1 /* $NetBSD: twe.c,v 1.84 2007/10/19 12:00:56 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /*- 40 * Copyright (c) 2000 Michael Smith 41 * Copyright (c) 2000 BSDi 42 * All rights reserved. 43 * 44 * Redistribution and use in source and binary forms, with or without 45 * modification, are permitted provided that the following conditions 46 * are met: 47 * 1. Redistributions of source code must retain the above copyright 48 * notice, this list of conditions and the following disclaimer. 49 * 2. Redistributions in binary form must reproduce the above copyright 50 * notice, this list of conditions and the following disclaimer in the 51 * documentation and/or other materials provided with the distribution. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp 66 */ 67 68 /* 69 * Driver for the 3ware Escalade family of RAID controllers. 70 */ 71 72 #include <sys/cdefs.h> 73 __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.84 2007/10/19 12:00:56 ad Exp $"); 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/kernel.h> 78 #include <sys/device.h> 79 #include <sys/queue.h> 80 #include <sys/proc.h> 81 #include <sys/buf.h> 82 #include <sys/endian.h> 83 #include <sys/malloc.h> 84 #include <sys/conf.h> 85 #include <sys/disk.h> 86 #include <sys/sysctl.h> 87 #include <sys/syslog.h> 88 #include <sys/kauth.h> 89 90 #include <uvm/uvm_extern.h> 91 92 #include <sys/bswap.h> 93 #include <sys/bus.h> 94 95 #include <dev/pci/pcireg.h> 96 #include <dev/pci/pcivar.h> 97 #include <dev/pci/pcidevs.h> 98 #include <dev/pci/twereg.h> 99 #include <dev/pci/twevar.h> 100 #include <dev/pci/tweio.h> 101 102 #include "locators.h" 103 104 #define PCI_CBIO 0x10 105 106 static int twe_aen_get(struct twe_softc *, uint16_t *); 107 static void twe_aen_handler(struct twe_ccb *, int); 108 static void twe_aen_enqueue(struct twe_softc *sc, uint16_t, int); 109 static uint16_t twe_aen_dequeue(struct twe_softc *); 110 111 static void twe_attach(struct device *, struct device *, void *); 112 static int twe_init_connection(struct twe_softc *); 113 static int twe_intr(void *); 114 static int twe_match(struct device *, struct cfdata *, void *); 115 static int twe_param_set(struct twe_softc *, int, int, size_t, void *); 116 static void twe_poll(struct twe_softc *); 117 static int twe_print(void *, const char *); 118 static int twe_reset(struct twe_softc *); 119 static int twe_status_check(struct twe_softc *, u_int); 120 static int twe_status_wait(struct twe_softc *, u_int, int); 121 static void twe_describe_controller(struct twe_softc *); 122 static void twe_clear_pci_abort(struct twe_softc *sc); 123 static void twe_clear_pci_parity_error(struct twe_softc *sc); 124 125 static int twe_add_unit(struct twe_softc *, int); 126 static int twe_del_unit(struct twe_softc *, int); 127 static int twe_init_connection(struct twe_softc *); 128 129 static inline u_int32_t twe_inl(struct twe_softc *, int); 130 static inline void twe_outl(struct twe_softc *, int, u_int32_t); 131 132 extern struct cfdriver twe_cd; 133 134 CFATTACH_DECL(twe, sizeof(struct twe_softc), 135 twe_match, twe_attach, NULL, NULL); 136 137 /* FreeBSD driver revision for sysctl expected by the 3ware cli */ 138 const char twever[] = "1.50.01.002"; 139 140 /* 141 * Tables to convert numeric codes to strings. 142 */ 143 const struct twe_code_table twe_table_status[] = { 144 { 0x00, "successful completion" }, 145 146 /* info */ 147 { 0x42, "command in progress" }, 148 { 0x6c, "retrying interface CRC error from UDMA command" }, 149 150 /* warning */ 151 { 0x81, "redundant/inconsequential request ignored" }, 152 { 0x8e, "failed to write zeroes to LBA 0" }, 153 { 0x8f, "failed to profile TwinStor zones" }, 154 155 /* fatal */ 156 { 0xc1, "aborted due to system command or reconfiguration" }, 157 { 0xc4, "aborted" }, 158 { 0xc5, "access error" }, 159 { 0xc6, "access violation" }, 160 { 0xc7, "device failure" }, /* high byte may be port # */ 161 { 0xc8, "controller error" }, 162 { 0xc9, "timed out" }, 163 { 0xcb, "invalid unit number" }, 164 { 0xcf, "unit not available" }, 165 { 0xd2, "undefined opcode" }, 166 { 0xdb, "request incompatible with unit" }, 167 { 0xdc, "invalid request" }, 168 { 0xff, "firmware error, reset requested" }, 169 170 { 0, NULL } 171 }; 172 173 const struct twe_code_table twe_table_unitstate[] = { 174 { TWE_PARAM_UNITSTATUS_Normal, "Normal" }, 175 { TWE_PARAM_UNITSTATUS_Initialising, "Initializing" }, 176 { TWE_PARAM_UNITSTATUS_Degraded, "Degraded" }, 177 { TWE_PARAM_UNITSTATUS_Rebuilding, "Rebuilding" }, 178 { TWE_PARAM_UNITSTATUS_Verifying, "Verifying" }, 179 { TWE_PARAM_UNITSTATUS_Corrupt, "Corrupt" }, 180 { TWE_PARAM_UNITSTATUS_Missing, "Missing" }, 181 182 { 0, NULL } 183 }; 184 185 const struct twe_code_table twe_table_unittype[] = { 186 /* array descriptor configuration */ 187 { TWE_AD_CONFIG_RAID0, "RAID0" }, 188 { TWE_AD_CONFIG_RAID1, "RAID1" }, 189 { TWE_AD_CONFIG_TwinStor, "TwinStor" }, 190 { TWE_AD_CONFIG_RAID5, "RAID5" }, 191 { TWE_AD_CONFIG_RAID10, "RAID10" }, 192 { TWE_UD_CONFIG_JBOD, "JBOD" }, 193 194 { 0, NULL } 195 }; 196 197 const struct twe_code_table twe_table_stripedepth[] = { 198 { TWE_AD_STRIPE_4k, "4K" }, 199 { TWE_AD_STRIPE_8k, "8K" }, 200 { TWE_AD_STRIPE_16k, "16K" }, 201 { TWE_AD_STRIPE_32k, "32K" }, 202 { TWE_AD_STRIPE_64k, "64K" }, 203 { TWE_AD_STRIPE_128k, "128K" }, 204 { TWE_AD_STRIPE_256k, "256K" }, 205 { TWE_AD_STRIPE_512k, "512K" }, 206 { TWE_AD_STRIPE_1024k, "1024K" }, 207 208 { 0, NULL } 209 }; 210 211 /* 212 * Asynchronous event notification messages are qualified: 213 * a - not unit/port specific 214 * u - unit specific 215 * p - port specific 216 * 217 * They are further qualified with a severity: 218 * E - LOG_EMERG 219 * a - LOG_ALERT 220 * c - LOG_CRIT 221 * e - LOG_ERR 222 * w - LOG_WARNING 223 * n - LOG_NOTICE 224 * i - LOG_INFO 225 * d - LOG_DEBUG 226 * blank - just use printf 227 */ 228 const struct twe_code_table twe_table_aen[] = { 229 { 0x00, "a queue empty" }, 230 { 0x01, "a soft reset" }, 231 { 0x02, "uc degraded mode" }, 232 { 0x03, "aa controller error" }, 233 { 0x04, "uE rebuild fail" }, 234 { 0x05, "un rebuild done" }, 235 { 0x06, "ue incomplete unit" }, 236 { 0x07, "un initialization done" }, 237 { 0x08, "uw unclean shutdown detected" }, 238 { 0x09, "pe drive timeout" }, 239 { 0x0a, "pc drive error" }, 240 { 0x0b, "un rebuild started" }, 241 { 0x0c, "un initialization started" }, 242 { 0x0d, "ui logical unit deleted" }, 243 { 0x0f, "pc SMART threshold exceeded" }, 244 { 0x15, "a table undefined" }, /* XXX: Not in FreeBSD's table */ 245 { 0x21, "pe ATA UDMA downgrade" }, 246 { 0x22, "pi ATA UDMA upgrade" }, 247 { 0x23, "pw sector repair occurred" }, 248 { 0x24, "aa SBUF integrity check failure" }, 249 { 0x25, "pa lost cached write" }, 250 { 0x26, "pa drive ECC error detected" }, 251 { 0x27, "pe DCB checksum error" }, 252 { 0x28, "pn DCB unsupported version" }, 253 { 0x29, "ui verify started" }, 254 { 0x2a, "ua verify failed" }, 255 { 0x2b, "ui verify complete" }, 256 { 0x2c, "pw overwrote bad sector during rebuild" }, 257 { 0x2d, "pa encountered bad sector during rebuild" }, 258 { 0x2e, "pe replacement drive too small" }, 259 { 0x2f, "ue array not previously initialized" }, 260 { 0x30, "p drive not supported" }, 261 { 0xff, "a aen queue full" }, 262 263 { 0, NULL }, 264 }; 265 266 const char * 267 twe_describe_code(const struct twe_code_table *table, uint32_t code) 268 { 269 270 for (; table->string != NULL; table++) { 271 if (table->code == code) 272 return (table->string); 273 } 274 return (NULL); 275 } 276 277 static inline u_int32_t 278 twe_inl(struct twe_softc *sc, int off) 279 { 280 281 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4, 282 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ); 283 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off)); 284 } 285 286 static inline void 287 twe_outl(struct twe_softc *sc, int off, u_int32_t val) 288 { 289 290 bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val); 291 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4, 292 BUS_SPACE_BARRIER_WRITE); 293 } 294 295 /* 296 * Match a supported board. 297 */ 298 static int 299 twe_match(struct device *parent, struct cfdata *cfdata, 300 void *aux) 301 { 302 struct pci_attach_args *pa; 303 304 pa = aux; 305 306 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE && 307 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE || 308 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC)); 309 } 310 311 /* 312 * Attach a supported board. 313 * 314 * XXX This doesn't fail gracefully. 315 */ 316 static void 317 twe_attach(struct device *parent, struct device *self, void *aux) 318 { 319 struct pci_attach_args *pa; 320 struct twe_softc *sc; 321 pci_chipset_tag_t pc; 322 pci_intr_handle_t ih; 323 pcireg_t csr; 324 const char *intrstr; 325 int s, size, i, rv, rseg; 326 size_t max_segs, max_xfer; 327 bus_dma_segment_t seg; 328 struct ctlname ctlnames[] = CTL_NAMES; 329 const struct sysctlnode *node; 330 struct twe_cmd *tc; 331 struct twe_ccb *ccb; 332 333 sc = (struct twe_softc *)self; 334 pa = aux; 335 pc = pa->pa_pc; 336 sc->sc_dmat = pa->pa_dmat; 337 SIMPLEQ_INIT(&sc->sc_ccb_queue); 338 SLIST_INIT(&sc->sc_ccb_freelist); 339 340 aprint_naive(": RAID controller\n"); 341 aprint_normal(": 3ware Escalade\n"); 342 343 344 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0, 345 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) { 346 aprint_error("%s: can't map i/o space\n", sc->sc_dv.dv_xname); 347 return; 348 } 349 350 /* Enable the device. */ 351 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 352 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 353 csr | PCI_COMMAND_MASTER_ENABLE); 354 355 /* Map and establish the interrupt. */ 356 if (pci_intr_map(pa, &ih)) { 357 aprint_error("%s: can't map interrupt\n", sc->sc_dv.dv_xname); 358 return; 359 } 360 361 intrstr = pci_intr_string(pc, ih); 362 sc->sc_ih = pci_intr_establish(pc, ih, IPL_BIO, twe_intr, sc); 363 if (sc->sc_ih == NULL) { 364 aprint_error("%s: can't establish interrupt%s%s\n", 365 sc->sc_dv.dv_xname, 366 (intrstr) ? " at " : "", 367 (intrstr) ? intrstr : ""); 368 return; 369 } 370 371 if (intrstr != NULL) 372 aprint_normal("%s: interrupting at %s\n", 373 sc->sc_dv.dv_xname, intrstr); 374 375 /* 376 * Allocate and initialise the command blocks and CCBs. 377 */ 378 size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT; 379 380 if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1, 381 &rseg, BUS_DMA_NOWAIT)) != 0) { 382 aprint_error("%s: unable to allocate commands, rv = %d\n", 383 sc->sc_dv.dv_xname, rv); 384 return; 385 } 386 387 if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size, 388 (void **)&sc->sc_cmds, 389 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { 390 aprint_error("%s: unable to map commands, rv = %d\n", 391 sc->sc_dv.dv_xname, rv); 392 return; 393 } 394 395 if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0, 396 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) { 397 aprint_error("%s: unable to create command DMA map, rv = %d\n", 398 sc->sc_dv.dv_xname, rv); 399 return; 400 } 401 402 if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds, 403 size, NULL, BUS_DMA_NOWAIT)) != 0) { 404 aprint_error("%s: unable to load command DMA map, rv = %d\n", 405 sc->sc_dv.dv_xname, rv); 406 return; 407 } 408 409 ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_NOWAIT); 410 if (ccb == NULL) { 411 aprint_error("%s: unable to allocate memory for ccbs\n", 412 sc->sc_dv.dv_xname); 413 return; 414 } 415 416 sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr; 417 memset(sc->sc_cmds, 0, size); 418 419 sc->sc_ccbs = ccb; 420 tc = (struct twe_cmd *)sc->sc_cmds; 421 max_segs = twe_get_maxsegs(); 422 max_xfer = twe_get_maxxfer(max_segs); 423 424 for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) { 425 ccb->ccb_cmd = tc; 426 ccb->ccb_cmdid = i; 427 ccb->ccb_flags = 0; 428 rv = bus_dmamap_create(sc->sc_dmat, max_xfer, 429 max_segs, PAGE_SIZE, 0, 430 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 431 &ccb->ccb_dmamap_xfer); 432 if (rv != 0) { 433 aprint_error("%s: can't create dmamap, rv = %d\n", 434 sc->sc_dv.dv_xname, rv); 435 return; 436 } 437 438 /* Save the first CCB for AEN retrieval. */ 439 if (i != 0) 440 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, 441 ccb_chain.slist); 442 } 443 444 /* Wait for the controller to become ready. */ 445 if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) { 446 aprint_error("%s: microcontroller not ready\n", 447 sc->sc_dv.dv_xname); 448 return; 449 } 450 451 twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS); 452 453 /* Reset the controller. */ 454 s = splbio(); 455 rv = twe_reset(sc); 456 splx(s); 457 if (rv) { 458 aprint_error("%s: reset failed\n", sc->sc_dv.dv_xname); 459 return; 460 } 461 462 /* Initialise connection with controller. */ 463 twe_init_connection(sc); 464 465 twe_describe_controller(sc); 466 467 /* Find and attach RAID array units. */ 468 sc->sc_nunits = 0; 469 for (i = 0; i < TWE_MAX_UNITS; i++) 470 (void) twe_add_unit(sc, i); 471 472 /* ...and finally, enable interrupts. */ 473 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR | 474 TWE_CTL_UNMASK_RESP_INTR | 475 TWE_CTL_ENABLE_INTRS); 476 477 /* sysctl set-up for 3ware cli */ 478 if (sysctl_createv(NULL, 0, NULL, NULL, 479 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", 480 NULL, NULL, 0, NULL, 0, 481 CTL_HW, CTL_EOL) != 0) { 482 printf("%s: could not create %s sysctl node\n", 483 sc->sc_dv.dv_xname, ctlnames[CTL_HW].ctl_name); 484 return; 485 } 486 if (sysctl_createv(NULL, 0, NULL, &node, 487 0, CTLTYPE_NODE, sc->sc_dv.dv_xname, 488 SYSCTL_DESCR("twe driver information"), 489 NULL, 0, NULL, 0, 490 CTL_HW, CTL_CREATE, CTL_EOL) != 0) { 491 printf("%s: could not create %s.%s sysctl node\n", 492 sc->sc_dv.dv_xname, ctlnames[CTL_HW].ctl_name, 493 sc->sc_dv.dv_xname); 494 return; 495 } 496 if ((i = sysctl_createv(NULL, 0, NULL, NULL, 497 0, CTLTYPE_STRING, "driver_version", 498 SYSCTL_DESCR("twe0 driver version"), 499 NULL, 0, &twever, 0, 500 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL)) 501 != 0) { 502 printf("%s: could not create %s.%s.driver_version sysctl\n", 503 sc->sc_dv.dv_xname, ctlnames[CTL_HW].ctl_name, 504 sc->sc_dv.dv_xname); 505 return; 506 } 507 } 508 509 void 510 twe_register_callbacks(struct twe_softc *sc, int unit, 511 const struct twe_callbacks *tcb) 512 { 513 514 sc->sc_units[unit].td_callbacks = tcb; 515 } 516 517 static void 518 twe_recompute_openings(struct twe_softc *sc) 519 { 520 struct twe_drive *td; 521 int unit, openings; 522 523 if (sc->sc_nunits != 0) 524 openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits; 525 else 526 openings = 0; 527 if (openings == sc->sc_openings) 528 return; 529 sc->sc_openings = openings; 530 531 #ifdef TWE_DEBUG 532 printf("%s: %d array%s, %d openings per array\n", 533 sc->sc_dv.dv_xname, sc->sc_nunits, 534 sc->sc_nunits == 1 ? "" : "s", sc->sc_openings); 535 #endif 536 537 for (unit = 0; unit < TWE_MAX_UNITS; unit++) { 538 td = &sc->sc_units[unit]; 539 if (td->td_dev != NULL) 540 (*td->td_callbacks->tcb_openings)(td->td_dev, 541 sc->sc_openings); 542 } 543 } 544 545 static int 546 twe_add_unit(struct twe_softc *sc, int unit) 547 { 548 struct twe_param *dtp, *atp; 549 struct twe_array_descriptor *ad; 550 struct twe_drive *td; 551 struct twe_attach_args twea; 552 uint32_t newsize; 553 int rv; 554 uint16_t dsize; 555 uint8_t newtype, newstripe; 556 int locs[TWECF_NLOCS]; 557 558 if (unit < 0 || unit >= TWE_MAX_UNITS) 559 return (EINVAL); 560 561 /* Find attached units. */ 562 rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY, 563 TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp); 564 if (rv != 0) { 565 aprint_error("%s: error %d fetching unit summary\n", 566 sc->sc_dv.dv_xname, rv); 567 return (rv); 568 } 569 570 /* For each detected unit, collect size and store in an array. */ 571 td = &sc->sc_units[unit]; 572 573 /* Unit present? */ 574 if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) { 575 /* 576 * XXX Should we check to see if a device has been 577 * XXX attached at this index and detach it if it 578 * XXX has? ("rescan" semantics) 579 */ 580 rv = 0; 581 goto out; 582 } 583 584 rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit, 585 TWE_PARAM_UNITINFO_DescriptorSize, &dsize); 586 if (rv != 0) { 587 aprint_error("%s: error %d fetching descriptor size " 588 "for unit %d\n", sc->sc_dv.dv_xname, rv, unit); 589 goto out; 590 } 591 592 rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit, 593 TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp); 594 if (rv != 0) { 595 aprint_error("%s: error %d fetching array descriptor " 596 "for unit %d\n", sc->sc_dv.dv_xname, rv, unit); 597 goto out; 598 } 599 600 ad = (struct twe_array_descriptor *)atp->tp_data; 601 newtype = ad->configuration; 602 newstripe = ad->stripe_size; 603 free(atp, M_DEVBUF); 604 605 rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit, 606 TWE_PARAM_UNITINFO_Capacity, &newsize); 607 if (rv != 0) { 608 aprint_error( 609 "%s: error %d fetching capacity for unit %d\n", 610 sc->sc_dv.dv_xname, rv, unit); 611 goto out; 612 } 613 614 /* 615 * Have a device, so we need to attach it. If there is currently 616 * something sitting at the slot, and the parameters are different, 617 * then we detach the old device before attaching the new one. 618 */ 619 if (td->td_dev != NULL && 620 td->td_size == newsize && 621 td->td_type == newtype && 622 td->td_stripe == newstripe) { 623 /* Same as the old device; just keep using it. */ 624 rv = 0; 625 goto out; 626 } else if (td->td_dev != NULL) { 627 /* Detach the old device first. */ 628 (void) config_detach(td->td_dev, DETACH_FORCE); 629 td->td_dev = NULL; 630 } else if (td->td_size == 0) 631 sc->sc_nunits++; 632 633 /* 634 * Committed to the new array unit; assign its parameters and 635 * recompute the number of available command openings. 636 */ 637 td->td_size = newsize; 638 td->td_type = newtype; 639 td->td_stripe = newstripe; 640 twe_recompute_openings(sc); 641 642 twea.twea_unit = unit; 643 644 locs[TWECF_UNIT] = unit; 645 646 td->td_dev = config_found_sm_loc(&sc->sc_dv, "twe", locs, &twea, 647 twe_print, config_stdsubmatch); 648 649 rv = 0; 650 out: 651 free(dtp, M_DEVBUF); 652 return (rv); 653 } 654 655 static int 656 twe_del_unit(struct twe_softc *sc, int unit) 657 { 658 struct twe_drive *td; 659 660 if (unit < 0 || unit >= TWE_MAX_UNITS) 661 return (EINVAL); 662 663 td = &sc->sc_units[unit]; 664 if (td->td_size != 0) 665 sc->sc_nunits--; 666 td->td_size = 0; 667 td->td_type = 0; 668 td->td_stripe = 0; 669 if (td->td_dev != NULL) { 670 (void) config_detach(td->td_dev, DETACH_FORCE); 671 td->td_dev = NULL; 672 } 673 twe_recompute_openings(sc); 674 return (0); 675 } 676 677 /* 678 * Reset the controller. 679 * MUST BE CALLED AT splbio()! 680 */ 681 static int 682 twe_reset(struct twe_softc *sc) 683 { 684 uint16_t aen; 685 u_int status; 686 volatile u_int32_t junk; 687 int got, rv; 688 689 /* Issue a soft reset. */ 690 twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET | 691 TWE_CTL_CLEAR_HOST_INTR | 692 TWE_CTL_CLEAR_ATTN_INTR | 693 TWE_CTL_MASK_CMD_INTR | 694 TWE_CTL_MASK_RESP_INTR | 695 TWE_CTL_CLEAR_ERROR_STS | 696 TWE_CTL_DISABLE_INTRS); 697 698 /* Wait for attention... */ 699 if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) { 700 printf("%s: timeout waiting for attention interrupt\n", 701 sc->sc_dv.dv_xname); 702 return (-1); 703 } 704 705 /* ...and ACK it. */ 706 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR); 707 708 /* 709 * Pull AENs out of the controller; look for a soft reset AEN. 710 * Open code this, since we want to detect reset even if the 711 * queue for management tools is full. 712 * 713 * Note that since: 714 * - interrupts are blocked 715 * - we have reset the controller 716 * - acknowledged the pending ATTENTION 717 * that there is no way a pending asynchronous AEN fetch would 718 * finish, so clear the flag. 719 */ 720 sc->sc_flags &= ~TWEF_AEN; 721 for (got = 0;;) { 722 rv = twe_aen_get(sc, &aen); 723 if (rv != 0) 724 printf("%s: error %d while draining event queue\n", 725 sc->sc_dv.dv_xname, rv); 726 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) 727 break; 728 if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET) 729 got = 1; 730 twe_aen_enqueue(sc, aen, 1); 731 } 732 733 if (!got) { 734 printf("%s: reset not reported\n", sc->sc_dv.dv_xname); 735 return (-1); 736 } 737 738 /* Check controller status. */ 739 status = twe_inl(sc, TWE_REG_STS); 740 if (twe_status_check(sc, status)) { 741 printf("%s: controller errors detected\n", 742 sc->sc_dv.dv_xname); 743 return (-1); 744 } 745 746 /* Drain the response queue. */ 747 for (;;) { 748 status = twe_inl(sc, TWE_REG_STS); 749 if (twe_status_check(sc, status) != 0) { 750 printf("%s: can't drain response queue\n", 751 sc->sc_dv.dv_xname); 752 return (-1); 753 } 754 if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0) 755 break; 756 junk = twe_inl(sc, TWE_REG_RESP_QUEUE); 757 } 758 759 return (0); 760 } 761 762 /* 763 * Print autoconfiguration message for a sub-device. 764 */ 765 static int 766 twe_print(void *aux, const char *pnp) 767 { 768 struct twe_attach_args *twea; 769 770 twea = aux; 771 772 if (pnp != NULL) 773 aprint_normal("block device at %s", pnp); 774 aprint_normal(" unit %d", twea->twea_unit); 775 return (UNCONF); 776 } 777 778 /* 779 * Interrupt service routine. 780 */ 781 static int 782 twe_intr(void *arg) 783 { 784 struct twe_softc *sc; 785 u_int status; 786 int caught, rv; 787 788 sc = arg; 789 caught = 0; 790 status = twe_inl(sc, TWE_REG_STS); 791 twe_status_check(sc, status); 792 793 /* Host interrupts - purpose unknown. */ 794 if ((status & TWE_STS_HOST_INTR) != 0) { 795 #ifdef DEBUG 796 printf("%s: host interrupt\n", sc->sc_dv.dv_xname); 797 #endif 798 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR); 799 caught = 1; 800 } 801 802 /* 803 * Attention interrupts, signalled when a controller or child device 804 * state change has occurred. 805 */ 806 if ((status & TWE_STS_ATTN_INTR) != 0) { 807 rv = twe_aen_get(sc, NULL); 808 if (rv != 0) 809 printf("%s: unable to retrieve AEN (%d)\n", 810 sc->sc_dv.dv_xname, rv); 811 else 812 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR); 813 caught = 1; 814 } 815 816 /* 817 * Command interrupts, signalled when the controller can accept more 818 * commands. We don't use this; instead, we try to submit commands 819 * when we receive them, and when other commands have completed. 820 * Mask it so we don't get another one. 821 */ 822 if ((status & TWE_STS_CMD_INTR) != 0) { 823 #ifdef DEBUG 824 printf("%s: command interrupt\n", sc->sc_dv.dv_xname); 825 #endif 826 twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR); 827 caught = 1; 828 } 829 830 if ((status & TWE_STS_RESP_INTR) != 0) { 831 twe_poll(sc); 832 caught = 1; 833 } 834 835 return (caught); 836 } 837 838 /* 839 * Fetch an AEN. Even though this is really like parameter 840 * retrieval, we handle this specially, because we issue this 841 * AEN retrieval command from interrupt context, and thus 842 * reserve a CCB for it to avoid resource shortage. 843 * 844 * XXX There are still potential resource shortages we could 845 * XXX encounter. Consider pre-allocating all AEN-related 846 * XXX resources. 847 * 848 * MUST BE CALLED AT splbio()! 849 */ 850 static int 851 twe_aen_get(struct twe_softc *sc, uint16_t *aenp) 852 { 853 struct twe_ccb *ccb; 854 struct twe_cmd *tc; 855 struct twe_param *tp; 856 int rv; 857 858 /* 859 * If we're already retrieving an AEN, just wait; another 860 * retrieval will be chained after the current one completes. 861 */ 862 if (sc->sc_flags & TWEF_AEN) { 863 /* 864 * It is a fatal software programming error to attempt 865 * to fetch an AEN synchronously when an AEN fetch is 866 * already pending. 867 */ 868 KASSERT(aenp == NULL); 869 return (0); 870 } 871 872 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT); 873 if (tp == NULL) 874 return (ENOMEM); 875 876 ccb = twe_ccb_alloc(sc, 877 TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); 878 KASSERT(ccb != NULL); 879 880 ccb->ccb_data = tp; 881 ccb->ccb_datasize = TWE_SECTOR_SIZE; 882 ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL; 883 ccb->ccb_tx.tx_context = tp; 884 ccb->ccb_tx.tx_dv = &sc->sc_dv; 885 886 tc = ccb->ccb_cmd; 887 tc->tc_size = 2; 888 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5); 889 tc->tc_unit = 0; 890 tc->tc_count = htole16(1); 891 892 /* Fill in the outbound parameter data. */ 893 tp->tp_table_id = htole16(TWE_PARAM_AEN); 894 tp->tp_param_id = TWE_PARAM_AEN_UnitCode; 895 tp->tp_param_size = 2; 896 897 /* Map the transfer. */ 898 if ((rv = twe_ccb_map(sc, ccb)) != 0) { 899 twe_ccb_free(sc, ccb); 900 goto done; 901 } 902 903 /* Enqueue the command and wait. */ 904 if (aenp != NULL) { 905 rv = twe_ccb_poll(sc, ccb, 5); 906 twe_ccb_unmap(sc, ccb); 907 twe_ccb_free(sc, ccb); 908 if (rv == 0) 909 *aenp = le16toh(*(uint16_t *)tp->tp_data); 910 free(tp, M_DEVBUF); 911 } else { 912 sc->sc_flags |= TWEF_AEN; 913 twe_ccb_enqueue(sc, ccb); 914 rv = 0; 915 } 916 917 done: 918 return (rv); 919 } 920 921 /* 922 * Handle an AEN returned by the controller. 923 * MUST BE CALLED AT splbio()! 924 */ 925 static void 926 twe_aen_handler(struct twe_ccb *ccb, int error) 927 { 928 struct twe_softc *sc; 929 struct twe_param *tp; 930 uint16_t aen; 931 int rv; 932 933 sc = (struct twe_softc *)ccb->ccb_tx.tx_dv; 934 tp = ccb->ccb_tx.tx_context; 935 twe_ccb_unmap(sc, ccb); 936 937 sc->sc_flags &= ~TWEF_AEN; 938 939 if (error) { 940 printf("%s: error retrieving AEN\n", sc->sc_dv.dv_xname); 941 aen = TWE_AEN_QUEUE_EMPTY; 942 } else 943 aen = le16toh(*(u_int16_t *)tp->tp_data); 944 free(tp, M_DEVBUF); 945 twe_ccb_free(sc, ccb); 946 947 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) { 948 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR); 949 return; 950 } 951 952 twe_aen_enqueue(sc, aen, 0); 953 954 /* 955 * Chain another retrieval in case interrupts have been 956 * coalesced. 957 */ 958 rv = twe_aen_get(sc, NULL); 959 if (rv != 0) 960 printf("%s: unable to retrieve AEN (%d)\n", 961 sc->sc_dv.dv_xname, rv); 962 } 963 964 static void 965 twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet) 966 { 967 const char *str, *msg; 968 int s, next, nextnext, level; 969 970 /* 971 * First report the AEN on the console. Maybe. 972 */ 973 if (! quiet) { 974 str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen)); 975 if (str == NULL) { 976 printf("%s: unknown AEN 0x%04x\n", 977 sc->sc_dv.dv_xname, aen); 978 } else { 979 msg = str + 3; 980 switch (str[1]) { 981 case 'E': level = LOG_EMERG; break; 982 case 'a': level = LOG_ALERT; break; 983 case 'c': level = LOG_CRIT; break; 984 case 'e': level = LOG_ERR; break; 985 case 'w': level = LOG_WARNING; break; 986 case 'n': level = LOG_NOTICE; break; 987 case 'i': level = LOG_INFO; break; 988 case 'd': level = LOG_DEBUG; break; 989 default: 990 /* Don't use syslog. */ 991 level = -1; 992 } 993 994 if (level < 0) { 995 switch (str[0]) { 996 case 'u': 997 case 'p': 998 printf("%s: %s %d: %s\n", 999 sc->sc_dv.dv_xname, 1000 str[0] == 'u' ? "unit" : "port", 1001 TWE_AEN_UNIT(aen), msg); 1002 break; 1003 1004 default: 1005 printf("%s: %s\n", 1006 sc->sc_dv.dv_xname, msg); 1007 } 1008 } else { 1009 switch (str[0]) { 1010 case 'u': 1011 case 'p': 1012 log(level, "%s: %s %d: %s\n", 1013 sc->sc_dv.dv_xname, 1014 str[0] == 'u' ? "unit" : "port", 1015 TWE_AEN_UNIT(aen), msg); 1016 break; 1017 1018 default: 1019 log(level, "%s: %s\n", 1020 sc->sc_dv.dv_xname, msg); 1021 } 1022 } 1023 } 1024 } 1025 1026 /* Now enqueue the AEN for mangement tools. */ 1027 s = splbio(); 1028 1029 next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH; 1030 nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH; 1031 1032 /* 1033 * If this is the last free slot, then queue up a "queue 1034 * full" message. 1035 */ 1036 if (nextnext == sc->sc_aen_tail) 1037 aen = TWE_AEN_QUEUE_FULL; 1038 1039 if (next != sc->sc_aen_tail) { 1040 sc->sc_aen_queue[sc->sc_aen_head] = aen; 1041 sc->sc_aen_head = next; 1042 } 1043 1044 if (sc->sc_flags & TWEF_AENQ_WAIT) { 1045 sc->sc_flags &= ~TWEF_AENQ_WAIT; 1046 wakeup(&sc->sc_aen_queue); 1047 } 1048 1049 splx(s); 1050 } 1051 1052 /* NOTE: Must be called at splbio(). */ 1053 static uint16_t 1054 twe_aen_dequeue(struct twe_softc *sc) 1055 { 1056 uint16_t aen; 1057 1058 if (sc->sc_aen_tail == sc->sc_aen_head) 1059 aen = TWE_AEN_QUEUE_EMPTY; 1060 else { 1061 aen = sc->sc_aen_queue[sc->sc_aen_tail]; 1062 sc->sc_aen_tail = (sc->sc_aen_tail + 1) % TWE_AEN_Q_LENGTH; 1063 } 1064 1065 return (aen); 1066 } 1067 1068 /* 1069 * These are short-hand functions that execute TWE_OP_GET_PARAM to 1070 * fetch 1, 2, and 4 byte parameter values, respectively. 1071 */ 1072 int 1073 twe_param_get_1(struct twe_softc *sc, int table_id, int param_id, 1074 uint8_t *valp) 1075 { 1076 struct twe_param *tp; 1077 int rv; 1078 1079 rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp); 1080 if (rv != 0) 1081 return (rv); 1082 *valp = *(uint8_t *)tp->tp_data; 1083 free(tp, M_DEVBUF); 1084 return (0); 1085 } 1086 1087 int 1088 twe_param_get_2(struct twe_softc *sc, int table_id, int param_id, 1089 uint16_t *valp) 1090 { 1091 struct twe_param *tp; 1092 int rv; 1093 1094 rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp); 1095 if (rv != 0) 1096 return (rv); 1097 *valp = le16toh(*(uint16_t *)tp->tp_data); 1098 free(tp, M_DEVBUF); 1099 return (0); 1100 } 1101 1102 int 1103 twe_param_get_4(struct twe_softc *sc, int table_id, int param_id, 1104 uint32_t *valp) 1105 { 1106 struct twe_param *tp; 1107 int rv; 1108 1109 rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp); 1110 if (rv != 0) 1111 return (rv); 1112 *valp = le32toh(*(uint32_t *)tp->tp_data); 1113 free(tp, M_DEVBUF); 1114 return (0); 1115 } 1116 1117 /* 1118 * Execute a TWE_OP_GET_PARAM command. If a callback function is provided, 1119 * it will be called with generated context when the command has completed. 1120 * If no callback is provided, the command will be executed synchronously 1121 * and a pointer to a buffer containing the data returned. 1122 * 1123 * The caller or callback is responsible for freeing the buffer. 1124 * 1125 * NOTE: We assume we can sleep here to wait for a CCB to become available. 1126 */ 1127 int 1128 twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size, 1129 void (*func)(struct twe_ccb *, int), struct twe_param **pbuf) 1130 { 1131 struct twe_ccb *ccb; 1132 struct twe_cmd *tc; 1133 struct twe_param *tp; 1134 int rv, s; 1135 1136 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT); 1137 if (tp == NULL) 1138 return ENOMEM; 1139 1140 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); 1141 KASSERT(ccb != NULL); 1142 1143 ccb->ccb_data = tp; 1144 ccb->ccb_datasize = TWE_SECTOR_SIZE; 1145 ccb->ccb_tx.tx_handler = func; 1146 ccb->ccb_tx.tx_context = tp; 1147 ccb->ccb_tx.tx_dv = &sc->sc_dv; 1148 1149 tc = ccb->ccb_cmd; 1150 tc->tc_size = 2; 1151 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5); 1152 tc->tc_unit = 0; 1153 tc->tc_count = htole16(1); 1154 1155 /* Fill in the outbound parameter data. */ 1156 tp->tp_table_id = htole16(table_id); 1157 tp->tp_param_id = param_id; 1158 tp->tp_param_size = size; 1159 1160 /* Map the transfer. */ 1161 if ((rv = twe_ccb_map(sc, ccb)) != 0) { 1162 twe_ccb_free(sc, ccb); 1163 goto done; 1164 } 1165 1166 /* Submit the command and either wait or let the callback handle it. */ 1167 if (func == NULL) { 1168 s = splbio(); 1169 rv = twe_ccb_poll(sc, ccb, 5); 1170 twe_ccb_unmap(sc, ccb); 1171 twe_ccb_free(sc, ccb); 1172 splx(s); 1173 } else { 1174 #ifdef DEBUG 1175 if (pbuf != NULL) 1176 panic("both func and pbuf defined"); 1177 #endif 1178 twe_ccb_enqueue(sc, ccb); 1179 return 0; 1180 } 1181 1182 done: 1183 if (pbuf == NULL || rv != 0) 1184 free(tp, M_DEVBUF); 1185 else if (pbuf != NULL && rv == 0) 1186 *pbuf = tp; 1187 return rv; 1188 } 1189 1190 /* 1191 * Execute a TWE_OP_SET_PARAM command. 1192 * 1193 * NOTE: We assume we can sleep here to wait for a CCB to become available. 1194 */ 1195 static int 1196 twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size, 1197 void *sbuf) 1198 { 1199 struct twe_ccb *ccb; 1200 struct twe_cmd *tc; 1201 struct twe_param *tp; 1202 int rv, s; 1203 1204 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT); 1205 if (tp == NULL) 1206 return ENOMEM; 1207 1208 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); 1209 KASSERT(ccb != NULL); 1210 1211 ccb->ccb_data = tp; 1212 ccb->ccb_datasize = TWE_SECTOR_SIZE; 1213 ccb->ccb_tx.tx_handler = 0; 1214 ccb->ccb_tx.tx_context = tp; 1215 ccb->ccb_tx.tx_dv = &sc->sc_dv; 1216 1217 tc = ccb->ccb_cmd; 1218 tc->tc_size = 2; 1219 tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5); 1220 tc->tc_unit = 0; 1221 tc->tc_count = htole16(1); 1222 1223 /* Fill in the outbound parameter data. */ 1224 tp->tp_table_id = htole16(table_id); 1225 tp->tp_param_id = param_id; 1226 tp->tp_param_size = size; 1227 memcpy(tp->tp_data, sbuf, size); 1228 1229 /* Map the transfer. */ 1230 if ((rv = twe_ccb_map(sc, ccb)) != 0) { 1231 twe_ccb_free(sc, ccb); 1232 goto done; 1233 } 1234 1235 /* Submit the command and wait. */ 1236 s = splbio(); 1237 rv = twe_ccb_poll(sc, ccb, 5); 1238 twe_ccb_unmap(sc, ccb); 1239 twe_ccb_free(sc, ccb); 1240 splx(s); 1241 done: 1242 free(tp, M_DEVBUF); 1243 return (rv); 1244 } 1245 1246 /* 1247 * Execute a TWE_OP_INIT_CONNECTION command. Return non-zero on error. 1248 * Must be called with interrupts blocked. 1249 */ 1250 static int 1251 twe_init_connection(struct twe_softc *sc) 1252 { 1253 struct twe_ccb *ccb; 1254 struct twe_cmd *tc; 1255 int rv; 1256 1257 if ((ccb = twe_ccb_alloc(sc, 0)) == NULL) 1258 return (EAGAIN); 1259 1260 /* Build the command. */ 1261 tc = ccb->ccb_cmd; 1262 tc->tc_size = 3; 1263 tc->tc_opcode = TWE_OP_INIT_CONNECTION; 1264 tc->tc_unit = 0; 1265 tc->tc_count = htole16(TWE_MAX_CMDS); 1266 tc->tc_args.init_connection.response_queue_pointer = 0; 1267 1268 /* Submit the command for immediate execution. */ 1269 rv = twe_ccb_poll(sc, ccb, 5); 1270 twe_ccb_free(sc, ccb); 1271 return (rv); 1272 } 1273 1274 /* 1275 * Poll the controller for completed commands. Must be called with 1276 * interrupts blocked. 1277 */ 1278 static void 1279 twe_poll(struct twe_softc *sc) 1280 { 1281 struct twe_ccb *ccb; 1282 int found; 1283 u_int status, cmdid; 1284 1285 found = 0; 1286 1287 for (;;) { 1288 status = twe_inl(sc, TWE_REG_STS); 1289 twe_status_check(sc, status); 1290 1291 if ((status & TWE_STS_RESP_QUEUE_EMPTY)) 1292 break; 1293 1294 found = 1; 1295 cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE); 1296 cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT; 1297 if (cmdid >= TWE_MAX_QUEUECNT) { 1298 printf("%s: bad cmdid %d\n", sc->sc_dv.dv_xname, cmdid); 1299 continue; 1300 } 1301 1302 ccb = sc->sc_ccbs + cmdid; 1303 if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) { 1304 printf("%s: CCB for cmdid %d not active\n", 1305 sc->sc_dv.dv_xname, cmdid); 1306 continue; 1307 } 1308 ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE; 1309 1310 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, 1311 (char *)ccb->ccb_cmd - (char *)sc->sc_cmds, 1312 sizeof(struct twe_cmd), 1313 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1314 1315 /* Pass notification to upper layers. */ 1316 if (ccb->ccb_tx.tx_handler != NULL) 1317 (*ccb->ccb_tx.tx_handler)(ccb, 1318 ccb->ccb_cmd->tc_status != 0 ? EIO : 0); 1319 } 1320 1321 /* If any commands have completed, run the software queue. */ 1322 if (found) 1323 twe_ccb_enqueue(sc, NULL); 1324 } 1325 1326 /* 1327 * Wait for `status' to be set in the controller status register. Return 1328 * zero if found, non-zero if the operation timed out. 1329 */ 1330 static int 1331 twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo) 1332 { 1333 1334 for (timo *= 10; timo != 0; timo--) { 1335 if ((twe_inl(sc, TWE_REG_STS) & status) == status) 1336 break; 1337 delay(100000); 1338 } 1339 1340 return (timo == 0); 1341 } 1342 1343 /* 1344 * Clear a PCI parity error. 1345 */ 1346 static void 1347 twe_clear_pci_parity_error(struct twe_softc *sc) 1348 { 1349 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PARITY_ERROR); 1350 1351 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2); 1352 } 1353 1354 1355 /* 1356 * Clear a PCI abort. 1357 */ 1358 static void 1359 twe_clear_pci_abort(struct twe_softc *sc) 1360 { 1361 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PCI_ABORT); 1362 1363 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2); 1364 } 1365 1366 /* 1367 * Complain if the status bits aren't what we expect. 1368 */ 1369 static int 1370 twe_status_check(struct twe_softc *sc, u_int status) 1371 { 1372 int rv; 1373 1374 rv = 0; 1375 1376 if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) { 1377 printf("%s: missing status bits: 0x%08x\n", sc->sc_dv.dv_xname, 1378 status & ~TWE_STS_EXPECTED_BITS); 1379 rv = -1; 1380 } 1381 1382 if ((status & TWE_STS_UNEXPECTED_BITS) != 0) { 1383 printf("%s: unexpected status bits: 0x%08x\n", 1384 sc->sc_dv.dv_xname, status & TWE_STS_UNEXPECTED_BITS); 1385 rv = -1; 1386 if (status & TWE_STS_PCI_PARITY_ERROR) { 1387 printf("%s: PCI parity error: Reseat card, move card " 1388 "or buggy device present.\n", 1389 sc->sc_dv.dv_xname); 1390 twe_clear_pci_parity_error(sc); 1391 } 1392 if (status & TWE_STS_PCI_ABORT) { 1393 printf("%s: PCI abort, clearing.\n", 1394 sc->sc_dv.dv_xname); 1395 twe_clear_pci_abort(sc); 1396 } 1397 } 1398 1399 return (rv); 1400 } 1401 1402 /* 1403 * Allocate and initialise a CCB. 1404 */ 1405 static inline void 1406 twe_ccb_init(struct twe_softc *sc, struct twe_ccb *ccb, int flags) 1407 { 1408 struct twe_cmd *tc; 1409 1410 ccb->ccb_tx.tx_handler = NULL; 1411 ccb->ccb_flags = flags; 1412 tc = ccb->ccb_cmd; 1413 tc->tc_status = 0; 1414 tc->tc_flags = 0; 1415 tc->tc_cmdid = ccb->ccb_cmdid; 1416 } 1417 1418 struct twe_ccb * 1419 twe_ccb_alloc(struct twe_softc *sc, int flags) 1420 { 1421 struct twe_ccb *ccb; 1422 int s; 1423 1424 s = splbio(); 1425 if (__predict_false((flags & TWE_CCB_AEN) != 0)) { 1426 /* Use the reserved CCB. */ 1427 ccb = sc->sc_ccbs; 1428 } else { 1429 /* Allocate a CCB and command block. */ 1430 if (__predict_false((ccb = 1431 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) { 1432 splx(s); 1433 return (NULL); 1434 } 1435 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist); 1436 } 1437 #ifdef DIAGNOSTIC 1438 if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0) 1439 panic("twe_ccb_alloc: got reserved CCB for non-AEN"); 1440 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0) 1441 panic("twe_ccb_alloc: CCB %ld already allocated", 1442 (long)(ccb - sc->sc_ccbs)); 1443 flags |= TWE_CCB_ALLOCED; 1444 #endif 1445 splx(s); 1446 1447 twe_ccb_init(sc, ccb, flags); 1448 return (ccb); 1449 } 1450 1451 struct twe_ccb * 1452 twe_ccb_alloc_wait(struct twe_softc *sc, int flags) 1453 { 1454 struct twe_ccb *ccb; 1455 int s; 1456 1457 KASSERT((flags & TWE_CCB_AEN) == 0); 1458 1459 s = splbio(); 1460 while (__predict_false((ccb = 1461 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) { 1462 sc->sc_flags |= TWEF_WAIT_CCB; 1463 (void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0); 1464 } 1465 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist); 1466 #ifdef DIAGNOSTIC 1467 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0) 1468 panic("twe_ccb_alloc_wait: CCB %ld already allocated", 1469 (long)(ccb - sc->sc_ccbs)); 1470 flags |= TWE_CCB_ALLOCED; 1471 #endif 1472 splx(s); 1473 1474 twe_ccb_init(sc, ccb, flags); 1475 return (ccb); 1476 } 1477 1478 /* 1479 * Free a CCB. 1480 */ 1481 void 1482 twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb) 1483 { 1484 int s; 1485 1486 s = splbio(); 1487 if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) { 1488 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist); 1489 if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) { 1490 sc->sc_flags &= ~TWEF_WAIT_CCB; 1491 wakeup(&sc->sc_ccb_freelist); 1492 } 1493 } 1494 ccb->ccb_flags = 0; 1495 splx(s); 1496 } 1497 1498 /* 1499 * Map the specified CCB's command block and data buffer (if any) into 1500 * controller visible space. Perform DMA synchronisation. 1501 */ 1502 int 1503 twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb) 1504 { 1505 struct twe_cmd *tc; 1506 int flags, nsegs, i, s, rv; 1507 void *data; 1508 1509 /* 1510 * The data as a whole must be 512-byte aligned. 1511 */ 1512 if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) { 1513 s = splvm(); 1514 /* XXX */ 1515 ccb->ccb_abuf = uvm_km_alloc(kmem_map, 1516 ccb->ccb_datasize, 0, UVM_KMF_NOWAIT|UVM_KMF_WIRED); 1517 splx(s); 1518 data = (void *)ccb->ccb_abuf; 1519 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0) 1520 memcpy(data, ccb->ccb_data, ccb->ccb_datasize); 1521 } else { 1522 ccb->ccb_abuf = (vaddr_t)0; 1523 data = ccb->ccb_data; 1524 } 1525 1526 /* 1527 * Map the data buffer into bus space and build the S/G list. 1528 */ 1529 rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data, 1530 ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING | 1531 ((ccb->ccb_flags & TWE_CCB_DATA_IN) ? 1532 BUS_DMA_READ : BUS_DMA_WRITE)); 1533 if (rv != 0) { 1534 if (ccb->ccb_abuf != (vaddr_t)0) { 1535 s = splvm(); 1536 /* XXX */ 1537 uvm_km_free(kmem_map, ccb->ccb_abuf, 1538 ccb->ccb_datasize, UVM_KMF_WIRED); 1539 splx(s); 1540 } 1541 return (rv); 1542 } 1543 1544 nsegs = ccb->ccb_dmamap_xfer->dm_nsegs; 1545 tc = ccb->ccb_cmd; 1546 tc->tc_size += 2 * nsegs; 1547 1548 /* The location of the S/G list is dependant upon command type. */ 1549 switch (tc->tc_opcode >> 5) { 1550 case 2: 1551 for (i = 0; i < nsegs; i++) { 1552 tc->tc_args.param.sgl[i].tsg_address = 1553 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr); 1554 tc->tc_args.param.sgl[i].tsg_length = 1555 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len); 1556 } 1557 /* XXX Needed? */ 1558 for (; i < TWE_SG_SIZE; i++) { 1559 tc->tc_args.param.sgl[i].tsg_address = 0; 1560 tc->tc_args.param.sgl[i].tsg_length = 0; 1561 } 1562 break; 1563 case 3: 1564 for (i = 0; i < nsegs; i++) { 1565 tc->tc_args.io.sgl[i].tsg_address = 1566 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr); 1567 tc->tc_args.io.sgl[i].tsg_length = 1568 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len); 1569 } 1570 /* XXX Needed? */ 1571 for (; i < TWE_SG_SIZE; i++) { 1572 tc->tc_args.io.sgl[i].tsg_address = 0; 1573 tc->tc_args.io.sgl[i].tsg_length = 0; 1574 } 1575 break; 1576 default: 1577 /* 1578 * In all likelihood, this is a command passed from 1579 * management tools in userspace where no S/G list is 1580 * necessary because no data is being passed. 1581 */ 1582 break; 1583 } 1584 1585 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0) 1586 flags = BUS_DMASYNC_PREREAD; 1587 else 1588 flags = 0; 1589 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0) 1590 flags |= BUS_DMASYNC_PREWRITE; 1591 1592 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0, 1593 ccb->ccb_datasize, flags); 1594 return (0); 1595 } 1596 1597 /* 1598 * Unmap the specified CCB's command block and data buffer (if any) and 1599 * perform DMA synchronisation. 1600 */ 1601 void 1602 twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb) 1603 { 1604 int flags, s; 1605 1606 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0) 1607 flags = BUS_DMASYNC_POSTREAD; 1608 else 1609 flags = 0; 1610 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0) 1611 flags |= BUS_DMASYNC_POSTWRITE; 1612 1613 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0, 1614 ccb->ccb_datasize, flags); 1615 bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer); 1616 1617 if (ccb->ccb_abuf != (vaddr_t)0) { 1618 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0) 1619 memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf, 1620 ccb->ccb_datasize); 1621 s = splvm(); 1622 /* XXX */ 1623 uvm_km_free(kmem_map, ccb->ccb_abuf, ccb->ccb_datasize, 1624 UVM_KMF_WIRED); 1625 splx(s); 1626 } 1627 } 1628 1629 /* 1630 * Submit a command to the controller and poll on completion. Return 1631 * non-zero on timeout (but don't check status, as some command types don't 1632 * return status). Must be called with interrupts blocked. 1633 */ 1634 int 1635 twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo) 1636 { 1637 int rv; 1638 1639 if ((rv = twe_ccb_submit(sc, ccb)) != 0) 1640 return (rv); 1641 1642 for (timo *= 1000; timo != 0; timo--) { 1643 twe_poll(sc); 1644 if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0) 1645 break; 1646 DELAY(100); 1647 } 1648 1649 return (timo == 0); 1650 } 1651 1652 /* 1653 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in 1654 * the order that they were enqueued and try to submit their command blocks 1655 * to the controller for execution. 1656 */ 1657 void 1658 twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb) 1659 { 1660 int s; 1661 1662 s = splbio(); 1663 1664 if (ccb != NULL) 1665 SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq); 1666 1667 while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) { 1668 if (twe_ccb_submit(sc, ccb)) 1669 break; 1670 SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq); 1671 } 1672 1673 splx(s); 1674 } 1675 1676 /* 1677 * Submit the command block associated with the specified CCB to the 1678 * controller for execution. Must be called with interrupts blocked. 1679 */ 1680 int 1681 twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb) 1682 { 1683 bus_addr_t pa; 1684 int rv; 1685 u_int status; 1686 1687 /* Check to see if we can post a command. */ 1688 status = twe_inl(sc, TWE_REG_STS); 1689 twe_status_check(sc, status); 1690 1691 if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) { 1692 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, 1693 (char *)ccb->ccb_cmd - (char *)sc->sc_cmds, 1694 sizeof(struct twe_cmd), 1695 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 1696 #ifdef DIAGNOSTIC 1697 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0) 1698 panic("%s: CCB %ld not ALLOCED\n", 1699 sc->sc_dv.dv_xname, (long)(ccb - sc->sc_ccbs)); 1700 #endif 1701 ccb->ccb_flags |= TWE_CCB_ACTIVE; 1702 pa = sc->sc_cmds_paddr + 1703 ccb->ccb_cmdid * sizeof(struct twe_cmd); 1704 twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa); 1705 rv = 0; 1706 } else 1707 rv = EBUSY; 1708 1709 return (rv); 1710 } 1711 1712 1713 /* 1714 * Accept an open operation on the control device. 1715 */ 1716 static int 1717 tweopen(dev_t dev, int flag, int mode, struct lwp *l) 1718 { 1719 struct twe_softc *twe; 1720 1721 if ((twe = device_lookup(&twe_cd, minor(dev))) == NULL) 1722 return (ENXIO); 1723 if ((twe->sc_flags & TWEF_OPEN) != 0) 1724 return (EBUSY); 1725 1726 twe->sc_flags |= TWEF_OPEN; 1727 return (0); 1728 } 1729 1730 /* 1731 * Accept the last close on the control device. 1732 */ 1733 static int 1734 tweclose(dev_t dev, int flag, int mode, 1735 struct lwp *l) 1736 { 1737 struct twe_softc *twe; 1738 1739 twe = device_lookup(&twe_cd, minor(dev)); 1740 twe->sc_flags &= ~TWEF_OPEN; 1741 return (0); 1742 } 1743 1744 void 1745 twe_ccb_wait_handler(struct twe_ccb *ccb, int error) 1746 { 1747 1748 /* Just wake up the sleeper. */ 1749 wakeup(ccb); 1750 } 1751 1752 /* 1753 * Handle control operations. 1754 */ 1755 static int 1756 tweioctl(dev_t dev, u_long cmd, void *data, int flag, 1757 struct lwp *l) 1758 { 1759 struct twe_softc *twe; 1760 struct twe_ccb *ccb; 1761 struct twe_param *param; 1762 struct twe_usercommand *tu; 1763 struct twe_paramcommand *tp; 1764 struct twe_drivecommand *td; 1765 void *pdata = NULL; 1766 int s, error = 0; 1767 u_int8_t cmdid; 1768 1769 twe = device_lookup(&twe_cd, minor(dev)); 1770 tu = (struct twe_usercommand *)data; 1771 tp = (struct twe_paramcommand *)data; 1772 td = (struct twe_drivecommand *)data; 1773 1774 /* This is intended to be compatible with the FreeBSD interface. */ 1775 switch (cmd) { 1776 case TWEIO_COMMAND: 1777 error = kauth_authorize_device_passthru(l->l_cred, dev, 1778 KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data); 1779 if (error) 1780 return (error); 1781 1782 /* XXX mutex */ 1783 if (tu->tu_size > 0) { 1784 /* 1785 * XXX Handle > TWE_SECTOR_SIZE? Let's see if 1786 * it's really necessary, first. 1787 */ 1788 if (tu->tu_size > TWE_SECTOR_SIZE) { 1789 #ifdef TWE_DEBUG 1790 printf("%s: TWEIO_COMMAND: tu_size = %d\n", 1791 twe->sc_dv.dv_xname, tu->tu_size); 1792 #endif 1793 return EINVAL; 1794 } 1795 pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK); 1796 error = copyin(tu->tu_data, pdata, tu->tu_size); 1797 if (error != 0) 1798 goto done; 1799 ccb = twe_ccb_alloc_wait(twe, 1800 TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); 1801 KASSERT(ccb != NULL); 1802 ccb->ccb_data = pdata; 1803 ccb->ccb_datasize = TWE_SECTOR_SIZE; 1804 } else { 1805 ccb = twe_ccb_alloc_wait(twe, 0); 1806 KASSERT(ccb != NULL); 1807 } 1808 1809 ccb->ccb_tx.tx_handler = twe_ccb_wait_handler; 1810 ccb->ccb_tx.tx_context = NULL; 1811 ccb->ccb_tx.tx_dv = &twe->sc_dv; 1812 1813 cmdid = ccb->ccb_cmdid; 1814 memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd)); 1815 ccb->ccb_cmd->tc_cmdid = cmdid; 1816 1817 /* Map the transfer. */ 1818 if ((error = twe_ccb_map(twe, ccb)) != 0) { 1819 twe_ccb_free(twe, ccb); 1820 goto done; 1821 } 1822 1823 /* Submit the command and wait up to 1 minute. */ 1824 error = 0; 1825 twe_ccb_enqueue(twe, ccb); 1826 s = splbio(); 1827 while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0) 1828 if ((error = tsleep(ccb, PRIBIO, "tweioctl", 1829 60 * hz)) != 0) 1830 break; 1831 splx(s); 1832 1833 /* Copy the command back to the ioctl argument. */ 1834 memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd)); 1835 #ifdef TWE_DEBUG 1836 printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, " 1837 "tc_status = 0x%02x\n", twe->sc_dv.dv_xname, 1838 tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status); 1839 #endif 1840 1841 s = splbio(); 1842 twe_ccb_free(twe, ccb); 1843 splx(s); 1844 1845 if (tu->tu_size > 0) 1846 error = copyout(pdata, tu->tu_data, tu->tu_size); 1847 goto done; 1848 1849 case TWEIO_STATS: 1850 return (ENOENT); 1851 1852 case TWEIO_AEN_POLL: 1853 s = splbio(); 1854 *(u_int *)data = twe_aen_dequeue(twe); 1855 splx(s); 1856 return (0); 1857 1858 case TWEIO_AEN_WAIT: 1859 s = splbio(); 1860 while ((*(u_int *)data = 1861 twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) { 1862 twe->sc_flags |= TWEF_AENQ_WAIT; 1863 error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH, 1864 "tweaen", 0); 1865 if (error == EINTR) { 1866 splx(s); 1867 return (error); 1868 } 1869 } 1870 splx(s); 1871 return (0); 1872 1873 case TWEIO_GET_PARAM: 1874 error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id, 1875 tp->tp_size, 0, ¶m); 1876 if (error != 0) 1877 return (error); 1878 if (param->tp_param_size > tp->tp_size) { 1879 error = EFAULT; 1880 goto done; 1881 } 1882 error = copyout(param->tp_data, tp->tp_data, 1883 param->tp_param_size); 1884 free(param, M_DEVBUF); 1885 goto done; 1886 1887 case TWEIO_SET_PARAM: 1888 pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK); 1889 if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0) 1890 goto done; 1891 error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id, 1892 tp->tp_size, pdata); 1893 goto done; 1894 1895 case TWEIO_RESET: 1896 s = splbio(); 1897 twe_reset(twe); 1898 splx(s); 1899 return (0); 1900 1901 case TWEIO_ADD_UNIT: 1902 /* XXX mutex */ 1903 return (twe_add_unit(twe, td->td_unit)); 1904 1905 case TWEIO_DEL_UNIT: 1906 /* XXX mutex */ 1907 return (twe_del_unit(twe, td->td_unit)); 1908 1909 default: 1910 return EINVAL; 1911 } 1912 done: 1913 if (pdata) 1914 free(pdata, M_DEVBUF); 1915 return error; 1916 } 1917 1918 const struct cdevsw twe_cdevsw = { 1919 tweopen, tweclose, noread, nowrite, tweioctl, 1920 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER, 1921 }; 1922 1923 /* 1924 * Print some information about the controller 1925 */ 1926 static void 1927 twe_describe_controller(struct twe_softc *sc) 1928 { 1929 struct twe_param *p[6]; 1930 int i, rv = 0; 1931 uint32_t dsize; 1932 uint8_t ports; 1933 1934 ports = 0; 1935 1936 /* get the port count */ 1937 rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER, 1938 TWE_PARAM_CONTROLLER_PortCount, &ports); 1939 1940 /* get version strings */ 1941 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon, 1942 16, NULL, &p[0]); 1943 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW, 1944 16, NULL, &p[1]); 1945 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS, 1946 16, NULL, &p[2]); 1947 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB, 1948 8, NULL, &p[3]); 1949 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA, 1950 8, NULL, &p[4]); 1951 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI, 1952 8, NULL, &p[5]); 1953 1954 if (rv) { 1955 /* some error occurred */ 1956 aprint_error("%s: failed to fetch version information\n", 1957 sc->sc_dv.dv_xname); 1958 return; 1959 } 1960 1961 aprint_normal("%s: %d ports, Firmware %.16s, BIOS %.16s\n", 1962 sc->sc_dv.dv_xname, ports, 1963 p[1]->tp_data, p[2]->tp_data); 1964 1965 aprint_verbose("%s: Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n", 1966 sc->sc_dv.dv_xname, 1967 p[0]->tp_data, p[3]->tp_data, 1968 p[4]->tp_data, p[5]->tp_data); 1969 1970 free(p[0], M_DEVBUF); 1971 free(p[1], M_DEVBUF); 1972 free(p[2], M_DEVBUF); 1973 free(p[3], M_DEVBUF); 1974 free(p[4], M_DEVBUF); 1975 free(p[5], M_DEVBUF); 1976 1977 rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY, 1978 TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]); 1979 if (rv) { 1980 aprint_error("%s: failed to get drive status summary\n", 1981 sc->sc_dv.dv_xname); 1982 return; 1983 } 1984 for (i = 0; i < ports; i++) { 1985 if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present) 1986 continue; 1987 rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i, 1988 TWE_PARAM_DRIVEINFO_Size, &dsize); 1989 if (rv) { 1990 aprint_error( 1991 "%s: unable to get drive size for port %d\n", 1992 sc->sc_dv.dv_xname, i); 1993 continue; 1994 } 1995 rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i, 1996 TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]); 1997 if (rv) { 1998 aprint_error( 1999 "%s: unable to get drive model for port %d\n", 2000 sc->sc_dv.dv_xname, i); 2001 continue; 2002 } 2003 aprint_verbose("%s: port %d: %.40s %d MB\n", sc->sc_dv.dv_xname, 2004 i, p[1]->tp_data, dsize / 2048); 2005 free(p[1], M_DEVBUF); 2006 } 2007 free(p[0], M_DEVBUF); 2008 } 2009