1 /* $NetBSD: twe.c,v 1.91 2010/07/27 14:34:34 jakllsch Exp $ */ 2 3 /*- 4 * Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c) 2000 Michael Smith 34 * Copyright (c) 2000 BSDi 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 56 * SUCH DAMAGE. 57 * 58 * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp 59 */ 60 61 /* 62 * Driver for the 3ware Escalade family of RAID controllers. 63 */ 64 65 #include <sys/cdefs.h> 66 __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.91 2010/07/27 14:34:34 jakllsch Exp $"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/device.h> 72 #include <sys/queue.h> 73 #include <sys/proc.h> 74 #include <sys/buf.h> 75 #include <sys/endian.h> 76 #include <sys/malloc.h> 77 #include <sys/conf.h> 78 #include <sys/disk.h> 79 #include <sys/sysctl.h> 80 #include <sys/syslog.h> 81 #include <sys/kauth.h> 82 83 #include <uvm/uvm_extern.h> 84 85 #include <sys/bswap.h> 86 #include <sys/bus.h> 87 88 #include <dev/pci/pcireg.h> 89 #include <dev/pci/pcivar.h> 90 #include <dev/pci/pcidevs.h> 91 #include <dev/pci/twereg.h> 92 #include <dev/pci/twevar.h> 93 #include <dev/pci/tweio.h> 94 95 #include "locators.h" 96 97 #define PCI_CBIO 0x10 98 99 static int twe_aen_get(struct twe_softc *, uint16_t *); 100 static void twe_aen_handler(struct twe_ccb *, int); 101 static void twe_aen_enqueue(struct twe_softc *sc, uint16_t, int); 102 static uint16_t twe_aen_dequeue(struct twe_softc *); 103 104 static void twe_attach(device_t, device_t, void *); 105 static int twe_init_connection(struct twe_softc *); 106 static int twe_intr(void *); 107 static int twe_match(device_t, cfdata_t, void *); 108 static int twe_param_set(struct twe_softc *, int, int, size_t, void *); 109 static void twe_poll(struct twe_softc *); 110 static int twe_print(void *, const char *); 111 static int twe_reset(struct twe_softc *); 112 static int twe_status_check(struct twe_softc *, u_int); 113 static int twe_status_wait(struct twe_softc *, u_int, int); 114 static void twe_describe_controller(struct twe_softc *); 115 static void twe_clear_pci_abort(struct twe_softc *sc); 116 static void twe_clear_pci_parity_error(struct twe_softc *sc); 117 118 static int twe_add_unit(struct twe_softc *, int); 119 static int twe_del_unit(struct twe_softc *, int); 120 static int twe_init_connection(struct twe_softc *); 121 122 static inline u_int32_t twe_inl(struct twe_softc *, int); 123 static inline void twe_outl(struct twe_softc *, int, u_int32_t); 124 125 extern struct cfdriver twe_cd; 126 127 CFATTACH_DECL(twe, sizeof(struct twe_softc), 128 twe_match, twe_attach, NULL, NULL); 129 130 /* FreeBSD driver revision for sysctl expected by the 3ware cli */ 131 const char twever[] = "1.50.01.002"; 132 133 /* 134 * Tables to convert numeric codes to strings. 135 */ 136 const struct twe_code_table twe_table_status[] = { 137 { 0x00, "successful completion" }, 138 139 /* info */ 140 { 0x42, "command in progress" }, 141 { 0x6c, "retrying interface CRC error from UDMA command" }, 142 143 /* warning */ 144 { 0x81, "redundant/inconsequential request ignored" }, 145 { 0x8e, "failed to write zeroes to LBA 0" }, 146 { 0x8f, "failed to profile TwinStor zones" }, 147 148 /* fatal */ 149 { 0xc1, "aborted due to system command or reconfiguration" }, 150 { 0xc4, "aborted" }, 151 { 0xc5, "access error" }, 152 { 0xc6, "access violation" }, 153 { 0xc7, "device failure" }, /* high byte may be port # */ 154 { 0xc8, "controller error" }, 155 { 0xc9, "timed out" }, 156 { 0xcb, "invalid unit number" }, 157 { 0xcf, "unit not available" }, 158 { 0xd2, "undefined opcode" }, 159 { 0xdb, "request incompatible with unit" }, 160 { 0xdc, "invalid request" }, 161 { 0xff, "firmware error, reset requested" }, 162 163 { 0, NULL } 164 }; 165 166 const struct twe_code_table twe_table_unitstate[] = { 167 { TWE_PARAM_UNITSTATUS_Normal, "Normal" }, 168 { TWE_PARAM_UNITSTATUS_Initialising, "Initializing" }, 169 { TWE_PARAM_UNITSTATUS_Degraded, "Degraded" }, 170 { TWE_PARAM_UNITSTATUS_Rebuilding, "Rebuilding" }, 171 { TWE_PARAM_UNITSTATUS_Verifying, "Verifying" }, 172 { TWE_PARAM_UNITSTATUS_Corrupt, "Corrupt" }, 173 { TWE_PARAM_UNITSTATUS_Missing, "Missing" }, 174 175 { 0, NULL } 176 }; 177 178 const struct twe_code_table twe_table_unittype[] = { 179 /* array descriptor configuration */ 180 { TWE_AD_CONFIG_RAID0, "RAID0" }, 181 { TWE_AD_CONFIG_RAID1, "RAID1" }, 182 { TWE_AD_CONFIG_TwinStor, "TwinStor" }, 183 { TWE_AD_CONFIG_RAID5, "RAID5" }, 184 { TWE_AD_CONFIG_RAID10, "RAID10" }, 185 { TWE_UD_CONFIG_JBOD, "JBOD" }, 186 187 { 0, NULL } 188 }; 189 190 const struct twe_code_table twe_table_stripedepth[] = { 191 { TWE_AD_STRIPE_4k, "4K" }, 192 { TWE_AD_STRIPE_8k, "8K" }, 193 { TWE_AD_STRIPE_16k, "16K" }, 194 { TWE_AD_STRIPE_32k, "32K" }, 195 { TWE_AD_STRIPE_64k, "64K" }, 196 { TWE_AD_STRIPE_128k, "128K" }, 197 { TWE_AD_STRIPE_256k, "256K" }, 198 { TWE_AD_STRIPE_512k, "512K" }, 199 { TWE_AD_STRIPE_1024k, "1024K" }, 200 201 { 0, NULL } 202 }; 203 204 /* 205 * Asynchronous event notification messages are qualified: 206 * a - not unit/port specific 207 * u - unit specific 208 * p - port specific 209 * 210 * They are further qualified with a severity: 211 * E - LOG_EMERG 212 * a - LOG_ALERT 213 * c - LOG_CRIT 214 * e - LOG_ERR 215 * w - LOG_WARNING 216 * n - LOG_NOTICE 217 * i - LOG_INFO 218 * d - LOG_DEBUG 219 * blank - just use printf 220 */ 221 const struct twe_code_table twe_table_aen[] = { 222 { 0x00, "a queue empty" }, 223 { 0x01, "a soft reset" }, 224 { 0x02, "uc degraded mode" }, 225 { 0x03, "aa controller error" }, 226 { 0x04, "uE rebuild fail" }, 227 { 0x05, "un rebuild done" }, 228 { 0x06, "ue incomplete unit" }, 229 { 0x07, "un initialization done" }, 230 { 0x08, "uw unclean shutdown detected" }, 231 { 0x09, "pe drive timeout" }, 232 { 0x0a, "pc drive error" }, 233 { 0x0b, "un rebuild started" }, 234 { 0x0c, "un initialization started" }, 235 { 0x0d, "ui logical unit deleted" }, 236 { 0x0f, "pc SMART threshold exceeded" }, 237 { 0x15, "a table undefined" }, /* XXX: Not in FreeBSD's table */ 238 { 0x21, "pe ATA UDMA downgrade" }, 239 { 0x22, "pi ATA UDMA upgrade" }, 240 { 0x23, "pw sector repair occurred" }, 241 { 0x24, "aa SBUF integrity check failure" }, 242 { 0x25, "pa lost cached write" }, 243 { 0x26, "pa drive ECC error detected" }, 244 { 0x27, "pe DCB checksum error" }, 245 { 0x28, "pn DCB unsupported version" }, 246 { 0x29, "ui verify started" }, 247 { 0x2a, "ua verify failed" }, 248 { 0x2b, "ui verify complete" }, 249 { 0x2c, "pw overwrote bad sector during rebuild" }, 250 { 0x2d, "pa encountered bad sector during rebuild" }, 251 { 0x2e, "pe replacement drive too small" }, 252 { 0x2f, "ue array not previously initialized" }, 253 { 0x30, "p drive not supported" }, 254 { 0xff, "a aen queue full" }, 255 256 { 0, NULL }, 257 }; 258 259 const char * 260 twe_describe_code(const struct twe_code_table *table, uint32_t code) 261 { 262 263 for (; table->string != NULL; table++) { 264 if (table->code == code) 265 return (table->string); 266 } 267 return (NULL); 268 } 269 270 static inline u_int32_t 271 twe_inl(struct twe_softc *sc, int off) 272 { 273 274 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4, 275 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ); 276 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off)); 277 } 278 279 static inline void 280 twe_outl(struct twe_softc *sc, int off, u_int32_t val) 281 { 282 283 bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val); 284 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4, 285 BUS_SPACE_BARRIER_WRITE); 286 } 287 288 /* 289 * Match a supported board. 290 */ 291 static int 292 twe_match(device_t parent, cfdata_t cfdata, void *aux) 293 { 294 struct pci_attach_args *pa; 295 296 pa = aux; 297 298 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE && 299 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE || 300 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC)); 301 } 302 303 /* 304 * Attach a supported board. 305 * 306 * XXX This doesn't fail gracefully. 307 */ 308 static void 309 twe_attach(device_t parent, device_t self, void *aux) 310 { 311 struct pci_attach_args *pa; 312 struct twe_softc *sc; 313 pci_chipset_tag_t pc; 314 pci_intr_handle_t ih; 315 pcireg_t csr; 316 const char *intrstr; 317 int s, size, i, rv, rseg; 318 size_t max_segs, max_xfer; 319 bus_dma_segment_t seg; 320 struct ctlname ctlnames[] = CTL_NAMES; 321 const struct sysctlnode *node; 322 struct twe_cmd *tc; 323 struct twe_ccb *ccb; 324 325 sc = device_private(self); 326 pa = aux; 327 pc = pa->pa_pc; 328 sc->sc_dmat = pa->pa_dmat; 329 SIMPLEQ_INIT(&sc->sc_ccb_queue); 330 SLIST_INIT(&sc->sc_ccb_freelist); 331 332 aprint_naive(": RAID controller\n"); 333 aprint_normal(": 3ware Escalade\n"); 334 335 336 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0, 337 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) { 338 aprint_error_dev(&sc->sc_dv, "can't map i/o space\n"); 339 return; 340 } 341 342 /* Enable the device. */ 343 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 344 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 345 csr | PCI_COMMAND_MASTER_ENABLE); 346 347 /* Map and establish the interrupt. */ 348 if (pci_intr_map(pa, &ih)) { 349 aprint_error_dev(&sc->sc_dv, "can't map interrupt\n"); 350 return; 351 } 352 353 intrstr = pci_intr_string(pc, ih); 354 sc->sc_ih = pci_intr_establish(pc, ih, IPL_BIO, twe_intr, sc); 355 if (sc->sc_ih == NULL) { 356 aprint_error_dev(&sc->sc_dv, "can't establish interrupt%s%s\n", 357 (intrstr) ? " at " : "", 358 (intrstr) ? intrstr : ""); 359 return; 360 } 361 362 if (intrstr != NULL) 363 aprint_normal_dev(&sc->sc_dv, "interrupting at %s\n", 364 intrstr); 365 366 /* 367 * Allocate and initialise the command blocks and CCBs. 368 */ 369 size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT; 370 371 if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1, 372 &rseg, BUS_DMA_NOWAIT)) != 0) { 373 aprint_error_dev(&sc->sc_dv, "unable to allocate commands, rv = %d\n", rv); 374 return; 375 } 376 377 if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size, 378 (void **)&sc->sc_cmds, 379 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { 380 aprint_error_dev(&sc->sc_dv, "unable to map commands, rv = %d\n", rv); 381 return; 382 } 383 384 if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0, 385 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) { 386 aprint_error_dev(&sc->sc_dv, "unable to create command DMA map, rv = %d\n", rv); 387 return; 388 } 389 390 if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds, 391 size, NULL, BUS_DMA_NOWAIT)) != 0) { 392 aprint_error_dev(&sc->sc_dv, "unable to load command DMA map, rv = %d\n", rv); 393 return; 394 } 395 396 ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_NOWAIT); 397 if (ccb == NULL) { 398 aprint_error_dev(&sc->sc_dv, "unable to allocate memory for ccbs\n"); 399 return; 400 } 401 402 sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr; 403 memset(sc->sc_cmds, 0, size); 404 405 sc->sc_ccbs = ccb; 406 tc = (struct twe_cmd *)sc->sc_cmds; 407 max_segs = twe_get_maxsegs(); 408 max_xfer = twe_get_maxxfer(max_segs); 409 410 for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) { 411 ccb->ccb_cmd = tc; 412 ccb->ccb_cmdid = i; 413 ccb->ccb_flags = 0; 414 rv = bus_dmamap_create(sc->sc_dmat, max_xfer, 415 max_segs, PAGE_SIZE, 0, 416 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 417 &ccb->ccb_dmamap_xfer); 418 if (rv != 0) { 419 aprint_error_dev(&sc->sc_dv, "can't create dmamap, rv = %d\n", rv); 420 return; 421 } 422 423 /* Save the first CCB for AEN retrieval. */ 424 if (i != 0) 425 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, 426 ccb_chain.slist); 427 } 428 429 /* Wait for the controller to become ready. */ 430 if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) { 431 aprint_error_dev(&sc->sc_dv, "microcontroller not ready\n"); 432 return; 433 } 434 435 twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS); 436 437 /* Reset the controller. */ 438 s = splbio(); 439 rv = twe_reset(sc); 440 splx(s); 441 if (rv) { 442 aprint_error_dev(&sc->sc_dv, "reset failed\n"); 443 return; 444 } 445 446 /* Initialise connection with controller. */ 447 twe_init_connection(sc); 448 449 twe_describe_controller(sc); 450 451 /* Find and attach RAID array units. */ 452 sc->sc_nunits = 0; 453 for (i = 0; i < TWE_MAX_UNITS; i++) 454 (void) twe_add_unit(sc, i); 455 456 /* ...and finally, enable interrupts. */ 457 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR | 458 TWE_CTL_UNMASK_RESP_INTR | 459 TWE_CTL_ENABLE_INTRS); 460 461 /* sysctl set-up for 3ware cli */ 462 if (sysctl_createv(NULL, 0, NULL, NULL, 463 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", 464 NULL, NULL, 0, NULL, 0, 465 CTL_HW, CTL_EOL) != 0) { 466 aprint_error_dev(&sc->sc_dv, "could not create %s sysctl node\n", 467 ctlnames[CTL_HW].ctl_name); 468 return; 469 } 470 if (sysctl_createv(NULL, 0, NULL, &node, 471 0, CTLTYPE_NODE, device_xname(&sc->sc_dv), 472 SYSCTL_DESCR("twe driver information"), 473 NULL, 0, NULL, 0, 474 CTL_HW, CTL_CREATE, CTL_EOL) != 0) { 475 aprint_error_dev(&sc->sc_dv, "could not create %s.%s sysctl node\n", 476 ctlnames[CTL_HW].ctl_name, device_xname(&sc->sc_dv)); 477 return; 478 } 479 if ((i = sysctl_createv(NULL, 0, NULL, NULL, 480 0, CTLTYPE_STRING, "driver_version", 481 SYSCTL_DESCR("twe0 driver version"), 482 NULL, 0, &twever, 0, 483 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL)) 484 != 0) { 485 aprint_error_dev(&sc->sc_dv, "could not create %s.%s.driver_version sysctl\n", 486 ctlnames[CTL_HW].ctl_name, device_xname(&sc->sc_dv)); 487 return; 488 } 489 } 490 491 void 492 twe_register_callbacks(struct twe_softc *sc, int unit, 493 const struct twe_callbacks *tcb) 494 { 495 496 sc->sc_units[unit].td_callbacks = tcb; 497 } 498 499 static void 500 twe_recompute_openings(struct twe_softc *sc) 501 { 502 struct twe_drive *td; 503 int unit, openings; 504 505 if (sc->sc_nunits != 0) 506 openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits; 507 else 508 openings = 0; 509 if (openings == sc->sc_openings) 510 return; 511 sc->sc_openings = openings; 512 513 #ifdef TWE_DEBUG 514 printf("%s: %d array%s, %d openings per array\n", 515 device_xname(&sc->sc_dv), sc->sc_nunits, 516 sc->sc_nunits == 1 ? "" : "s", sc->sc_openings); 517 #endif 518 519 for (unit = 0; unit < TWE_MAX_UNITS; unit++) { 520 td = &sc->sc_units[unit]; 521 if (td->td_dev != NULL) 522 (*td->td_callbacks->tcb_openings)(td->td_dev, 523 sc->sc_openings); 524 } 525 } 526 527 static int 528 twe_add_unit(struct twe_softc *sc, int unit) 529 { 530 struct twe_param *dtp, *atp; 531 struct twe_array_descriptor *ad; 532 struct twe_drive *td; 533 struct twe_attach_args twea; 534 uint32_t newsize; 535 int rv; 536 uint16_t dsize; 537 uint8_t newtype, newstripe; 538 int locs[TWECF_NLOCS]; 539 540 if (unit < 0 || unit >= TWE_MAX_UNITS) 541 return (EINVAL); 542 543 /* Find attached units. */ 544 rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY, 545 TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp); 546 if (rv != 0) { 547 aprint_error_dev(&sc->sc_dv, "error %d fetching unit summary\n", 548 rv); 549 return (rv); 550 } 551 552 /* For each detected unit, collect size and store in an array. */ 553 td = &sc->sc_units[unit]; 554 555 /* Unit present? */ 556 if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) { 557 /* 558 * XXX Should we check to see if a device has been 559 * XXX attached at this index and detach it if it 560 * XXX has? ("rescan" semantics) 561 */ 562 rv = 0; 563 goto out; 564 } 565 566 rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit, 567 TWE_PARAM_UNITINFO_DescriptorSize, &dsize); 568 if (rv != 0) { 569 aprint_error_dev(&sc->sc_dv, "error %d fetching descriptor size " 570 "for unit %d\n", rv, unit); 571 goto out; 572 } 573 574 rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit, 575 TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp); 576 if (rv != 0) { 577 aprint_error_dev(&sc->sc_dv, "error %d fetching array descriptor " 578 "for unit %d\n", rv, unit); 579 goto out; 580 } 581 582 ad = (struct twe_array_descriptor *)atp->tp_data; 583 newtype = ad->configuration; 584 newstripe = ad->stripe_size; 585 free(atp, M_DEVBUF); 586 587 rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit, 588 TWE_PARAM_UNITINFO_Capacity, &newsize); 589 if (rv != 0) { 590 aprint_error_dev(&sc->sc_dv, 591 "error %d fetching capacity for unit %d\n", 592 rv, unit); 593 goto out; 594 } 595 596 /* 597 * Have a device, so we need to attach it. If there is currently 598 * something sitting at the slot, and the parameters are different, 599 * then we detach the old device before attaching the new one. 600 */ 601 if (td->td_dev != NULL && 602 td->td_size == newsize && 603 td->td_type == newtype && 604 td->td_stripe == newstripe) { 605 /* Same as the old device; just keep using it. */ 606 rv = 0; 607 goto out; 608 } else if (td->td_dev != NULL) { 609 /* Detach the old device first. */ 610 (void) config_detach(td->td_dev, DETACH_FORCE); 611 td->td_dev = NULL; 612 } else if (td->td_size == 0) 613 sc->sc_nunits++; 614 615 /* 616 * Committed to the new array unit; assign its parameters and 617 * recompute the number of available command openings. 618 */ 619 td->td_size = newsize; 620 td->td_type = newtype; 621 td->td_stripe = newstripe; 622 twe_recompute_openings(sc); 623 624 twea.twea_unit = unit; 625 626 locs[TWECF_UNIT] = unit; 627 628 td->td_dev = config_found_sm_loc(&sc->sc_dv, "twe", locs, &twea, 629 twe_print, config_stdsubmatch); 630 631 rv = 0; 632 out: 633 free(dtp, M_DEVBUF); 634 return (rv); 635 } 636 637 static int 638 twe_del_unit(struct twe_softc *sc, int unit) 639 { 640 struct twe_drive *td; 641 642 if (unit < 0 || unit >= TWE_MAX_UNITS) 643 return (EINVAL); 644 645 td = &sc->sc_units[unit]; 646 if (td->td_size != 0) 647 sc->sc_nunits--; 648 td->td_size = 0; 649 td->td_type = 0; 650 td->td_stripe = 0; 651 if (td->td_dev != NULL) { 652 (void) config_detach(td->td_dev, DETACH_FORCE); 653 td->td_dev = NULL; 654 } 655 twe_recompute_openings(sc); 656 return (0); 657 } 658 659 /* 660 * Reset the controller. 661 * MUST BE CALLED AT splbio()! 662 */ 663 static int 664 twe_reset(struct twe_softc *sc) 665 { 666 uint16_t aen; 667 u_int status; 668 volatile u_int32_t junk; 669 int got, rv; 670 671 /* Issue a soft reset. */ 672 twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET | 673 TWE_CTL_CLEAR_HOST_INTR | 674 TWE_CTL_CLEAR_ATTN_INTR | 675 TWE_CTL_MASK_CMD_INTR | 676 TWE_CTL_MASK_RESP_INTR | 677 TWE_CTL_CLEAR_ERROR_STS | 678 TWE_CTL_DISABLE_INTRS); 679 680 /* Wait for attention... */ 681 if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) { 682 aprint_error_dev(&sc->sc_dv, "timeout waiting for attention interrupt\n"); 683 return (-1); 684 } 685 686 /* ...and ACK it. */ 687 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR); 688 689 /* 690 * Pull AENs out of the controller; look for a soft reset AEN. 691 * Open code this, since we want to detect reset even if the 692 * queue for management tools is full. 693 * 694 * Note that since: 695 * - interrupts are blocked 696 * - we have reset the controller 697 * - acknowledged the pending ATTENTION 698 * that there is no way a pending asynchronous AEN fetch would 699 * finish, so clear the flag. 700 */ 701 sc->sc_flags &= ~TWEF_AEN; 702 for (got = 0;;) { 703 rv = twe_aen_get(sc, &aen); 704 if (rv != 0) 705 printf("%s: error %d while draining event queue\n", 706 device_xname(&sc->sc_dv), rv); 707 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) 708 break; 709 if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET) 710 got = 1; 711 twe_aen_enqueue(sc, aen, 1); 712 } 713 714 if (!got) { 715 printf("%s: reset not reported\n", device_xname(&sc->sc_dv)); 716 return (-1); 717 } 718 719 /* Check controller status. */ 720 status = twe_inl(sc, TWE_REG_STS); 721 if (twe_status_check(sc, status)) { 722 printf("%s: controller errors detected\n", 723 device_xname(&sc->sc_dv)); 724 return (-1); 725 } 726 727 /* Drain the response queue. */ 728 for (;;) { 729 status = twe_inl(sc, TWE_REG_STS); 730 if (twe_status_check(sc, status) != 0) { 731 aprint_error_dev(&sc->sc_dv, "can't drain response queue\n"); 732 return (-1); 733 } 734 if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0) 735 break; 736 junk = twe_inl(sc, TWE_REG_RESP_QUEUE); 737 } 738 739 return (0); 740 } 741 742 /* 743 * Print autoconfiguration message for a sub-device. 744 */ 745 static int 746 twe_print(void *aux, const char *pnp) 747 { 748 struct twe_attach_args *twea; 749 750 twea = aux; 751 752 if (pnp != NULL) 753 aprint_normal("block device at %s", pnp); 754 aprint_normal(" unit %d", twea->twea_unit); 755 return (UNCONF); 756 } 757 758 /* 759 * Interrupt service routine. 760 */ 761 static int 762 twe_intr(void *arg) 763 { 764 struct twe_softc *sc; 765 u_int status; 766 int caught, rv; 767 768 sc = arg; 769 caught = 0; 770 status = twe_inl(sc, TWE_REG_STS); 771 twe_status_check(sc, status); 772 773 /* Host interrupts - purpose unknown. */ 774 if ((status & TWE_STS_HOST_INTR) != 0) { 775 #ifdef DEBUG 776 printf("%s: host interrupt\n", device_xname(&sc->sc_dv)); 777 #endif 778 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR); 779 caught = 1; 780 } 781 782 /* 783 * Attention interrupts, signalled when a controller or child device 784 * state change has occurred. 785 */ 786 if ((status & TWE_STS_ATTN_INTR) != 0) { 787 rv = twe_aen_get(sc, NULL); 788 if (rv != 0) 789 aprint_error_dev(&sc->sc_dv, "unable to retrieve AEN (%d)\n", rv); 790 else 791 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR); 792 caught = 1; 793 } 794 795 /* 796 * Command interrupts, signalled when the controller can accept more 797 * commands. We don't use this; instead, we try to submit commands 798 * when we receive them, and when other commands have completed. 799 * Mask it so we don't get another one. 800 */ 801 if ((status & TWE_STS_CMD_INTR) != 0) { 802 #ifdef DEBUG 803 printf("%s: command interrupt\n", device_xname(&sc->sc_dv)); 804 #endif 805 twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR); 806 caught = 1; 807 } 808 809 if ((status & TWE_STS_RESP_INTR) != 0) { 810 twe_poll(sc); 811 caught = 1; 812 } 813 814 return (caught); 815 } 816 817 /* 818 * Fetch an AEN. Even though this is really like parameter 819 * retrieval, we handle this specially, because we issue this 820 * AEN retrieval command from interrupt context, and thus 821 * reserve a CCB for it to avoid resource shortage. 822 * 823 * XXX There are still potential resource shortages we could 824 * XXX encounter. Consider pre-allocating all AEN-related 825 * XXX resources. 826 * 827 * MUST BE CALLED AT splbio()! 828 */ 829 static int 830 twe_aen_get(struct twe_softc *sc, uint16_t *aenp) 831 { 832 struct twe_ccb *ccb; 833 struct twe_cmd *tc; 834 struct twe_param *tp; 835 int rv; 836 837 /* 838 * If we're already retrieving an AEN, just wait; another 839 * retrieval will be chained after the current one completes. 840 */ 841 if (sc->sc_flags & TWEF_AEN) { 842 /* 843 * It is a fatal software programming error to attempt 844 * to fetch an AEN synchronously when an AEN fetch is 845 * already pending. 846 */ 847 KASSERT(aenp == NULL); 848 return (0); 849 } 850 851 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT); 852 if (tp == NULL) 853 return (ENOMEM); 854 855 ccb = twe_ccb_alloc(sc, 856 TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); 857 KASSERT(ccb != NULL); 858 859 ccb->ccb_data = tp; 860 ccb->ccb_datasize = TWE_SECTOR_SIZE; 861 ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL; 862 ccb->ccb_tx.tx_context = tp; 863 ccb->ccb_tx.tx_dv = &sc->sc_dv; 864 865 tc = ccb->ccb_cmd; 866 tc->tc_size = 2; 867 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5); 868 tc->tc_unit = 0; 869 tc->tc_count = htole16(1); 870 871 /* Fill in the outbound parameter data. */ 872 tp->tp_table_id = htole16(TWE_PARAM_AEN); 873 tp->tp_param_id = TWE_PARAM_AEN_UnitCode; 874 tp->tp_param_size = 2; 875 876 /* Map the transfer. */ 877 if ((rv = twe_ccb_map(sc, ccb)) != 0) { 878 twe_ccb_free(sc, ccb); 879 goto done; 880 } 881 882 /* Enqueue the command and wait. */ 883 if (aenp != NULL) { 884 rv = twe_ccb_poll(sc, ccb, 5); 885 twe_ccb_unmap(sc, ccb); 886 twe_ccb_free(sc, ccb); 887 if (rv == 0) 888 *aenp = le16toh(*(uint16_t *)tp->tp_data); 889 free(tp, M_DEVBUF); 890 } else { 891 sc->sc_flags |= TWEF_AEN; 892 twe_ccb_enqueue(sc, ccb); 893 rv = 0; 894 } 895 896 done: 897 return (rv); 898 } 899 900 /* 901 * Handle an AEN returned by the controller. 902 * MUST BE CALLED AT splbio()! 903 */ 904 static void 905 twe_aen_handler(struct twe_ccb *ccb, int error) 906 { 907 struct twe_softc *sc; 908 struct twe_param *tp; 909 uint16_t aen; 910 int rv; 911 912 sc = device_private(ccb->ccb_tx.tx_dv); 913 tp = ccb->ccb_tx.tx_context; 914 twe_ccb_unmap(sc, ccb); 915 916 sc->sc_flags &= ~TWEF_AEN; 917 918 if (error) { 919 aprint_error_dev(&sc->sc_dv, "error retrieving AEN\n"); 920 aen = TWE_AEN_QUEUE_EMPTY; 921 } else 922 aen = le16toh(*(u_int16_t *)tp->tp_data); 923 free(tp, M_DEVBUF); 924 twe_ccb_free(sc, ccb); 925 926 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) { 927 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR); 928 return; 929 } 930 931 twe_aen_enqueue(sc, aen, 0); 932 933 /* 934 * Chain another retrieval in case interrupts have been 935 * coalesced. 936 */ 937 rv = twe_aen_get(sc, NULL); 938 if (rv != 0) 939 aprint_error_dev(&sc->sc_dv, "unable to retrieve AEN (%d)\n", rv); 940 } 941 942 static void 943 twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet) 944 { 945 const char *str, *msg; 946 int s, next, nextnext, level; 947 948 /* 949 * First report the AEN on the console. Maybe. 950 */ 951 if (! quiet) { 952 str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen)); 953 if (str == NULL) { 954 aprint_error_dev(&sc->sc_dv, "unknown AEN 0x%04x\n", aen); 955 } else { 956 msg = str + 3; 957 switch (str[1]) { 958 case 'E': level = LOG_EMERG; break; 959 case 'a': level = LOG_ALERT; break; 960 case 'c': level = LOG_CRIT; break; 961 case 'e': level = LOG_ERR; break; 962 case 'w': level = LOG_WARNING; break; 963 case 'n': level = LOG_NOTICE; break; 964 case 'i': level = LOG_INFO; break; 965 case 'd': level = LOG_DEBUG; break; 966 default: 967 /* Don't use syslog. */ 968 level = -1; 969 } 970 971 if (level < 0) { 972 switch (str[0]) { 973 case 'u': 974 case 'p': 975 printf("%s: %s %d: %s\n", 976 device_xname(&sc->sc_dv), 977 str[0] == 'u' ? "unit" : "port", 978 TWE_AEN_UNIT(aen), msg); 979 break; 980 981 default: 982 printf("%s: %s\n", 983 device_xname(&sc->sc_dv), msg); 984 } 985 } else { 986 switch (str[0]) { 987 case 'u': 988 case 'p': 989 log(level, "%s: %s %d: %s\n", 990 device_xname(&sc->sc_dv), 991 str[0] == 'u' ? "unit" : "port", 992 TWE_AEN_UNIT(aen), msg); 993 break; 994 995 default: 996 log(level, "%s: %s\n", 997 device_xname(&sc->sc_dv), msg); 998 } 999 } 1000 } 1001 } 1002 1003 /* Now enqueue the AEN for mangement tools. */ 1004 s = splbio(); 1005 1006 next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH; 1007 nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH; 1008 1009 /* 1010 * If this is the last free slot, then queue up a "queue 1011 * full" message. 1012 */ 1013 if (nextnext == sc->sc_aen_tail) 1014 aen = TWE_AEN_QUEUE_FULL; 1015 1016 if (next != sc->sc_aen_tail) { 1017 sc->sc_aen_queue[sc->sc_aen_head] = aen; 1018 sc->sc_aen_head = next; 1019 } 1020 1021 if (sc->sc_flags & TWEF_AENQ_WAIT) { 1022 sc->sc_flags &= ~TWEF_AENQ_WAIT; 1023 wakeup(&sc->sc_aen_queue); 1024 } 1025 1026 splx(s); 1027 } 1028 1029 /* NOTE: Must be called at splbio(). */ 1030 static uint16_t 1031 twe_aen_dequeue(struct twe_softc *sc) 1032 { 1033 uint16_t aen; 1034 1035 if (sc->sc_aen_tail == sc->sc_aen_head) 1036 aen = TWE_AEN_QUEUE_EMPTY; 1037 else { 1038 aen = sc->sc_aen_queue[sc->sc_aen_tail]; 1039 sc->sc_aen_tail = (sc->sc_aen_tail + 1) % TWE_AEN_Q_LENGTH; 1040 } 1041 1042 return (aen); 1043 } 1044 1045 /* 1046 * These are short-hand functions that execute TWE_OP_GET_PARAM to 1047 * fetch 1, 2, and 4 byte parameter values, respectively. 1048 */ 1049 int 1050 twe_param_get_1(struct twe_softc *sc, int table_id, int param_id, 1051 uint8_t *valp) 1052 { 1053 struct twe_param *tp; 1054 int rv; 1055 1056 rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp); 1057 if (rv != 0) 1058 return (rv); 1059 *valp = *(uint8_t *)tp->tp_data; 1060 free(tp, M_DEVBUF); 1061 return (0); 1062 } 1063 1064 int 1065 twe_param_get_2(struct twe_softc *sc, int table_id, int param_id, 1066 uint16_t *valp) 1067 { 1068 struct twe_param *tp; 1069 int rv; 1070 1071 rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp); 1072 if (rv != 0) 1073 return (rv); 1074 *valp = le16toh(*(uint16_t *)tp->tp_data); 1075 free(tp, M_DEVBUF); 1076 return (0); 1077 } 1078 1079 int 1080 twe_param_get_4(struct twe_softc *sc, int table_id, int param_id, 1081 uint32_t *valp) 1082 { 1083 struct twe_param *tp; 1084 int rv; 1085 1086 rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp); 1087 if (rv != 0) 1088 return (rv); 1089 *valp = le32toh(*(uint32_t *)tp->tp_data); 1090 free(tp, M_DEVBUF); 1091 return (0); 1092 } 1093 1094 /* 1095 * Execute a TWE_OP_GET_PARAM command. If a callback function is provided, 1096 * it will be called with generated context when the command has completed. 1097 * If no callback is provided, the command will be executed synchronously 1098 * and a pointer to a buffer containing the data returned. 1099 * 1100 * The caller or callback is responsible for freeing the buffer. 1101 * 1102 * NOTE: We assume we can sleep here to wait for a CCB to become available. 1103 */ 1104 int 1105 twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size, 1106 void (*func)(struct twe_ccb *, int), struct twe_param **pbuf) 1107 { 1108 struct twe_ccb *ccb; 1109 struct twe_cmd *tc; 1110 struct twe_param *tp; 1111 int rv, s; 1112 1113 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT); 1114 if (tp == NULL) 1115 return ENOMEM; 1116 1117 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); 1118 KASSERT(ccb != NULL); 1119 1120 ccb->ccb_data = tp; 1121 ccb->ccb_datasize = TWE_SECTOR_SIZE; 1122 ccb->ccb_tx.tx_handler = func; 1123 ccb->ccb_tx.tx_context = tp; 1124 ccb->ccb_tx.tx_dv = &sc->sc_dv; 1125 1126 tc = ccb->ccb_cmd; 1127 tc->tc_size = 2; 1128 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5); 1129 tc->tc_unit = 0; 1130 tc->tc_count = htole16(1); 1131 1132 /* Fill in the outbound parameter data. */ 1133 tp->tp_table_id = htole16(table_id); 1134 tp->tp_param_id = param_id; 1135 tp->tp_param_size = size; 1136 1137 /* Map the transfer. */ 1138 if ((rv = twe_ccb_map(sc, ccb)) != 0) { 1139 twe_ccb_free(sc, ccb); 1140 goto done; 1141 } 1142 1143 /* Submit the command and either wait or let the callback handle it. */ 1144 if (func == NULL) { 1145 s = splbio(); 1146 rv = twe_ccb_poll(sc, ccb, 5); 1147 twe_ccb_unmap(sc, ccb); 1148 twe_ccb_free(sc, ccb); 1149 splx(s); 1150 } else { 1151 #ifdef DEBUG 1152 if (pbuf != NULL) 1153 panic("both func and pbuf defined"); 1154 #endif 1155 twe_ccb_enqueue(sc, ccb); 1156 return 0; 1157 } 1158 1159 done: 1160 if (pbuf == NULL || rv != 0) 1161 free(tp, M_DEVBUF); 1162 else if (pbuf != NULL && rv == 0) 1163 *pbuf = tp; 1164 return rv; 1165 } 1166 1167 /* 1168 * Execute a TWE_OP_SET_PARAM command. 1169 * 1170 * NOTE: We assume we can sleep here to wait for a CCB to become available. 1171 */ 1172 static int 1173 twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size, 1174 void *sbuf) 1175 { 1176 struct twe_ccb *ccb; 1177 struct twe_cmd *tc; 1178 struct twe_param *tp; 1179 int rv, s; 1180 1181 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT); 1182 if (tp == NULL) 1183 return ENOMEM; 1184 1185 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); 1186 KASSERT(ccb != NULL); 1187 1188 ccb->ccb_data = tp; 1189 ccb->ccb_datasize = TWE_SECTOR_SIZE; 1190 ccb->ccb_tx.tx_handler = 0; 1191 ccb->ccb_tx.tx_context = tp; 1192 ccb->ccb_tx.tx_dv = &sc->sc_dv; 1193 1194 tc = ccb->ccb_cmd; 1195 tc->tc_size = 2; 1196 tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5); 1197 tc->tc_unit = 0; 1198 tc->tc_count = htole16(1); 1199 1200 /* Fill in the outbound parameter data. */ 1201 tp->tp_table_id = htole16(table_id); 1202 tp->tp_param_id = param_id; 1203 tp->tp_param_size = size; 1204 memcpy(tp->tp_data, sbuf, size); 1205 1206 /* Map the transfer. */ 1207 if ((rv = twe_ccb_map(sc, ccb)) != 0) { 1208 twe_ccb_free(sc, ccb); 1209 goto done; 1210 } 1211 1212 /* Submit the command and wait. */ 1213 s = splbio(); 1214 rv = twe_ccb_poll(sc, ccb, 5); 1215 twe_ccb_unmap(sc, ccb); 1216 twe_ccb_free(sc, ccb); 1217 splx(s); 1218 done: 1219 free(tp, M_DEVBUF); 1220 return (rv); 1221 } 1222 1223 /* 1224 * Execute a TWE_OP_INIT_CONNECTION command. Return non-zero on error. 1225 * Must be called with interrupts blocked. 1226 */ 1227 static int 1228 twe_init_connection(struct twe_softc *sc) 1229 { 1230 struct twe_ccb *ccb; 1231 struct twe_cmd *tc; 1232 int rv; 1233 1234 if ((ccb = twe_ccb_alloc(sc, 0)) == NULL) 1235 return (EAGAIN); 1236 1237 /* Build the command. */ 1238 tc = ccb->ccb_cmd; 1239 tc->tc_size = 3; 1240 tc->tc_opcode = TWE_OP_INIT_CONNECTION; 1241 tc->tc_unit = 0; 1242 tc->tc_count = htole16(TWE_MAX_CMDS); 1243 tc->tc_args.init_connection.response_queue_pointer = 0; 1244 1245 /* Submit the command for immediate execution. */ 1246 rv = twe_ccb_poll(sc, ccb, 5); 1247 twe_ccb_free(sc, ccb); 1248 return (rv); 1249 } 1250 1251 /* 1252 * Poll the controller for completed commands. Must be called with 1253 * interrupts blocked. 1254 */ 1255 static void 1256 twe_poll(struct twe_softc *sc) 1257 { 1258 struct twe_ccb *ccb; 1259 int found; 1260 u_int status, cmdid; 1261 1262 found = 0; 1263 1264 for (;;) { 1265 status = twe_inl(sc, TWE_REG_STS); 1266 twe_status_check(sc, status); 1267 1268 if ((status & TWE_STS_RESP_QUEUE_EMPTY)) 1269 break; 1270 1271 found = 1; 1272 cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE); 1273 cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT; 1274 if (cmdid >= TWE_MAX_QUEUECNT) { 1275 aprint_error_dev(&sc->sc_dv, "bad cmdid %d\n", cmdid); 1276 continue; 1277 } 1278 1279 ccb = sc->sc_ccbs + cmdid; 1280 if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) { 1281 printf("%s: CCB for cmdid %d not active\n", 1282 device_xname(&sc->sc_dv), cmdid); 1283 continue; 1284 } 1285 ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE; 1286 1287 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, 1288 (char *)ccb->ccb_cmd - (char *)sc->sc_cmds, 1289 sizeof(struct twe_cmd), 1290 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1291 1292 /* Pass notification to upper layers. */ 1293 if (ccb->ccb_tx.tx_handler != NULL) 1294 (*ccb->ccb_tx.tx_handler)(ccb, 1295 ccb->ccb_cmd->tc_status != 0 ? EIO : 0); 1296 } 1297 1298 /* If any commands have completed, run the software queue. */ 1299 if (found) 1300 twe_ccb_enqueue(sc, NULL); 1301 } 1302 1303 /* 1304 * Wait for `status' to be set in the controller status register. Return 1305 * zero if found, non-zero if the operation timed out. 1306 */ 1307 static int 1308 twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo) 1309 { 1310 1311 for (timo *= 10; timo != 0; timo--) { 1312 if ((twe_inl(sc, TWE_REG_STS) & status) == status) 1313 break; 1314 delay(100000); 1315 } 1316 1317 return (timo == 0); 1318 } 1319 1320 /* 1321 * Clear a PCI parity error. 1322 */ 1323 static void 1324 twe_clear_pci_parity_error(struct twe_softc *sc) 1325 { 1326 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PARITY_ERROR); 1327 1328 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2); 1329 } 1330 1331 1332 /* 1333 * Clear a PCI abort. 1334 */ 1335 static void 1336 twe_clear_pci_abort(struct twe_softc *sc) 1337 { 1338 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PCI_ABORT); 1339 1340 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2); 1341 } 1342 1343 /* 1344 * Complain if the status bits aren't what we expect. 1345 */ 1346 static int 1347 twe_status_check(struct twe_softc *sc, u_int status) 1348 { 1349 int rv; 1350 1351 rv = 0; 1352 1353 if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) { 1354 aprint_error_dev(&sc->sc_dv, "missing status bits: 0x%08x\n", 1355 status & ~TWE_STS_EXPECTED_BITS); 1356 rv = -1; 1357 } 1358 1359 if ((status & TWE_STS_UNEXPECTED_BITS) != 0) { 1360 aprint_error_dev(&sc->sc_dv, "unexpected status bits: 0x%08x\n", 1361 status & TWE_STS_UNEXPECTED_BITS); 1362 rv = -1; 1363 if (status & TWE_STS_PCI_PARITY_ERROR) { 1364 aprint_error_dev(&sc->sc_dv, "PCI parity error: Reseat card, move card " 1365 "or buggy device present.\n"); 1366 twe_clear_pci_parity_error(sc); 1367 } 1368 if (status & TWE_STS_PCI_ABORT) { 1369 aprint_error_dev(&sc->sc_dv, "PCI abort, clearing.\n"); 1370 twe_clear_pci_abort(sc); 1371 } 1372 } 1373 1374 return (rv); 1375 } 1376 1377 /* 1378 * Allocate and initialise a CCB. 1379 */ 1380 static inline void 1381 twe_ccb_init(struct twe_softc *sc, struct twe_ccb *ccb, int flags) 1382 { 1383 struct twe_cmd *tc; 1384 1385 ccb->ccb_tx.tx_handler = NULL; 1386 ccb->ccb_flags = flags; 1387 tc = ccb->ccb_cmd; 1388 tc->tc_status = 0; 1389 tc->tc_flags = 0; 1390 tc->tc_cmdid = ccb->ccb_cmdid; 1391 } 1392 1393 struct twe_ccb * 1394 twe_ccb_alloc(struct twe_softc *sc, int flags) 1395 { 1396 struct twe_ccb *ccb; 1397 int s; 1398 1399 s = splbio(); 1400 if (__predict_false((flags & TWE_CCB_AEN) != 0)) { 1401 /* Use the reserved CCB. */ 1402 ccb = sc->sc_ccbs; 1403 } else { 1404 /* Allocate a CCB and command block. */ 1405 if (__predict_false((ccb = 1406 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) { 1407 splx(s); 1408 return (NULL); 1409 } 1410 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist); 1411 } 1412 #ifdef DIAGNOSTIC 1413 if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0) 1414 panic("twe_ccb_alloc: got reserved CCB for non-AEN"); 1415 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0) 1416 panic("twe_ccb_alloc: CCB %ld already allocated", 1417 (long)(ccb - sc->sc_ccbs)); 1418 flags |= TWE_CCB_ALLOCED; 1419 #endif 1420 splx(s); 1421 1422 twe_ccb_init(sc, ccb, flags); 1423 return (ccb); 1424 } 1425 1426 struct twe_ccb * 1427 twe_ccb_alloc_wait(struct twe_softc *sc, int flags) 1428 { 1429 struct twe_ccb *ccb; 1430 int s; 1431 1432 KASSERT((flags & TWE_CCB_AEN) == 0); 1433 1434 s = splbio(); 1435 while (__predict_false((ccb = 1436 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) { 1437 sc->sc_flags |= TWEF_WAIT_CCB; 1438 (void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0); 1439 } 1440 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist); 1441 #ifdef DIAGNOSTIC 1442 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0) 1443 panic("twe_ccb_alloc_wait: CCB %ld already allocated", 1444 (long)(ccb - sc->sc_ccbs)); 1445 flags |= TWE_CCB_ALLOCED; 1446 #endif 1447 splx(s); 1448 1449 twe_ccb_init(sc, ccb, flags); 1450 return (ccb); 1451 } 1452 1453 /* 1454 * Free a CCB. 1455 */ 1456 void 1457 twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb) 1458 { 1459 int s; 1460 1461 s = splbio(); 1462 if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) { 1463 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist); 1464 if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) { 1465 sc->sc_flags &= ~TWEF_WAIT_CCB; 1466 wakeup(&sc->sc_ccb_freelist); 1467 } 1468 } 1469 ccb->ccb_flags = 0; 1470 splx(s); 1471 } 1472 1473 /* 1474 * Map the specified CCB's command block and data buffer (if any) into 1475 * controller visible space. Perform DMA synchronisation. 1476 */ 1477 int 1478 twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb) 1479 { 1480 struct twe_cmd *tc; 1481 int flags, nsegs, i, s, rv; 1482 void *data; 1483 1484 /* 1485 * The data as a whole must be 512-byte aligned. 1486 */ 1487 if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) { 1488 s = splvm(); 1489 /* XXX */ 1490 ccb->ccb_abuf = uvm_km_alloc(kmem_map, 1491 ccb->ccb_datasize, 0, UVM_KMF_NOWAIT|UVM_KMF_WIRED); 1492 splx(s); 1493 data = (void *)ccb->ccb_abuf; 1494 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0) 1495 memcpy(data, ccb->ccb_data, ccb->ccb_datasize); 1496 } else { 1497 ccb->ccb_abuf = (vaddr_t)0; 1498 data = ccb->ccb_data; 1499 } 1500 1501 /* 1502 * Map the data buffer into bus space and build the S/G list. 1503 */ 1504 rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data, 1505 ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING | 1506 ((ccb->ccb_flags & TWE_CCB_DATA_IN) ? 1507 BUS_DMA_READ : BUS_DMA_WRITE)); 1508 if (rv != 0) { 1509 if (ccb->ccb_abuf != (vaddr_t)0) { 1510 s = splvm(); 1511 /* XXX */ 1512 uvm_km_free(kmem_map, ccb->ccb_abuf, 1513 ccb->ccb_datasize, UVM_KMF_WIRED); 1514 splx(s); 1515 } 1516 return (rv); 1517 } 1518 1519 nsegs = ccb->ccb_dmamap_xfer->dm_nsegs; 1520 tc = ccb->ccb_cmd; 1521 tc->tc_size += 2 * nsegs; 1522 1523 /* The location of the S/G list is dependant upon command type. */ 1524 switch (tc->tc_opcode >> 5) { 1525 case 2: 1526 for (i = 0; i < nsegs; i++) { 1527 tc->tc_args.param.sgl[i].tsg_address = 1528 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr); 1529 tc->tc_args.param.sgl[i].tsg_length = 1530 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len); 1531 } 1532 /* XXX Needed? */ 1533 for (; i < TWE_SG_SIZE; i++) { 1534 tc->tc_args.param.sgl[i].tsg_address = 0; 1535 tc->tc_args.param.sgl[i].tsg_length = 0; 1536 } 1537 break; 1538 case 3: 1539 for (i = 0; i < nsegs; i++) { 1540 tc->tc_args.io.sgl[i].tsg_address = 1541 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr); 1542 tc->tc_args.io.sgl[i].tsg_length = 1543 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len); 1544 } 1545 /* XXX Needed? */ 1546 for (; i < TWE_SG_SIZE; i++) { 1547 tc->tc_args.io.sgl[i].tsg_address = 0; 1548 tc->tc_args.io.sgl[i].tsg_length = 0; 1549 } 1550 break; 1551 default: 1552 /* 1553 * In all likelihood, this is a command passed from 1554 * management tools in userspace where no S/G list is 1555 * necessary because no data is being passed. 1556 */ 1557 break; 1558 } 1559 1560 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0) 1561 flags = BUS_DMASYNC_PREREAD; 1562 else 1563 flags = 0; 1564 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0) 1565 flags |= BUS_DMASYNC_PREWRITE; 1566 1567 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0, 1568 ccb->ccb_datasize, flags); 1569 return (0); 1570 } 1571 1572 /* 1573 * Unmap the specified CCB's command block and data buffer (if any) and 1574 * perform DMA synchronisation. 1575 */ 1576 void 1577 twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb) 1578 { 1579 int flags, s; 1580 1581 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0) 1582 flags = BUS_DMASYNC_POSTREAD; 1583 else 1584 flags = 0; 1585 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0) 1586 flags |= BUS_DMASYNC_POSTWRITE; 1587 1588 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0, 1589 ccb->ccb_datasize, flags); 1590 bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer); 1591 1592 if (ccb->ccb_abuf != (vaddr_t)0) { 1593 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0) 1594 memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf, 1595 ccb->ccb_datasize); 1596 s = splvm(); 1597 /* XXX */ 1598 uvm_km_free(kmem_map, ccb->ccb_abuf, ccb->ccb_datasize, 1599 UVM_KMF_WIRED); 1600 splx(s); 1601 } 1602 } 1603 1604 /* 1605 * Submit a command to the controller and poll on completion. Return 1606 * non-zero on timeout (but don't check status, as some command types don't 1607 * return status). Must be called with interrupts blocked. 1608 */ 1609 int 1610 twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo) 1611 { 1612 int rv; 1613 1614 if ((rv = twe_ccb_submit(sc, ccb)) != 0) 1615 return (rv); 1616 1617 for (timo *= 1000; timo != 0; timo--) { 1618 twe_poll(sc); 1619 if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0) 1620 break; 1621 DELAY(100); 1622 } 1623 1624 return (timo == 0); 1625 } 1626 1627 /* 1628 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in 1629 * the order that they were enqueued and try to submit their command blocks 1630 * to the controller for execution. 1631 */ 1632 void 1633 twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb) 1634 { 1635 int s; 1636 1637 s = splbio(); 1638 1639 if (ccb != NULL) 1640 SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq); 1641 1642 while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) { 1643 if (twe_ccb_submit(sc, ccb)) 1644 break; 1645 SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq); 1646 } 1647 1648 splx(s); 1649 } 1650 1651 /* 1652 * Submit the command block associated with the specified CCB to the 1653 * controller for execution. Must be called with interrupts blocked. 1654 */ 1655 int 1656 twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb) 1657 { 1658 bus_addr_t pa; 1659 int rv; 1660 u_int status; 1661 1662 /* Check to see if we can post a command. */ 1663 status = twe_inl(sc, TWE_REG_STS); 1664 twe_status_check(sc, status); 1665 1666 if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) { 1667 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, 1668 (char *)ccb->ccb_cmd - (char *)sc->sc_cmds, 1669 sizeof(struct twe_cmd), 1670 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 1671 #ifdef DIAGNOSTIC 1672 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0) 1673 panic("%s: CCB %ld not ALLOCED\n", 1674 device_xname(&sc->sc_dv), (long)(ccb - sc->sc_ccbs)); 1675 #endif 1676 ccb->ccb_flags |= TWE_CCB_ACTIVE; 1677 pa = sc->sc_cmds_paddr + 1678 ccb->ccb_cmdid * sizeof(struct twe_cmd); 1679 twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa); 1680 rv = 0; 1681 } else 1682 rv = EBUSY; 1683 1684 return (rv); 1685 } 1686 1687 1688 /* 1689 * Accept an open operation on the control device. 1690 */ 1691 static int 1692 tweopen(dev_t dev, int flag, int mode, struct lwp *l) 1693 { 1694 struct twe_softc *twe; 1695 1696 if ((twe = device_lookup_private(&twe_cd, minor(dev))) == NULL) 1697 return (ENXIO); 1698 if ((twe->sc_flags & TWEF_OPEN) != 0) 1699 return (EBUSY); 1700 1701 twe->sc_flags |= TWEF_OPEN; 1702 return (0); 1703 } 1704 1705 /* 1706 * Accept the last close on the control device. 1707 */ 1708 static int 1709 tweclose(dev_t dev, int flag, int mode, 1710 struct lwp *l) 1711 { 1712 struct twe_softc *twe; 1713 1714 twe = device_lookup_private(&twe_cd, minor(dev)); 1715 twe->sc_flags &= ~TWEF_OPEN; 1716 return (0); 1717 } 1718 1719 void 1720 twe_ccb_wait_handler(struct twe_ccb *ccb, int error) 1721 { 1722 1723 /* Just wake up the sleeper. */ 1724 wakeup(ccb); 1725 } 1726 1727 /* 1728 * Handle control operations. 1729 */ 1730 static int 1731 tweioctl(dev_t dev, u_long cmd, void *data, int flag, 1732 struct lwp *l) 1733 { 1734 struct twe_softc *twe; 1735 struct twe_ccb *ccb; 1736 struct twe_param *param; 1737 struct twe_usercommand *tu; 1738 struct twe_paramcommand *tp; 1739 struct twe_drivecommand *td; 1740 void *pdata = NULL; 1741 int s, error = 0; 1742 u_int8_t cmdid; 1743 1744 twe = device_lookup_private(&twe_cd, minor(dev)); 1745 tu = (struct twe_usercommand *)data; 1746 tp = (struct twe_paramcommand *)data; 1747 td = (struct twe_drivecommand *)data; 1748 1749 /* This is intended to be compatible with the FreeBSD interface. */ 1750 switch (cmd) { 1751 case TWEIO_COMMAND: 1752 error = kauth_authorize_device_passthru(l->l_cred, dev, 1753 KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data); 1754 if (error) 1755 return (error); 1756 1757 /* XXX mutex */ 1758 if (tu->tu_size > 0) { 1759 /* 1760 * XXX Handle > TWE_SECTOR_SIZE? Let's see if 1761 * it's really necessary, first. 1762 */ 1763 if (tu->tu_size > TWE_SECTOR_SIZE) { 1764 #ifdef TWE_DEBUG 1765 printf("%s: TWEIO_COMMAND: tu_size = %zu\n", 1766 device_xname(&twe->sc_dv), tu->tu_size); 1767 #endif 1768 return EINVAL; 1769 } 1770 pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK); 1771 error = copyin(tu->tu_data, pdata, tu->tu_size); 1772 if (error != 0) 1773 goto done; 1774 ccb = twe_ccb_alloc_wait(twe, 1775 TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); 1776 KASSERT(ccb != NULL); 1777 ccb->ccb_data = pdata; 1778 ccb->ccb_datasize = TWE_SECTOR_SIZE; 1779 } else { 1780 ccb = twe_ccb_alloc_wait(twe, 0); 1781 KASSERT(ccb != NULL); 1782 } 1783 1784 ccb->ccb_tx.tx_handler = twe_ccb_wait_handler; 1785 ccb->ccb_tx.tx_context = NULL; 1786 ccb->ccb_tx.tx_dv = &twe->sc_dv; 1787 1788 cmdid = ccb->ccb_cmdid; 1789 memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd)); 1790 ccb->ccb_cmd->tc_cmdid = cmdid; 1791 1792 /* Map the transfer. */ 1793 if ((error = twe_ccb_map(twe, ccb)) != 0) { 1794 twe_ccb_free(twe, ccb); 1795 goto done; 1796 } 1797 1798 /* Submit the command and wait up to 1 minute. */ 1799 error = 0; 1800 twe_ccb_enqueue(twe, ccb); 1801 s = splbio(); 1802 while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0) 1803 if ((error = tsleep(ccb, PRIBIO, "tweioctl", 1804 60 * hz)) != 0) 1805 break; 1806 splx(s); 1807 1808 /* Copy the command back to the ioctl argument. */ 1809 memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd)); 1810 #ifdef TWE_DEBUG 1811 printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, " 1812 "tc_status = 0x%02x\n", device_xname(&twe->sc_dv), 1813 tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status); 1814 #endif 1815 1816 s = splbio(); 1817 twe_ccb_free(twe, ccb); 1818 splx(s); 1819 1820 if (tu->tu_size > 0) 1821 error = copyout(pdata, tu->tu_data, tu->tu_size); 1822 goto done; 1823 1824 case TWEIO_STATS: 1825 return (ENOENT); 1826 1827 case TWEIO_AEN_POLL: 1828 s = splbio(); 1829 *(u_int *)data = twe_aen_dequeue(twe); 1830 splx(s); 1831 return (0); 1832 1833 case TWEIO_AEN_WAIT: 1834 s = splbio(); 1835 while ((*(u_int *)data = 1836 twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) { 1837 twe->sc_flags |= TWEF_AENQ_WAIT; 1838 error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH, 1839 "tweaen", 0); 1840 if (error == EINTR) { 1841 splx(s); 1842 return (error); 1843 } 1844 } 1845 splx(s); 1846 return (0); 1847 1848 case TWEIO_GET_PARAM: 1849 error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id, 1850 tp->tp_size, 0, ¶m); 1851 if (error != 0) 1852 return (error); 1853 if (param->tp_param_size > tp->tp_size) { 1854 error = EFAULT; 1855 goto done; 1856 } 1857 error = copyout(param->tp_data, tp->tp_data, 1858 param->tp_param_size); 1859 free(param, M_DEVBUF); 1860 goto done; 1861 1862 case TWEIO_SET_PARAM: 1863 pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK); 1864 if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0) 1865 goto done; 1866 error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id, 1867 tp->tp_size, pdata); 1868 goto done; 1869 1870 case TWEIO_RESET: 1871 s = splbio(); 1872 twe_reset(twe); 1873 splx(s); 1874 return (0); 1875 1876 case TWEIO_ADD_UNIT: 1877 /* XXX mutex */ 1878 return (twe_add_unit(twe, td->td_unit)); 1879 1880 case TWEIO_DEL_UNIT: 1881 /* XXX mutex */ 1882 return (twe_del_unit(twe, td->td_unit)); 1883 1884 default: 1885 return EINVAL; 1886 } 1887 done: 1888 if (pdata) 1889 free(pdata, M_DEVBUF); 1890 return error; 1891 } 1892 1893 const struct cdevsw twe_cdevsw = { 1894 tweopen, tweclose, noread, nowrite, tweioctl, 1895 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER, 1896 }; 1897 1898 /* 1899 * Print some information about the controller 1900 */ 1901 static void 1902 twe_describe_controller(struct twe_softc *sc) 1903 { 1904 struct twe_param *p[6]; 1905 int i, rv = 0; 1906 uint32_t dsize; 1907 uint8_t ports; 1908 1909 ports = 0; 1910 1911 /* get the port count */ 1912 rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER, 1913 TWE_PARAM_CONTROLLER_PortCount, &ports); 1914 1915 /* get version strings */ 1916 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon, 1917 16, NULL, &p[0]); 1918 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW, 1919 16, NULL, &p[1]); 1920 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS, 1921 16, NULL, &p[2]); 1922 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB, 1923 8, NULL, &p[3]); 1924 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA, 1925 8, NULL, &p[4]); 1926 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI, 1927 8, NULL, &p[5]); 1928 1929 if (rv) { 1930 /* some error occurred */ 1931 aprint_error_dev(&sc->sc_dv, "failed to fetch version information\n"); 1932 return; 1933 } 1934 1935 aprint_normal_dev(&sc->sc_dv, "%d ports, Firmware %.16s, BIOS %.16s\n", 1936 ports, p[1]->tp_data, p[2]->tp_data); 1937 1938 aprint_verbose_dev(&sc->sc_dv, "Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n", 1939 p[0]->tp_data, p[3]->tp_data, 1940 p[4]->tp_data, p[5]->tp_data); 1941 1942 free(p[0], M_DEVBUF); 1943 free(p[1], M_DEVBUF); 1944 free(p[2], M_DEVBUF); 1945 free(p[3], M_DEVBUF); 1946 free(p[4], M_DEVBUF); 1947 free(p[5], M_DEVBUF); 1948 1949 rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY, 1950 TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]); 1951 if (rv) { 1952 aprint_error_dev(&sc->sc_dv, "failed to get drive status summary\n"); 1953 return; 1954 } 1955 for (i = 0; i < ports; i++) { 1956 if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present) 1957 continue; 1958 rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i, 1959 TWE_PARAM_DRIVEINFO_Size, &dsize); 1960 if (rv) { 1961 aprint_error_dev(&sc->sc_dv, 1962 "unable to get drive size for port %d\n", i); 1963 continue; 1964 } 1965 rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i, 1966 TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]); 1967 if (rv) { 1968 aprint_error_dev(&sc->sc_dv, 1969 "unable to get drive model for port %d\n", i); 1970 continue; 1971 } 1972 aprint_verbose_dev(&sc->sc_dv, "port %d: %.40s %d MB\n", 1973 i, p[1]->tp_data, dsize / 2048); 1974 free(p[1], M_DEVBUF); 1975 } 1976 free(p[0], M_DEVBUF); 1977 } 1978