(ccb - sc->sc_ccbs));
1469 	flags |= TWE_CCB_ALLOCED;
1470 #endif
1471 	splx(s);
1472 
1473 	twe_ccb_init(sc, ccb, flags);
1474 	return (ccb);
1475 }
1476 
1477 /*
1478  * Free a CCB.
1479  */
1480 void
1481 twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb)
1482 {
1483 	int s;
1484 
1485 	s = splbio();
1486 	if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) {
1487 		SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist);
1488 		if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) {
1489 			sc->sc_flags &= ~TWEF_WAIT_CCB;
1490 			wakeup(&sc->sc_ccb_freelist);
1491 		}
1492 	}
1493 	ccb->ccb_flags = 0;
1494 	splx(s);
1495 }
1496 
1497 /*
1498  * Map the specified CCB's command block and data buffer (if any) into
1499  * controller visible space.  Perform DMA synchronisation.
1500  */
1501 int
1502 twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb)
1503 {
1504 	struct twe_cmd *tc;
1505 	int flags, nsegs, i, s, rv;
1506 	void *data;
1507 
1508 	/*
1509 	 * The data as a whole must be 512-byte aligned.
1510 	 */
1511 	if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) {
1512 		s = splvm();
1513 		/* XXX */
1514 		ccb->ccb_abuf = uvm_km_alloc(kmem_map,
1515 		    ccb->ccb_datasize, 0, UVM_KMF_NOWAIT|UVM_KMF_WIRED);
1516 		splx(s);
1517 		data = (void *)ccb->ccb_abuf;
1518 		if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1519 			memcpy(data, ccb->ccb_data, ccb->ccb_datasize);
1520 	} else {
1521 		ccb->ccb_abuf = (vaddr_t)0;
1522 		data = ccb->ccb_data;
1523 	}
1524 
1525 	/*
1526 	 * Map the data buffer into bus space and build the S/G list.
1527 	 */
1528 	rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data,
1529 	    ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1530 	    ((ccb->ccb_flags & TWE_CCB_DATA_IN) ?
1531 	    BUS_DMA_READ : BUS_DMA_WRITE));
1532 	if (rv != 0) {
1533 		if (ccb->ccb_abuf != (vaddr_t)0) {
1534 			s = splvm();
1535 			/* XXX */
1536 			uvm_km_free(kmem_map, ccb->ccb_abuf,
1537 			    ccb->ccb_datasize, UVM_KMF_WIRED);
1538 			splx(s);
1539 		}
1540 		return (rv);
1541 	}
1542 
1543 	nsegs = ccb->ccb_dmamap_xfer->dm_nsegs;
1544 	tc = ccb->ccb_cmd;
1545 	tc->tc_size += 2 * nsegs;
1546 
1547 	/* The location of the S/G list is dependant upon command type. */
1548 	switch (tc->tc_opcode >> 5) {
1549 	case 2:
1550 		for (i = 0; i < nsegs; i++) {
1551 			tc->tc_args.param.sgl[i].tsg_address =
1552 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1553 			tc->tc_args.param.sgl[i].tsg_length =
1554 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1555 		}
1556 		/* XXX Needed? */
1557 		for (; i < TWE_SG_SIZE; i++) {
1558 			tc->tc_args.param.sgl[i].tsg_address = 0;
1559 			tc->tc_args.param.sgl[i].tsg_length = 0;
1560 		}
1561 		break;
1562 	case 3:
1563 		for (i = 0; i < nsegs; i++) {
1564 			tc->tc_args.io.sgl[i].tsg_address =
1565 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1566 			tc->tc_args.io.sgl[i].tsg_length =
1567 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1568 		}
1569 		/* XXX Needed? */
1570 		for (; i < TWE_SG_SIZE; i++) {
1571 			tc->tc_args.io.sgl[i].tsg_address = 0;
1572 			tc->tc_args.io.sgl[i].tsg_length = 0;
1573 		}
1574 		break;
1575 	default:
1576 		/*
1577 		 * In all likelihood, this is a command passed from
1578 		 * management tools in userspace where no S/G list is
1579 		 * necessary because no data is being passed.
1580 		 */
1581 		break;
1582 	}
1583 
1584 	if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1585 		flags = BUS_DMASYNC_PREREAD;
1586 	else
1587 		flags = 0;
1588 	if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1589 		flags |= BUS_DMASYNC_PREWRITE;
1590 
1591 	bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1592 	    ccb->ccb_datasize, flags);
1593 	return (0);
1594 }
1595 
1596 /*
1597  * Unmap the specified CCB's command block and data buffer (if any) and
1598  * perform DMA synchronisation.
1599  */
1600 void
1601 twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb)
1602 {
1603 	int flags, s;
1604 
1605 	if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1606 		flags = BUS_DMASYNC_POSTREAD;
1607 	else
1608 		flags = 0;
1609 	if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1610 		flags |= BUS_DMASYNC_POSTWRITE;
1611 
1612 	bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1613 	    ccb->ccb_datasize, flags);
1614 	bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer);
1615 
1616 	if (ccb->ccb_abuf != (vaddr_t)0) {
1617 		if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1618 			memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf,
1619 			    ccb->ccb_datasize);
1620 		s = splvm();
1621 		/* XXX */
1622 		uvm_km_free(kmem_map, ccb->ccb_abuf, ccb->ccb_datasize,
1623 		    UVM_KMF_WIRED);
1624 		splx(s);
1625 	}
1626 }
1627 
1628 /*
1629  * Submit a command to the controller and poll on completion.  Return
1630  * non-zero on timeout (but don't check status, as some command types don't
1631  * return status).  Must be called with interrupts blocked.
1632  */
1633 int
1634 twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo)
1635 {
1636 	int rv;
1637 
1638 	if ((rv = twe_ccb_submit(sc, ccb)) != 0)
1639 		return (rv);
1640 
1641 	for (timo *= 1000; timo != 0; timo--) {
1642 		twe_poll(sc);
1643 		if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0)
1644 			break;
1645 		DELAY(100);
1646 	}
1647 
1648 	return (timo == 0);
1649 }
1650 
1651 /*
1652  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
1653  * the order that they were enqueued and try to submit their command blocks
1654  * to the controller for execution.
1655  */
1656 void
1657 twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb)
1658 {
1659 	int s;
1660 
1661 	s = splbio();
1662 
1663 	if (ccb != NULL)
1664 		SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq);
1665 
1666 	while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) {
1667 		if (twe_ccb_submit(sc, ccb))
1668 			break;
1669 		SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq);
1670 	}
1671 
1672 	splx(s);
1673 }
1674 
1675 /*
1676  * Submit the command block associated with the specified CCB to the
1677  * controller for execution.  Must be called with interrupts blocked.
1678  */
1679 int
1680 twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb)
1681 {
1682 	bus_addr_t pa;
1683 	int rv;
1684 	u_int status;
1685 
1686 	/* Check to see if we can post a command. */
1687 	status = twe_inl(sc, TWE_REG_STS);
1688 	twe_status_check(sc, status);
1689 
1690 	if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) {
1691 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1692 		    (caddr_t)ccb->ccb_cmd - sc->sc_cmds, sizeof(struct twe_cmd),
1693 		    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1694 #ifdef DIAGNOSTIC
1695 		if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0)
1696 			panic("%s: CCB %ld not ALLOCED\n",
1697 			    sc->sc_dv.dv_xname, (long)(ccb - sc->sc_ccbs));
1698 #endif
1699 		ccb->ccb_flags |= TWE_CCB_ACTIVE;
1700 		pa = sc->sc_cmds_paddr +
1701 		    ccb->ccb_cmdid * sizeof(struct twe_cmd);
1702 		twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa);
1703 		rv = 0;
1704 	} else
1705 		rv = EBUSY;
1706 
1707 	return (rv);
1708 }
1709 
1710 
1711 /*
1712  * Accept an open operation on the control device.
1713  */
1714 static int
1715 tweopen(dev_t dev, int flag __unused, int mode __unused, struct lwp *l __unused)
1716 {
1717 	struct twe_softc *twe;
1718 
1719 	if ((twe = device_lookup(&twe_cd, minor(dev))) == NULL)
1720 		return (ENXIO);
1721 	if ((twe->sc_flags & TWEF_OPEN) != 0)
1722 		return (EBUSY);
1723 
1724 	twe->sc_flags |= TWEF_OPEN;
1725 	return (0);
1726 }
1727 
1728 /*
1729  * Accept the last close on the control device.
1730  */
1731 static int
1732 tweclose(dev_t dev, int flag __unused, int mode __unused,
1733     struct lwp *l __unused)
1734 {
1735 	struct twe_softc *twe;
1736 
1737 	twe = device_lookup(&twe_cd, minor(dev));
1738 	twe->sc_flags &= ~TWEF_OPEN;
1739 	return (0);
1740 }
1741 
1742 void
1743 twe_ccb_wait_handler(struct twe_ccb *ccb, int error __unused)
1744 {
1745 
1746 	/* Just wake up the sleeper. */
1747 	wakeup(ccb);
1748 }
1749 
1750 /*
1751  * Handle control operations.
1752  */
1753 static int
1754 tweioctl(dev_t dev, u_long cmd, caddr_t data, int flag __unused,
1755     struct lwp *l __unused)
1756 {
1757 	struct twe_softc *twe;
1758 	struct twe_ccb *ccb;
1759 	struct twe_param *param;
1760 	struct twe_usercommand *tu;
1761 	struct twe_paramcommand *tp;
1762 	struct twe_drivecommand *td;
1763 	void *pdata = NULL;
1764 	int s, error = 0;
1765 	u_int8_t cmdid;
1766 
1767 	twe = device_lookup(&twe_cd, minor(dev));
1768 	tu = (struct twe_usercommand *)data;
1769 	tp = (struct twe_paramcommand *)data;
1770 	td = (struct twe_drivecommand *)data;
1771 
1772 	/* This is intended to be compatible with the FreeBSD interface. */
1773 	switch (cmd) {
1774 	case TWEIO_COMMAND:
1775 		if (securelevel >= 2)
1776 			return (EPERM);
1777 
1778 		/* XXX mutex */
1779 		if (tu->tu_size > 0) {
1780 			/*
1781 			 * XXX Handle > TWE_SECTOR_SIZE?  Let's see if
1782 			 * it's really necessary, first.
1783 			 */
1784 			if (tu->tu_size > TWE_SECTOR_SIZE) {
1785 #ifdef TWE_DEBUG
1786 				printf("%s: TWEIO_COMMAND: tu_size = %d\n",
1787 				    twe->sc_dv.dv_xname, tu->tu_size);
1788 #endif
1789 				return EINVAL;
1790 			}
1791 			pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK);
1792 			error = copyin(tu->tu_data, pdata, tu->tu_size);
1793 			if (error != 0)
1794 				goto done;
1795 			ccb = twe_ccb_alloc_wait(twe,
1796 			    TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1797 			KASSERT(ccb != NULL);
1798 			ccb->ccb_data = pdata;
1799 			ccb->ccb_datasize = TWE_SECTOR_SIZE;
1800 		} else {
1801 			ccb = twe_ccb_alloc_wait(twe, 0);
1802 			KASSERT(ccb != NULL);
1803 		}
1804 
1805 		ccb->ccb_tx.tx_handler = twe_ccb_wait_handler;
1806 		ccb->ccb_tx.tx_context = NULL;
1807 		ccb->ccb_tx.tx_dv = &twe->sc_dv;
1808 
1809 		cmdid = ccb->ccb_cmdid;
1810 		memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd));
1811 		ccb->ccb_cmd->tc_cmdid = cmdid;
1812 
1813 		/* Map the transfer. */
1814 		if ((error = twe_ccb_map(twe, ccb)) != 0) {
1815 			twe_ccb_free(twe, ccb);
1816 			goto done;
1817 		}
1818 
1819 		/* Submit the command and wait up to 1 minute. */
1820 		error = 0;
1821 		twe_ccb_enqueue(twe, ccb);
1822 		s = splbio();
1823 		while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0)
1824 			if ((error = tsleep(ccb, PRIBIO, "tweioctl",
1825 					    60 * hz)) != 0)
1826 				break;
1827 		splx(s);
1828 
1829 		/* Copy the command back to the ioctl argument. */
1830 		memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd));
1831 #ifdef TWE_DEBUG
1832 		printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, "
1833 		    "tc_status = 0x%02x\n", twe->sc_dv.dv_xname,
1834 		    tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status);
1835 #endif
1836 
1837 		s = splbio();
1838 		twe_ccb_free(twe, ccb);
1839 		splx(s);
1840 
1841 		if (tu->tu_size > 0)
1842 			error = copyout(pdata, tu->tu_data, tu->tu_size);
1843 		goto done;
1844 
1845 	case TWEIO_STATS:
1846 		return (ENOENT);
1847 
1848 	case TWEIO_AEN_POLL:
1849 		s = splbio();
1850 		*(u_int *)data = twe_aen_dequeue(twe);
1851 		splx(s);
1852 		return (0);
1853 
1854 	case TWEIO_AEN_WAIT:
1855 		s = splbio();
1856 		while ((*(u_int *)data =
1857 		    twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) {
1858 			twe->sc_flags |= TWEF_AENQ_WAIT;
1859 			error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH,
1860 			    "tweaen", 0);
1861 			if (error == EINTR) {
1862 				splx(s);
1863 				return (error);
1864 			}
1865 		}
1866 		splx(s);
1867 		return (0);
1868 
1869 	case TWEIO_GET_PARAM:
1870 		error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id,
1871 		    tp->tp_size, 0, &param);
1872 		if (error != 0)
1873 			return (error);
1874 		if (param->tp_param_size > tp->tp_size) {
1875 			error = EFAULT;
1876 			goto done;
1877 		}
1878 		error = copyout(param->tp_data, tp->tp_data,
1879 		    param->tp_param_size);
1880 		free(param, M_DEVBUF);
1881 		goto done;
1882 
1883 	case TWEIO_SET_PARAM:
1884 		pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK);
1885 		if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0)
1886 			goto done;
1887 		error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id,
1888 		    tp->tp_size, pdata);
1889 		goto done;
1890 
1891 	case TWEIO_RESET:
1892 		s = splbio();
1893 		twe_reset(twe);
1894 		splx(s);
1895 		return (0);
1896 
1897 	case TWEIO_ADD_UNIT:
1898 		/* XXX mutex */
1899 		return (twe_add_unit(twe, td->td_unit));
1900 
1901 	case TWEIO_DEL_UNIT:
1902 		/* XXX mutex */
1903 		return (twe_del_unit(twe, td->td_unit));
1904 
1905 	default:
1906 		return EINVAL;
1907 	}
1908 done:
1909 	if (pdata)
1910 		free(pdata, M_DEVBUF);
1911 	return error;
1912 }
1913 
1914 const struct cdevsw twe_cdevsw = {
1915 	tweopen, tweclose, noread, nowrite, tweioctl,
1916 	    nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1917 };
1918 
1919 /*
1920  * Print some information about the controller
1921  */
1922 static void
1923 twe_describe_controller(struct twe_softc *sc)
1924 {
1925 	struct twe_param *p[6];
1926 	int i, rv = 0;
1927 	uint32_t dsize;
1928 	uint8_t ports;
1929 
1930 	ports = 0;
1931 
1932 	/* get the port count */
1933 	rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER,
1934 		TWE_PARAM_CONTROLLER_PortCount, &ports);
1935 
1936 	/* get version strings */
1937 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon,
1938 		16, NULL, &p[0]);
1939 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW,
1940 		16, NULL, &p[1]);
1941 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS,
1942 		16, NULL, &p[2]);
1943 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB,
1944 		8, NULL, &p[3]);
1945 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA,
1946 		8, NULL, &p[4]);
1947 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI,
1948 		8, NULL, &p[5]);
1949 
1950 	if (rv) {
1951 		/* some error occurred */
1952 		aprint_error("%s: failed to fetch version information\n",
1953 			sc->sc_dv.dv_xname);
1954 		return;
1955 	}
1956 
1957 	aprint_normal("%s: %d ports, Firmware %.16s, BIOS %.16s\n",
1958 		sc->sc_dv.dv_xname, ports,
1959 		p[1]->tp_data, p[2]->tp_data);
1960 
1961 	aprint_verbose("%s: Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n",
1962 		sc->sc_dv.dv_xname,
1963 		p[0]->tp_data, p[3]->tp_data,
1964 		p[4]->tp_data, p[5]->tp_data);
1965 
1966 	free(p[0], M_DEVBUF);
1967 	free(p[1], M_DEVBUF);
1968 	free(p[2], M_DEVBUF);
1969 	free(p[3], M_DEVBUF);
1970 	free(p[4], M_DEVBUF);
1971 	free(p[5], M_DEVBUF);
1972 
1973 	rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY,
1974 	    TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]);
1975 	if (rv) {
1976 		aprint_error("%s: failed to get drive status summary\n",
1977 		    sc->sc_dv.dv_xname);
1978 		return;
1979 	}
1980 	for (i = 0; i < ports; i++) {
1981 		if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present)
1982 			continue;
1983 		rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i,
1984 		    TWE_PARAM_DRIVEINFO_Size, &dsize);
1985 		if (rv) {
1986 			aprint_error(
1987 			    "%s: unable to get drive size for port %d\n",
1988 			    sc->sc_dv.dv_xname, i);
1989 			continue;
1990 		}
1991 		rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i,
1992 		    TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]);
1993 		if (rv) {
1994 			aprint_error(
1995 			    "%s: unable to get drive model for port %d\n",
1996 			    sc->sc_dv.dv_xname, i);
1997 			continue;
1998 		}
1999 		aprint_verbose("%s: port %d: %.40s %d MB\n", sc->sc_dv.dv_xname,
2000 		    i, p[1]->tp_data, dsize / 2048);
2001 		free(p[1], M_DEVBUF);
2002 	}
2003 	free(p[0], M_DEVBUF);
2004 }
2005