xref: /netbsd-src/sys/dev/pci/twe.c (revision b7ae68fde0d8ef1c03714e8bbb1ee7c6118ea93b)
1 /*	$NetBSD: twe.c,v 1.78 2006/09/03 07:05:16 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 2000 Michael Smith
41  * Copyright (c) 2000 BSDi
42  * All rights reserved.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp
66  */
67 
68 /*
69  * Driver for the 3ware Escalade family of RAID controllers.
70  */
71 
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.78 2006/09/03 07:05:16 christos Exp $");
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/kernel.h>
78 #include <sys/device.h>
79 #include <sys/queue.h>
80 #include <sys/proc.h>
81 #include <sys/buf.h>
82 #include <sys/endian.h>
83 #include <sys/malloc.h>
84 #include <sys/conf.h>
85 #include <sys/disk.h>
86 #include <sys/sysctl.h>
87 #include <sys/syslog.h>
88 
89 #include <uvm/uvm_extern.h>
90 
91 #include <sys/bswap.h>
92 #include <machine/bus.h>
93 
94 #include <dev/pci/pcireg.h>
95 #include <dev/pci/pcivar.h>
96 #include <dev/pci/pcidevs.h>
97 #include <dev/pci/twereg.h>
98 #include <dev/pci/twevar.h>
99 #include <dev/pci/tweio.h>
100 
101 #include "locators.h"
102 
103 #define	PCI_CBIO	0x10
104 
105 static int	twe_aen_get(struct twe_softc *, uint16_t *);
106 static void	twe_aen_handler(struct twe_ccb *, int);
107 static void	twe_aen_enqueue(struct twe_softc *sc, uint16_t, int);
108 static uint16_t	twe_aen_dequeue(struct twe_softc *);
109 
110 static void	twe_attach(struct device *, struct device *, void *);
111 static int	twe_init_connection(struct twe_softc *);
112 static int	twe_intr(void *);
113 static int	twe_match(struct device *, struct cfdata *, void *);
114 static int	twe_param_set(struct twe_softc *, int, int, size_t, void *);
115 static void	twe_poll(struct twe_softc *);
116 static int	twe_print(void *, const char *);
117 static int	twe_reset(struct twe_softc *);
118 static int	twe_status_check(struct twe_softc *, u_int);
119 static int	twe_status_wait(struct twe_softc *, u_int, int);
120 static void	twe_describe_controller(struct twe_softc *);
121 static void twe_clear_pci_abort(struct twe_softc *sc);
122 static void twe_clear_pci_parity_error(struct twe_softc *sc);
123 
124 static int	twe_add_unit(struct twe_softc *, int);
125 static int	twe_del_unit(struct twe_softc *, int);
126 static int	twe_init_connection(struct twe_softc *);
127 
128 static inline u_int32_t	twe_inl(struct twe_softc *, int);
129 static inline void twe_outl(struct twe_softc *, int, u_int32_t);
130 
131 extern struct	cfdriver twe_cd;
132 
133 CFATTACH_DECL(twe, sizeof(struct twe_softc),
134     twe_match, twe_attach, NULL, NULL);
135 
136 /* FreeBSD driver revision for sysctl expected by the 3ware cli */
137 const char twever[] = "1.50.01.002";
138 
139 /*
140  * Tables to convert numeric codes to strings.
141  */
142 const struct twe_code_table twe_table_status[] = {
143 	{ 0x00,	"successful completion" },
144 
145 	/* info */
146 	{ 0x42,	"command in progress" },
147 	{ 0x6c,	"retrying interface CRC error from UDMA command" },
148 
149 	/* warning */
150 	{ 0x81,	"redundant/inconsequential request ignored" },
151 	{ 0x8e,	"failed to write zeroes to LBA 0" },
152 	{ 0x8f,	"failed to profile TwinStor zones" },
153 
154 	/* fatal */
155 	{ 0xc1,	"aborted due to system command or reconfiguration" },
156 	{ 0xc4,	"aborted" },
157 	{ 0xc5,	"access error" },
158 	{ 0xc6,	"access violation" },
159 	{ 0xc7,	"device failure" },	/* high byte may be port # */
160 	{ 0xc8,	"controller error" },
161 	{ 0xc9,	"timed out" },
162 	{ 0xcb,	"invalid unit number" },
163 	{ 0xcf,	"unit not available" },
164 	{ 0xd2,	"undefined opcode" },
165 	{ 0xdb,	"request incompatible with unit" },
166 	{ 0xdc,	"invalid request" },
167 	{ 0xff,	"firmware error, reset requested" },
168 
169 	{ 0,	NULL }
170 };
171 
172 const struct twe_code_table twe_table_unitstate[] = {
173 	{ TWE_PARAM_UNITSTATUS_Normal,		"Normal" },
174 	{ TWE_PARAM_UNITSTATUS_Initialising,	"Initializing" },
175 	{ TWE_PARAM_UNITSTATUS_Degraded,	"Degraded" },
176 	{ TWE_PARAM_UNITSTATUS_Rebuilding,	"Rebuilding" },
177 	{ TWE_PARAM_UNITSTATUS_Verifying,	"Verifying" },
178 	{ TWE_PARAM_UNITSTATUS_Corrupt,		"Corrupt" },
179 	{ TWE_PARAM_UNITSTATUS_Missing,		"Missing" },
180 
181 	{ 0,					NULL }
182 };
183 
184 const struct twe_code_table twe_table_unittype[] = {
185 	/* array descriptor configuration */
186 	{ TWE_AD_CONFIG_RAID0,			"RAID0" },
187 	{ TWE_AD_CONFIG_RAID1,			"RAID1" },
188 	{ TWE_AD_CONFIG_TwinStor,		"TwinStor" },
189 	{ TWE_AD_CONFIG_RAID5,			"RAID5" },
190 	{ TWE_AD_CONFIG_RAID10,			"RAID10" },
191 	{ TWE_UD_CONFIG_JBOD,			"JBOD" },
192 
193 	{ 0,					NULL }
194 };
195 
196 const struct twe_code_table twe_table_stripedepth[] = {
197 	{ TWE_AD_STRIPE_4k,			"4K" },
198 	{ TWE_AD_STRIPE_8k,			"8K" },
199 	{ TWE_AD_STRIPE_16k,			"16K" },
200 	{ TWE_AD_STRIPE_32k,			"32K" },
201 	{ TWE_AD_STRIPE_64k,			"64K" },
202 	{ TWE_AD_STRIPE_128k,			"128K" },
203 	{ TWE_AD_STRIPE_256k,			"256K" },
204 	{ TWE_AD_STRIPE_512k,			"512K" },
205 	{ TWE_AD_STRIPE_1024k,			"1024K" },
206 
207 	{ 0,					NULL }
208 };
209 
210 /*
211  * Asynchronous event notification messages are qualified:
212  *	a - not unit/port specific
213  *	u - unit specific
214  *	p - port specific
215  *
216  * They are further qualified with a severity:
217  *	E - LOG_EMERG
218  *	a - LOG_ALERT
219  *	c - LOG_CRIT
220  *	e - LOG_ERR
221  *	w - LOG_WARNING
222  *	n - LOG_NOTICE
223  *	i - LOG_INFO
224  *	d - LOG_DEBUG
225  *	blank - just use printf
226  */
227 const struct twe_code_table twe_table_aen[] = {
228 	{ 0x00,	"a  queue empty" },
229 	{ 0x01,	"a  soft reset" },
230 	{ 0x02,	"uc degraded mode" },
231 	{ 0x03,	"aa controller error" },
232 	{ 0x04,	"uE rebuild fail" },
233 	{ 0x05,	"un rebuild done" },
234 	{ 0x06,	"ue incomplete unit" },
235 	{ 0x07,	"un initialization done" },
236 	{ 0x08,	"uw unclean shutdown detected" },
237 	{ 0x09,	"pe drive timeout" },
238 	{ 0x0a,	"pc drive error" },
239 	{ 0x0b,	"un rebuild started" },
240 	{ 0x0c,	"un initialization started" },
241 	{ 0x0d,	"ui logical unit deleted" },
242 	{ 0x0f,	"pc SMART threshold exceeded" },
243 	{ 0x15,	"a  table undefined" },	/* XXX: Not in FreeBSD's table */
244 	{ 0x21,	"pe ATA UDMA downgrade" },
245 	{ 0x22,	"pi ATA UDMA upgrade" },
246 	{ 0x23,	"pw sector repair occurred" },
247 	{ 0x24,	"aa SBUF integrity check failure" },
248 	{ 0x25,	"pa lost cached write" },
249 	{ 0x26,	"pa drive ECC error detected" },
250 	{ 0x27,	"pe DCB checksum error" },
251 	{ 0x28,	"pn DCB unsupported version" },
252 	{ 0x29,	"ui verify started" },
253 	{ 0x2a,	"ua verify failed" },
254 	{ 0x2b,	"ui verify complete" },
255 	{ 0x2c,	"pw overwrote bad sector during rebuild" },
256 	{ 0x2d,	"pa encountered bad sector during rebuild" },
257 	{ 0x2e,	"pe replacement drive too small" },
258 	{ 0x2f,	"ue array not previously initialized" },
259 	{ 0x30,	"p  drive not supported" },
260 	{ 0xff,	"a  aen queue full" },
261 
262 	{ 0,	NULL },
263 };
264 
265 const char *
266 twe_describe_code(const struct twe_code_table *table, uint32_t code)
267 {
268 
269 	for (; table->string != NULL; table++) {
270 		if (table->code == code)
271 			return (table->string);
272 	}
273 	return (NULL);
274 }
275 
276 static inline u_int32_t
277 twe_inl(struct twe_softc *sc, int off)
278 {
279 
280 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
281 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
282 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off));
283 }
284 
285 static inline void
286 twe_outl(struct twe_softc *sc, int off, u_int32_t val)
287 {
288 
289 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
290 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
291 	    BUS_SPACE_BARRIER_WRITE);
292 }
293 
294 /*
295  * Match a supported board.
296  */
297 static int
298 twe_match(struct device *parent, struct cfdata *cfdata, void *aux)
299 {
300 	struct pci_attach_args *pa;
301 
302 	pa = aux;
303 
304 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE &&
305 	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE ||
306 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC));
307 }
308 
309 /*
310  * Attach a supported board.
311  *
312  * XXX This doesn't fail gracefully.
313  */
314 static void
315 twe_attach(struct device *parent, struct device *self, void *aux)
316 {
317 	struct pci_attach_args *pa;
318 	struct twe_softc *sc;
319 	pci_chipset_tag_t pc;
320 	pci_intr_handle_t ih;
321 	pcireg_t csr;
322 	const char *intrstr;
323 	int s, size, i, rv, rseg;
324 	size_t max_segs, max_xfer;
325 	bus_dma_segment_t seg;
326         struct ctlname ctlnames[] = CTL_NAMES;
327         const struct sysctlnode *node;
328 	struct twe_cmd *tc;
329 	struct twe_ccb *ccb;
330 
331 	sc = (struct twe_softc *)self;
332 	pa = aux;
333 	pc = pa->pa_pc;
334 	sc->sc_dmat = pa->pa_dmat;
335 	SIMPLEQ_INIT(&sc->sc_ccb_queue);
336 	SLIST_INIT(&sc->sc_ccb_freelist);
337 
338 	aprint_naive(": RAID controller\n");
339 	aprint_normal(": 3ware Escalade\n");
340 
341 
342 	if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
343 	    &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
344 		aprint_error("%s: can't map i/o space\n", sc->sc_dv.dv_xname);
345 		return;
346 	}
347 
348 	/* Enable the device. */
349 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
350 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
351 	    csr | PCI_COMMAND_MASTER_ENABLE);
352 
353 	/* Map and establish the interrupt. */
354 	if (pci_intr_map(pa, &ih)) {
355 		aprint_error("%s: can't map interrupt\n", sc->sc_dv.dv_xname);
356 		return;
357 	}
358 
359 	intrstr = pci_intr_string(pc, ih);
360 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_BIO, twe_intr, sc);
361 	if (sc->sc_ih == NULL) {
362 		aprint_error("%s: can't establish interrupt%s%s\n",
363 			sc->sc_dv.dv_xname,
364 			(intrstr) ? " at " : "",
365 			(intrstr) ? intrstr : "");
366 		return;
367 	}
368 
369 	if (intrstr != NULL)
370 		aprint_normal("%s: interrupting at %s\n",
371 			sc->sc_dv.dv_xname, intrstr);
372 
373 	/*
374 	 * Allocate and initialise the command blocks and CCBs.
375 	 */
376         size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT;
377 
378 	if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
379 	    &rseg, BUS_DMA_NOWAIT)) != 0) {
380 		aprint_error("%s: unable to allocate commands, rv = %d\n",
381 		    sc->sc_dv.dv_xname, rv);
382 		return;
383 	}
384 
385 	if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size,
386 	    (caddr_t *)&sc->sc_cmds,
387 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
388 		aprint_error("%s: unable to map commands, rv = %d\n",
389 		    sc->sc_dv.dv_xname, rv);
390 		return;
391 	}
392 
393 	if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0,
394 	    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
395 		aprint_error("%s: unable to create command DMA map, rv = %d\n",
396 		    sc->sc_dv.dv_xname, rv);
397 		return;
398 	}
399 
400 	if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds,
401 	    size, NULL, BUS_DMA_NOWAIT)) != 0) {
402 		aprint_error("%s: unable to load command DMA map, rv = %d\n",
403 		    sc->sc_dv.dv_xname, rv);
404 		return;
405 	}
406 
407 	ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_NOWAIT);
408 	if (ccb == NULL) {
409 		aprint_error("%s: unable to allocate memory for ccbs\n",
410 		    sc->sc_dv.dv_xname);
411 		return;
412 	}
413 
414 	sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr;
415 	memset(sc->sc_cmds, 0, size);
416 
417 	sc->sc_ccbs = ccb;
418 	tc = (struct twe_cmd *)sc->sc_cmds;
419 	max_segs = twe_get_maxsegs();
420 	max_xfer = twe_get_maxxfer(max_segs);
421 
422 	for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) {
423 		ccb->ccb_cmd = tc;
424 		ccb->ccb_cmdid = i;
425 		ccb->ccb_flags = 0;
426 		rv = bus_dmamap_create(sc->sc_dmat, max_xfer,
427 		    max_segs, PAGE_SIZE, 0,
428 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
429 		    &ccb->ccb_dmamap_xfer);
430 		if (rv != 0) {
431 			aprint_error("%s: can't create dmamap, rv = %d\n",
432 			    sc->sc_dv.dv_xname, rv);
433 			return;
434 		}
435 
436 		/* Save the first CCB for AEN retrieval. */
437 		if (i != 0)
438 			SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb,
439 			    ccb_chain.slist);
440 	}
441 
442 	/* Wait for the controller to become ready. */
443 	if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) {
444 		aprint_error("%s: microcontroller not ready\n",
445 			sc->sc_dv.dv_xname);
446 		return;
447 	}
448 
449 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS);
450 
451 	/* Reset the controller. */
452 	s = splbio();
453 	rv = twe_reset(sc);
454 	splx(s);
455 	if (rv) {
456 		aprint_error("%s: reset failed\n", sc->sc_dv.dv_xname);
457 		return;
458 	}
459 
460 	/* Initialise connection with controller. */
461 	twe_init_connection(sc);
462 
463 	twe_describe_controller(sc);
464 
465 	/* Find and attach RAID array units. */
466 	sc->sc_nunits = 0;
467 	for (i = 0; i < TWE_MAX_UNITS; i++)
468 		(void) twe_add_unit(sc, i);
469 
470 	/* ...and finally, enable interrupts. */
471 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR |
472 	    TWE_CTL_UNMASK_RESP_INTR |
473 	    TWE_CTL_ENABLE_INTRS);
474 
475 	/* sysctl set-up for 3ware cli */
476 	if (sysctl_createv(NULL, 0, NULL, NULL,
477 				CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw",
478 				NULL, NULL, 0, NULL, 0,
479 				CTL_HW, CTL_EOL) != 0) {
480 		printf("%s: could not create %s sysctl node\n",
481 			sc->sc_dv.dv_xname, ctlnames[CTL_HW].ctl_name);
482 		return;
483 	}
484 	if (sysctl_createv(NULL, 0, NULL, &node,
485         			0, CTLTYPE_NODE, sc->sc_dv.dv_xname,
486         			SYSCTL_DESCR("twe driver information"),
487         			NULL, 0, NULL, 0,
488 				CTL_HW, CTL_CREATE, CTL_EOL) != 0) {
489                 printf("%s: could not create %s.%s sysctl node\n",
490 			sc->sc_dv.dv_xname, ctlnames[CTL_HW].ctl_name,
491 			sc->sc_dv.dv_xname);
492 		return;
493 	}
494 	if ((i = sysctl_createv(NULL, 0, NULL, NULL,
495         			0, CTLTYPE_STRING, "driver_version",
496         			SYSCTL_DESCR("twe0 driver version"),
497         			NULL, 0, &twever, 0,
498 				CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL))
499 				!= 0) {
500                 printf("%s: could not create %s.%s.driver_version sysctl\n",
501 			sc->sc_dv.dv_xname, ctlnames[CTL_HW].ctl_name,
502 			sc->sc_dv.dv_xname);
503 		return;
504 	}
505 }
506 
507 void
508 twe_register_callbacks(struct twe_softc *sc, int unit,
509     const struct twe_callbacks *tcb)
510 {
511 
512 	sc->sc_units[unit].td_callbacks = tcb;
513 }
514 
515 static void
516 twe_recompute_openings(struct twe_softc *sc)
517 {
518 	struct twe_drive *td;
519 	int unit, openings;
520 
521 	if (sc->sc_nunits != 0)
522 		openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits;
523 	else
524 		openings = 0;
525 	if (openings == sc->sc_openings)
526 		return;
527 	sc->sc_openings = openings;
528 
529 #ifdef TWE_DEBUG
530 	printf("%s: %d array%s, %d openings per array\n",
531 	    sc->sc_dv.dv_xname, sc->sc_nunits,
532 	    sc->sc_nunits == 1 ? "" : "s", sc->sc_openings);
533 #endif
534 
535 	for (unit = 0; unit < TWE_MAX_UNITS; unit++) {
536 		td = &sc->sc_units[unit];
537 		if (td->td_dev != NULL)
538 			(*td->td_callbacks->tcb_openings)(td->td_dev,
539 			    sc->sc_openings);
540 	}
541 }
542 
543 static int
544 twe_add_unit(struct twe_softc *sc, int unit)
545 {
546 	struct twe_param *dtp, *atp;
547 	struct twe_array_descriptor *ad;
548 	struct twe_drive *td;
549 	struct twe_attach_args twea;
550 	uint32_t newsize;
551 	int rv;
552 	uint16_t dsize;
553 	uint8_t newtype, newstripe;
554 	int locs[TWECF_NLOCS];
555 
556 	if (unit < 0 || unit >= TWE_MAX_UNITS)
557 		return (EINVAL);
558 
559 	/* Find attached units. */
560 	rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY,
561 	    TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp);
562 	if (rv != 0) {
563 		aprint_error("%s: error %d fetching unit summary\n",
564 		    sc->sc_dv.dv_xname, rv);
565 		return (rv);
566 	}
567 
568 	/* For each detected unit, collect size and store in an array. */
569 	td = &sc->sc_units[unit];
570 
571 	/* Unit present? */
572 	if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) {
573 		/*
574 		 * XXX Should we check to see if a device has been
575 		 * XXX attached at this index and detach it if it
576 		 * XXX has?  ("rescan" semantics)
577 		 */
578 		rv = 0;
579 		goto out;
580    	}
581 
582 	rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit,
583 	    TWE_PARAM_UNITINFO_DescriptorSize, &dsize);
584 	if (rv != 0) {
585 		aprint_error("%s: error %d fetching descriptor size "
586 		    "for unit %d\n", sc->sc_dv.dv_xname, rv, unit);
587 		goto out;
588 	}
589 
590 	rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit,
591 	    TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp);
592 	if (rv != 0) {
593 		aprint_error("%s: error %d fetching array descriptor "
594 		    "for unit %d\n", sc->sc_dv.dv_xname, rv, unit);
595 		goto out;
596 	}
597 
598 	ad = (struct twe_array_descriptor *)atp->tp_data;
599 	newtype = ad->configuration;
600 	newstripe = ad->stripe_size;
601 	free(atp, M_DEVBUF);
602 
603 	rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit,
604 	    TWE_PARAM_UNITINFO_Capacity, &newsize);
605 	if (rv != 0) {
606 		aprint_error(
607 		    "%s: error %d fetching capacity for unit %d\n",
608 		    sc->sc_dv.dv_xname, rv, unit);
609 		goto out;
610 	}
611 
612 	/*
613 	 * Have a device, so we need to attach it.  If there is currently
614 	 * something sitting at the slot, and the parameters are different,
615 	 * then we detach the old device before attaching the new one.
616 	 */
617 	if (td->td_dev != NULL &&
618 	    td->td_size == newsize &&
619 	    td->td_type == newtype &&
620 	    td->td_stripe == newstripe) {
621 		/* Same as the old device; just keep using it. */
622 		rv = 0;
623 		goto out;
624 	} else if (td->td_dev != NULL) {
625 		/* Detach the old device first. */
626 		(void) config_detach(td->td_dev, DETACH_FORCE);
627 		td->td_dev = NULL;
628 	} else if (td->td_size == 0)
629 		sc->sc_nunits++;
630 
631 	/*
632 	 * Committed to the new array unit; assign its parameters and
633 	 * recompute the number of available command openings.
634 	 */
635 	td->td_size = newsize;
636 	td->td_type = newtype;
637 	td->td_stripe = newstripe;
638 	twe_recompute_openings(sc);
639 
640 	twea.twea_unit = unit;
641 
642 	locs[TWECF_UNIT] = unit;
643 
644 	td->td_dev = config_found_sm_loc(&sc->sc_dv, "twe", locs, &twea,
645 					 twe_print, config_stdsubmatch);
646 
647 	rv = 0;
648  out:
649 	free(dtp, M_DEVBUF);
650 	return (rv);
651 }
652 
653 static int
654 twe_del_unit(struct twe_softc *sc, int unit)
655 {
656 	struct twe_drive *td;
657 
658 	if (unit < 0 || unit >= TWE_MAX_UNITS)
659 		return (EINVAL);
660 
661 	td = &sc->sc_units[unit];
662 	if (td->td_size != 0)
663 		sc->sc_nunits--;
664 	td->td_size = 0;
665 	td->td_type = 0;
666 	td->td_stripe = 0;
667 	if (td->td_dev != NULL) {
668 		(void) config_detach(td->td_dev, DETACH_FORCE);
669 		td->td_dev = NULL;
670 	}
671 	twe_recompute_openings(sc);
672 	return (0);
673 }
674 
675 /*
676  * Reset the controller.
677  * MUST BE CALLED AT splbio()!
678  */
679 static int
680 twe_reset(struct twe_softc *sc)
681 {
682 	uint16_t aen;
683 	u_int status;
684 	volatile u_int32_t junk;
685 	int got, rv;
686 
687 	/* Issue a soft reset. */
688 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET |
689 	    TWE_CTL_CLEAR_HOST_INTR |
690 	    TWE_CTL_CLEAR_ATTN_INTR |
691 	    TWE_CTL_MASK_CMD_INTR |
692 	    TWE_CTL_MASK_RESP_INTR |
693 	    TWE_CTL_CLEAR_ERROR_STS |
694 	    TWE_CTL_DISABLE_INTRS);
695 
696 	/* Wait for attention... */
697 	if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) {
698 		printf("%s: timeout waiting for attention interrupt\n",
699 		    sc->sc_dv.dv_xname);
700 		return (-1);
701 	}
702 
703 	/* ...and ACK it. */
704 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
705 
706 	/*
707 	 * Pull AENs out of the controller; look for a soft reset AEN.
708 	 * Open code this, since we want to detect reset even if the
709 	 * queue for management tools is full.
710 	 *
711 	 * Note that since:
712 	 *	- interrupts are blocked
713 	 *	- we have reset the controller
714 	 *	- acknowledged the pending ATTENTION
715 	 * that there is no way a pending asynchronous AEN fetch would
716 	 * finish, so clear the flag.
717 	 */
718 	sc->sc_flags &= ~TWEF_AEN;
719 	for (got = 0;;) {
720 		rv = twe_aen_get(sc, &aen);
721 		if (rv != 0)
722 			printf("%s: error %d while draining event queue\n",
723 			    sc->sc_dv.dv_xname, rv);
724 		if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY)
725 			break;
726 		if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET)
727 			got = 1;
728 		twe_aen_enqueue(sc, aen, 1);
729 	}
730 
731 	if (!got) {
732 		printf("%s: reset not reported\n", sc->sc_dv.dv_xname);
733 		return (-1);
734 	}
735 
736 	/* Check controller status. */
737 	status = twe_inl(sc, TWE_REG_STS);
738 	if (twe_status_check(sc, status)) {
739 		printf("%s: controller errors detected\n",
740 		    sc->sc_dv.dv_xname);
741 		return (-1);
742 	}
743 
744 	/* Drain the response queue. */
745 	for (;;) {
746 		status = twe_inl(sc, TWE_REG_STS);
747 		if (twe_status_check(sc, status) != 0) {
748 			printf("%s: can't drain response queue\n",
749 			    sc->sc_dv.dv_xname);
750 			return (-1);
751 		}
752 		if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0)
753 			break;
754 		junk = twe_inl(sc, TWE_REG_RESP_QUEUE);
755 	}
756 
757 	return (0);
758 }
759 
760 /*
761  * Print autoconfiguration message for a sub-device.
762  */
763 static int
764 twe_print(void *aux, const char *pnp)
765 {
766 	struct twe_attach_args *twea;
767 
768 	twea = aux;
769 
770 	if (pnp != NULL)
771 		aprint_normal("block device at %s", pnp);
772 	aprint_normal(" unit %d", twea->twea_unit);
773 	return (UNCONF);
774 }
775 
776 /*
777  * Interrupt service routine.
778  */
779 static int
780 twe_intr(void *arg)
781 {
782 	struct twe_softc *sc;
783 	u_int status;
784 	int caught, rv;
785 
786 	sc = arg;
787 	caught = 0;
788 	status = twe_inl(sc, TWE_REG_STS);
789 	twe_status_check(sc, status);
790 
791 	/* Host interrupts - purpose unknown. */
792 	if ((status & TWE_STS_HOST_INTR) != 0) {
793 #ifdef DEBUG
794 		printf("%s: host interrupt\n", sc->sc_dv.dv_xname);
795 #endif
796 		twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR);
797 		caught = 1;
798 	}
799 
800 	/*
801 	 * Attention interrupts, signalled when a controller or child device
802 	 * state change has occurred.
803 	 */
804 	if ((status & TWE_STS_ATTN_INTR) != 0) {
805 		rv = twe_aen_get(sc, NULL);
806 		if (rv != 0)
807 			printf("%s: unable to retrieve AEN (%d)\n",
808 			    sc->sc_dv.dv_xname, rv);
809 		else
810 			twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
811 		caught = 1;
812 	}
813 
814 	/*
815 	 * Command interrupts, signalled when the controller can accept more
816 	 * commands.  We don't use this; instead, we try to submit commands
817 	 * when we receive them, and when other commands have completed.
818 	 * Mask it so we don't get another one.
819 	 */
820 	if ((status & TWE_STS_CMD_INTR) != 0) {
821 #ifdef DEBUG
822 		printf("%s: command interrupt\n", sc->sc_dv.dv_xname);
823 #endif
824 		twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR);
825 		caught = 1;
826 	}
827 
828 	if ((status & TWE_STS_RESP_INTR) != 0) {
829 		twe_poll(sc);
830 		caught = 1;
831 	}
832 
833 	return (caught);
834 }
835 
836 /*
837  * Fetch an AEN.  Even though this is really like parameter
838  * retrieval, we handle this specially, because we issue this
839  * AEN retrieval command from interrupt context, and thus
840  * reserve a CCB for it to avoid resource shortage.
841  *
842  * XXX There are still potential resource shortages we could
843  * XXX encounter.  Consider pre-allocating all AEN-related
844  * XXX resources.
845  *
846  * MUST BE CALLED AT splbio()!
847  */
848 static int
849 twe_aen_get(struct twe_softc *sc, uint16_t *aenp)
850 {
851 	struct twe_ccb *ccb;
852 	struct twe_cmd *tc;
853 	struct twe_param *tp;
854 	int rv;
855 
856 	/*
857 	 * If we're already retrieving an AEN, just wait; another
858 	 * retrieval will be chained after the current one completes.
859 	 */
860 	if (sc->sc_flags & TWEF_AEN) {
861 		/*
862 		 * It is a fatal software programming error to attempt
863 		 * to fetch an AEN synchronously when an AEN fetch is
864 		 * already pending.
865 		 */
866 		KASSERT(aenp == NULL);
867 		return (0);
868 	}
869 
870 	tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
871 	if (tp == NULL)
872 		return (ENOMEM);
873 
874 	ccb = twe_ccb_alloc(sc,
875 	    TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
876 	KASSERT(ccb != NULL);
877 
878 	ccb->ccb_data = tp;
879 	ccb->ccb_datasize = TWE_SECTOR_SIZE;
880 	ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL;
881 	ccb->ccb_tx.tx_context = tp;
882 	ccb->ccb_tx.tx_dv = &sc->sc_dv;
883 
884 	tc = ccb->ccb_cmd;
885 	tc->tc_size = 2;
886 	tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
887 	tc->tc_unit = 0;
888 	tc->tc_count = htole16(1);
889 
890 	/* Fill in the outbound parameter data. */
891 	tp->tp_table_id = htole16(TWE_PARAM_AEN);
892 	tp->tp_param_id = TWE_PARAM_AEN_UnitCode;
893 	tp->tp_param_size = 2;
894 
895 	/* Map the transfer. */
896 	if ((rv = twe_ccb_map(sc, ccb)) != 0) {
897 		twe_ccb_free(sc, ccb);
898 		goto done;
899 	}
900 
901 	/* Enqueue the command and wait. */
902 	if (aenp != NULL) {
903 		rv = twe_ccb_poll(sc, ccb, 5);
904 		twe_ccb_unmap(sc, ccb);
905 		twe_ccb_free(sc, ccb);
906 		if (rv == 0)
907 			*aenp = le16toh(*(uint16_t *)tp->tp_data);
908 		free(tp, M_DEVBUF);
909 	} else {
910 		sc->sc_flags |= TWEF_AEN;
911 		twe_ccb_enqueue(sc, ccb);
912 		rv = 0;
913 	}
914 
915  done:
916 	return (rv);
917 }
918 
919 /*
920  * Handle an AEN returned by the controller.
921  * MUST BE CALLED AT splbio()!
922  */
923 static void
924 twe_aen_handler(struct twe_ccb *ccb, int error)
925 {
926 	struct twe_softc *sc;
927 	struct twe_param *tp;
928 	uint16_t aen;
929 	int rv;
930 
931 	sc = (struct twe_softc *)ccb->ccb_tx.tx_dv;
932 	tp = ccb->ccb_tx.tx_context;
933 	twe_ccb_unmap(sc, ccb);
934 
935 	sc->sc_flags &= ~TWEF_AEN;
936 
937 	if (error) {
938 		printf("%s: error retrieving AEN\n", sc->sc_dv.dv_xname);
939 		aen = TWE_AEN_QUEUE_EMPTY;
940 	} else
941 		aen = le16toh(*(u_int16_t *)tp->tp_data);
942 	free(tp, M_DEVBUF);
943 	twe_ccb_free(sc, ccb);
944 
945 	if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) {
946 		twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
947 		return;
948 	}
949 
950 	twe_aen_enqueue(sc, aen, 0);
951 
952 	/*
953 	 * Chain another retrieval in case interrupts have been
954 	 * coalesced.
955 	 */
956 	rv = twe_aen_get(sc, NULL);
957 	if (rv != 0)
958 		printf("%s: unable to retrieve AEN (%d)\n",
959 		    sc->sc_dv.dv_xname, rv);
960 }
961 
962 static void
963 twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet)
964 {
965 	const char *str, *msg;
966 	int s, next, nextnext, level;
967 
968 	/*
969 	 * First report the AEN on the console.  Maybe.
970 	 */
971 	if (! quiet) {
972 		str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen));
973 		if (str == NULL) {
974 			printf("%s: unknown AEN 0x%04x\n",
975 			    sc->sc_dv.dv_xname, aen);
976 		} else {
977 			msg = str + 3;
978 			switch (str[1]) {
979 			case 'E':	level = LOG_EMERG; break;
980 			case 'a':	level = LOG_ALERT; break;
981 			case 'c':	level = LOG_CRIT; break;
982 			case 'e':	level = LOG_ERR; break;
983 			case 'w':	level = LOG_WARNING; break;
984 			case 'n':	level = LOG_NOTICE; break;
985 			case 'i':	level = LOG_INFO; break;
986 			case 'd':	level = LOG_DEBUG; break;
987 			default:
988 				/* Don't use syslog. */
989 				level = -1;
990 			}
991 
992 			if (level < 0) {
993 				switch (str[0]) {
994 				case 'u':
995 				case 'p':
996 					printf("%s: %s %d: %s\n",
997 					    sc->sc_dv.dv_xname,
998 					    str[0] == 'u' ? "unit" : "port",
999 					    TWE_AEN_UNIT(aen), msg);
1000 					break;
1001 
1002 				default:
1003 					printf("%s: %s\n",
1004 					    sc->sc_dv.dv_xname, msg);
1005 				}
1006 			} else {
1007 				switch (str[0]) {
1008 				case 'u':
1009 				case 'p':
1010 					log(level, "%s: %s %d: %s\n",
1011 					    sc->sc_dv.dv_xname,
1012 					    str[0] == 'u' ? "unit" : "port",
1013 					    TWE_AEN_UNIT(aen), msg);
1014 					break;
1015 
1016 				default:
1017 					log(level, "%s: %s\n",
1018 					    sc->sc_dv.dv_xname, msg);
1019 				}
1020 			}
1021 		}
1022 	}
1023 
1024 	/* Now enqueue the AEN for mangement tools. */
1025 	s = splbio();
1026 
1027 	next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH;
1028 	nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH;
1029 
1030 	/*
1031 	 * If this is the last free slot, then queue up a "queue
1032 	 * full" message.
1033 	 */
1034 	if (nextnext == sc->sc_aen_tail)
1035 		aen = TWE_AEN_QUEUE_FULL;
1036 
1037 	if (next != sc->sc_aen_tail) {
1038 		sc->sc_aen_queue[sc->sc_aen_head] = aen;
1039 		sc->sc_aen_head = next;
1040 	}
1041 
1042 	if (sc->sc_flags & TWEF_AENQ_WAIT) {
1043 		sc->sc_flags &= ~TWEF_AENQ_WAIT;
1044 		wakeup(&sc->sc_aen_queue);
1045 	}
1046 
1047 	splx(s);
1048 }
1049 
1050 /* NOTE: Must be called at splbio(). */
1051 static uint16_t
1052 twe_aen_dequeue(struct twe_softc *sc)
1053 {
1054 	uint16_t aen;
1055 
1056 	if (sc->sc_aen_tail == sc->sc_aen_head)
1057 		aen = TWE_AEN_QUEUE_EMPTY;
1058 	else {
1059 		aen = sc->sc_aen_queue[sc->sc_aen_tail];
1060 		sc->sc_aen_tail = (sc->sc_aen_tail + 1) % TWE_AEN_Q_LENGTH;
1061 	}
1062 
1063 	return (aen);
1064 }
1065 
1066 /*
1067  * These are short-hand functions that execute TWE_OP_GET_PARAM to
1068  * fetch 1, 2, and 4 byte parameter values, respectively.
1069  */
1070 int
1071 twe_param_get_1(struct twe_softc *sc, int table_id, int param_id,
1072     uint8_t *valp)
1073 {
1074 	struct twe_param *tp;
1075 	int rv;
1076 
1077 	rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp);
1078 	if (rv != 0)
1079 		return (rv);
1080 	*valp = *(uint8_t *)tp->tp_data;
1081 	free(tp, M_DEVBUF);
1082 	return (0);
1083 }
1084 
1085 int
1086 twe_param_get_2(struct twe_softc *sc, int table_id, int param_id,
1087     uint16_t *valp)
1088 {
1089 	struct twe_param *tp;
1090 	int rv;
1091 
1092 	rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp);
1093 	if (rv != 0)
1094 		return (rv);
1095 	*valp = le16toh(*(uint16_t *)tp->tp_data);
1096 	free(tp, M_DEVBUF);
1097 	return (0);
1098 }
1099 
1100 int
1101 twe_param_get_4(struct twe_softc *sc, int table_id, int param_id,
1102     uint32_t *valp)
1103 {
1104 	struct twe_param *tp;
1105 	int rv;
1106 
1107 	rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp);
1108 	if (rv != 0)
1109 		return (rv);
1110 	*valp = le32toh(*(uint32_t *)tp->tp_data);
1111 	free(tp, M_DEVBUF);
1112 	return (0);
1113 }
1114 
1115 /*
1116  * Execute a TWE_OP_GET_PARAM command.  If a callback function is provided,
1117  * it will be called with generated context when the command has completed.
1118  * If no callback is provided, the command will be executed synchronously
1119  * and a pointer to a buffer containing the data returned.
1120  *
1121  * The caller or callback is responsible for freeing the buffer.
1122  *
1123  * NOTE: We assume we can sleep here to wait for a CCB to become available.
1124  */
1125 int
1126 twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size,
1127 	      void (*func)(struct twe_ccb *, int), struct twe_param **pbuf)
1128 {
1129 	struct twe_ccb *ccb;
1130 	struct twe_cmd *tc;
1131 	struct twe_param *tp;
1132 	int rv, s;
1133 
1134 	tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1135 	if (tp == NULL)
1136 		return ENOMEM;
1137 
1138 	ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1139 	KASSERT(ccb != NULL);
1140 
1141 	ccb->ccb_data = tp;
1142 	ccb->ccb_datasize = TWE_SECTOR_SIZE;
1143 	ccb->ccb_tx.tx_handler = func;
1144 	ccb->ccb_tx.tx_context = tp;
1145 	ccb->ccb_tx.tx_dv = &sc->sc_dv;
1146 
1147 	tc = ccb->ccb_cmd;
1148 	tc->tc_size = 2;
1149 	tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
1150 	tc->tc_unit = 0;
1151 	tc->tc_count = htole16(1);
1152 
1153 	/* Fill in the outbound parameter data. */
1154 	tp->tp_table_id = htole16(table_id);
1155 	tp->tp_param_id = param_id;
1156 	tp->tp_param_size = size;
1157 
1158 	/* Map the transfer. */
1159 	if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1160 		twe_ccb_free(sc, ccb);
1161 		goto done;
1162 	}
1163 
1164 	/* Submit the command and either wait or let the callback handle it. */
1165 	if (func == NULL) {
1166 		s = splbio();
1167 		rv = twe_ccb_poll(sc, ccb, 5);
1168 		twe_ccb_unmap(sc, ccb);
1169 		twe_ccb_free(sc, ccb);
1170 		splx(s);
1171 	} else {
1172 #ifdef DEBUG
1173 		if (pbuf != NULL)
1174 			panic("both func and pbuf defined");
1175 #endif
1176 		twe_ccb_enqueue(sc, ccb);
1177 		return 0;
1178 	}
1179 
1180 done:
1181 	if (pbuf == NULL || rv != 0)
1182 		free(tp, M_DEVBUF);
1183 	else if (pbuf != NULL && rv == 0)
1184 		*pbuf = tp;
1185 	return rv;
1186 }
1187 
1188 /*
1189  * Execute a TWE_OP_SET_PARAM command.
1190  *
1191  * NOTE: We assume we can sleep here to wait for a CCB to become available.
1192  */
1193 static int
1194 twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size,
1195 	      void *sbuf)
1196 {
1197 	struct twe_ccb *ccb;
1198 	struct twe_cmd *tc;
1199 	struct twe_param *tp;
1200 	int rv, s;
1201 
1202 	tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1203 	if (tp == NULL)
1204 		return ENOMEM;
1205 
1206 	ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1207 	KASSERT(ccb != NULL);
1208 
1209 	ccb->ccb_data = tp;
1210 	ccb->ccb_datasize = TWE_SECTOR_SIZE;
1211 	ccb->ccb_tx.tx_handler = 0;
1212 	ccb->ccb_tx.tx_context = tp;
1213 	ccb->ccb_tx.tx_dv = &sc->sc_dv;
1214 
1215 	tc = ccb->ccb_cmd;
1216 	tc->tc_size = 2;
1217 	tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5);
1218 	tc->tc_unit = 0;
1219 	tc->tc_count = htole16(1);
1220 
1221 	/* Fill in the outbound parameter data. */
1222 	tp->tp_table_id = htole16(table_id);
1223 	tp->tp_param_id = param_id;
1224 	tp->tp_param_size = size;
1225 	memcpy(tp->tp_data, sbuf, size);
1226 
1227 	/* Map the transfer. */
1228 	if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1229 		twe_ccb_free(sc, ccb);
1230 		goto done;
1231 	}
1232 
1233 	/* Submit the command and wait. */
1234 	s = splbio();
1235 	rv = twe_ccb_poll(sc, ccb, 5);
1236 	twe_ccb_unmap(sc, ccb);
1237 	twe_ccb_free(sc, ccb);
1238 	splx(s);
1239 done:
1240 	free(tp, M_DEVBUF);
1241 	return (rv);
1242 }
1243 
1244 /*
1245  * Execute a TWE_OP_INIT_CONNECTION command.  Return non-zero on error.
1246  * Must be called with interrupts blocked.
1247  */
1248 static int
1249 twe_init_connection(struct twe_softc *sc)
1250 {
1251 	struct twe_ccb *ccb;
1252 	struct twe_cmd *tc;
1253 	int rv;
1254 
1255 	if ((ccb = twe_ccb_alloc(sc, 0)) == NULL)
1256 		return (EAGAIN);
1257 
1258 	/* Build the command. */
1259 	tc = ccb->ccb_cmd;
1260 	tc->tc_size = 3;
1261 	tc->tc_opcode = TWE_OP_INIT_CONNECTION;
1262 	tc->tc_unit = 0;
1263 	tc->tc_count = htole16(TWE_MAX_CMDS);
1264 	tc->tc_args.init_connection.response_queue_pointer = 0;
1265 
1266 	/* Submit the command for immediate execution. */
1267 	rv = twe_ccb_poll(sc, ccb, 5);
1268 	twe_ccb_free(sc, ccb);
1269 	return (rv);
1270 }
1271 
1272 /*
1273  * Poll the controller for completed commands.  Must be called with
1274  * interrupts blocked.
1275  */
1276 static void
1277 twe_poll(struct twe_softc *sc)
1278 {
1279 	struct twe_ccb *ccb;
1280 	int found;
1281 	u_int status, cmdid;
1282 
1283 	found = 0;
1284 
1285 	for (;;) {
1286 		status = twe_inl(sc, TWE_REG_STS);
1287 		twe_status_check(sc, status);
1288 
1289 		if ((status & TWE_STS_RESP_QUEUE_EMPTY))
1290 			break;
1291 
1292 		found = 1;
1293 		cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE);
1294 		cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT;
1295 		if (cmdid >= TWE_MAX_QUEUECNT) {
1296 			printf("%s: bad cmdid %d\n", sc->sc_dv.dv_xname, cmdid);
1297 			continue;
1298 		}
1299 
1300 		ccb = sc->sc_ccbs + cmdid;
1301 		if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) {
1302 			printf("%s: CCB for cmdid %d not active\n",
1303 			    sc->sc_dv.dv_xname, cmdid);
1304 			continue;
1305 		}
1306 		ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE;
1307 
1308 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1309 		    (caddr_t)ccb->ccb_cmd - sc->sc_cmds,
1310 		    sizeof(struct twe_cmd),
1311 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1312 
1313 		/* Pass notification to upper layers. */
1314 		if (ccb->ccb_tx.tx_handler != NULL)
1315 			(*ccb->ccb_tx.tx_handler)(ccb,
1316 			    ccb->ccb_cmd->tc_status != 0 ? EIO : 0);
1317 	}
1318 
1319 	/* If any commands have completed, run the software queue. */
1320 	if (found)
1321 		twe_ccb_enqueue(sc, NULL);
1322 }
1323 
1324 /*
1325  * Wait for `status' to be set in the controller status register.  Return
1326  * zero if found, non-zero if the operation timed out.
1327  */
1328 static int
1329 twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo)
1330 {
1331 
1332 	for (timo *= 10; timo != 0; timo--) {
1333 		if ((twe_inl(sc, TWE_REG_STS) & status) == status)
1334 			break;
1335 		delay(100000);
1336 	}
1337 
1338 	return (timo == 0);
1339 }
1340 
1341 /*
1342  * Clear a PCI parity error.
1343  */
1344 static void
1345 twe_clear_pci_parity_error(struct twe_softc *sc)
1346 {
1347 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PARITY_ERROR);
1348 
1349 	//FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2);
1350 }
1351 
1352 
1353 /*
1354  * Clear a PCI abort.
1355  */
1356 static void
1357 twe_clear_pci_abort(struct twe_softc *sc)
1358 {
1359 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PCI_ABORT);
1360 
1361 	//FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2);
1362 }
1363 
1364 /*
1365  * Complain if the status bits aren't what we expect.
1366  */
1367 static int
1368 twe_status_check(struct twe_softc *sc, u_int status)
1369 {
1370 	int rv;
1371 
1372 	rv = 0;
1373 
1374 	if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) {
1375 		printf("%s: missing status bits: 0x%08x\n", sc->sc_dv.dv_xname,
1376 		    status & ~TWE_STS_EXPECTED_BITS);
1377 		rv = -1;
1378 	}
1379 
1380 	if ((status & TWE_STS_UNEXPECTED_BITS) != 0) {
1381 		printf("%s: unexpected status bits: 0x%08x\n",
1382 		    sc->sc_dv.dv_xname, status & TWE_STS_UNEXPECTED_BITS);
1383 		rv = -1;
1384 		if (status & TWE_STS_PCI_PARITY_ERROR) {
1385 			printf("%s: PCI parity error: Reseat card, move card "
1386 			       "or buggy device present.\n",
1387 			       sc->sc_dv.dv_xname);
1388 			twe_clear_pci_parity_error(sc);
1389 		}
1390 		if (status & TWE_STS_PCI_ABORT) {
1391 			printf("%s: PCI abort, clearing.\n",
1392 			       sc->sc_dv.dv_xname);
1393 			twe_clear_pci_abort(sc);
1394 		}
1395 	}
1396 
1397 	return (rv);
1398 }
1399 
1400 /*
1401  * Allocate and initialise a CCB.
1402  */
1403 static inline void
1404 twe_ccb_init(struct twe_softc *sc, struct twe_ccb *ccb, int flags)
1405 {
1406 	struct twe_cmd *tc;
1407 
1408 	ccb->ccb_tx.tx_handler = NULL;
1409 	ccb->ccb_flags = flags;
1410 	tc = ccb->ccb_cmd;
1411 	tc->tc_status = 0;
1412 	tc->tc_flags = 0;
1413 	tc->tc_cmdid = ccb->ccb_cmdid;
1414 }
1415 
1416 struct twe_ccb *
1417 twe_ccb_alloc(struct twe_softc *sc, int flags)
1418 {
1419 	struct twe_ccb *ccb;
1420 	int s;
1421 
1422 	s = splbio();
1423 	if (__predict_false((flags & TWE_CCB_AEN) != 0)) {
1424 		/* Use the reserved CCB. */
1425 		ccb = sc->sc_ccbs;
1426 	} else {
1427 		/* Allocate a CCB and command block. */
1428 		if (__predict_false((ccb =
1429 				SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1430 			splx(s);
1431 			return (NULL);
1432 		}
1433 		SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1434 	}
1435 #ifdef DIAGNOSTIC
1436 	if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0)
1437 		panic("twe_ccb_alloc: got reserved CCB for non-AEN");
1438 	if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1439 		panic("twe_ccb_alloc: CCB %ld already allocated",
1440 		    (long)(ccb - sc->sc_ccbs));
1441 	flags |= TWE_CCB_ALLOCED;
1442 #endif
1443 	splx(s);
1444 
1445 	twe_ccb_init(sc, ccb, flags);
1446 	return (ccb);
1447 }
1448 
1449 struct twe_ccb *
1450 twe_ccb_alloc_wait(struct twe_softc *sc, int flags)
1451 {
1452 	struct twe_ccb *ccb;
1453 	int s;
1454 
1455 	KASSERT((flags & TWE_CCB_AEN) == 0);
1456 
1457 	s = splbio();
1458 	while (__predict_false((ccb =
1459 				SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1460 		sc->sc_flags |= TWEF_WAIT_CCB;
1461 		(void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0);
1462 	}
1463 	SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1464 #ifdef DIAGNOSTIC
1465 	if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1466 		panic("twe_ccb_alloc_wait: CCB %ld already allocated",
1467 		    (long)(ccb - sc->sc_ccbs));
1468 	flags |= TWE_CCB_ALLOCED;
1469 #endif
1470 	splx(s);
1471 
1472 	twe_ccb_init(sc, ccb, flags);
1473 	return (ccb);
1474 }
1475 
1476 /*
1477  * Free a CCB.
1478  */
1479 void
1480 twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb)
1481 {
1482 	int s;
1483 
1484 	s = splbio();
1485 	if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) {
1486 		SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist);
1487 		if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) {
1488 			sc->sc_flags &= ~TWEF_WAIT_CCB;
1489 			wakeup(&sc->sc_ccb_freelist);
1490 		}
1491 	}
1492 	ccb->ccb_flags = 0;
1493 	splx(s);
1494 }
1495 
1496 /*
1497  * Map the specified CCB's command block and data buffer (if any) into
1498  * controller visible space.  Perform DMA synchronisation.
1499  */
1500 int
1501 twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb)
1502 {
1503 	struct twe_cmd *tc;
1504 	int flags, nsegs, i, s, rv;
1505 	void *data;
1506 
1507 	/*
1508 	 * The data as a whole must be 512-byte aligned.
1509 	 */
1510 	if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) {
1511 		s = splvm();
1512 		/* XXX */
1513 		ccb->ccb_abuf = uvm_km_alloc(kmem_map,
1514 		    ccb->ccb_datasize, 0, UVM_KMF_NOWAIT|UVM_KMF_WIRED);
1515 		splx(s);
1516 		data = (void *)ccb->ccb_abuf;
1517 		if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1518 			memcpy(data, ccb->ccb_data, ccb->ccb_datasize);
1519 	} else {
1520 		ccb->ccb_abuf = (vaddr_t)0;
1521 		data = ccb->ccb_data;
1522 	}
1523 
1524 	/*
1525 	 * Map the data buffer into bus space and build the S/G list.
1526 	 */
1527 	rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data,
1528 	    ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1529 	    ((ccb->ccb_flags & TWE_CCB_DATA_IN) ?
1530 	    BUS_DMA_READ : BUS_DMA_WRITE));
1531 	if (rv != 0) {
1532 		if (ccb->ccb_abuf != (vaddr_t)0) {
1533 			s = splvm();
1534 			/* XXX */
1535 			uvm_km_free(kmem_map, ccb->ccb_abuf,
1536 			    ccb->ccb_datasize, UVM_KMF_WIRED);
1537 			splx(s);
1538 		}
1539 		return (rv);
1540 	}
1541 
1542 	nsegs = ccb->ccb_dmamap_xfer->dm_nsegs;
1543 	tc = ccb->ccb_cmd;
1544 	tc->tc_size += 2 * nsegs;
1545 
1546 	/* The location of the S/G list is dependant upon command type. */
1547 	switch (tc->tc_opcode >> 5) {
1548 	case 2:
1549 		for (i = 0; i < nsegs; i++) {
1550 			tc->tc_args.param.sgl[i].tsg_address =
1551 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1552 			tc->tc_args.param.sgl[i].tsg_length =
1553 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1554 		}
1555 		/* XXX Needed? */
1556 		for (; i < TWE_SG_SIZE; i++) {
1557 			tc->tc_args.param.sgl[i].tsg_address = 0;
1558 			tc->tc_args.param.sgl[i].tsg_length = 0;
1559 		}
1560 		break;
1561 	case 3:
1562 		for (i = 0; i < nsegs; i++) {
1563 			tc->tc_args.io.sgl[i].tsg_address =
1564 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1565 			tc->tc_args.io.sgl[i].tsg_length =
1566 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1567 		}
1568 		/* XXX Needed? */
1569 		for (; i < TWE_SG_SIZE; i++) {
1570 			tc->tc_args.io.sgl[i].tsg_address = 0;
1571 			tc->tc_args.io.sgl[i].tsg_length = 0;
1572 		}
1573 		break;
1574 	default:
1575 		/*
1576 		 * In all likelihood, this is a command passed from
1577 		 * management tools in userspace where no S/G list is
1578 		 * necessary because no data is being passed.
1579 		 */
1580 		break;
1581 	}
1582 
1583 	if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1584 		flags = BUS_DMASYNC_PREREAD;
1585 	else
1586 		flags = 0;
1587 	if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1588 		flags |= BUS_DMASYNC_PREWRITE;
1589 
1590 	bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1591 	    ccb->ccb_datasize, flags);
1592 	return (0);
1593 }
1594 
1595 /*
1596  * Unmap the specified CCB's command block and data buffer (if any) and
1597  * perform DMA synchronisation.
1598  */
1599 void
1600 twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb)
1601 {
1602 	int flags, s;
1603 
1604 	if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1605 		flags = BUS_DMASYNC_POSTREAD;
1606 	else
1607 		flags = 0;
1608 	if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1609 		flags |= BUS_DMASYNC_POSTWRITE;
1610 
1611 	bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1612 	    ccb->ccb_datasize, flags);
1613 	bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer);
1614 
1615 	if (ccb->ccb_abuf != (vaddr_t)0) {
1616 		if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1617 			memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf,
1618 			    ccb->ccb_datasize);
1619 		s = splvm();
1620 		/* XXX */
1621 		uvm_km_free(kmem_map, ccb->ccb_abuf, ccb->ccb_datasize,
1622 		    UVM_KMF_WIRED);
1623 		splx(s);
1624 	}
1625 }
1626 
1627 /*
1628  * Submit a command to the controller and poll on completion.  Return
1629  * non-zero on timeout (but don't check status, as some command types don't
1630  * return status).  Must be called with interrupts blocked.
1631  */
1632 int
1633 twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo)
1634 {
1635 	int rv;
1636 
1637 	if ((rv = twe_ccb_submit(sc, ccb)) != 0)
1638 		return (rv);
1639 
1640 	for (timo *= 1000; timo != 0; timo--) {
1641 		twe_poll(sc);
1642 		if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0)
1643 			break;
1644 		DELAY(100);
1645 	}
1646 
1647 	return (timo == 0);
1648 }
1649 
1650 /*
1651  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
1652  * the order that they were enqueued and try to submit their command blocks
1653  * to the controller for execution.
1654  */
1655 void
1656 twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb)
1657 {
1658 	int s;
1659 
1660 	s = splbio();
1661 
1662 	if (ccb != NULL)
1663 		SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq);
1664 
1665 	while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) {
1666 		if (twe_ccb_submit(sc, ccb))
1667 			break;
1668 		SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq);
1669 	}
1670 
1671 	splx(s);
1672 }
1673 
1674 /*
1675  * Submit the command block associated with the specified CCB to the
1676  * controller for execution.  Must be called with interrupts blocked.
1677  */
1678 int
1679 twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb)
1680 {
1681 	bus_addr_t pa;
1682 	int rv;
1683 	u_int status;
1684 
1685 	/* Check to see if we can post a command. */
1686 	status = twe_inl(sc, TWE_REG_STS);
1687 	twe_status_check(sc, status);
1688 
1689 	if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) {
1690 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1691 		    (caddr_t)ccb->ccb_cmd - sc->sc_cmds, sizeof(struct twe_cmd),
1692 		    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1693 #ifdef DIAGNOSTIC
1694 		if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0)
1695 			panic("%s: CCB %ld not ALLOCED\n",
1696 			    sc->sc_dv.dv_xname, (long)(ccb - sc->sc_ccbs));
1697 #endif
1698 		ccb->ccb_flags |= TWE_CCB_ACTIVE;
1699 		pa = sc->sc_cmds_paddr +
1700 		    ccb->ccb_cmdid * sizeof(struct twe_cmd);
1701 		twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa);
1702 		rv = 0;
1703 	} else
1704 		rv = EBUSY;
1705 
1706 	return (rv);
1707 }
1708 
1709 
1710 /*
1711  * Accept an open operation on the control device.
1712  */
1713 static int
1714 tweopen(dev_t dev, int flag, int mode, struct lwp *l)
1715 {
1716 	struct twe_softc *twe;
1717 
1718 	if ((twe = device_lookup(&twe_cd, minor(dev))) == NULL)
1719 		return (ENXIO);
1720 	if ((twe->sc_flags & TWEF_OPEN) != 0)
1721 		return (EBUSY);
1722 
1723 	twe->sc_flags |= TWEF_OPEN;
1724 	return (0);
1725 }
1726 
1727 /*
1728  * Accept the last close on the control device.
1729  */
1730 static int
1731 tweclose(dev_t dev, int flag, int mode, struct lwp *l)
1732 {
1733 	struct twe_softc *twe;
1734 
1735 	twe = device_lookup(&twe_cd, minor(dev));
1736 	twe->sc_flags &= ~TWEF_OPEN;
1737 	return (0);
1738 }
1739 
1740 void
1741 twe_ccb_wait_handler(struct twe_ccb *ccb, int error)
1742 {
1743 
1744 	/* Just wake up the sleeper. */
1745 	wakeup(ccb);
1746 }
1747 
1748 /*
1749  * Handle control operations.
1750  */
1751 static int
1752 tweioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct lwp *l)
1753 {
1754 	struct twe_softc *twe;
1755 	struct twe_ccb *ccb;
1756 	struct twe_param *param;
1757 	struct twe_usercommand *tu;
1758 	struct twe_paramcommand *tp;
1759 	struct twe_drivecommand *td;
1760 	void *pdata = NULL;
1761 	int s, error = 0;
1762 	u_int8_t cmdid;
1763 
1764 	twe = device_lookup(&twe_cd, minor(dev));
1765 	tu = (struct twe_usercommand *)data;
1766 	tp = (struct twe_paramcommand *)data;
1767 	td = (struct twe_drivecommand *)data;
1768 
1769 	/* This is intended to be compatible with the FreeBSD interface. */
1770 	switch (cmd) {
1771 	case TWEIO_COMMAND:
1772 		if (securelevel >= 2)
1773 			return (EPERM);
1774 
1775 		/* XXX mutex */
1776 		if (tu->tu_size > 0) {
1777 			/*
1778 			 * XXX Handle > TWE_SECTOR_SIZE?  Let's see if
1779 			 * it's really necessary, first.
1780 			 */
1781 			if (tu->tu_size > TWE_SECTOR_SIZE) {
1782 #ifdef TWE_DEBUG
1783 				printf("%s: TWEIO_COMMAND: tu_size = %d\n",
1784 				    twe->sc_dv.dv_xname, tu->tu_size);
1785 #endif
1786 				return EINVAL;
1787 			}
1788 			pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK);
1789 			error = copyin(tu->tu_data, pdata, tu->tu_size);
1790 			if (error != 0)
1791 				goto done;
1792 			ccb = twe_ccb_alloc_wait(twe,
1793 			    TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1794 			KASSERT(ccb != NULL);
1795 			ccb->ccb_data = pdata;
1796 			ccb->ccb_datasize = TWE_SECTOR_SIZE;
1797 		} else {
1798 			ccb = twe_ccb_alloc_wait(twe, 0);
1799 			KASSERT(ccb != NULL);
1800 		}
1801 
1802 		ccb->ccb_tx.tx_handler = twe_ccb_wait_handler;
1803 		ccb->ccb_tx.tx_context = NULL;
1804 		ccb->ccb_tx.tx_dv = &twe->sc_dv;
1805 
1806 		cmdid = ccb->ccb_cmdid;
1807 		memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd));
1808 		ccb->ccb_cmd->tc_cmdid = cmdid;
1809 
1810 		/* Map the transfer. */
1811 		if ((error = twe_ccb_map(twe, ccb)) != 0) {
1812 			twe_ccb_free(twe, ccb);
1813 			goto done;
1814 		}
1815 
1816 		/* Submit the command and wait up to 1 minute. */
1817 		error = 0;
1818 		twe_ccb_enqueue(twe, ccb);
1819 		s = splbio();
1820 		while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0)
1821 			if ((error = tsleep(ccb, PRIBIO, "tweioctl",
1822 					    60 * hz)) != 0)
1823 				break;
1824 		splx(s);
1825 
1826 		/* Copy the command back to the ioctl argument. */
1827 		memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd));
1828 #ifdef TWE_DEBUG
1829 		printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, "
1830 		    "tc_status = 0x%02x\n", twe->sc_dv.dv_xname,
1831 		    tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status);
1832 #endif
1833 
1834 		s = splbio();
1835 		twe_ccb_free(twe, ccb);
1836 		splx(s);
1837 
1838 		if (tu->tu_size > 0)
1839 			error = copyout(pdata, tu->tu_data, tu->tu_size);
1840 		goto done;
1841 
1842 	case TWEIO_STATS:
1843 		return (ENOENT);
1844 
1845 	case TWEIO_AEN_POLL:
1846 		s = splbio();
1847 		*(u_int *)data = twe_aen_dequeue(twe);
1848 		splx(s);
1849 		return (0);
1850 
1851 	case TWEIO_AEN_WAIT:
1852 		s = splbio();
1853 		while ((*(u_int *)data =
1854 		    twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) {
1855 			twe->sc_flags |= TWEF_AENQ_WAIT;
1856 			error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH,
1857 			    "tweaen", 0);
1858 			if (error == EINTR) {
1859 				splx(s);
1860 				return (error);
1861 			}
1862 		}
1863 		splx(s);
1864 		return (0);
1865 
1866 	case TWEIO_GET_PARAM:
1867 		error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id,
1868 		    tp->tp_size, 0, &param);
1869 		if (error != 0)
1870 			return (error);
1871 		if (param->tp_param_size > tp->tp_size) {
1872 			error = EFAULT;
1873 			goto done;
1874 		}
1875 		error = copyout(param->tp_data, tp->tp_data,
1876 		    param->tp_param_size);
1877 		free(param, M_DEVBUF);
1878 		goto done;
1879 
1880 	case TWEIO_SET_PARAM:
1881 		pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK);
1882 		if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0)
1883 			goto done;
1884 		error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id,
1885 		    tp->tp_size, pdata);
1886 		goto done;
1887 
1888 	case TWEIO_RESET:
1889 		s = splbio();
1890 		twe_reset(twe);
1891 		splx(s);
1892 		return (0);
1893 
1894 	case TWEIO_ADD_UNIT:
1895 		/* XXX mutex */
1896 		return (twe_add_unit(twe, td->td_unit));
1897 
1898 	case TWEIO_DEL_UNIT:
1899 		/* XXX mutex */
1900 		return (twe_del_unit(twe, td->td_unit));
1901 
1902 	default:
1903 		return EINVAL;
1904 	}
1905 done:
1906 	if (pdata)
1907 		free(pdata, M_DEVBUF);
1908 	return error;
1909 }
1910 
1911 const struct cdevsw twe_cdevsw = {
1912 	tweopen, tweclose, noread, nowrite, tweioctl,
1913 	    nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1914 };
1915 
1916 /*
1917  * Print some information about the controller
1918  */
1919 static void
1920 twe_describe_controller(struct twe_softc *sc)
1921 {
1922 	struct twe_param *p[6];
1923 	int i, rv = 0;
1924 	uint32_t dsize;
1925 	uint8_t ports;
1926 
1927 	ports = 0;
1928 
1929 	/* get the port count */
1930 	rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER,
1931 		TWE_PARAM_CONTROLLER_PortCount, &ports);
1932 
1933 	/* get version strings */
1934 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon,
1935 		16, NULL, &p[0]);
1936 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW,
1937 		16, NULL, &p[1]);
1938 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS,
1939 		16, NULL, &p[2]);
1940 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB,
1941 		8, NULL, &p[3]);
1942 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA,
1943 		8, NULL, &p[4]);
1944 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI,
1945 		8, NULL, &p[5]);
1946 
1947 	if (rv) {
1948 		/* some error occurred */
1949 		aprint_error("%s: failed to fetch version information\n",
1950 			sc->sc_dv.dv_xname);
1951 		return;
1952 	}
1953 
1954 	aprint_normal("%s: %d ports, Firmware %.16s, BIOS %.16s\n",
1955 		sc->sc_dv.dv_xname, ports,
1956 		p[1]->tp_data, p[2]->tp_data);
1957 
1958 	aprint_verbose("%s: Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n",
1959 		sc->sc_dv.dv_xname,
1960 		p[0]->tp_data, p[3]->tp_data,
1961 		p[4]->tp_data, p[5]->tp_data);
1962 
1963 	free(p[0], M_DEVBUF);
1964 	free(p[1], M_DEVBUF);
1965 	free(p[2], M_DEVBUF);
1966 	free(p[3], M_DEVBUF);
1967 	free(p[4], M_DEVBUF);
1968 	free(p[5], M_DEVBUF);
1969 
1970 	rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY,
1971 	    TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]);
1972 	if (rv) {
1973 		aprint_error("%s: failed to get drive status summary\n",
1974 		    sc->sc_dv.dv_xname);
1975 		return;
1976 	}
1977 	for (i = 0; i < ports; i++) {
1978 		if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present)
1979 			continue;
1980 		rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i,
1981 		    TWE_PARAM_DRIVEINFO_Size, &dsize);
1982 		if (rv) {
1983 			aprint_error(
1984 			    "%s: unable to get drive size for port %d\n",
1985 			    sc->sc_dv.dv_xname, i);
1986 			continue;
1987 		}
1988 		rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i,
1989 		    TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]);
1990 		if (rv) {
1991 			aprint_error(
1992 			    "%s: unable to get drive model for port %d\n",
1993 			    sc->sc_dv.dv_xname, i);
1994 			continue;
1995 		}
1996 		aprint_verbose("%s: port %d: %.40s %d MB\n", sc->sc_dv.dv_xname,
1997 		    i, p[1]->tp_data, dsize / 2048);
1998 		free(p[1], M_DEVBUF);
1999 	}
2000 	free(p[0], M_DEVBUF);
2001 }
2002