xref: /netbsd-src/sys/dev/pci/twe.c (revision b1c86f5f087524e68db12794ee9c3e3da1ab17a0)
1 /*	$NetBSD: twe.c,v 1.91 2010/07/27 14:34:34 jakllsch Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 2000 Michael Smith
34  * Copyright (c) 2000 BSDi
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  *
58  * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp
59  */
60 
61 /*
62  * Driver for the 3ware Escalade family of RAID controllers.
63  */
64 
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.91 2010/07/27 14:34:34 jakllsch Exp $");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/device.h>
72 #include <sys/queue.h>
73 #include <sys/proc.h>
74 #include <sys/buf.h>
75 #include <sys/endian.h>
76 #include <sys/malloc.h>
77 #include <sys/conf.h>
78 #include <sys/disk.h>
79 #include <sys/sysctl.h>
80 #include <sys/syslog.h>
81 #include <sys/kauth.h>
82 
83 #include <uvm/uvm_extern.h>
84 
85 #include <sys/bswap.h>
86 #include <sys/bus.h>
87 
88 #include <dev/pci/pcireg.h>
89 #include <dev/pci/pcivar.h>
90 #include <dev/pci/pcidevs.h>
91 #include <dev/pci/twereg.h>
92 #include <dev/pci/twevar.h>
93 #include <dev/pci/tweio.h>
94 
95 #include "locators.h"
96 
97 #define	PCI_CBIO	0x10
98 
99 static int	twe_aen_get(struct twe_softc *, uint16_t *);
100 static void	twe_aen_handler(struct twe_ccb *, int);
101 static void	twe_aen_enqueue(struct twe_softc *sc, uint16_t, int);
102 static uint16_t	twe_aen_dequeue(struct twe_softc *);
103 
104 static void	twe_attach(device_t, device_t, void *);
105 static int	twe_init_connection(struct twe_softc *);
106 static int	twe_intr(void *);
107 static int	twe_match(device_t, cfdata_t, void *);
108 static int	twe_param_set(struct twe_softc *, int, int, size_t, void *);
109 static void	twe_poll(struct twe_softc *);
110 static int	twe_print(void *, const char *);
111 static int	twe_reset(struct twe_softc *);
112 static int	twe_status_check(struct twe_softc *, u_int);
113 static int	twe_status_wait(struct twe_softc *, u_int, int);
114 static void	twe_describe_controller(struct twe_softc *);
115 static void twe_clear_pci_abort(struct twe_softc *sc);
116 static void twe_clear_pci_parity_error(struct twe_softc *sc);
117 
118 static int	twe_add_unit(struct twe_softc *, int);
119 static int	twe_del_unit(struct twe_softc *, int);
120 static int	twe_init_connection(struct twe_softc *);
121 
122 static inline u_int32_t	twe_inl(struct twe_softc *, int);
123 static inline void twe_outl(struct twe_softc *, int, u_int32_t);
124 
125 extern struct	cfdriver twe_cd;
126 
127 CFATTACH_DECL(twe, sizeof(struct twe_softc),
128     twe_match, twe_attach, NULL, NULL);
129 
130 /* FreeBSD driver revision for sysctl expected by the 3ware cli */
131 const char twever[] = "1.50.01.002";
132 
133 /*
134  * Tables to convert numeric codes to strings.
135  */
136 const struct twe_code_table twe_table_status[] = {
137 	{ 0x00,	"successful completion" },
138 
139 	/* info */
140 	{ 0x42,	"command in progress" },
141 	{ 0x6c,	"retrying interface CRC error from UDMA command" },
142 
143 	/* warning */
144 	{ 0x81,	"redundant/inconsequential request ignored" },
145 	{ 0x8e,	"failed to write zeroes to LBA 0" },
146 	{ 0x8f,	"failed to profile TwinStor zones" },
147 
148 	/* fatal */
149 	{ 0xc1,	"aborted due to system command or reconfiguration" },
150 	{ 0xc4,	"aborted" },
151 	{ 0xc5,	"access error" },
152 	{ 0xc6,	"access violation" },
153 	{ 0xc7,	"device failure" },	/* high byte may be port # */
154 	{ 0xc8,	"controller error" },
155 	{ 0xc9,	"timed out" },
156 	{ 0xcb,	"invalid unit number" },
157 	{ 0xcf,	"unit not available" },
158 	{ 0xd2,	"undefined opcode" },
159 	{ 0xdb,	"request incompatible with unit" },
160 	{ 0xdc,	"invalid request" },
161 	{ 0xff,	"firmware error, reset requested" },
162 
163 	{ 0,	NULL }
164 };
165 
166 const struct twe_code_table twe_table_unitstate[] = {
167 	{ TWE_PARAM_UNITSTATUS_Normal,		"Normal" },
168 	{ TWE_PARAM_UNITSTATUS_Initialising,	"Initializing" },
169 	{ TWE_PARAM_UNITSTATUS_Degraded,	"Degraded" },
170 	{ TWE_PARAM_UNITSTATUS_Rebuilding,	"Rebuilding" },
171 	{ TWE_PARAM_UNITSTATUS_Verifying,	"Verifying" },
172 	{ TWE_PARAM_UNITSTATUS_Corrupt,		"Corrupt" },
173 	{ TWE_PARAM_UNITSTATUS_Missing,		"Missing" },
174 
175 	{ 0,					NULL }
176 };
177 
178 const struct twe_code_table twe_table_unittype[] = {
179 	/* array descriptor configuration */
180 	{ TWE_AD_CONFIG_RAID0,			"RAID0" },
181 	{ TWE_AD_CONFIG_RAID1,			"RAID1" },
182 	{ TWE_AD_CONFIG_TwinStor,		"TwinStor" },
183 	{ TWE_AD_CONFIG_RAID5,			"RAID5" },
184 	{ TWE_AD_CONFIG_RAID10,			"RAID10" },
185 	{ TWE_UD_CONFIG_JBOD,			"JBOD" },
186 
187 	{ 0,					NULL }
188 };
189 
190 const struct twe_code_table twe_table_stripedepth[] = {
191 	{ TWE_AD_STRIPE_4k,			"4K" },
192 	{ TWE_AD_STRIPE_8k,			"8K" },
193 	{ TWE_AD_STRIPE_16k,			"16K" },
194 	{ TWE_AD_STRIPE_32k,			"32K" },
195 	{ TWE_AD_STRIPE_64k,			"64K" },
196 	{ TWE_AD_STRIPE_128k,			"128K" },
197 	{ TWE_AD_STRIPE_256k,			"256K" },
198 	{ TWE_AD_STRIPE_512k,			"512K" },
199 	{ TWE_AD_STRIPE_1024k,			"1024K" },
200 
201 	{ 0,					NULL }
202 };
203 
204 /*
205  * Asynchronous event notification messages are qualified:
206  *	a - not unit/port specific
207  *	u - unit specific
208  *	p - port specific
209  *
210  * They are further qualified with a severity:
211  *	E - LOG_EMERG
212  *	a - LOG_ALERT
213  *	c - LOG_CRIT
214  *	e - LOG_ERR
215  *	w - LOG_WARNING
216  *	n - LOG_NOTICE
217  *	i - LOG_INFO
218  *	d - LOG_DEBUG
219  *	blank - just use printf
220  */
221 const struct twe_code_table twe_table_aen[] = {
222 	{ 0x00,	"a  queue empty" },
223 	{ 0x01,	"a  soft reset" },
224 	{ 0x02,	"uc degraded mode" },
225 	{ 0x03,	"aa controller error" },
226 	{ 0x04,	"uE rebuild fail" },
227 	{ 0x05,	"un rebuild done" },
228 	{ 0x06,	"ue incomplete unit" },
229 	{ 0x07,	"un initialization done" },
230 	{ 0x08,	"uw unclean shutdown detected" },
231 	{ 0x09,	"pe drive timeout" },
232 	{ 0x0a,	"pc drive error" },
233 	{ 0x0b,	"un rebuild started" },
234 	{ 0x0c,	"un initialization started" },
235 	{ 0x0d,	"ui logical unit deleted" },
236 	{ 0x0f,	"pc SMART threshold exceeded" },
237 	{ 0x15,	"a  table undefined" },	/* XXX: Not in FreeBSD's table */
238 	{ 0x21,	"pe ATA UDMA downgrade" },
239 	{ 0x22,	"pi ATA UDMA upgrade" },
240 	{ 0x23,	"pw sector repair occurred" },
241 	{ 0x24,	"aa SBUF integrity check failure" },
242 	{ 0x25,	"pa lost cached write" },
243 	{ 0x26,	"pa drive ECC error detected" },
244 	{ 0x27,	"pe DCB checksum error" },
245 	{ 0x28,	"pn DCB unsupported version" },
246 	{ 0x29,	"ui verify started" },
247 	{ 0x2a,	"ua verify failed" },
248 	{ 0x2b,	"ui verify complete" },
249 	{ 0x2c,	"pw overwrote bad sector during rebuild" },
250 	{ 0x2d,	"pa encountered bad sector during rebuild" },
251 	{ 0x2e,	"pe replacement drive too small" },
252 	{ 0x2f,	"ue array not previously initialized" },
253 	{ 0x30,	"p  drive not supported" },
254 	{ 0xff,	"a  aen queue full" },
255 
256 	{ 0,	NULL },
257 };
258 
259 const char *
260 twe_describe_code(const struct twe_code_table *table, uint32_t code)
261 {
262 
263 	for (; table->string != NULL; table++) {
264 		if (table->code == code)
265 			return (table->string);
266 	}
267 	return (NULL);
268 }
269 
270 static inline u_int32_t
271 twe_inl(struct twe_softc *sc, int off)
272 {
273 
274 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
275 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
276 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off));
277 }
278 
279 static inline void
280 twe_outl(struct twe_softc *sc, int off, u_int32_t val)
281 {
282 
283 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
284 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
285 	    BUS_SPACE_BARRIER_WRITE);
286 }
287 
288 /*
289  * Match a supported board.
290  */
291 static int
292 twe_match(device_t parent, cfdata_t cfdata, void *aux)
293 {
294 	struct pci_attach_args *pa;
295 
296 	pa = aux;
297 
298 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE &&
299 	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE ||
300 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC));
301 }
302 
303 /*
304  * Attach a supported board.
305  *
306  * XXX This doesn't fail gracefully.
307  */
308 static void
309 twe_attach(device_t parent, device_t self, void *aux)
310 {
311 	struct pci_attach_args *pa;
312 	struct twe_softc *sc;
313 	pci_chipset_tag_t pc;
314 	pci_intr_handle_t ih;
315 	pcireg_t csr;
316 	const char *intrstr;
317 	int s, size, i, rv, rseg;
318 	size_t max_segs, max_xfer;
319 	bus_dma_segment_t seg;
320         struct ctlname ctlnames[] = CTL_NAMES;
321         const struct sysctlnode *node;
322 	struct twe_cmd *tc;
323 	struct twe_ccb *ccb;
324 
325 	sc = device_private(self);
326 	pa = aux;
327 	pc = pa->pa_pc;
328 	sc->sc_dmat = pa->pa_dmat;
329 	SIMPLEQ_INIT(&sc->sc_ccb_queue);
330 	SLIST_INIT(&sc->sc_ccb_freelist);
331 
332 	aprint_naive(": RAID controller\n");
333 	aprint_normal(": 3ware Escalade\n");
334 
335 
336 	if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
337 	    &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
338 		aprint_error_dev(&sc->sc_dv, "can't map i/o space\n");
339 		return;
340 	}
341 
342 	/* Enable the device. */
343 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
344 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
345 	    csr | PCI_COMMAND_MASTER_ENABLE);
346 
347 	/* Map and establish the interrupt. */
348 	if (pci_intr_map(pa, &ih)) {
349 		aprint_error_dev(&sc->sc_dv, "can't map interrupt\n");
350 		return;
351 	}
352 
353 	intrstr = pci_intr_string(pc, ih);
354 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_BIO, twe_intr, sc);
355 	if (sc->sc_ih == NULL) {
356 		aprint_error_dev(&sc->sc_dv, "can't establish interrupt%s%s\n",
357 			(intrstr) ? " at " : "",
358 			(intrstr) ? intrstr : "");
359 		return;
360 	}
361 
362 	if (intrstr != NULL)
363 		aprint_normal_dev(&sc->sc_dv, "interrupting at %s\n",
364 			intrstr);
365 
366 	/*
367 	 * Allocate and initialise the command blocks and CCBs.
368 	 */
369         size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT;
370 
371 	if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
372 	    &rseg, BUS_DMA_NOWAIT)) != 0) {
373 		aprint_error_dev(&sc->sc_dv, "unable to allocate commands, rv = %d\n", rv);
374 		return;
375 	}
376 
377 	if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size,
378 	    (void **)&sc->sc_cmds,
379 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
380 		aprint_error_dev(&sc->sc_dv, "unable to map commands, rv = %d\n", rv);
381 		return;
382 	}
383 
384 	if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0,
385 	    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
386 		aprint_error_dev(&sc->sc_dv, "unable to create command DMA map, rv = %d\n", rv);
387 		return;
388 	}
389 
390 	if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds,
391 	    size, NULL, BUS_DMA_NOWAIT)) != 0) {
392 		aprint_error_dev(&sc->sc_dv, "unable to load command DMA map, rv = %d\n", rv);
393 		return;
394 	}
395 
396 	ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_NOWAIT);
397 	if (ccb == NULL) {
398 		aprint_error_dev(&sc->sc_dv, "unable to allocate memory for ccbs\n");
399 		return;
400 	}
401 
402 	sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr;
403 	memset(sc->sc_cmds, 0, size);
404 
405 	sc->sc_ccbs = ccb;
406 	tc = (struct twe_cmd *)sc->sc_cmds;
407 	max_segs = twe_get_maxsegs();
408 	max_xfer = twe_get_maxxfer(max_segs);
409 
410 	for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) {
411 		ccb->ccb_cmd = tc;
412 		ccb->ccb_cmdid = i;
413 		ccb->ccb_flags = 0;
414 		rv = bus_dmamap_create(sc->sc_dmat, max_xfer,
415 		    max_segs, PAGE_SIZE, 0,
416 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
417 		    &ccb->ccb_dmamap_xfer);
418 		if (rv != 0) {
419 			aprint_error_dev(&sc->sc_dv, "can't create dmamap, rv = %d\n", rv);
420 			return;
421 		}
422 
423 		/* Save the first CCB for AEN retrieval. */
424 		if (i != 0)
425 			SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb,
426 			    ccb_chain.slist);
427 	}
428 
429 	/* Wait for the controller to become ready. */
430 	if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) {
431 		aprint_error_dev(&sc->sc_dv, "microcontroller not ready\n");
432 		return;
433 	}
434 
435 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS);
436 
437 	/* Reset the controller. */
438 	s = splbio();
439 	rv = twe_reset(sc);
440 	splx(s);
441 	if (rv) {
442 		aprint_error_dev(&sc->sc_dv, "reset failed\n");
443 		return;
444 	}
445 
446 	/* Initialise connection with controller. */
447 	twe_init_connection(sc);
448 
449 	twe_describe_controller(sc);
450 
451 	/* Find and attach RAID array units. */
452 	sc->sc_nunits = 0;
453 	for (i = 0; i < TWE_MAX_UNITS; i++)
454 		(void) twe_add_unit(sc, i);
455 
456 	/* ...and finally, enable interrupts. */
457 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR |
458 	    TWE_CTL_UNMASK_RESP_INTR |
459 	    TWE_CTL_ENABLE_INTRS);
460 
461 	/* sysctl set-up for 3ware cli */
462 	if (sysctl_createv(NULL, 0, NULL, NULL,
463 				CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw",
464 				NULL, NULL, 0, NULL, 0,
465 				CTL_HW, CTL_EOL) != 0) {
466 		aprint_error_dev(&sc->sc_dv, "could not create %s sysctl node\n",
467 			ctlnames[CTL_HW].ctl_name);
468 		return;
469 	}
470 	if (sysctl_createv(NULL, 0, NULL, &node,
471         			0, CTLTYPE_NODE, device_xname(&sc->sc_dv),
472         			SYSCTL_DESCR("twe driver information"),
473         			NULL, 0, NULL, 0,
474 				CTL_HW, CTL_CREATE, CTL_EOL) != 0) {
475                 aprint_error_dev(&sc->sc_dv, "could not create %s.%s sysctl node\n",
476 			ctlnames[CTL_HW].ctl_name, device_xname(&sc->sc_dv));
477 		return;
478 	}
479 	if ((i = sysctl_createv(NULL, 0, NULL, NULL,
480         			0, CTLTYPE_STRING, "driver_version",
481         			SYSCTL_DESCR("twe0 driver version"),
482         			NULL, 0, &twever, 0,
483 				CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL))
484 				!= 0) {
485                 aprint_error_dev(&sc->sc_dv, "could not create %s.%s.driver_version sysctl\n",
486 			ctlnames[CTL_HW].ctl_name, device_xname(&sc->sc_dv));
487 		return;
488 	}
489 }
490 
491 void
492 twe_register_callbacks(struct twe_softc *sc, int unit,
493     const struct twe_callbacks *tcb)
494 {
495 
496 	sc->sc_units[unit].td_callbacks = tcb;
497 }
498 
499 static void
500 twe_recompute_openings(struct twe_softc *sc)
501 {
502 	struct twe_drive *td;
503 	int unit, openings;
504 
505 	if (sc->sc_nunits != 0)
506 		openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits;
507 	else
508 		openings = 0;
509 	if (openings == sc->sc_openings)
510 		return;
511 	sc->sc_openings = openings;
512 
513 #ifdef TWE_DEBUG
514 	printf("%s: %d array%s, %d openings per array\n",
515 	    device_xname(&sc->sc_dv), sc->sc_nunits,
516 	    sc->sc_nunits == 1 ? "" : "s", sc->sc_openings);
517 #endif
518 
519 	for (unit = 0; unit < TWE_MAX_UNITS; unit++) {
520 		td = &sc->sc_units[unit];
521 		if (td->td_dev != NULL)
522 			(*td->td_callbacks->tcb_openings)(td->td_dev,
523 			    sc->sc_openings);
524 	}
525 }
526 
527 static int
528 twe_add_unit(struct twe_softc *sc, int unit)
529 {
530 	struct twe_param *dtp, *atp;
531 	struct twe_array_descriptor *ad;
532 	struct twe_drive *td;
533 	struct twe_attach_args twea;
534 	uint32_t newsize;
535 	int rv;
536 	uint16_t dsize;
537 	uint8_t newtype, newstripe;
538 	int locs[TWECF_NLOCS];
539 
540 	if (unit < 0 || unit >= TWE_MAX_UNITS)
541 		return (EINVAL);
542 
543 	/* Find attached units. */
544 	rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY,
545 	    TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp);
546 	if (rv != 0) {
547 		aprint_error_dev(&sc->sc_dv, "error %d fetching unit summary\n",
548 		    rv);
549 		return (rv);
550 	}
551 
552 	/* For each detected unit, collect size and store in an array. */
553 	td = &sc->sc_units[unit];
554 
555 	/* Unit present? */
556 	if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) {
557 		/*
558 		 * XXX Should we check to see if a device has been
559 		 * XXX attached at this index and detach it if it
560 		 * XXX has?  ("rescan" semantics)
561 		 */
562 		rv = 0;
563 		goto out;
564    	}
565 
566 	rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit,
567 	    TWE_PARAM_UNITINFO_DescriptorSize, &dsize);
568 	if (rv != 0) {
569 		aprint_error_dev(&sc->sc_dv, "error %d fetching descriptor size "
570 		    "for unit %d\n", rv, unit);
571 		goto out;
572 	}
573 
574 	rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit,
575 	    TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp);
576 	if (rv != 0) {
577 		aprint_error_dev(&sc->sc_dv, "error %d fetching array descriptor "
578 		    "for unit %d\n", rv, unit);
579 		goto out;
580 	}
581 
582 	ad = (struct twe_array_descriptor *)atp->tp_data;
583 	newtype = ad->configuration;
584 	newstripe = ad->stripe_size;
585 	free(atp, M_DEVBUF);
586 
587 	rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit,
588 	    TWE_PARAM_UNITINFO_Capacity, &newsize);
589 	if (rv != 0) {
590 		aprint_error_dev(&sc->sc_dv,
591 		    "error %d fetching capacity for unit %d\n",
592 		    rv, unit);
593 		goto out;
594 	}
595 
596 	/*
597 	 * Have a device, so we need to attach it.  If there is currently
598 	 * something sitting at the slot, and the parameters are different,
599 	 * then we detach the old device before attaching the new one.
600 	 */
601 	if (td->td_dev != NULL &&
602 	    td->td_size == newsize &&
603 	    td->td_type == newtype &&
604 	    td->td_stripe == newstripe) {
605 		/* Same as the old device; just keep using it. */
606 		rv = 0;
607 		goto out;
608 	} else if (td->td_dev != NULL) {
609 		/* Detach the old device first. */
610 		(void) config_detach(td->td_dev, DETACH_FORCE);
611 		td->td_dev = NULL;
612 	} else if (td->td_size == 0)
613 		sc->sc_nunits++;
614 
615 	/*
616 	 * Committed to the new array unit; assign its parameters and
617 	 * recompute the number of available command openings.
618 	 */
619 	td->td_size = newsize;
620 	td->td_type = newtype;
621 	td->td_stripe = newstripe;
622 	twe_recompute_openings(sc);
623 
624 	twea.twea_unit = unit;
625 
626 	locs[TWECF_UNIT] = unit;
627 
628 	td->td_dev = config_found_sm_loc(&sc->sc_dv, "twe", locs, &twea,
629 					 twe_print, config_stdsubmatch);
630 
631 	rv = 0;
632  out:
633 	free(dtp, M_DEVBUF);
634 	return (rv);
635 }
636 
637 static int
638 twe_del_unit(struct twe_softc *sc, int unit)
639 {
640 	struct twe_drive *td;
641 
642 	if (unit < 0 || unit >= TWE_MAX_UNITS)
643 		return (EINVAL);
644 
645 	td = &sc->sc_units[unit];
646 	if (td->td_size != 0)
647 		sc->sc_nunits--;
648 	td->td_size = 0;
649 	td->td_type = 0;
650 	td->td_stripe = 0;
651 	if (td->td_dev != NULL) {
652 		(void) config_detach(td->td_dev, DETACH_FORCE);
653 		td->td_dev = NULL;
654 	}
655 	twe_recompute_openings(sc);
656 	return (0);
657 }
658 
659 /*
660  * Reset the controller.
661  * MUST BE CALLED AT splbio()!
662  */
663 static int
664 twe_reset(struct twe_softc *sc)
665 {
666 	uint16_t aen;
667 	u_int status;
668 	volatile u_int32_t junk;
669 	int got, rv;
670 
671 	/* Issue a soft reset. */
672 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET |
673 	    TWE_CTL_CLEAR_HOST_INTR |
674 	    TWE_CTL_CLEAR_ATTN_INTR |
675 	    TWE_CTL_MASK_CMD_INTR |
676 	    TWE_CTL_MASK_RESP_INTR |
677 	    TWE_CTL_CLEAR_ERROR_STS |
678 	    TWE_CTL_DISABLE_INTRS);
679 
680 	/* Wait for attention... */
681 	if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) {
682 		aprint_error_dev(&sc->sc_dv, "timeout waiting for attention interrupt\n");
683 		return (-1);
684 	}
685 
686 	/* ...and ACK it. */
687 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
688 
689 	/*
690 	 * Pull AENs out of the controller; look for a soft reset AEN.
691 	 * Open code this, since we want to detect reset even if the
692 	 * queue for management tools is full.
693 	 *
694 	 * Note that since:
695 	 *	- interrupts are blocked
696 	 *	- we have reset the controller
697 	 *	- acknowledged the pending ATTENTION
698 	 * that there is no way a pending asynchronous AEN fetch would
699 	 * finish, so clear the flag.
700 	 */
701 	sc->sc_flags &= ~TWEF_AEN;
702 	for (got = 0;;) {
703 		rv = twe_aen_get(sc, &aen);
704 		if (rv != 0)
705 			printf("%s: error %d while draining event queue\n",
706 			    device_xname(&sc->sc_dv), rv);
707 		if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY)
708 			break;
709 		if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET)
710 			got = 1;
711 		twe_aen_enqueue(sc, aen, 1);
712 	}
713 
714 	if (!got) {
715 		printf("%s: reset not reported\n", device_xname(&sc->sc_dv));
716 		return (-1);
717 	}
718 
719 	/* Check controller status. */
720 	status = twe_inl(sc, TWE_REG_STS);
721 	if (twe_status_check(sc, status)) {
722 		printf("%s: controller errors detected\n",
723 		    device_xname(&sc->sc_dv));
724 		return (-1);
725 	}
726 
727 	/* Drain the response queue. */
728 	for (;;) {
729 		status = twe_inl(sc, TWE_REG_STS);
730 		if (twe_status_check(sc, status) != 0) {
731 			aprint_error_dev(&sc->sc_dv, "can't drain response queue\n");
732 			return (-1);
733 		}
734 		if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0)
735 			break;
736 		junk = twe_inl(sc, TWE_REG_RESP_QUEUE);
737 	}
738 
739 	return (0);
740 }
741 
742 /*
743  * Print autoconfiguration message for a sub-device.
744  */
745 static int
746 twe_print(void *aux, const char *pnp)
747 {
748 	struct twe_attach_args *twea;
749 
750 	twea = aux;
751 
752 	if (pnp != NULL)
753 		aprint_normal("block device at %s", pnp);
754 	aprint_normal(" unit %d", twea->twea_unit);
755 	return (UNCONF);
756 }
757 
758 /*
759  * Interrupt service routine.
760  */
761 static int
762 twe_intr(void *arg)
763 {
764 	struct twe_softc *sc;
765 	u_int status;
766 	int caught, rv;
767 
768 	sc = arg;
769 	caught = 0;
770 	status = twe_inl(sc, TWE_REG_STS);
771 	twe_status_check(sc, status);
772 
773 	/* Host interrupts - purpose unknown. */
774 	if ((status & TWE_STS_HOST_INTR) != 0) {
775 #ifdef DEBUG
776 		printf("%s: host interrupt\n", device_xname(&sc->sc_dv));
777 #endif
778 		twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR);
779 		caught = 1;
780 	}
781 
782 	/*
783 	 * Attention interrupts, signalled when a controller or child device
784 	 * state change has occurred.
785 	 */
786 	if ((status & TWE_STS_ATTN_INTR) != 0) {
787 		rv = twe_aen_get(sc, NULL);
788 		if (rv != 0)
789 			aprint_error_dev(&sc->sc_dv, "unable to retrieve AEN (%d)\n", rv);
790 		else
791 			twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
792 		caught = 1;
793 	}
794 
795 	/*
796 	 * Command interrupts, signalled when the controller can accept more
797 	 * commands.  We don't use this; instead, we try to submit commands
798 	 * when we receive them, and when other commands have completed.
799 	 * Mask it so we don't get another one.
800 	 */
801 	if ((status & TWE_STS_CMD_INTR) != 0) {
802 #ifdef DEBUG
803 		printf("%s: command interrupt\n", device_xname(&sc->sc_dv));
804 #endif
805 		twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR);
806 		caught = 1;
807 	}
808 
809 	if ((status & TWE_STS_RESP_INTR) != 0) {
810 		twe_poll(sc);
811 		caught = 1;
812 	}
813 
814 	return (caught);
815 }
816 
817 /*
818  * Fetch an AEN.  Even though this is really like parameter
819  * retrieval, we handle this specially, because we issue this
820  * AEN retrieval command from interrupt context, and thus
821  * reserve a CCB for it to avoid resource shortage.
822  *
823  * XXX There are still potential resource shortages we could
824  * XXX encounter.  Consider pre-allocating all AEN-related
825  * XXX resources.
826  *
827  * MUST BE CALLED AT splbio()!
828  */
829 static int
830 twe_aen_get(struct twe_softc *sc, uint16_t *aenp)
831 {
832 	struct twe_ccb *ccb;
833 	struct twe_cmd *tc;
834 	struct twe_param *tp;
835 	int rv;
836 
837 	/*
838 	 * If we're already retrieving an AEN, just wait; another
839 	 * retrieval will be chained after the current one completes.
840 	 */
841 	if (sc->sc_flags & TWEF_AEN) {
842 		/*
843 		 * It is a fatal software programming error to attempt
844 		 * to fetch an AEN synchronously when an AEN fetch is
845 		 * already pending.
846 		 */
847 		KASSERT(aenp == NULL);
848 		return (0);
849 	}
850 
851 	tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
852 	if (tp == NULL)
853 		return (ENOMEM);
854 
855 	ccb = twe_ccb_alloc(sc,
856 	    TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
857 	KASSERT(ccb != NULL);
858 
859 	ccb->ccb_data = tp;
860 	ccb->ccb_datasize = TWE_SECTOR_SIZE;
861 	ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL;
862 	ccb->ccb_tx.tx_context = tp;
863 	ccb->ccb_tx.tx_dv = &sc->sc_dv;
864 
865 	tc = ccb->ccb_cmd;
866 	tc->tc_size = 2;
867 	tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
868 	tc->tc_unit = 0;
869 	tc->tc_count = htole16(1);
870 
871 	/* Fill in the outbound parameter data. */
872 	tp->tp_table_id = htole16(TWE_PARAM_AEN);
873 	tp->tp_param_id = TWE_PARAM_AEN_UnitCode;
874 	tp->tp_param_size = 2;
875 
876 	/* Map the transfer. */
877 	if ((rv = twe_ccb_map(sc, ccb)) != 0) {
878 		twe_ccb_free(sc, ccb);
879 		goto done;
880 	}
881 
882 	/* Enqueue the command and wait. */
883 	if (aenp != NULL) {
884 		rv = twe_ccb_poll(sc, ccb, 5);
885 		twe_ccb_unmap(sc, ccb);
886 		twe_ccb_free(sc, ccb);
887 		if (rv == 0)
888 			*aenp = le16toh(*(uint16_t *)tp->tp_data);
889 		free(tp, M_DEVBUF);
890 	} else {
891 		sc->sc_flags |= TWEF_AEN;
892 		twe_ccb_enqueue(sc, ccb);
893 		rv = 0;
894 	}
895 
896  done:
897 	return (rv);
898 }
899 
900 /*
901  * Handle an AEN returned by the controller.
902  * MUST BE CALLED AT splbio()!
903  */
904 static void
905 twe_aen_handler(struct twe_ccb *ccb, int error)
906 {
907 	struct twe_softc *sc;
908 	struct twe_param *tp;
909 	uint16_t aen;
910 	int rv;
911 
912 	sc = device_private(ccb->ccb_tx.tx_dv);
913 	tp = ccb->ccb_tx.tx_context;
914 	twe_ccb_unmap(sc, ccb);
915 
916 	sc->sc_flags &= ~TWEF_AEN;
917 
918 	if (error) {
919 		aprint_error_dev(&sc->sc_dv, "error retrieving AEN\n");
920 		aen = TWE_AEN_QUEUE_EMPTY;
921 	} else
922 		aen = le16toh(*(u_int16_t *)tp->tp_data);
923 	free(tp, M_DEVBUF);
924 	twe_ccb_free(sc, ccb);
925 
926 	if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) {
927 		twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
928 		return;
929 	}
930 
931 	twe_aen_enqueue(sc, aen, 0);
932 
933 	/*
934 	 * Chain another retrieval in case interrupts have been
935 	 * coalesced.
936 	 */
937 	rv = twe_aen_get(sc, NULL);
938 	if (rv != 0)
939 		aprint_error_dev(&sc->sc_dv, "unable to retrieve AEN (%d)\n", rv);
940 }
941 
942 static void
943 twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet)
944 {
945 	const char *str, *msg;
946 	int s, next, nextnext, level;
947 
948 	/*
949 	 * First report the AEN on the console.  Maybe.
950 	 */
951 	if (! quiet) {
952 		str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen));
953 		if (str == NULL) {
954 			aprint_error_dev(&sc->sc_dv, "unknown AEN 0x%04x\n", aen);
955 		} else {
956 			msg = str + 3;
957 			switch (str[1]) {
958 			case 'E':	level = LOG_EMERG; break;
959 			case 'a':	level = LOG_ALERT; break;
960 			case 'c':	level = LOG_CRIT; break;
961 			case 'e':	level = LOG_ERR; break;
962 			case 'w':	level = LOG_WARNING; break;
963 			case 'n':	level = LOG_NOTICE; break;
964 			case 'i':	level = LOG_INFO; break;
965 			case 'd':	level = LOG_DEBUG; break;
966 			default:
967 				/* Don't use syslog. */
968 				level = -1;
969 			}
970 
971 			if (level < 0) {
972 				switch (str[0]) {
973 				case 'u':
974 				case 'p':
975 					printf("%s: %s %d: %s\n",
976 					    device_xname(&sc->sc_dv),
977 					    str[0] == 'u' ? "unit" : "port",
978 					    TWE_AEN_UNIT(aen), msg);
979 					break;
980 
981 				default:
982 					printf("%s: %s\n",
983 					    device_xname(&sc->sc_dv), msg);
984 				}
985 			} else {
986 				switch (str[0]) {
987 				case 'u':
988 				case 'p':
989 					log(level, "%s: %s %d: %s\n",
990 					    device_xname(&sc->sc_dv),
991 					    str[0] == 'u' ? "unit" : "port",
992 					    TWE_AEN_UNIT(aen), msg);
993 					break;
994 
995 				default:
996 					log(level, "%s: %s\n",
997 					    device_xname(&sc->sc_dv), msg);
998 				}
999 			}
1000 		}
1001 	}
1002 
1003 	/* Now enqueue the AEN for mangement tools. */
1004 	s = splbio();
1005 
1006 	next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH;
1007 	nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH;
1008 
1009 	/*
1010 	 * If this is the last free slot, then queue up a "queue
1011 	 * full" message.
1012 	 */
1013 	if (nextnext == sc->sc_aen_tail)
1014 		aen = TWE_AEN_QUEUE_FULL;
1015 
1016 	if (next != sc->sc_aen_tail) {
1017 		sc->sc_aen_queue[sc->sc_aen_head] = aen;
1018 		sc->sc_aen_head = next;
1019 	}
1020 
1021 	if (sc->sc_flags & TWEF_AENQ_WAIT) {
1022 		sc->sc_flags &= ~TWEF_AENQ_WAIT;
1023 		wakeup(&sc->sc_aen_queue);
1024 	}
1025 
1026 	splx(s);
1027 }
1028 
1029 /* NOTE: Must be called at splbio(). */
1030 static uint16_t
1031 twe_aen_dequeue(struct twe_softc *sc)
1032 {
1033 	uint16_t aen;
1034 
1035 	if (sc->sc_aen_tail == sc->sc_aen_head)
1036 		aen = TWE_AEN_QUEUE_EMPTY;
1037 	else {
1038 		aen = sc->sc_aen_queue[sc->sc_aen_tail];
1039 		sc->sc_aen_tail = (sc->sc_aen_tail + 1) % TWE_AEN_Q_LENGTH;
1040 	}
1041 
1042 	return (aen);
1043 }
1044 
1045 /*
1046  * These are short-hand functions that execute TWE_OP_GET_PARAM to
1047  * fetch 1, 2, and 4 byte parameter values, respectively.
1048  */
1049 int
1050 twe_param_get_1(struct twe_softc *sc, int table_id, int param_id,
1051     uint8_t *valp)
1052 {
1053 	struct twe_param *tp;
1054 	int rv;
1055 
1056 	rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp);
1057 	if (rv != 0)
1058 		return (rv);
1059 	*valp = *(uint8_t *)tp->tp_data;
1060 	free(tp, M_DEVBUF);
1061 	return (0);
1062 }
1063 
1064 int
1065 twe_param_get_2(struct twe_softc *sc, int table_id, int param_id,
1066     uint16_t *valp)
1067 {
1068 	struct twe_param *tp;
1069 	int rv;
1070 
1071 	rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp);
1072 	if (rv != 0)
1073 		return (rv);
1074 	*valp = le16toh(*(uint16_t *)tp->tp_data);
1075 	free(tp, M_DEVBUF);
1076 	return (0);
1077 }
1078 
1079 int
1080 twe_param_get_4(struct twe_softc *sc, int table_id, int param_id,
1081     uint32_t *valp)
1082 {
1083 	struct twe_param *tp;
1084 	int rv;
1085 
1086 	rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp);
1087 	if (rv != 0)
1088 		return (rv);
1089 	*valp = le32toh(*(uint32_t *)tp->tp_data);
1090 	free(tp, M_DEVBUF);
1091 	return (0);
1092 }
1093 
1094 /*
1095  * Execute a TWE_OP_GET_PARAM command.  If a callback function is provided,
1096  * it will be called with generated context when the command has completed.
1097  * If no callback is provided, the command will be executed synchronously
1098  * and a pointer to a buffer containing the data returned.
1099  *
1100  * The caller or callback is responsible for freeing the buffer.
1101  *
1102  * NOTE: We assume we can sleep here to wait for a CCB to become available.
1103  */
1104 int
1105 twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size,
1106 	      void (*func)(struct twe_ccb *, int), struct twe_param **pbuf)
1107 {
1108 	struct twe_ccb *ccb;
1109 	struct twe_cmd *tc;
1110 	struct twe_param *tp;
1111 	int rv, s;
1112 
1113 	tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1114 	if (tp == NULL)
1115 		return ENOMEM;
1116 
1117 	ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1118 	KASSERT(ccb != NULL);
1119 
1120 	ccb->ccb_data = tp;
1121 	ccb->ccb_datasize = TWE_SECTOR_SIZE;
1122 	ccb->ccb_tx.tx_handler = func;
1123 	ccb->ccb_tx.tx_context = tp;
1124 	ccb->ccb_tx.tx_dv = &sc->sc_dv;
1125 
1126 	tc = ccb->ccb_cmd;
1127 	tc->tc_size = 2;
1128 	tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
1129 	tc->tc_unit = 0;
1130 	tc->tc_count = htole16(1);
1131 
1132 	/* Fill in the outbound parameter data. */
1133 	tp->tp_table_id = htole16(table_id);
1134 	tp->tp_param_id = param_id;
1135 	tp->tp_param_size = size;
1136 
1137 	/* Map the transfer. */
1138 	if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1139 		twe_ccb_free(sc, ccb);
1140 		goto done;
1141 	}
1142 
1143 	/* Submit the command and either wait or let the callback handle it. */
1144 	if (func == NULL) {
1145 		s = splbio();
1146 		rv = twe_ccb_poll(sc, ccb, 5);
1147 		twe_ccb_unmap(sc, ccb);
1148 		twe_ccb_free(sc, ccb);
1149 		splx(s);
1150 	} else {
1151 #ifdef DEBUG
1152 		if (pbuf != NULL)
1153 			panic("both func and pbuf defined");
1154 #endif
1155 		twe_ccb_enqueue(sc, ccb);
1156 		return 0;
1157 	}
1158 
1159 done:
1160 	if (pbuf == NULL || rv != 0)
1161 		free(tp, M_DEVBUF);
1162 	else if (pbuf != NULL && rv == 0)
1163 		*pbuf = tp;
1164 	return rv;
1165 }
1166 
1167 /*
1168  * Execute a TWE_OP_SET_PARAM command.
1169  *
1170  * NOTE: We assume we can sleep here to wait for a CCB to become available.
1171  */
1172 static int
1173 twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size,
1174 	      void *sbuf)
1175 {
1176 	struct twe_ccb *ccb;
1177 	struct twe_cmd *tc;
1178 	struct twe_param *tp;
1179 	int rv, s;
1180 
1181 	tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1182 	if (tp == NULL)
1183 		return ENOMEM;
1184 
1185 	ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1186 	KASSERT(ccb != NULL);
1187 
1188 	ccb->ccb_data = tp;
1189 	ccb->ccb_datasize = TWE_SECTOR_SIZE;
1190 	ccb->ccb_tx.tx_handler = 0;
1191 	ccb->ccb_tx.tx_context = tp;
1192 	ccb->ccb_tx.tx_dv = &sc->sc_dv;
1193 
1194 	tc = ccb->ccb_cmd;
1195 	tc->tc_size = 2;
1196 	tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5);
1197 	tc->tc_unit = 0;
1198 	tc->tc_count = htole16(1);
1199 
1200 	/* Fill in the outbound parameter data. */
1201 	tp->tp_table_id = htole16(table_id);
1202 	tp->tp_param_id = param_id;
1203 	tp->tp_param_size = size;
1204 	memcpy(tp->tp_data, sbuf, size);
1205 
1206 	/* Map the transfer. */
1207 	if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1208 		twe_ccb_free(sc, ccb);
1209 		goto done;
1210 	}
1211 
1212 	/* Submit the command and wait. */
1213 	s = splbio();
1214 	rv = twe_ccb_poll(sc, ccb, 5);
1215 	twe_ccb_unmap(sc, ccb);
1216 	twe_ccb_free(sc, ccb);
1217 	splx(s);
1218 done:
1219 	free(tp, M_DEVBUF);
1220 	return (rv);
1221 }
1222 
1223 /*
1224  * Execute a TWE_OP_INIT_CONNECTION command.  Return non-zero on error.
1225  * Must be called with interrupts blocked.
1226  */
1227 static int
1228 twe_init_connection(struct twe_softc *sc)
1229 {
1230 	struct twe_ccb *ccb;
1231 	struct twe_cmd *tc;
1232 	int rv;
1233 
1234 	if ((ccb = twe_ccb_alloc(sc, 0)) == NULL)
1235 		return (EAGAIN);
1236 
1237 	/* Build the command. */
1238 	tc = ccb->ccb_cmd;
1239 	tc->tc_size = 3;
1240 	tc->tc_opcode = TWE_OP_INIT_CONNECTION;
1241 	tc->tc_unit = 0;
1242 	tc->tc_count = htole16(TWE_MAX_CMDS);
1243 	tc->tc_args.init_connection.response_queue_pointer = 0;
1244 
1245 	/* Submit the command for immediate execution. */
1246 	rv = twe_ccb_poll(sc, ccb, 5);
1247 	twe_ccb_free(sc, ccb);
1248 	return (rv);
1249 }
1250 
1251 /*
1252  * Poll the controller for completed commands.  Must be called with
1253  * interrupts blocked.
1254  */
1255 static void
1256 twe_poll(struct twe_softc *sc)
1257 {
1258 	struct twe_ccb *ccb;
1259 	int found;
1260 	u_int status, cmdid;
1261 
1262 	found = 0;
1263 
1264 	for (;;) {
1265 		status = twe_inl(sc, TWE_REG_STS);
1266 		twe_status_check(sc, status);
1267 
1268 		if ((status & TWE_STS_RESP_QUEUE_EMPTY))
1269 			break;
1270 
1271 		found = 1;
1272 		cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE);
1273 		cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT;
1274 		if (cmdid >= TWE_MAX_QUEUECNT) {
1275 			aprint_error_dev(&sc->sc_dv, "bad cmdid %d\n", cmdid);
1276 			continue;
1277 		}
1278 
1279 		ccb = sc->sc_ccbs + cmdid;
1280 		if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) {
1281 			printf("%s: CCB for cmdid %d not active\n",
1282 			    device_xname(&sc->sc_dv), cmdid);
1283 			continue;
1284 		}
1285 		ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE;
1286 
1287 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1288 		    (char *)ccb->ccb_cmd - (char *)sc->sc_cmds,
1289 		    sizeof(struct twe_cmd),
1290 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1291 
1292 		/* Pass notification to upper layers. */
1293 		if (ccb->ccb_tx.tx_handler != NULL)
1294 			(*ccb->ccb_tx.tx_handler)(ccb,
1295 			    ccb->ccb_cmd->tc_status != 0 ? EIO : 0);
1296 	}
1297 
1298 	/* If any commands have completed, run the software queue. */
1299 	if (found)
1300 		twe_ccb_enqueue(sc, NULL);
1301 }
1302 
1303 /*
1304  * Wait for `status' to be set in the controller status register.  Return
1305  * zero if found, non-zero if the operation timed out.
1306  */
1307 static int
1308 twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo)
1309 {
1310 
1311 	for (timo *= 10; timo != 0; timo--) {
1312 		if ((twe_inl(sc, TWE_REG_STS) & status) == status)
1313 			break;
1314 		delay(100000);
1315 	}
1316 
1317 	return (timo == 0);
1318 }
1319 
1320 /*
1321  * Clear a PCI parity error.
1322  */
1323 static void
1324 twe_clear_pci_parity_error(struct twe_softc *sc)
1325 {
1326 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PARITY_ERROR);
1327 
1328 	//FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2);
1329 }
1330 
1331 
1332 /*
1333  * Clear a PCI abort.
1334  */
1335 static void
1336 twe_clear_pci_abort(struct twe_softc *sc)
1337 {
1338 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PCI_ABORT);
1339 
1340 	//FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2);
1341 }
1342 
1343 /*
1344  * Complain if the status bits aren't what we expect.
1345  */
1346 static int
1347 twe_status_check(struct twe_softc *sc, u_int status)
1348 {
1349 	int rv;
1350 
1351 	rv = 0;
1352 
1353 	if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) {
1354 		aprint_error_dev(&sc->sc_dv, "missing status bits: 0x%08x\n",
1355 		    status & ~TWE_STS_EXPECTED_BITS);
1356 		rv = -1;
1357 	}
1358 
1359 	if ((status & TWE_STS_UNEXPECTED_BITS) != 0) {
1360 		aprint_error_dev(&sc->sc_dv, "unexpected status bits: 0x%08x\n",
1361 		    status & TWE_STS_UNEXPECTED_BITS);
1362 		rv = -1;
1363 		if (status & TWE_STS_PCI_PARITY_ERROR) {
1364 			aprint_error_dev(&sc->sc_dv, "PCI parity error: Reseat card, move card "
1365 			       "or buggy device present.\n");
1366 			twe_clear_pci_parity_error(sc);
1367 		}
1368 		if (status & TWE_STS_PCI_ABORT) {
1369 			aprint_error_dev(&sc->sc_dv, "PCI abort, clearing.\n");
1370 			twe_clear_pci_abort(sc);
1371 		}
1372 	}
1373 
1374 	return (rv);
1375 }
1376 
1377 /*
1378  * Allocate and initialise a CCB.
1379  */
1380 static inline void
1381 twe_ccb_init(struct twe_softc *sc, struct twe_ccb *ccb, int flags)
1382 {
1383 	struct twe_cmd *tc;
1384 
1385 	ccb->ccb_tx.tx_handler = NULL;
1386 	ccb->ccb_flags = flags;
1387 	tc = ccb->ccb_cmd;
1388 	tc->tc_status = 0;
1389 	tc->tc_flags = 0;
1390 	tc->tc_cmdid = ccb->ccb_cmdid;
1391 }
1392 
1393 struct twe_ccb *
1394 twe_ccb_alloc(struct twe_softc *sc, int flags)
1395 {
1396 	struct twe_ccb *ccb;
1397 	int s;
1398 
1399 	s = splbio();
1400 	if (__predict_false((flags & TWE_CCB_AEN) != 0)) {
1401 		/* Use the reserved CCB. */
1402 		ccb = sc->sc_ccbs;
1403 	} else {
1404 		/* Allocate a CCB and command block. */
1405 		if (__predict_false((ccb =
1406 				SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1407 			splx(s);
1408 			return (NULL);
1409 		}
1410 		SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1411 	}
1412 #ifdef DIAGNOSTIC
1413 	if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0)
1414 		panic("twe_ccb_alloc: got reserved CCB for non-AEN");
1415 	if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1416 		panic("twe_ccb_alloc: CCB %ld already allocated",
1417 		    (long)(ccb - sc->sc_ccbs));
1418 	flags |= TWE_CCB_ALLOCED;
1419 #endif
1420 	splx(s);
1421 
1422 	twe_ccb_init(sc, ccb, flags);
1423 	return (ccb);
1424 }
1425 
1426 struct twe_ccb *
1427 twe_ccb_alloc_wait(struct twe_softc *sc, int flags)
1428 {
1429 	struct twe_ccb *ccb;
1430 	int s;
1431 
1432 	KASSERT((flags & TWE_CCB_AEN) == 0);
1433 
1434 	s = splbio();
1435 	while (__predict_false((ccb =
1436 				SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1437 		sc->sc_flags |= TWEF_WAIT_CCB;
1438 		(void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0);
1439 	}
1440 	SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1441 #ifdef DIAGNOSTIC
1442 	if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1443 		panic("twe_ccb_alloc_wait: CCB %ld already allocated",
1444 		    (long)(ccb - sc->sc_ccbs));
1445 	flags |= TWE_CCB_ALLOCED;
1446 #endif
1447 	splx(s);
1448 
1449 	twe_ccb_init(sc, ccb, flags);
1450 	return (ccb);
1451 }
1452 
1453 /*
1454  * Free a CCB.
1455  */
1456 void
1457 twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb)
1458 {
1459 	int s;
1460 
1461 	s = splbio();
1462 	if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) {
1463 		SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist);
1464 		if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) {
1465 			sc->sc_flags &= ~TWEF_WAIT_CCB;
1466 			wakeup(&sc->sc_ccb_freelist);
1467 		}
1468 	}
1469 	ccb->ccb_flags = 0;
1470 	splx(s);
1471 }
1472 
1473 /*
1474  * Map the specified CCB's command block and data buffer (if any) into
1475  * controller visible space.  Perform DMA synchronisation.
1476  */
1477 int
1478 twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb)
1479 {
1480 	struct twe_cmd *tc;
1481 	int flags, nsegs, i, s, rv;
1482 	void *data;
1483 
1484 	/*
1485 	 * The data as a whole must be 512-byte aligned.
1486 	 */
1487 	if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) {
1488 		s = splvm();
1489 		/* XXX */
1490 		ccb->ccb_abuf = uvm_km_alloc(kmem_map,
1491 		    ccb->ccb_datasize, 0, UVM_KMF_NOWAIT|UVM_KMF_WIRED);
1492 		splx(s);
1493 		data = (void *)ccb->ccb_abuf;
1494 		if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1495 			memcpy(data, ccb->ccb_data, ccb->ccb_datasize);
1496 	} else {
1497 		ccb->ccb_abuf = (vaddr_t)0;
1498 		data = ccb->ccb_data;
1499 	}
1500 
1501 	/*
1502 	 * Map the data buffer into bus space and build the S/G list.
1503 	 */
1504 	rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data,
1505 	    ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1506 	    ((ccb->ccb_flags & TWE_CCB_DATA_IN) ?
1507 	    BUS_DMA_READ : BUS_DMA_WRITE));
1508 	if (rv != 0) {
1509 		if (ccb->ccb_abuf != (vaddr_t)0) {
1510 			s = splvm();
1511 			/* XXX */
1512 			uvm_km_free(kmem_map, ccb->ccb_abuf,
1513 			    ccb->ccb_datasize, UVM_KMF_WIRED);
1514 			splx(s);
1515 		}
1516 		return (rv);
1517 	}
1518 
1519 	nsegs = ccb->ccb_dmamap_xfer->dm_nsegs;
1520 	tc = ccb->ccb_cmd;
1521 	tc->tc_size += 2 * nsegs;
1522 
1523 	/* The location of the S/G list is dependant upon command type. */
1524 	switch (tc->tc_opcode >> 5) {
1525 	case 2:
1526 		for (i = 0; i < nsegs; i++) {
1527 			tc->tc_args.param.sgl[i].tsg_address =
1528 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1529 			tc->tc_args.param.sgl[i].tsg_length =
1530 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1531 		}
1532 		/* XXX Needed? */
1533 		for (; i < TWE_SG_SIZE; i++) {
1534 			tc->tc_args.param.sgl[i].tsg_address = 0;
1535 			tc->tc_args.param.sgl[i].tsg_length = 0;
1536 		}
1537 		break;
1538 	case 3:
1539 		for (i = 0; i < nsegs; i++) {
1540 			tc->tc_args.io.sgl[i].tsg_address =
1541 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1542 			tc->tc_args.io.sgl[i].tsg_length =
1543 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1544 		}
1545 		/* XXX Needed? */
1546 		for (; i < TWE_SG_SIZE; i++) {
1547 			tc->tc_args.io.sgl[i].tsg_address = 0;
1548 			tc->tc_args.io.sgl[i].tsg_length = 0;
1549 		}
1550 		break;
1551 	default:
1552 		/*
1553 		 * In all likelihood, this is a command passed from
1554 		 * management tools in userspace where no S/G list is
1555 		 * necessary because no data is being passed.
1556 		 */
1557 		break;
1558 	}
1559 
1560 	if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1561 		flags = BUS_DMASYNC_PREREAD;
1562 	else
1563 		flags = 0;
1564 	if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1565 		flags |= BUS_DMASYNC_PREWRITE;
1566 
1567 	bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1568 	    ccb->ccb_datasize, flags);
1569 	return (0);
1570 }
1571 
1572 /*
1573  * Unmap the specified CCB's command block and data buffer (if any) and
1574  * perform DMA synchronisation.
1575  */
1576 void
1577 twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb)
1578 {
1579 	int flags, s;
1580 
1581 	if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1582 		flags = BUS_DMASYNC_POSTREAD;
1583 	else
1584 		flags = 0;
1585 	if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1586 		flags |= BUS_DMASYNC_POSTWRITE;
1587 
1588 	bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1589 	    ccb->ccb_datasize, flags);
1590 	bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer);
1591 
1592 	if (ccb->ccb_abuf != (vaddr_t)0) {
1593 		if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1594 			memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf,
1595 			    ccb->ccb_datasize);
1596 		s = splvm();
1597 		/* XXX */
1598 		uvm_km_free(kmem_map, ccb->ccb_abuf, ccb->ccb_datasize,
1599 		    UVM_KMF_WIRED);
1600 		splx(s);
1601 	}
1602 }
1603 
1604 /*
1605  * Submit a command to the controller and poll on completion.  Return
1606  * non-zero on timeout (but don't check status, as some command types don't
1607  * return status).  Must be called with interrupts blocked.
1608  */
1609 int
1610 twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo)
1611 {
1612 	int rv;
1613 
1614 	if ((rv = twe_ccb_submit(sc, ccb)) != 0)
1615 		return (rv);
1616 
1617 	for (timo *= 1000; timo != 0; timo--) {
1618 		twe_poll(sc);
1619 		if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0)
1620 			break;
1621 		DELAY(100);
1622 	}
1623 
1624 	return (timo == 0);
1625 }
1626 
1627 /*
1628  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
1629  * the order that they were enqueued and try to submit their command blocks
1630  * to the controller for execution.
1631  */
1632 void
1633 twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb)
1634 {
1635 	int s;
1636 
1637 	s = splbio();
1638 
1639 	if (ccb != NULL)
1640 		SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq);
1641 
1642 	while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) {
1643 		if (twe_ccb_submit(sc, ccb))
1644 			break;
1645 		SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq);
1646 	}
1647 
1648 	splx(s);
1649 }
1650 
1651 /*
1652  * Submit the command block associated with the specified CCB to the
1653  * controller for execution.  Must be called with interrupts blocked.
1654  */
1655 int
1656 twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb)
1657 {
1658 	bus_addr_t pa;
1659 	int rv;
1660 	u_int status;
1661 
1662 	/* Check to see if we can post a command. */
1663 	status = twe_inl(sc, TWE_REG_STS);
1664 	twe_status_check(sc, status);
1665 
1666 	if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) {
1667 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1668 		    (char *)ccb->ccb_cmd - (char *)sc->sc_cmds,
1669 		    sizeof(struct twe_cmd),
1670 		    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1671 #ifdef DIAGNOSTIC
1672 		if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0)
1673 			panic("%s: CCB %ld not ALLOCED\n",
1674 			    device_xname(&sc->sc_dv), (long)(ccb - sc->sc_ccbs));
1675 #endif
1676 		ccb->ccb_flags |= TWE_CCB_ACTIVE;
1677 		pa = sc->sc_cmds_paddr +
1678 		    ccb->ccb_cmdid * sizeof(struct twe_cmd);
1679 		twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa);
1680 		rv = 0;
1681 	} else
1682 		rv = EBUSY;
1683 
1684 	return (rv);
1685 }
1686 
1687 
1688 /*
1689  * Accept an open operation on the control device.
1690  */
1691 static int
1692 tweopen(dev_t dev, int flag, int mode, struct lwp *l)
1693 {
1694 	struct twe_softc *twe;
1695 
1696 	if ((twe = device_lookup_private(&twe_cd, minor(dev))) == NULL)
1697 		return (ENXIO);
1698 	if ((twe->sc_flags & TWEF_OPEN) != 0)
1699 		return (EBUSY);
1700 
1701 	twe->sc_flags |= TWEF_OPEN;
1702 	return (0);
1703 }
1704 
1705 /*
1706  * Accept the last close on the control device.
1707  */
1708 static int
1709 tweclose(dev_t dev, int flag, int mode,
1710     struct lwp *l)
1711 {
1712 	struct twe_softc *twe;
1713 
1714 	twe = device_lookup_private(&twe_cd, minor(dev));
1715 	twe->sc_flags &= ~TWEF_OPEN;
1716 	return (0);
1717 }
1718 
1719 void
1720 twe_ccb_wait_handler(struct twe_ccb *ccb, int error)
1721 {
1722 
1723 	/* Just wake up the sleeper. */
1724 	wakeup(ccb);
1725 }
1726 
1727 /*
1728  * Handle control operations.
1729  */
1730 static int
1731 tweioctl(dev_t dev, u_long cmd, void *data, int flag,
1732     struct lwp *l)
1733 {
1734 	struct twe_softc *twe;
1735 	struct twe_ccb *ccb;
1736 	struct twe_param *param;
1737 	struct twe_usercommand *tu;
1738 	struct twe_paramcommand *tp;
1739 	struct twe_drivecommand *td;
1740 	void *pdata = NULL;
1741 	int s, error = 0;
1742 	u_int8_t cmdid;
1743 
1744 	twe = device_lookup_private(&twe_cd, minor(dev));
1745 	tu = (struct twe_usercommand *)data;
1746 	tp = (struct twe_paramcommand *)data;
1747 	td = (struct twe_drivecommand *)data;
1748 
1749 	/* This is intended to be compatible with the FreeBSD interface. */
1750 	switch (cmd) {
1751 	case TWEIO_COMMAND:
1752 		error = kauth_authorize_device_passthru(l->l_cred, dev,
1753 		    KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
1754 		if (error)
1755 			return (error);
1756 
1757 		/* XXX mutex */
1758 		if (tu->tu_size > 0) {
1759 			/*
1760 			 * XXX Handle > TWE_SECTOR_SIZE?  Let's see if
1761 			 * it's really necessary, first.
1762 			 */
1763 			if (tu->tu_size > TWE_SECTOR_SIZE) {
1764 #ifdef TWE_DEBUG
1765 				printf("%s: TWEIO_COMMAND: tu_size = %zu\n",
1766 				    device_xname(&twe->sc_dv), tu->tu_size);
1767 #endif
1768 				return EINVAL;
1769 			}
1770 			pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK);
1771 			error = copyin(tu->tu_data, pdata, tu->tu_size);
1772 			if (error != 0)
1773 				goto done;
1774 			ccb = twe_ccb_alloc_wait(twe,
1775 			    TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1776 			KASSERT(ccb != NULL);
1777 			ccb->ccb_data = pdata;
1778 			ccb->ccb_datasize = TWE_SECTOR_SIZE;
1779 		} else {
1780 			ccb = twe_ccb_alloc_wait(twe, 0);
1781 			KASSERT(ccb != NULL);
1782 		}
1783 
1784 		ccb->ccb_tx.tx_handler = twe_ccb_wait_handler;
1785 		ccb->ccb_tx.tx_context = NULL;
1786 		ccb->ccb_tx.tx_dv = &twe->sc_dv;
1787 
1788 		cmdid = ccb->ccb_cmdid;
1789 		memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd));
1790 		ccb->ccb_cmd->tc_cmdid = cmdid;
1791 
1792 		/* Map the transfer. */
1793 		if ((error = twe_ccb_map(twe, ccb)) != 0) {
1794 			twe_ccb_free(twe, ccb);
1795 			goto done;
1796 		}
1797 
1798 		/* Submit the command and wait up to 1 minute. */
1799 		error = 0;
1800 		twe_ccb_enqueue(twe, ccb);
1801 		s = splbio();
1802 		while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0)
1803 			if ((error = tsleep(ccb, PRIBIO, "tweioctl",
1804 					    60 * hz)) != 0)
1805 				break;
1806 		splx(s);
1807 
1808 		/* Copy the command back to the ioctl argument. */
1809 		memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd));
1810 #ifdef TWE_DEBUG
1811 		printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, "
1812 		    "tc_status = 0x%02x\n", device_xname(&twe->sc_dv),
1813 		    tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status);
1814 #endif
1815 
1816 		s = splbio();
1817 		twe_ccb_free(twe, ccb);
1818 		splx(s);
1819 
1820 		if (tu->tu_size > 0)
1821 			error = copyout(pdata, tu->tu_data, tu->tu_size);
1822 		goto done;
1823 
1824 	case TWEIO_STATS:
1825 		return (ENOENT);
1826 
1827 	case TWEIO_AEN_POLL:
1828 		s = splbio();
1829 		*(u_int *)data = twe_aen_dequeue(twe);
1830 		splx(s);
1831 		return (0);
1832 
1833 	case TWEIO_AEN_WAIT:
1834 		s = splbio();
1835 		while ((*(u_int *)data =
1836 		    twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) {
1837 			twe->sc_flags |= TWEF_AENQ_WAIT;
1838 			error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH,
1839 			    "tweaen", 0);
1840 			if (error == EINTR) {
1841 				splx(s);
1842 				return (error);
1843 			}
1844 		}
1845 		splx(s);
1846 		return (0);
1847 
1848 	case TWEIO_GET_PARAM:
1849 		error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id,
1850 		    tp->tp_size, 0, &param);
1851 		if (error != 0)
1852 			return (error);
1853 		if (param->tp_param_size > tp->tp_size) {
1854 			error = EFAULT;
1855 			goto done;
1856 		}
1857 		error = copyout(param->tp_data, tp->tp_data,
1858 		    param->tp_param_size);
1859 		free(param, M_DEVBUF);
1860 		goto done;
1861 
1862 	case TWEIO_SET_PARAM:
1863 		pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK);
1864 		if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0)
1865 			goto done;
1866 		error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id,
1867 		    tp->tp_size, pdata);
1868 		goto done;
1869 
1870 	case TWEIO_RESET:
1871 		s = splbio();
1872 		twe_reset(twe);
1873 		splx(s);
1874 		return (0);
1875 
1876 	case TWEIO_ADD_UNIT:
1877 		/* XXX mutex */
1878 		return (twe_add_unit(twe, td->td_unit));
1879 
1880 	case TWEIO_DEL_UNIT:
1881 		/* XXX mutex */
1882 		return (twe_del_unit(twe, td->td_unit));
1883 
1884 	default:
1885 		return EINVAL;
1886 	}
1887 done:
1888 	if (pdata)
1889 		free(pdata, M_DEVBUF);
1890 	return error;
1891 }
1892 
1893 const struct cdevsw twe_cdevsw = {
1894 	tweopen, tweclose, noread, nowrite, tweioctl,
1895 	    nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1896 };
1897 
1898 /*
1899  * Print some information about the controller
1900  */
1901 static void
1902 twe_describe_controller(struct twe_softc *sc)
1903 {
1904 	struct twe_param *p[6];
1905 	int i, rv = 0;
1906 	uint32_t dsize;
1907 	uint8_t ports;
1908 
1909 	ports = 0;
1910 
1911 	/* get the port count */
1912 	rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER,
1913 		TWE_PARAM_CONTROLLER_PortCount, &ports);
1914 
1915 	/* get version strings */
1916 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon,
1917 		16, NULL, &p[0]);
1918 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW,
1919 		16, NULL, &p[1]);
1920 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS,
1921 		16, NULL, &p[2]);
1922 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB,
1923 		8, NULL, &p[3]);
1924 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA,
1925 		8, NULL, &p[4]);
1926 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI,
1927 		8, NULL, &p[5]);
1928 
1929 	if (rv) {
1930 		/* some error occurred */
1931 		aprint_error_dev(&sc->sc_dv, "failed to fetch version information\n");
1932 		return;
1933 	}
1934 
1935 	aprint_normal_dev(&sc->sc_dv, "%d ports, Firmware %.16s, BIOS %.16s\n",
1936 		ports, p[1]->tp_data, p[2]->tp_data);
1937 
1938 	aprint_verbose_dev(&sc->sc_dv, "Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n",
1939 		p[0]->tp_data, p[3]->tp_data,
1940 		p[4]->tp_data, p[5]->tp_data);
1941 
1942 	free(p[0], M_DEVBUF);
1943 	free(p[1], M_DEVBUF);
1944 	free(p[2], M_DEVBUF);
1945 	free(p[3], M_DEVBUF);
1946 	free(p[4], M_DEVBUF);
1947 	free(p[5], M_DEVBUF);
1948 
1949 	rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY,
1950 	    TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]);
1951 	if (rv) {
1952 		aprint_error_dev(&sc->sc_dv, "failed to get drive status summary\n");
1953 		return;
1954 	}
1955 	for (i = 0; i < ports; i++) {
1956 		if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present)
1957 			continue;
1958 		rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i,
1959 		    TWE_PARAM_DRIVEINFO_Size, &dsize);
1960 		if (rv) {
1961 			aprint_error_dev(&sc->sc_dv,
1962 			    "unable to get drive size for port %d\n", i);
1963 			continue;
1964 		}
1965 		rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i,
1966 		    TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]);
1967 		if (rv) {
1968 			aprint_error_dev(&sc->sc_dv,
1969 			    "unable to get drive model for port %d\n", i);
1970 			continue;
1971 		}
1972 		aprint_verbose_dev(&sc->sc_dv, "port %d: %.40s %d MB\n",
1973 		    i, p[1]->tp_data, dsize / 2048);
1974 		free(p[1], M_DEVBUF);
1975 	}
1976 	free(p[0], M_DEVBUF);
1977 }
1978