xref: /netbsd-src/sys/dev/pci/twe.c (revision 5bbd2a12505d72a8177929a37b5cee489d0a1cfd)
1 /*	$NetBSD: twe.c,v 1.96 2012/01/27 19:48:39 para Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 2000 Michael Smith
34  * Copyright (c) 2000 BSDi
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  *
58  * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp
59  */
60 
61 /*
62  * Driver for the 3ware Escalade family of RAID controllers.
63  */
64 
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.96 2012/01/27 19:48:39 para Exp $");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/device.h>
72 #include <sys/queue.h>
73 #include <sys/proc.h>
74 #include <sys/buf.h>
75 #include <sys/endian.h>
76 #include <sys/malloc.h>
77 #include <sys/conf.h>
78 #include <sys/disk.h>
79 #include <sys/sysctl.h>
80 #include <sys/syslog.h>
81 #include <sys/kauth.h>
82 
83 #include <sys/bswap.h>
84 #include <sys/bus.h>
85 
86 #include <dev/pci/pcireg.h>
87 #include <dev/pci/pcivar.h>
88 #include <dev/pci/pcidevs.h>
89 #include <dev/pci/twereg.h>
90 #include <dev/pci/twevar.h>
91 #include <dev/pci/tweio.h>
92 
93 #include "locators.h"
94 
95 #define	PCI_CBIO	0x10
96 
97 static int	twe_aen_get(struct twe_softc *, uint16_t *);
98 static void	twe_aen_handler(struct twe_ccb *, int);
99 static void	twe_aen_enqueue(struct twe_softc *sc, uint16_t, int);
100 static uint16_t	twe_aen_dequeue(struct twe_softc *);
101 
102 static void	twe_attach(device_t, device_t, void *);
103 static int	twe_init_connection(struct twe_softc *);
104 static int	twe_intr(void *);
105 static int	twe_match(device_t, cfdata_t, void *);
106 static int	twe_param_set(struct twe_softc *, int, int, size_t, void *);
107 static void	twe_poll(struct twe_softc *);
108 static int	twe_print(void *, const char *);
109 static int	twe_reset(struct twe_softc *);
110 static int	twe_status_check(struct twe_softc *, u_int);
111 static int	twe_status_wait(struct twe_softc *, u_int, int);
112 static void	twe_describe_controller(struct twe_softc *);
113 static void twe_clear_pci_abort(struct twe_softc *sc);
114 static void twe_clear_pci_parity_error(struct twe_softc *sc);
115 
116 static int	twe_add_unit(struct twe_softc *, int);
117 static int	twe_del_unit(struct twe_softc *, int);
118 static int	twe_init_connection(struct twe_softc *);
119 
120 static inline u_int32_t	twe_inl(struct twe_softc *, int);
121 static inline void twe_outl(struct twe_softc *, int, u_int32_t);
122 
123 extern struct	cfdriver twe_cd;
124 
125 CFATTACH_DECL(twe, sizeof(struct twe_softc),
126     twe_match, twe_attach, NULL, NULL);
127 
128 /* FreeBSD driver revision for sysctl expected by the 3ware cli */
129 const char twever[] = "1.50.01.002";
130 
131 /*
132  * Tables to convert numeric codes to strings.
133  */
134 const struct twe_code_table twe_table_status[] = {
135 	{ 0x00,	"successful completion" },
136 
137 	/* info */
138 	{ 0x42,	"command in progress" },
139 	{ 0x6c,	"retrying interface CRC error from UDMA command" },
140 
141 	/* warning */
142 	{ 0x81,	"redundant/inconsequential request ignored" },
143 	{ 0x8e,	"failed to write zeroes to LBA 0" },
144 	{ 0x8f,	"failed to profile TwinStor zones" },
145 
146 	/* fatal */
147 	{ 0xc1,	"aborted due to system command or reconfiguration" },
148 	{ 0xc4,	"aborted" },
149 	{ 0xc5,	"access error" },
150 	{ 0xc6,	"access violation" },
151 	{ 0xc7,	"device failure" },	/* high byte may be port # */
152 	{ 0xc8,	"controller error" },
153 	{ 0xc9,	"timed out" },
154 	{ 0xcb,	"invalid unit number" },
155 	{ 0xcf,	"unit not available" },
156 	{ 0xd2,	"undefined opcode" },
157 	{ 0xdb,	"request incompatible with unit" },
158 	{ 0xdc,	"invalid request" },
159 	{ 0xff,	"firmware error, reset requested" },
160 
161 	{ 0,	NULL }
162 };
163 
164 const struct twe_code_table twe_table_unitstate[] = {
165 	{ TWE_PARAM_UNITSTATUS_Normal,		"Normal" },
166 	{ TWE_PARAM_UNITSTATUS_Initialising,	"Initializing" },
167 	{ TWE_PARAM_UNITSTATUS_Degraded,	"Degraded" },
168 	{ TWE_PARAM_UNITSTATUS_Rebuilding,	"Rebuilding" },
169 	{ TWE_PARAM_UNITSTATUS_Verifying,	"Verifying" },
170 	{ TWE_PARAM_UNITSTATUS_Corrupt,		"Corrupt" },
171 	{ TWE_PARAM_UNITSTATUS_Missing,		"Missing" },
172 
173 	{ 0,					NULL }
174 };
175 
176 const struct twe_code_table twe_table_unittype[] = {
177 	/* array descriptor configuration */
178 	{ TWE_AD_CONFIG_RAID0,			"RAID0" },
179 	{ TWE_AD_CONFIG_RAID1,			"RAID1" },
180 	{ TWE_AD_CONFIG_TwinStor,		"TwinStor" },
181 	{ TWE_AD_CONFIG_RAID5,			"RAID5" },
182 	{ TWE_AD_CONFIG_RAID10,			"RAID10" },
183 	{ TWE_UD_CONFIG_JBOD,			"JBOD" },
184 
185 	{ 0,					NULL }
186 };
187 
188 const struct twe_code_table twe_table_stripedepth[] = {
189 	{ TWE_AD_STRIPE_4k,			"4K" },
190 	{ TWE_AD_STRIPE_8k,			"8K" },
191 	{ TWE_AD_STRIPE_16k,			"16K" },
192 	{ TWE_AD_STRIPE_32k,			"32K" },
193 	{ TWE_AD_STRIPE_64k,			"64K" },
194 	{ TWE_AD_STRIPE_128k,			"128K" },
195 	{ TWE_AD_STRIPE_256k,			"256K" },
196 	{ TWE_AD_STRIPE_512k,			"512K" },
197 	{ TWE_AD_STRIPE_1024k,			"1024K" },
198 
199 	{ 0,					NULL }
200 };
201 
202 /*
203  * Asynchronous event notification messages are qualified:
204  *	a - not unit/port specific
205  *	u - unit specific
206  *	p - port specific
207  *
208  * They are further qualified with a severity:
209  *	E - LOG_EMERG
210  *	a - LOG_ALERT
211  *	c - LOG_CRIT
212  *	e - LOG_ERR
213  *	w - LOG_WARNING
214  *	n - LOG_NOTICE
215  *	i - LOG_INFO
216  *	d - LOG_DEBUG
217  *	blank - just use printf
218  */
219 const struct twe_code_table twe_table_aen[] = {
220 	{ 0x00,	"a  queue empty" },
221 	{ 0x01,	"a  soft reset" },
222 	{ 0x02,	"uc degraded mode" },
223 	{ 0x03,	"aa controller error" },
224 	{ 0x04,	"uE rebuild fail" },
225 	{ 0x05,	"un rebuild done" },
226 	{ 0x06,	"ue incomplete unit" },
227 	{ 0x07,	"un initialization done" },
228 	{ 0x08,	"uw unclean shutdown detected" },
229 	{ 0x09,	"pe drive timeout" },
230 	{ 0x0a,	"pc drive error" },
231 	{ 0x0b,	"un rebuild started" },
232 	{ 0x0c,	"un initialization started" },
233 	{ 0x0d,	"ui logical unit deleted" },
234 	{ 0x0f,	"pc SMART threshold exceeded" },
235 	{ 0x15,	"a  table undefined" },	/* XXX: Not in FreeBSD's table */
236 	{ 0x21,	"pe ATA UDMA downgrade" },
237 	{ 0x22,	"pi ATA UDMA upgrade" },
238 	{ 0x23,	"pw sector repair occurred" },
239 	{ 0x24,	"aa SBUF integrity check failure" },
240 	{ 0x25,	"pa lost cached write" },
241 	{ 0x26,	"pa drive ECC error detected" },
242 	{ 0x27,	"pe DCB checksum error" },
243 	{ 0x28,	"pn DCB unsupported version" },
244 	{ 0x29,	"ui verify started" },
245 	{ 0x2a,	"ua verify failed" },
246 	{ 0x2b,	"ui verify complete" },
247 	{ 0x2c,	"pw overwrote bad sector during rebuild" },
248 	{ 0x2d,	"pa encountered bad sector during rebuild" },
249 	{ 0x2e,	"pe replacement drive too small" },
250 	{ 0x2f,	"ue array not previously initialized" },
251 	{ 0x30,	"p  drive not supported" },
252 	{ 0xff,	"a  aen queue full" },
253 
254 	{ 0,	NULL },
255 };
256 
257 const char *
258 twe_describe_code(const struct twe_code_table *table, uint32_t code)
259 {
260 
261 	for (; table->string != NULL; table++) {
262 		if (table->code == code)
263 			return (table->string);
264 	}
265 	return (NULL);
266 }
267 
268 static inline u_int32_t
269 twe_inl(struct twe_softc *sc, int off)
270 {
271 
272 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
273 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
274 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off));
275 }
276 
277 static inline void
278 twe_outl(struct twe_softc *sc, int off, u_int32_t val)
279 {
280 
281 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
282 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
283 	    BUS_SPACE_BARRIER_WRITE);
284 }
285 
286 /*
287  * Match a supported board.
288  */
289 static int
290 twe_match(device_t parent, cfdata_t cfdata, void *aux)
291 {
292 	struct pci_attach_args *pa;
293 
294 	pa = aux;
295 
296 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE &&
297 	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE ||
298 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC));
299 }
300 
301 /*
302  * Attach a supported board.
303  *
304  * XXX This doesn't fail gracefully.
305  */
306 static void
307 twe_attach(device_t parent, device_t self, void *aux)
308 {
309 	struct pci_attach_args *pa;
310 	struct twe_softc *sc;
311 	pci_chipset_tag_t pc;
312 	pci_intr_handle_t ih;
313 	pcireg_t csr;
314 	const char *intrstr;
315 	int s, size, i, rv, rseg;
316 	size_t max_segs, max_xfer;
317 	bus_dma_segment_t seg;
318 	const struct sysctlnode *node;
319 	struct twe_cmd *tc;
320 	struct twe_ccb *ccb;
321 
322 	sc = device_private(self);
323 	pa = aux;
324 	pc = pa->pa_pc;
325 	sc->sc_dmat = pa->pa_dmat;
326 	SIMPLEQ_INIT(&sc->sc_ccb_queue);
327 	SLIST_INIT(&sc->sc_ccb_freelist);
328 
329 	aprint_naive(": RAID controller\n");
330 	aprint_normal(": 3ware Escalade\n");
331 
332 
333 	if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
334 	    &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
335 		aprint_error_dev(&sc->sc_dv, "can't map i/o space\n");
336 		return;
337 	}
338 
339 	/* Enable the device. */
340 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
341 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
342 	    csr | PCI_COMMAND_MASTER_ENABLE);
343 
344 	/* Map and establish the interrupt. */
345 	if (pci_intr_map(pa, &ih)) {
346 		aprint_error_dev(&sc->sc_dv, "can't map interrupt\n");
347 		return;
348 	}
349 
350 	intrstr = pci_intr_string(pc, ih);
351 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_BIO, twe_intr, sc);
352 	if (sc->sc_ih == NULL) {
353 		aprint_error_dev(&sc->sc_dv, "can't establish interrupt%s%s\n",
354 			(intrstr) ? " at " : "",
355 			(intrstr) ? intrstr : "");
356 		return;
357 	}
358 
359 	if (intrstr != NULL)
360 		aprint_normal_dev(&sc->sc_dv, "interrupting at %s\n",
361 			intrstr);
362 
363 	/*
364 	 * Allocate and initialise the command blocks and CCBs.
365 	 */
366 	size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT;
367 
368 	if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
369 	    &rseg, BUS_DMA_NOWAIT)) != 0) {
370 		aprint_error_dev(&sc->sc_dv, "unable to allocate commands, rv = %d\n", rv);
371 		return;
372 	}
373 
374 	if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size,
375 	    (void **)&sc->sc_cmds,
376 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
377 		aprint_error_dev(&sc->sc_dv, "unable to map commands, rv = %d\n", rv);
378 		return;
379 	}
380 
381 	if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0,
382 	    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
383 		aprint_error_dev(&sc->sc_dv, "unable to create command DMA map, rv = %d\n", rv);
384 		return;
385 	}
386 
387 	if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds,
388 	    size, NULL, BUS_DMA_NOWAIT)) != 0) {
389 		aprint_error_dev(&sc->sc_dv, "unable to load command DMA map, rv = %d\n", rv);
390 		return;
391 	}
392 
393 	ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_NOWAIT);
394 	if (ccb == NULL) {
395 		aprint_error_dev(&sc->sc_dv, "unable to allocate memory for ccbs\n");
396 		return;
397 	}
398 
399 	sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr;
400 	memset(sc->sc_cmds, 0, size);
401 
402 	sc->sc_ccbs = ccb;
403 	tc = (struct twe_cmd *)sc->sc_cmds;
404 	max_segs = twe_get_maxsegs();
405 	max_xfer = twe_get_maxxfer(max_segs);
406 
407 	for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) {
408 		ccb->ccb_cmd = tc;
409 		ccb->ccb_cmdid = i;
410 		ccb->ccb_flags = 0;
411 		rv = bus_dmamap_create(sc->sc_dmat, max_xfer,
412 		    max_segs, PAGE_SIZE, 0,
413 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
414 		    &ccb->ccb_dmamap_xfer);
415 		if (rv != 0) {
416 			aprint_error_dev(&sc->sc_dv, "can't create dmamap, rv = %d\n", rv);
417 			return;
418 		}
419 
420 		/* Save the first CCB for AEN retrieval. */
421 		if (i != 0)
422 			SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb,
423 			    ccb_chain.slist);
424 	}
425 
426 	/* Wait for the controller to become ready. */
427 	if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) {
428 		aprint_error_dev(&sc->sc_dv, "microcontroller not ready\n");
429 		return;
430 	}
431 
432 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS);
433 
434 	/* Reset the controller. */
435 	s = splbio();
436 	rv = twe_reset(sc);
437 	splx(s);
438 	if (rv) {
439 		aprint_error_dev(&sc->sc_dv, "reset failed\n");
440 		return;
441 	}
442 
443 	/* Initialise connection with controller. */
444 	twe_init_connection(sc);
445 
446 	twe_describe_controller(sc);
447 
448 	/* Find and attach RAID array units. */
449 	sc->sc_nunits = 0;
450 	for (i = 0; i < TWE_MAX_UNITS; i++)
451 		(void) twe_add_unit(sc, i);
452 
453 	/* ...and finally, enable interrupts. */
454 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR |
455 	    TWE_CTL_UNMASK_RESP_INTR |
456 	    TWE_CTL_ENABLE_INTRS);
457 
458 	/* sysctl set-up for 3ware cli */
459 	if (sysctl_createv(NULL, 0, NULL, NULL,
460 				CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw",
461 				NULL, NULL, 0, NULL, 0,
462 				CTL_HW, CTL_EOL) != 0) {
463 		aprint_error_dev(&sc->sc_dv, "could not create %s sysctl node\n",
464 			"hw");
465 		return;
466 	}
467 	if (sysctl_createv(NULL, 0, NULL, &node,
468 				0, CTLTYPE_NODE, device_xname(&sc->sc_dv),
469 				SYSCTL_DESCR("twe driver information"),
470 				NULL, 0, NULL, 0,
471 				CTL_HW, CTL_CREATE, CTL_EOL) != 0) {
472 		aprint_error_dev(&sc->sc_dv, "could not create %s.%s sysctl node\n",
473 			"hw", device_xname(&sc->sc_dv));
474 		return;
475 	}
476 	if ((i = sysctl_createv(NULL, 0, NULL, NULL,
477 				0, CTLTYPE_STRING, "driver_version",
478 				SYSCTL_DESCR("twe0 driver version"),
479 				NULL, 0, __UNCONST(&twever), 0,
480 				CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL))
481 				!= 0) {
482 		aprint_error_dev(&sc->sc_dv, "could not create %s.%s.driver_version sysctl\n",
483 			"hw", device_xname(&sc->sc_dv));
484 		return;
485 	}
486 }
487 
488 void
489 twe_register_callbacks(struct twe_softc *sc, int unit,
490     const struct twe_callbacks *tcb)
491 {
492 
493 	sc->sc_units[unit].td_callbacks = tcb;
494 }
495 
496 static void
497 twe_recompute_openings(struct twe_softc *sc)
498 {
499 	struct twe_drive *td;
500 	int unit, openings;
501 
502 	if (sc->sc_nunits != 0)
503 		openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits;
504 	else
505 		openings = 0;
506 	if (openings == sc->sc_openings)
507 		return;
508 	sc->sc_openings = openings;
509 
510 #ifdef TWE_DEBUG
511 	printf("%s: %d array%s, %d openings per array\n",
512 	    device_xname(&sc->sc_dv), sc->sc_nunits,
513 	    sc->sc_nunits == 1 ? "" : "s", sc->sc_openings);
514 #endif
515 
516 	for (unit = 0; unit < TWE_MAX_UNITS; unit++) {
517 		td = &sc->sc_units[unit];
518 		if (td->td_dev != NULL)
519 			(*td->td_callbacks->tcb_openings)(td->td_dev,
520 			    sc->sc_openings);
521 	}
522 }
523 
524 static int
525 twe_add_unit(struct twe_softc *sc, int unit)
526 {
527 	struct twe_param *dtp, *atp;
528 	struct twe_array_descriptor *ad;
529 	struct twe_drive *td;
530 	struct twe_attach_args twea;
531 	uint32_t newsize;
532 	int rv;
533 	uint16_t dsize;
534 	uint8_t newtype, newstripe;
535 	int locs[TWECF_NLOCS];
536 
537 	if (unit < 0 || unit >= TWE_MAX_UNITS)
538 		return (EINVAL);
539 
540 	/* Find attached units. */
541 	rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY,
542 	    TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp);
543 	if (rv != 0) {
544 		aprint_error_dev(&sc->sc_dv, "error %d fetching unit summary\n",
545 		    rv);
546 		return (rv);
547 	}
548 
549 	/* For each detected unit, collect size and store in an array. */
550 	td = &sc->sc_units[unit];
551 
552 	/* Unit present? */
553 	if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) {
554 		/*
555 		 * XXX Should we check to see if a device has been
556 		 * XXX attached at this index and detach it if it
557 		 * XXX has?  ("rescan" semantics)
558 		 */
559 		rv = 0;
560 		goto out;
561    	}
562 
563 	rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit,
564 	    TWE_PARAM_UNITINFO_DescriptorSize, &dsize);
565 	if (rv != 0) {
566 		aprint_error_dev(&sc->sc_dv, "error %d fetching descriptor size "
567 		    "for unit %d\n", rv, unit);
568 		goto out;
569 	}
570 
571 	rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit,
572 	    TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp);
573 	if (rv != 0) {
574 		aprint_error_dev(&sc->sc_dv, "error %d fetching array descriptor "
575 		    "for unit %d\n", rv, unit);
576 		goto out;
577 	}
578 
579 	ad = (struct twe_array_descriptor *)atp->tp_data;
580 	newtype = ad->configuration;
581 	newstripe = ad->stripe_size;
582 	free(atp, M_DEVBUF);
583 
584 	rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit,
585 	    TWE_PARAM_UNITINFO_Capacity, &newsize);
586 	if (rv != 0) {
587 		aprint_error_dev(&sc->sc_dv,
588 		    "error %d fetching capacity for unit %d\n",
589 		    rv, unit);
590 		goto out;
591 	}
592 
593 	/*
594 	 * Have a device, so we need to attach it.  If there is currently
595 	 * something sitting at the slot, and the parameters are different,
596 	 * then we detach the old device before attaching the new one.
597 	 */
598 	if (td->td_dev != NULL &&
599 	    td->td_size == newsize &&
600 	    td->td_type == newtype &&
601 	    td->td_stripe == newstripe) {
602 		/* Same as the old device; just keep using it. */
603 		rv = 0;
604 		goto out;
605 	} else if (td->td_dev != NULL) {
606 		/* Detach the old device first. */
607 		(void) config_detach(td->td_dev, DETACH_FORCE);
608 		td->td_dev = NULL;
609 	} else if (td->td_size == 0)
610 		sc->sc_nunits++;
611 
612 	/*
613 	 * Committed to the new array unit; assign its parameters and
614 	 * recompute the number of available command openings.
615 	 */
616 	td->td_size = newsize;
617 	td->td_type = newtype;
618 	td->td_stripe = newstripe;
619 	twe_recompute_openings(sc);
620 
621 	twea.twea_unit = unit;
622 
623 	locs[TWECF_UNIT] = unit;
624 
625 	td->td_dev = config_found_sm_loc(&sc->sc_dv, "twe", locs, &twea,
626 					 twe_print, config_stdsubmatch);
627 
628 	rv = 0;
629  out:
630 	free(dtp, M_DEVBUF);
631 	return (rv);
632 }
633 
634 static int
635 twe_del_unit(struct twe_softc *sc, int unit)
636 {
637 	struct twe_drive *td;
638 
639 	if (unit < 0 || unit >= TWE_MAX_UNITS)
640 		return (EINVAL);
641 
642 	td = &sc->sc_units[unit];
643 	if (td->td_size != 0)
644 		sc->sc_nunits--;
645 	td->td_size = 0;
646 	td->td_type = 0;
647 	td->td_stripe = 0;
648 	if (td->td_dev != NULL) {
649 		(void) config_detach(td->td_dev, DETACH_FORCE);
650 		td->td_dev = NULL;
651 	}
652 	twe_recompute_openings(sc);
653 	return (0);
654 }
655 
656 /*
657  * Reset the controller.
658  * MUST BE CALLED AT splbio()!
659  */
660 static int
661 twe_reset(struct twe_softc *sc)
662 {
663 	uint16_t aen;
664 	u_int status;
665 	volatile u_int32_t junk;
666 	int got, rv;
667 
668 	/* Issue a soft reset. */
669 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET |
670 	    TWE_CTL_CLEAR_HOST_INTR |
671 	    TWE_CTL_CLEAR_ATTN_INTR |
672 	    TWE_CTL_MASK_CMD_INTR |
673 	    TWE_CTL_MASK_RESP_INTR |
674 	    TWE_CTL_CLEAR_ERROR_STS |
675 	    TWE_CTL_DISABLE_INTRS);
676 
677 	/* Wait for attention... */
678 	if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) {
679 		aprint_error_dev(&sc->sc_dv, "timeout waiting for attention interrupt\n");
680 		return (-1);
681 	}
682 
683 	/* ...and ACK it. */
684 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
685 
686 	/*
687 	 * Pull AENs out of the controller; look for a soft reset AEN.
688 	 * Open code this, since we want to detect reset even if the
689 	 * queue for management tools is full.
690 	 *
691 	 * Note that since:
692 	 *	- interrupts are blocked
693 	 *	- we have reset the controller
694 	 *	- acknowledged the pending ATTENTION
695 	 * that there is no way a pending asynchronous AEN fetch would
696 	 * finish, so clear the flag.
697 	 */
698 	sc->sc_flags &= ~TWEF_AEN;
699 	for (got = 0;;) {
700 		rv = twe_aen_get(sc, &aen);
701 		if (rv != 0)
702 			printf("%s: error %d while draining event queue\n",
703 			    device_xname(&sc->sc_dv), rv);
704 		if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY)
705 			break;
706 		if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET)
707 			got = 1;
708 		twe_aen_enqueue(sc, aen, 1);
709 	}
710 
711 	if (!got) {
712 		printf("%s: reset not reported\n", device_xname(&sc->sc_dv));
713 		return (-1);
714 	}
715 
716 	/* Check controller status. */
717 	status = twe_inl(sc, TWE_REG_STS);
718 	if (twe_status_check(sc, status)) {
719 		printf("%s: controller errors detected\n",
720 		    device_xname(&sc->sc_dv));
721 		return (-1);
722 	}
723 
724 	/* Drain the response queue. */
725 	for (;;) {
726 		status = twe_inl(sc, TWE_REG_STS);
727 		if (twe_status_check(sc, status) != 0) {
728 			aprint_error_dev(&sc->sc_dv, "can't drain response queue\n");
729 			return (-1);
730 		}
731 		if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0)
732 			break;
733 		junk = twe_inl(sc, TWE_REG_RESP_QUEUE);
734 	}
735 
736 	return (0);
737 }
738 
739 /*
740  * Print autoconfiguration message for a sub-device.
741  */
742 static int
743 twe_print(void *aux, const char *pnp)
744 {
745 	struct twe_attach_args *twea;
746 
747 	twea = aux;
748 
749 	if (pnp != NULL)
750 		aprint_normal("block device at %s", pnp);
751 	aprint_normal(" unit %d", twea->twea_unit);
752 	return (UNCONF);
753 }
754 
755 /*
756  * Interrupt service routine.
757  */
758 static int
759 twe_intr(void *arg)
760 {
761 	struct twe_softc *sc;
762 	u_int status;
763 	int caught, rv;
764 
765 	sc = arg;
766 	caught = 0;
767 	status = twe_inl(sc, TWE_REG_STS);
768 	twe_status_check(sc, status);
769 
770 	/* Host interrupts - purpose unknown. */
771 	if ((status & TWE_STS_HOST_INTR) != 0) {
772 #ifdef DEBUG
773 		printf("%s: host interrupt\n", device_xname(&sc->sc_dv));
774 #endif
775 		twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR);
776 		caught = 1;
777 	}
778 
779 	/*
780 	 * Attention interrupts, signalled when a controller or child device
781 	 * state change has occurred.
782 	 */
783 	if ((status & TWE_STS_ATTN_INTR) != 0) {
784 		rv = twe_aen_get(sc, NULL);
785 		if (rv != 0)
786 			aprint_error_dev(&sc->sc_dv, "unable to retrieve AEN (%d)\n", rv);
787 		else
788 			twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
789 		caught = 1;
790 	}
791 
792 	/*
793 	 * Command interrupts, signalled when the controller can accept more
794 	 * commands.  We don't use this; instead, we try to submit commands
795 	 * when we receive them, and when other commands have completed.
796 	 * Mask it so we don't get another one.
797 	 */
798 	if ((status & TWE_STS_CMD_INTR) != 0) {
799 #ifdef DEBUG
800 		printf("%s: command interrupt\n", device_xname(&sc->sc_dv));
801 #endif
802 		twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR);
803 		caught = 1;
804 	}
805 
806 	if ((status & TWE_STS_RESP_INTR) != 0) {
807 		twe_poll(sc);
808 		caught = 1;
809 	}
810 
811 	return (caught);
812 }
813 
814 /*
815  * Fetch an AEN.  Even though this is really like parameter
816  * retrieval, we handle this specially, because we issue this
817  * AEN retrieval command from interrupt context, and thus
818  * reserve a CCB for it to avoid resource shortage.
819  *
820  * XXX There are still potential resource shortages we could
821  * XXX encounter.  Consider pre-allocating all AEN-related
822  * XXX resources.
823  *
824  * MUST BE CALLED AT splbio()!
825  */
826 static int
827 twe_aen_get(struct twe_softc *sc, uint16_t *aenp)
828 {
829 	struct twe_ccb *ccb;
830 	struct twe_cmd *tc;
831 	struct twe_param *tp;
832 	int rv;
833 
834 	/*
835 	 * If we're already retrieving an AEN, just wait; another
836 	 * retrieval will be chained after the current one completes.
837 	 */
838 	if (sc->sc_flags & TWEF_AEN) {
839 		/*
840 		 * It is a fatal software programming error to attempt
841 		 * to fetch an AEN synchronously when an AEN fetch is
842 		 * already pending.
843 		 */
844 		KASSERT(aenp == NULL);
845 		return (0);
846 	}
847 
848 	tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
849 	if (tp == NULL)
850 		return (ENOMEM);
851 
852 	ccb = twe_ccb_alloc(sc,
853 	    TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
854 	KASSERT(ccb != NULL);
855 
856 	ccb->ccb_data = tp;
857 	ccb->ccb_datasize = TWE_SECTOR_SIZE;
858 	ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL;
859 	ccb->ccb_tx.tx_context = tp;
860 	ccb->ccb_tx.tx_dv = &sc->sc_dv;
861 
862 	tc = ccb->ccb_cmd;
863 	tc->tc_size = 2;
864 	tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
865 	tc->tc_unit = 0;
866 	tc->tc_count = htole16(1);
867 
868 	/* Fill in the outbound parameter data. */
869 	tp->tp_table_id = htole16(TWE_PARAM_AEN);
870 	tp->tp_param_id = TWE_PARAM_AEN_UnitCode;
871 	tp->tp_param_size = 2;
872 
873 	/* Map the transfer. */
874 	if ((rv = twe_ccb_map(sc, ccb)) != 0) {
875 		twe_ccb_free(sc, ccb);
876 		goto done;
877 	}
878 
879 	/* Enqueue the command and wait. */
880 	if (aenp != NULL) {
881 		rv = twe_ccb_poll(sc, ccb, 5);
882 		twe_ccb_unmap(sc, ccb);
883 		twe_ccb_free(sc, ccb);
884 		if (rv == 0)
885 			*aenp = le16toh(*(uint16_t *)tp->tp_data);
886 		free(tp, M_DEVBUF);
887 	} else {
888 		sc->sc_flags |= TWEF_AEN;
889 		twe_ccb_enqueue(sc, ccb);
890 		rv = 0;
891 	}
892 
893  done:
894 	return (rv);
895 }
896 
897 /*
898  * Handle an AEN returned by the controller.
899  * MUST BE CALLED AT splbio()!
900  */
901 static void
902 twe_aen_handler(struct twe_ccb *ccb, int error)
903 {
904 	struct twe_softc *sc;
905 	struct twe_param *tp;
906 	uint16_t aen;
907 	int rv;
908 
909 	sc = device_private(ccb->ccb_tx.tx_dv);
910 	tp = ccb->ccb_tx.tx_context;
911 	twe_ccb_unmap(sc, ccb);
912 
913 	sc->sc_flags &= ~TWEF_AEN;
914 
915 	if (error) {
916 		aprint_error_dev(&sc->sc_dv, "error retrieving AEN\n");
917 		aen = TWE_AEN_QUEUE_EMPTY;
918 	} else
919 		aen = le16toh(*(u_int16_t *)tp->tp_data);
920 	free(tp, M_DEVBUF);
921 	twe_ccb_free(sc, ccb);
922 
923 	if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) {
924 		twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
925 		return;
926 	}
927 
928 	twe_aen_enqueue(sc, aen, 0);
929 
930 	/*
931 	 * Chain another retrieval in case interrupts have been
932 	 * coalesced.
933 	 */
934 	rv = twe_aen_get(sc, NULL);
935 	if (rv != 0)
936 		aprint_error_dev(&sc->sc_dv, "unable to retrieve AEN (%d)\n", rv);
937 }
938 
939 static void
940 twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet)
941 {
942 	const char *str, *msg;
943 	int s, next, nextnext, level;
944 
945 	/*
946 	 * First report the AEN on the console.  Maybe.
947 	 */
948 	if (! quiet) {
949 		str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen));
950 		if (str == NULL) {
951 			aprint_error_dev(&sc->sc_dv, "unknown AEN 0x%04x\n", aen);
952 		} else {
953 			msg = str + 3;
954 			switch (str[1]) {
955 			case 'E':	level = LOG_EMERG; break;
956 			case 'a':	level = LOG_ALERT; break;
957 			case 'c':	level = LOG_CRIT; break;
958 			case 'e':	level = LOG_ERR; break;
959 			case 'w':	level = LOG_WARNING; break;
960 			case 'n':	level = LOG_NOTICE; break;
961 			case 'i':	level = LOG_INFO; break;
962 			case 'd':	level = LOG_DEBUG; break;
963 			default:
964 				/* Don't use syslog. */
965 				level = -1;
966 			}
967 
968 			if (level < 0) {
969 				switch (str[0]) {
970 				case 'u':
971 				case 'p':
972 					printf("%s: %s %d: %s\n",
973 					    device_xname(&sc->sc_dv),
974 					    str[0] == 'u' ? "unit" : "port",
975 					    TWE_AEN_UNIT(aen), msg);
976 					break;
977 
978 				default:
979 					printf("%s: %s\n",
980 					    device_xname(&sc->sc_dv), msg);
981 				}
982 			} else {
983 				switch (str[0]) {
984 				case 'u':
985 				case 'p':
986 					log(level, "%s: %s %d: %s\n",
987 					    device_xname(&sc->sc_dv),
988 					    str[0] == 'u' ? "unit" : "port",
989 					    TWE_AEN_UNIT(aen), msg);
990 					break;
991 
992 				default:
993 					log(level, "%s: %s\n",
994 					    device_xname(&sc->sc_dv), msg);
995 				}
996 			}
997 		}
998 	}
999 
1000 	/* Now enqueue the AEN for mangement tools. */
1001 	s = splbio();
1002 
1003 	next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH;
1004 	nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH;
1005 
1006 	/*
1007 	 * If this is the last free slot, then queue up a "queue
1008 	 * full" message.
1009 	 */
1010 	if (nextnext == sc->sc_aen_tail)
1011 		aen = TWE_AEN_QUEUE_FULL;
1012 
1013 	if (next != sc->sc_aen_tail) {
1014 		sc->sc_aen_queue[sc->sc_aen_head] = aen;
1015 		sc->sc_aen_head = next;
1016 	}
1017 
1018 	if (sc->sc_flags & TWEF_AENQ_WAIT) {
1019 		sc->sc_flags &= ~TWEF_AENQ_WAIT;
1020 		wakeup(&sc->sc_aen_queue);
1021 	}
1022 
1023 	splx(s);
1024 }
1025 
1026 /* NOTE: Must be called at splbio(). */
1027 static uint16_t
1028 twe_aen_dequeue(struct twe_softc *sc)
1029 {
1030 	uint16_t aen;
1031 
1032 	if (sc->sc_aen_tail == sc->sc_aen_head)
1033 		aen = TWE_AEN_QUEUE_EMPTY;
1034 	else {
1035 		aen = sc->sc_aen_queue[sc->sc_aen_tail];
1036 		sc->sc_aen_tail = (sc->sc_aen_tail + 1) % TWE_AEN_Q_LENGTH;
1037 	}
1038 
1039 	return (aen);
1040 }
1041 
1042 /*
1043  * These are short-hand functions that execute TWE_OP_GET_PARAM to
1044  * fetch 1, 2, and 4 byte parameter values, respectively.
1045  */
1046 int
1047 twe_param_get_1(struct twe_softc *sc, int table_id, int param_id,
1048     uint8_t *valp)
1049 {
1050 	struct twe_param *tp;
1051 	int rv;
1052 
1053 	rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp);
1054 	if (rv != 0)
1055 		return (rv);
1056 	*valp = *(uint8_t *)tp->tp_data;
1057 	free(tp, M_DEVBUF);
1058 	return (0);
1059 }
1060 
1061 int
1062 twe_param_get_2(struct twe_softc *sc, int table_id, int param_id,
1063     uint16_t *valp)
1064 {
1065 	struct twe_param *tp;
1066 	int rv;
1067 
1068 	rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp);
1069 	if (rv != 0)
1070 		return (rv);
1071 	*valp = le16toh(*(uint16_t *)tp->tp_data);
1072 	free(tp, M_DEVBUF);
1073 	return (0);
1074 }
1075 
1076 int
1077 twe_param_get_4(struct twe_softc *sc, int table_id, int param_id,
1078     uint32_t *valp)
1079 {
1080 	struct twe_param *tp;
1081 	int rv;
1082 
1083 	rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp);
1084 	if (rv != 0)
1085 		return (rv);
1086 	*valp = le32toh(*(uint32_t *)tp->tp_data);
1087 	free(tp, M_DEVBUF);
1088 	return (0);
1089 }
1090 
1091 /*
1092  * Execute a TWE_OP_GET_PARAM command.  If a callback function is provided,
1093  * it will be called with generated context when the command has completed.
1094  * If no callback is provided, the command will be executed synchronously
1095  * and a pointer to a buffer containing the data returned.
1096  *
1097  * The caller or callback is responsible for freeing the buffer.
1098  *
1099  * NOTE: We assume we can sleep here to wait for a CCB to become available.
1100  */
1101 int
1102 twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size,
1103 	      void (*func)(struct twe_ccb *, int), struct twe_param **pbuf)
1104 {
1105 	struct twe_ccb *ccb;
1106 	struct twe_cmd *tc;
1107 	struct twe_param *tp;
1108 	int rv, s;
1109 
1110 	tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1111 	if (tp == NULL)
1112 		return ENOMEM;
1113 
1114 	ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1115 	KASSERT(ccb != NULL);
1116 
1117 	ccb->ccb_data = tp;
1118 	ccb->ccb_datasize = TWE_SECTOR_SIZE;
1119 	ccb->ccb_tx.tx_handler = func;
1120 	ccb->ccb_tx.tx_context = tp;
1121 	ccb->ccb_tx.tx_dv = &sc->sc_dv;
1122 
1123 	tc = ccb->ccb_cmd;
1124 	tc->tc_size = 2;
1125 	tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
1126 	tc->tc_unit = 0;
1127 	tc->tc_count = htole16(1);
1128 
1129 	/* Fill in the outbound parameter data. */
1130 	tp->tp_table_id = htole16(table_id);
1131 	tp->tp_param_id = param_id;
1132 	tp->tp_param_size = size;
1133 
1134 	/* Map the transfer. */
1135 	if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1136 		twe_ccb_free(sc, ccb);
1137 		goto done;
1138 	}
1139 
1140 	/* Submit the command and either wait or let the callback handle it. */
1141 	if (func == NULL) {
1142 		s = splbio();
1143 		rv = twe_ccb_poll(sc, ccb, 5);
1144 		twe_ccb_unmap(sc, ccb);
1145 		twe_ccb_free(sc, ccb);
1146 		splx(s);
1147 	} else {
1148 #ifdef DEBUG
1149 		if (pbuf != NULL)
1150 			panic("both func and pbuf defined");
1151 #endif
1152 		twe_ccb_enqueue(sc, ccb);
1153 		return 0;
1154 	}
1155 
1156 done:
1157 	if (pbuf == NULL || rv != 0)
1158 		free(tp, M_DEVBUF);
1159 	else if (pbuf != NULL && rv == 0)
1160 		*pbuf = tp;
1161 	return rv;
1162 }
1163 
1164 /*
1165  * Execute a TWE_OP_SET_PARAM command.
1166  *
1167  * NOTE: We assume we can sleep here to wait for a CCB to become available.
1168  */
1169 static int
1170 twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size,
1171 	      void *sbuf)
1172 {
1173 	struct twe_ccb *ccb;
1174 	struct twe_cmd *tc;
1175 	struct twe_param *tp;
1176 	int rv, s;
1177 
1178 	tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1179 	if (tp == NULL)
1180 		return ENOMEM;
1181 
1182 	ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1183 	KASSERT(ccb != NULL);
1184 
1185 	ccb->ccb_data = tp;
1186 	ccb->ccb_datasize = TWE_SECTOR_SIZE;
1187 	ccb->ccb_tx.tx_handler = 0;
1188 	ccb->ccb_tx.tx_context = tp;
1189 	ccb->ccb_tx.tx_dv = &sc->sc_dv;
1190 
1191 	tc = ccb->ccb_cmd;
1192 	tc->tc_size = 2;
1193 	tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5);
1194 	tc->tc_unit = 0;
1195 	tc->tc_count = htole16(1);
1196 
1197 	/* Fill in the outbound parameter data. */
1198 	tp->tp_table_id = htole16(table_id);
1199 	tp->tp_param_id = param_id;
1200 	tp->tp_param_size = size;
1201 	memcpy(tp->tp_data, sbuf, size);
1202 
1203 	/* Map the transfer. */
1204 	if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1205 		twe_ccb_free(sc, ccb);
1206 		goto done;
1207 	}
1208 
1209 	/* Submit the command and wait. */
1210 	s = splbio();
1211 	rv = twe_ccb_poll(sc, ccb, 5);
1212 	twe_ccb_unmap(sc, ccb);
1213 	twe_ccb_free(sc, ccb);
1214 	splx(s);
1215 done:
1216 	free(tp, M_DEVBUF);
1217 	return (rv);
1218 }
1219 
1220 /*
1221  * Execute a TWE_OP_INIT_CONNECTION command.  Return non-zero on error.
1222  * Must be called with interrupts blocked.
1223  */
1224 static int
1225 twe_init_connection(struct twe_softc *sc)
1226 {
1227 	struct twe_ccb *ccb;
1228 	struct twe_cmd *tc;
1229 	int rv;
1230 
1231 	if ((ccb = twe_ccb_alloc(sc, 0)) == NULL)
1232 		return (EAGAIN);
1233 
1234 	/* Build the command. */
1235 	tc = ccb->ccb_cmd;
1236 	tc->tc_size = 3;
1237 	tc->tc_opcode = TWE_OP_INIT_CONNECTION;
1238 	tc->tc_unit = 0;
1239 	tc->tc_count = htole16(TWE_MAX_CMDS);
1240 	tc->tc_args.init_connection.response_queue_pointer = 0;
1241 
1242 	/* Submit the command for immediate execution. */
1243 	rv = twe_ccb_poll(sc, ccb, 5);
1244 	twe_ccb_free(sc, ccb);
1245 	return (rv);
1246 }
1247 
1248 /*
1249  * Poll the controller for completed commands.  Must be called with
1250  * interrupts blocked.
1251  */
1252 static void
1253 twe_poll(struct twe_softc *sc)
1254 {
1255 	struct twe_ccb *ccb;
1256 	int found;
1257 	u_int status, cmdid;
1258 
1259 	found = 0;
1260 
1261 	for (;;) {
1262 		status = twe_inl(sc, TWE_REG_STS);
1263 		twe_status_check(sc, status);
1264 
1265 		if ((status & TWE_STS_RESP_QUEUE_EMPTY))
1266 			break;
1267 
1268 		found = 1;
1269 		cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE);
1270 		cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT;
1271 		if (cmdid >= TWE_MAX_QUEUECNT) {
1272 			aprint_error_dev(&sc->sc_dv, "bad cmdid %d\n", cmdid);
1273 			continue;
1274 		}
1275 
1276 		ccb = sc->sc_ccbs + cmdid;
1277 		if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) {
1278 			printf("%s: CCB for cmdid %d not active\n",
1279 			    device_xname(&sc->sc_dv), cmdid);
1280 			continue;
1281 		}
1282 		ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE;
1283 
1284 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1285 		    (char *)ccb->ccb_cmd - (char *)sc->sc_cmds,
1286 		    sizeof(struct twe_cmd),
1287 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1288 
1289 		/* Pass notification to upper layers. */
1290 		if (ccb->ccb_tx.tx_handler != NULL)
1291 			(*ccb->ccb_tx.tx_handler)(ccb,
1292 			    ccb->ccb_cmd->tc_status != 0 ? EIO : 0);
1293 	}
1294 
1295 	/* If any commands have completed, run the software queue. */
1296 	if (found)
1297 		twe_ccb_enqueue(sc, NULL);
1298 }
1299 
1300 /*
1301  * Wait for `status' to be set in the controller status register.  Return
1302  * zero if found, non-zero if the operation timed out.
1303  */
1304 static int
1305 twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo)
1306 {
1307 
1308 	for (timo *= 10; timo != 0; timo--) {
1309 		if ((twe_inl(sc, TWE_REG_STS) & status) == status)
1310 			break;
1311 		delay(100000);
1312 	}
1313 
1314 	return (timo == 0);
1315 }
1316 
1317 /*
1318  * Clear a PCI parity error.
1319  */
1320 static void
1321 twe_clear_pci_parity_error(struct twe_softc *sc)
1322 {
1323 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PARITY_ERROR);
1324 
1325 	//FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2);
1326 }
1327 
1328 
1329 /*
1330  * Clear a PCI abort.
1331  */
1332 static void
1333 twe_clear_pci_abort(struct twe_softc *sc)
1334 {
1335 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PCI_ABORT);
1336 
1337 	//FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2);
1338 }
1339 
1340 /*
1341  * Complain if the status bits aren't what we expect.
1342  */
1343 static int
1344 twe_status_check(struct twe_softc *sc, u_int status)
1345 {
1346 	int rv;
1347 
1348 	rv = 0;
1349 
1350 	if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) {
1351 		aprint_error_dev(&sc->sc_dv, "missing status bits: 0x%08x\n",
1352 		    status & ~TWE_STS_EXPECTED_BITS);
1353 		rv = -1;
1354 	}
1355 
1356 	if ((status & TWE_STS_UNEXPECTED_BITS) != 0) {
1357 		aprint_error_dev(&sc->sc_dv, "unexpected status bits: 0x%08x\n",
1358 		    status & TWE_STS_UNEXPECTED_BITS);
1359 		rv = -1;
1360 		if (status & TWE_STS_PCI_PARITY_ERROR) {
1361 			aprint_error_dev(&sc->sc_dv, "PCI parity error: Reseat card, move card "
1362 			       "or buggy device present.\n");
1363 			twe_clear_pci_parity_error(sc);
1364 		}
1365 		if (status & TWE_STS_PCI_ABORT) {
1366 			aprint_error_dev(&sc->sc_dv, "PCI abort, clearing.\n");
1367 			twe_clear_pci_abort(sc);
1368 		}
1369 	}
1370 
1371 	return (rv);
1372 }
1373 
1374 /*
1375  * Allocate and initialise a CCB.
1376  */
1377 static inline void
1378 twe_ccb_init(struct twe_softc *sc, struct twe_ccb *ccb, int flags)
1379 {
1380 	struct twe_cmd *tc;
1381 
1382 	ccb->ccb_tx.tx_handler = NULL;
1383 	ccb->ccb_flags = flags;
1384 	tc = ccb->ccb_cmd;
1385 	tc->tc_status = 0;
1386 	tc->tc_flags = 0;
1387 	tc->tc_cmdid = ccb->ccb_cmdid;
1388 }
1389 
1390 struct twe_ccb *
1391 twe_ccb_alloc(struct twe_softc *sc, int flags)
1392 {
1393 	struct twe_ccb *ccb;
1394 	int s;
1395 
1396 	s = splbio();
1397 	if (__predict_false((flags & TWE_CCB_AEN) != 0)) {
1398 		/* Use the reserved CCB. */
1399 		ccb = sc->sc_ccbs;
1400 	} else {
1401 		/* Allocate a CCB and command block. */
1402 		if (__predict_false((ccb =
1403 				SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1404 			splx(s);
1405 			return (NULL);
1406 		}
1407 		SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1408 	}
1409 #ifdef DIAGNOSTIC
1410 	if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0)
1411 		panic("twe_ccb_alloc: got reserved CCB for non-AEN");
1412 	if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1413 		panic("twe_ccb_alloc: CCB %ld already allocated",
1414 		    (long)(ccb - sc->sc_ccbs));
1415 	flags |= TWE_CCB_ALLOCED;
1416 #endif
1417 	splx(s);
1418 
1419 	twe_ccb_init(sc, ccb, flags);
1420 	return (ccb);
1421 }
1422 
1423 struct twe_ccb *
1424 twe_ccb_alloc_wait(struct twe_softc *sc, int flags)
1425 {
1426 	struct twe_ccb *ccb;
1427 	int s;
1428 
1429 	KASSERT((flags & TWE_CCB_AEN) == 0);
1430 
1431 	s = splbio();
1432 	while (__predict_false((ccb =
1433 				SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1434 		sc->sc_flags |= TWEF_WAIT_CCB;
1435 		(void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0);
1436 	}
1437 	SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1438 #ifdef DIAGNOSTIC
1439 	if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1440 		panic("twe_ccb_alloc_wait: CCB %ld already allocated",
1441 		    (long)(ccb - sc->sc_ccbs));
1442 	flags |= TWE_CCB_ALLOCED;
1443 #endif
1444 	splx(s);
1445 
1446 	twe_ccb_init(sc, ccb, flags);
1447 	return (ccb);
1448 }
1449 
1450 /*
1451  * Free a CCB.
1452  */
1453 void
1454 twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb)
1455 {
1456 	int s;
1457 
1458 	s = splbio();
1459 	if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) {
1460 		SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist);
1461 		if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) {
1462 			sc->sc_flags &= ~TWEF_WAIT_CCB;
1463 			wakeup(&sc->sc_ccb_freelist);
1464 		}
1465 	}
1466 	ccb->ccb_flags = 0;
1467 	splx(s);
1468 }
1469 
1470 /*
1471  * Map the specified CCB's command block and data buffer (if any) into
1472  * controller visible space.  Perform DMA synchronisation.
1473  */
1474 int
1475 twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb)
1476 {
1477 	struct twe_cmd *tc;
1478 	int flags, nsegs, i, s, rv, rc;
1479 	void *data;
1480 
1481 	/*
1482 	 * The data as a whole must be 512-byte aligned.
1483 	 */
1484 	if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) {
1485 		s = splvm();
1486 		/* XXX */
1487 		rc = uvm_km_kmem_alloc(kmem_va_arena,
1488 		    ccb->ccb_datasize, (VM_NOSLEEP | VM_INSTANTFIT),
1489 		    (vmem_addr_t *)&ccb->ccb_abuf);
1490 		splx(s);
1491 		data = (void *)ccb->ccb_abuf;
1492 		if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1493 			memcpy(data, ccb->ccb_data, ccb->ccb_datasize);
1494 	} else {
1495 		ccb->ccb_abuf = (vaddr_t)0;
1496 		data = ccb->ccb_data;
1497 	}
1498 
1499 	/*
1500 	 * Map the data buffer into bus space and build the S/G list.
1501 	 */
1502 	rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data,
1503 	    ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1504 	    ((ccb->ccb_flags & TWE_CCB_DATA_IN) ?
1505 	    BUS_DMA_READ : BUS_DMA_WRITE));
1506 	if (rv != 0) {
1507 		if (ccb->ccb_abuf != (vaddr_t)0) {
1508 			s = splvm();
1509 			/* XXX */
1510 			uvm_km_kmem_free(kmem_va_arena, ccb->ccb_abuf,
1511 			    ccb->ccb_datasize);
1512 			splx(s);
1513 		}
1514 		return (rv);
1515 	}
1516 
1517 	nsegs = ccb->ccb_dmamap_xfer->dm_nsegs;
1518 	tc = ccb->ccb_cmd;
1519 	tc->tc_size += 2 * nsegs;
1520 
1521 	/* The location of the S/G list is dependent upon command type. */
1522 	switch (tc->tc_opcode >> 5) {
1523 	case 2:
1524 		for (i = 0; i < nsegs; i++) {
1525 			tc->tc_args.param.sgl[i].tsg_address =
1526 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1527 			tc->tc_args.param.sgl[i].tsg_length =
1528 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1529 		}
1530 		/* XXX Needed? */
1531 		for (; i < TWE_SG_SIZE; i++) {
1532 			tc->tc_args.param.sgl[i].tsg_address = 0;
1533 			tc->tc_args.param.sgl[i].tsg_length = 0;
1534 		}
1535 		break;
1536 	case 3:
1537 		for (i = 0; i < nsegs; i++) {
1538 			tc->tc_args.io.sgl[i].tsg_address =
1539 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1540 			tc->tc_args.io.sgl[i].tsg_length =
1541 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1542 		}
1543 		/* XXX Needed? */
1544 		for (; i < TWE_SG_SIZE; i++) {
1545 			tc->tc_args.io.sgl[i].tsg_address = 0;
1546 			tc->tc_args.io.sgl[i].tsg_length = 0;
1547 		}
1548 		break;
1549 	default:
1550 		/*
1551 		 * In all likelihood, this is a command passed from
1552 		 * management tools in userspace where no S/G list is
1553 		 * necessary because no data is being passed.
1554 		 */
1555 		break;
1556 	}
1557 
1558 	if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1559 		flags = BUS_DMASYNC_PREREAD;
1560 	else
1561 		flags = 0;
1562 	if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1563 		flags |= BUS_DMASYNC_PREWRITE;
1564 
1565 	bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1566 	    ccb->ccb_datasize, flags);
1567 	return (0);
1568 }
1569 
1570 /*
1571  * Unmap the specified CCB's command block and data buffer (if any) and
1572  * perform DMA synchronisation.
1573  */
1574 void
1575 twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb)
1576 {
1577 	int flags, s;
1578 
1579 	if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1580 		flags = BUS_DMASYNC_POSTREAD;
1581 	else
1582 		flags = 0;
1583 	if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1584 		flags |= BUS_DMASYNC_POSTWRITE;
1585 
1586 	bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1587 	    ccb->ccb_datasize, flags);
1588 	bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer);
1589 
1590 	if (ccb->ccb_abuf != (vaddr_t)0) {
1591 		if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1592 			memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf,
1593 			    ccb->ccb_datasize);
1594 		s = splvm();
1595 		/* XXX */
1596 		uvm_km_kmem_free(kmem_va_arena, ccb->ccb_abuf,
1597 		    ccb->ccb_datasize);
1598 		splx(s);
1599 	}
1600 }
1601 
1602 /*
1603  * Submit a command to the controller and poll on completion.  Return
1604  * non-zero on timeout (but don't check status, as some command types don't
1605  * return status).  Must be called with interrupts blocked.
1606  */
1607 int
1608 twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo)
1609 {
1610 	int rv;
1611 
1612 	if ((rv = twe_ccb_submit(sc, ccb)) != 0)
1613 		return (rv);
1614 
1615 	for (timo *= 1000; timo != 0; timo--) {
1616 		twe_poll(sc);
1617 		if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0)
1618 			break;
1619 		DELAY(100);
1620 	}
1621 
1622 	return (timo == 0);
1623 }
1624 
1625 /*
1626  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
1627  * the order that they were enqueued and try to submit their command blocks
1628  * to the controller for execution.
1629  */
1630 void
1631 twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb)
1632 {
1633 	int s;
1634 
1635 	s = splbio();
1636 
1637 	if (ccb != NULL)
1638 		SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq);
1639 
1640 	while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) {
1641 		if (twe_ccb_submit(sc, ccb))
1642 			break;
1643 		SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq);
1644 	}
1645 
1646 	splx(s);
1647 }
1648 
1649 /*
1650  * Submit the command block associated with the specified CCB to the
1651  * controller for execution.  Must be called with interrupts blocked.
1652  */
1653 int
1654 twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb)
1655 {
1656 	bus_addr_t pa;
1657 	int rv;
1658 	u_int status;
1659 
1660 	/* Check to see if we can post a command. */
1661 	status = twe_inl(sc, TWE_REG_STS);
1662 	twe_status_check(sc, status);
1663 
1664 	if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) {
1665 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1666 		    (char *)ccb->ccb_cmd - (char *)sc->sc_cmds,
1667 		    sizeof(struct twe_cmd),
1668 		    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1669 #ifdef DIAGNOSTIC
1670 		if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0)
1671 			panic("%s: CCB %ld not ALLOCED\n",
1672 			    device_xname(&sc->sc_dv), (long)(ccb - sc->sc_ccbs));
1673 #endif
1674 		ccb->ccb_flags |= TWE_CCB_ACTIVE;
1675 		pa = sc->sc_cmds_paddr +
1676 		    ccb->ccb_cmdid * sizeof(struct twe_cmd);
1677 		twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa);
1678 		rv = 0;
1679 	} else
1680 		rv = EBUSY;
1681 
1682 	return (rv);
1683 }
1684 
1685 
1686 /*
1687  * Accept an open operation on the control device.
1688  */
1689 static int
1690 tweopen(dev_t dev, int flag, int mode, struct lwp *l)
1691 {
1692 	struct twe_softc *twe;
1693 
1694 	if ((twe = device_lookup_private(&twe_cd, minor(dev))) == NULL)
1695 		return (ENXIO);
1696 	if ((twe->sc_flags & TWEF_OPEN) != 0)
1697 		return (EBUSY);
1698 
1699 	twe->sc_flags |= TWEF_OPEN;
1700 	return (0);
1701 }
1702 
1703 /*
1704  * Accept the last close on the control device.
1705  */
1706 static int
1707 tweclose(dev_t dev, int flag, int mode,
1708     struct lwp *l)
1709 {
1710 	struct twe_softc *twe;
1711 
1712 	twe = device_lookup_private(&twe_cd, minor(dev));
1713 	twe->sc_flags &= ~TWEF_OPEN;
1714 	return (0);
1715 }
1716 
1717 void
1718 twe_ccb_wait_handler(struct twe_ccb *ccb, int error)
1719 {
1720 
1721 	/* Just wake up the sleeper. */
1722 	wakeup(ccb);
1723 }
1724 
1725 /*
1726  * Handle control operations.
1727  */
1728 static int
1729 tweioctl(dev_t dev, u_long cmd, void *data, int flag,
1730     struct lwp *l)
1731 {
1732 	struct twe_softc *twe;
1733 	struct twe_ccb *ccb;
1734 	struct twe_param *param;
1735 	struct twe_usercommand *tu;
1736 	struct twe_paramcommand *tp;
1737 	struct twe_drivecommand *td;
1738 	void *pdata = NULL;
1739 	int s, error = 0;
1740 	u_int8_t cmdid;
1741 
1742 	twe = device_lookup_private(&twe_cd, minor(dev));
1743 	tu = (struct twe_usercommand *)data;
1744 	tp = (struct twe_paramcommand *)data;
1745 	td = (struct twe_drivecommand *)data;
1746 
1747 	/* This is intended to be compatible with the FreeBSD interface. */
1748 	switch (cmd) {
1749 	case TWEIO_COMMAND:
1750 		error = kauth_authorize_device_passthru(l->l_cred, dev,
1751 		    KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
1752 		if (error)
1753 			return (error);
1754 
1755 		/* XXX mutex */
1756 		if (tu->tu_size > 0) {
1757 			/*
1758 			 * XXX Handle > TWE_SECTOR_SIZE?  Let's see if
1759 			 * it's really necessary, first.
1760 			 */
1761 			if (tu->tu_size > TWE_SECTOR_SIZE) {
1762 #ifdef TWE_DEBUG
1763 				printf("%s: TWEIO_COMMAND: tu_size = %zu\n",
1764 				    device_xname(&twe->sc_dv), tu->tu_size);
1765 #endif
1766 				return EINVAL;
1767 			}
1768 			pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK);
1769 			error = copyin(tu->tu_data, pdata, tu->tu_size);
1770 			if (error != 0)
1771 				goto done;
1772 			ccb = twe_ccb_alloc_wait(twe,
1773 			    TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1774 			KASSERT(ccb != NULL);
1775 			ccb->ccb_data = pdata;
1776 			ccb->ccb_datasize = TWE_SECTOR_SIZE;
1777 		} else {
1778 			ccb = twe_ccb_alloc_wait(twe, 0);
1779 			KASSERT(ccb != NULL);
1780 		}
1781 
1782 		ccb->ccb_tx.tx_handler = twe_ccb_wait_handler;
1783 		ccb->ccb_tx.tx_context = NULL;
1784 		ccb->ccb_tx.tx_dv = &twe->sc_dv;
1785 
1786 		cmdid = ccb->ccb_cmdid;
1787 		memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd));
1788 		ccb->ccb_cmd->tc_cmdid = cmdid;
1789 
1790 		/* Map the transfer. */
1791 		if ((error = twe_ccb_map(twe, ccb)) != 0) {
1792 			twe_ccb_free(twe, ccb);
1793 			goto done;
1794 		}
1795 
1796 		/* Submit the command and wait up to 1 minute. */
1797 		error = 0;
1798 		twe_ccb_enqueue(twe, ccb);
1799 		s = splbio();
1800 		while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0)
1801 			if ((error = tsleep(ccb, PRIBIO, "tweioctl",
1802 					    60 * hz)) != 0)
1803 				break;
1804 		splx(s);
1805 
1806 		/* Copy the command back to the ioctl argument. */
1807 		memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd));
1808 #ifdef TWE_DEBUG
1809 		printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, "
1810 		    "tc_status = 0x%02x\n", device_xname(&twe->sc_dv),
1811 		    tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status);
1812 #endif
1813 
1814 		s = splbio();
1815 		twe_ccb_free(twe, ccb);
1816 		splx(s);
1817 
1818 		if (tu->tu_size > 0)
1819 			error = copyout(pdata, tu->tu_data, tu->tu_size);
1820 		goto done;
1821 
1822 	case TWEIO_STATS:
1823 		return (ENOENT);
1824 
1825 	case TWEIO_AEN_POLL:
1826 		s = splbio();
1827 		*(u_int *)data = twe_aen_dequeue(twe);
1828 		splx(s);
1829 		return (0);
1830 
1831 	case TWEIO_AEN_WAIT:
1832 		s = splbio();
1833 		while ((*(u_int *)data =
1834 		    twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) {
1835 			twe->sc_flags |= TWEF_AENQ_WAIT;
1836 			error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH,
1837 			    "tweaen", 0);
1838 			if (error == EINTR) {
1839 				splx(s);
1840 				return (error);
1841 			}
1842 		}
1843 		splx(s);
1844 		return (0);
1845 
1846 	case TWEIO_GET_PARAM:
1847 		error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id,
1848 		    tp->tp_size, 0, &param);
1849 		if (error != 0)
1850 			return (error);
1851 		if (param->tp_param_size > tp->tp_size) {
1852 			error = EFAULT;
1853 			goto done;
1854 		}
1855 		error = copyout(param->tp_data, tp->tp_data,
1856 		    param->tp_param_size);
1857 		free(param, M_DEVBUF);
1858 		goto done;
1859 
1860 	case TWEIO_SET_PARAM:
1861 		pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK);
1862 		if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0)
1863 			goto done;
1864 		error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id,
1865 		    tp->tp_size, pdata);
1866 		goto done;
1867 
1868 	case TWEIO_RESET:
1869 		s = splbio();
1870 		twe_reset(twe);
1871 		splx(s);
1872 		return (0);
1873 
1874 	case TWEIO_ADD_UNIT:
1875 		/* XXX mutex */
1876 		return (twe_add_unit(twe, td->td_unit));
1877 
1878 	case TWEIO_DEL_UNIT:
1879 		/* XXX mutex */
1880 		return (twe_del_unit(twe, td->td_unit));
1881 
1882 	default:
1883 		return EINVAL;
1884 	}
1885 done:
1886 	if (pdata)
1887 		free(pdata, M_DEVBUF);
1888 	return error;
1889 }
1890 
1891 const struct cdevsw twe_cdevsw = {
1892 	tweopen, tweclose, noread, nowrite, tweioctl,
1893 	    nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1894 };
1895 
1896 /*
1897  * Print some information about the controller
1898  */
1899 static void
1900 twe_describe_controller(struct twe_softc *sc)
1901 {
1902 	struct twe_param *p[6];
1903 	int i, rv = 0;
1904 	uint32_t dsize;
1905 	uint8_t ports;
1906 
1907 	ports = 0;
1908 
1909 	/* get the port count */
1910 	rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER,
1911 		TWE_PARAM_CONTROLLER_PortCount, &ports);
1912 
1913 	/* get version strings */
1914 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon,
1915 		16, NULL, &p[0]);
1916 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW,
1917 		16, NULL, &p[1]);
1918 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS,
1919 		16, NULL, &p[2]);
1920 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB,
1921 		8, NULL, &p[3]);
1922 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA,
1923 		8, NULL, &p[4]);
1924 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI,
1925 		8, NULL, &p[5]);
1926 
1927 	if (rv) {
1928 		/* some error occurred */
1929 		aprint_error_dev(&sc->sc_dv, "failed to fetch version information\n");
1930 		return;
1931 	}
1932 
1933 	aprint_normal_dev(&sc->sc_dv, "%d ports, Firmware %.16s, BIOS %.16s\n",
1934 		ports, p[1]->tp_data, p[2]->tp_data);
1935 
1936 	aprint_verbose_dev(&sc->sc_dv, "Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n",
1937 		p[0]->tp_data, p[3]->tp_data,
1938 		p[4]->tp_data, p[5]->tp_data);
1939 
1940 	free(p[0], M_DEVBUF);
1941 	free(p[1], M_DEVBUF);
1942 	free(p[2], M_DEVBUF);
1943 	free(p[3], M_DEVBUF);
1944 	free(p[4], M_DEVBUF);
1945 	free(p[5], M_DEVBUF);
1946 
1947 	rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY,
1948 	    TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]);
1949 	if (rv) {
1950 		aprint_error_dev(&sc->sc_dv, "failed to get drive status summary\n");
1951 		return;
1952 	}
1953 	for (i = 0; i < ports; i++) {
1954 		if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present)
1955 			continue;
1956 		rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i,
1957 		    TWE_PARAM_DRIVEINFO_Size, &dsize);
1958 		if (rv) {
1959 			aprint_error_dev(&sc->sc_dv,
1960 			    "unable to get drive size for port %d\n", i);
1961 			continue;
1962 		}
1963 		rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i,
1964 		    TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]);
1965 		if (rv) {
1966 			aprint_error_dev(&sc->sc_dv,
1967 			    "unable to get drive model for port %d\n", i);
1968 			continue;
1969 		}
1970 		aprint_verbose_dev(&sc->sc_dv, "port %d: %.40s %d MB\n",
1971 		    i, p[1]->tp_data, dsize / 2048);
1972 		free(p[1], M_DEVBUF);
1973 	}
1974 	free(p[0], M_DEVBUF);
1975 }
1976