xref: /netbsd-src/sys/dev/pci/twe.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: twe.c,v 1.60 2004/09/23 01:16:34 heas Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 2000 Michael Smith
41  * Copyright (c) 2000 BSDi
42  * All rights reserved.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp
66  */
67 
68 /*
69  * Driver for the 3ware Escalade family of RAID controllers.
70  */
71 
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.60 2004/09/23 01:16:34 heas Exp $");
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/kernel.h>
78 #include <sys/device.h>
79 #include <sys/queue.h>
80 #include <sys/proc.h>
81 #include <sys/buf.h>
82 #include <sys/endian.h>
83 #include <sys/malloc.h>
84 #include <sys/conf.h>
85 #include <sys/disk.h>
86 #include <sys/syslog.h>
87 
88 #include <uvm/uvm_extern.h>
89 
90 #include <machine/bswap.h>
91 #include <machine/bus.h>
92 
93 #include <dev/pci/pcireg.h>
94 #include <dev/pci/pcivar.h>
95 #include <dev/pci/pcidevs.h>
96 #include <dev/pci/twereg.h>
97 #include <dev/pci/twevar.h>
98 #include <dev/pci/tweio.h>
99 
100 #include "locators.h"
101 
102 #define	PCI_CBIO	0x10
103 
104 static int	twe_aen_get(struct twe_softc *, uint16_t *);
105 static void	twe_aen_handler(struct twe_ccb *, int);
106 static void	twe_aen_enqueue(struct twe_softc *sc, uint16_t, int);
107 static uint16_t	twe_aen_dequeue(struct twe_softc *);
108 
109 static void	twe_attach(struct device *, struct device *, void *);
110 static int	twe_init_connection(struct twe_softc *);
111 static int	twe_intr(void *);
112 static int	twe_match(struct device *, struct cfdata *, void *);
113 static int	twe_param_set(struct twe_softc *, int, int, size_t, void *);
114 static void	twe_poll(struct twe_softc *);
115 static int	twe_print(void *, const char *);
116 static int	twe_reset(struct twe_softc *);
117 static int	twe_submatch(struct device *, struct cfdata *,
118 			     const locdesc_t *, void *);
119 static int	twe_status_check(struct twe_softc *, u_int);
120 static int	twe_status_wait(struct twe_softc *, u_int, int);
121 static void	twe_describe_controller(struct twe_softc *);
122 
123 static int	twe_add_unit(struct twe_softc *, int);
124 static int	twe_del_unit(struct twe_softc *, int);
125 
126 static inline u_int32_t	twe_inl(struct twe_softc *, int);
127 static inline void twe_outl(struct twe_softc *, int, u_int32_t);
128 
129 dev_type_open(tweopen);
130 dev_type_close(tweclose);
131 dev_type_ioctl(tweioctl);
132 
133 const struct cdevsw twe_cdevsw = {
134 	tweopen, tweclose, noread, nowrite, tweioctl,
135 	nostop, notty, nopoll, nommap,
136 };
137 
138 extern struct	cfdriver twe_cd;
139 
140 CFATTACH_DECL(twe, sizeof(struct twe_softc),
141     twe_match, twe_attach, NULL, NULL);
142 
143 /*
144  * Tables to convert numeric codes to strings.
145  */
146 const struct twe_code_table twe_table_status[] = {
147 	{ 0x00,	"successful completion" },
148 
149 	/* info */
150 	{ 0x42,	"command in progress" },
151 	{ 0x6c,	"retrying interface CRC error from UDMA command" },
152 
153 	/* warning */
154 	{ 0x81,	"redundant/inconsequential request ignored" },
155 	{ 0x8e,	"failed to write zeroes to LBA 0" },
156 	{ 0x8f,	"failed to profile TwinStor zones" },
157 
158 	/* fatal */
159 	{ 0xc1,	"aborted due to system command or reconfiguration" },
160 	{ 0xc4,	"aborted" },
161 	{ 0xc5,	"access error" },
162 	{ 0xc6,	"access violation" },
163 	{ 0xc7,	"device failure" },	/* high byte may be port # */
164 	{ 0xc8,	"controller error" },
165 	{ 0xc9,	"timed out" },
166 	{ 0xcb,	"invalid unit number" },
167 	{ 0xcf,	"unit not available" },
168 	{ 0xd2,	"undefined opcode" },
169 	{ 0xdb,	"request incompatible with unit" },
170 	{ 0xdc,	"invalid request" },
171 	{ 0xff,	"firmware error, reset requested" },
172 
173 	{ 0,	NULL }
174 };
175 
176 const struct twe_code_table twe_table_unitstate[] = {
177 	{ TWE_PARAM_UNITSTATUS_Normal,		"Normal" },
178 	{ TWE_PARAM_UNITSTATUS_Initialising,	"Initializing" },
179 	{ TWE_PARAM_UNITSTATUS_Degraded,	"Degraded" },
180 	{ TWE_PARAM_UNITSTATUS_Rebuilding,	"Rebuilding" },
181 	{ TWE_PARAM_UNITSTATUS_Verifying,	"Verifying" },
182 	{ TWE_PARAM_UNITSTATUS_Corrupt,		"Corrupt" },
183 	{ TWE_PARAM_UNITSTATUS_Missing,		"Missing" },
184 
185 	{ 0,					NULL }
186 };
187 
188 const struct twe_code_table twe_table_unittype[] = {
189 	/* array descriptor configuration */
190 	{ TWE_AD_CONFIG_RAID0,			"RAID0" },
191 	{ TWE_AD_CONFIG_RAID1,			"RAID1" },
192 	{ TWE_AD_CONFIG_TwinStor,		"TwinStor" },
193 	{ TWE_AD_CONFIG_RAID5,			"RAID5" },
194 	{ TWE_AD_CONFIG_RAID10,			"RAID10" },
195 
196 	{ 0,					NULL }
197 };
198 
199 const struct twe_code_table twe_table_stripedepth[] = {
200 	{ TWE_AD_STRIPE_4k,			"4K" },
201 	{ TWE_AD_STRIPE_8k,			"8K" },
202 	{ TWE_AD_STRIPE_16k,			"16K" },
203 	{ TWE_AD_STRIPE_32k,			"32K" },
204 	{ TWE_AD_STRIPE_64k,			"64K" },
205 
206 	{ 0,					NULL }
207 };
208 
209 /*
210  * Asynchronous event notification messages are qualified:
211  *	a - not unit/port specific
212  *	u - unit specific
213  *	p - port specific
214  *
215  * They are further qualified with a severity:
216  *	E - LOG_EMERG
217  *	a - LOG_ALERT
218  *	c - LOG_CRIT
219  *	e - LOG_ERR
220  *	w - LOG_WARNING
221  *	n - LOG_NOTICE
222  *	i - LOG_INFO
223  *	d - LOG_DEBUG
224  *	blank - just use printf
225  */
226 const struct twe_code_table twe_table_aen[] = {
227 	{ 0x00,	"a  queue empty" },
228 	{ 0x01,	"a  soft reset" },
229 	{ 0x02,	"uc degraded mode" },
230 	{ 0x03,	"aa controller error" },
231 	{ 0x04,	"uE rebuild fail" },
232 	{ 0x05,	"un rebuild done" },
233 	{ 0x06,	"ue incomplete unit" },
234 	{ 0x07,	"un initialization done" },
235 	{ 0x08,	"uw unclean shutdown detected" },
236 	{ 0x09,	"pe drive timeout" },
237 	{ 0x0a,	"pc drive error" },
238 	{ 0x0b,	"un rebuild started" },
239 	{ 0x0c,	"un initialization started" },
240 	{ 0x0d,	"ui logical unit deleted" },
241 	{ 0x0f,	"pc SMART threshold exceeded" },
242 	{ 0x15,	"a  table undefined" },	/* XXX: Not in FreeBSD's table */
243 	{ 0x21,	"pe ATA UDMA downgrade" },
244 	{ 0x22,	"pi ATA UDMA upgrade" },
245 	{ 0x23,	"pw sector repair occurred" },
246 	{ 0x24,	"aa SBUF integrity check failure" },
247 	{ 0x25,	"pa lost cached write" },
248 	{ 0x26,	"pa drive ECC error detected" },
249 	{ 0x27,	"pe DCB checksum error" },
250 	{ 0x28,	"pn DCB unsupported version" },
251 	{ 0x29,	"ui verify started" },
252 	{ 0x2a,	"ua verify failed" },
253 	{ 0x2b,	"ui verify complete" },
254 	{ 0x2c,	"pw overwrote bad sector during rebuild" },
255 	{ 0x2d,	"pa encountered bad sector during rebuild" },
256 	{ 0x2e,	"pe replacement drive too small" },
257 	{ 0x2f,	"ue array not previously initialized" },
258 	{ 0x30,	"p  drive not supported" },
259 	{ 0xff,	"a  aen queue full" },
260 
261 	{ 0,	NULL },
262 };
263 
264 const char *
265 twe_describe_code(const struct twe_code_table *table, uint32_t code)
266 {
267 
268 	for (; table->string != NULL; table++) {
269 		if (table->code == code)
270 			return (table->string);
271 	}
272 	return (NULL);
273 }
274 
275 static inline u_int32_t
276 twe_inl(struct twe_softc *sc, int off)
277 {
278 
279 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
280 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
281 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off));
282 }
283 
284 static inline void
285 twe_outl(struct twe_softc *sc, int off, u_int32_t val)
286 {
287 
288 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
289 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
290 	    BUS_SPACE_BARRIER_WRITE);
291 }
292 
293 /*
294  * Match a supported board.
295  */
296 static int
297 twe_match(struct device *parent, struct cfdata *cfdata, void *aux)
298 {
299 	struct pci_attach_args *pa;
300 
301 	pa = aux;
302 
303 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE &&
304 	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE ||
305 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC));
306 }
307 
308 /*
309  * Attach a supported board.
310  *
311  * XXX This doesn't fail gracefully.
312  */
313 static void
314 twe_attach(struct device *parent, struct device *self, void *aux)
315 {
316 	struct pci_attach_args *pa;
317 	struct twe_softc *sc;
318 	pci_chipset_tag_t pc;
319 	pci_intr_handle_t ih;
320 	pcireg_t csr;
321 	const char *intrstr;
322 	int s, size, i, rv, rseg;
323 	size_t max_segs, max_xfer;
324 	bus_dma_segment_t seg;
325 	struct twe_cmd *tc;
326 	struct twe_ccb *ccb;
327 
328 	sc = (struct twe_softc *)self;
329 	pa = aux;
330 	pc = pa->pa_pc;
331 	sc->sc_dmat = pa->pa_dmat;
332 	SIMPLEQ_INIT(&sc->sc_ccb_queue);
333 	SLIST_INIT(&sc->sc_ccb_freelist);
334 
335 	aprint_naive(": RAID controller\n");
336 	aprint_normal(": 3ware Escalade\n");
337 
338 	ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_NOWAIT);
339 	if (ccb == NULL) {
340 		aprint_error("%s: unable to allocate memory for ccbs\n",
341 		    sc->sc_dv.dv_xname);
342 		return;
343 	}
344 
345 	if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
346 	    &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
347 		aprint_error("%s: can't map i/o space\n", sc->sc_dv.dv_xname);
348 		return;
349 	}
350 
351 	/* Enable the device. */
352 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
353 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
354 	    csr | PCI_COMMAND_MASTER_ENABLE);
355 
356 	/* Map and establish the interrupt. */
357 	if (pci_intr_map(pa, &ih)) {
358 		aprint_error("%s: can't map interrupt\n", sc->sc_dv.dv_xname);
359 		return;
360 	}
361 
362 	intrstr = pci_intr_string(pc, ih);
363 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_BIO, twe_intr, sc);
364 	if (sc->sc_ih == NULL) {
365 		aprint_error("%s: can't establish interrupt%s%s\n",
366 			sc->sc_dv.dv_xname,
367 			(intrstr) ? " at " : "",
368 			(intrstr) ? intrstr : "");
369 		return;
370 	}
371 
372 	if (intrstr != NULL)
373 		aprint_normal("%s: interrupting at %s\n",
374 			sc->sc_dv.dv_xname, intrstr);
375 
376 	/*
377 	 * Allocate and initialise the command blocks and CCBs.
378 	 */
379         size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT;
380 
381 	if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
382 	    &rseg, BUS_DMA_NOWAIT)) != 0) {
383 		aprint_error("%s: unable to allocate commands, rv = %d\n",
384 		    sc->sc_dv.dv_xname, rv);
385 		return;
386 	}
387 
388 	if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size,
389 	    (caddr_t *)&sc->sc_cmds,
390 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
391 		aprint_error("%s: unable to map commands, rv = %d\n",
392 		    sc->sc_dv.dv_xname, rv);
393 		return;
394 	}
395 
396 	if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0,
397 	    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
398 		aprint_error("%s: unable to create command DMA map, rv = %d\n",
399 		    sc->sc_dv.dv_xname, rv);
400 		return;
401 	}
402 
403 	if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds,
404 	    size, NULL, BUS_DMA_NOWAIT)) != 0) {
405 		aprint_error("%s: unable to load command DMA map, rv = %d\n",
406 		    sc->sc_dv.dv_xname, rv);
407 		return;
408 	}
409 
410 	sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr;
411 	memset(sc->sc_cmds, 0, size);
412 
413 	sc->sc_ccbs = ccb;
414 	tc = (struct twe_cmd *)sc->sc_cmds;
415 	max_segs = twe_get_maxsegs();
416 	max_xfer = twe_get_maxxfer(max_segs);
417 
418 	for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) {
419 		ccb->ccb_cmd = tc;
420 		ccb->ccb_cmdid = i;
421 		ccb->ccb_flags = 0;
422 		rv = bus_dmamap_create(sc->sc_dmat, max_xfer,
423 		    max_segs, PAGE_SIZE, 0,
424 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
425 		    &ccb->ccb_dmamap_xfer);
426 		if (rv != 0) {
427 			aprint_error("%s: can't create dmamap, rv = %d\n",
428 			    sc->sc_dv.dv_xname, rv);
429 			return;
430 		}
431 
432 		/* Save the first CCB for AEN retrieval. */
433 		if (i != 0)
434 			SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb,
435 			    ccb_chain.slist);
436 	}
437 
438 	/* Wait for the controller to become ready. */
439 	if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) {
440 		aprint_error("%s: microcontroller not ready\n",
441 			sc->sc_dv.dv_xname);
442 		return;
443 	}
444 
445 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS);
446 
447 	/* Reset the controller. */
448 	s = splbio();
449 	rv = twe_reset(sc);
450 	splx(s);
451 	if (rv) {
452 		aprint_error("%s: reset failed\n", sc->sc_dv.dv_xname);
453 		return;
454 	}
455 
456 	/* Initialise connection with controller. */
457 	twe_init_connection(sc);
458 
459 	twe_describe_controller(sc);
460 
461 	/* Find and attach RAID array units. */
462 	sc->sc_nunits = 0;
463 	for (i = 0; i < TWE_MAX_UNITS; i++)
464 		(void) twe_add_unit(sc, i);
465 
466 	/* ...and finally, enable interrupts. */
467 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR |
468 	    TWE_CTL_UNMASK_RESP_INTR |
469 	    TWE_CTL_ENABLE_INTRS);
470 }
471 
472 void
473 twe_register_callbacks(struct twe_softc *sc, int unit,
474     const struct twe_callbacks *tcb)
475 {
476 
477 	sc->sc_units[unit].td_callbacks = tcb;
478 }
479 
480 static void
481 twe_recompute_openings(struct twe_softc *sc)
482 {
483 	struct twe_drive *td;
484 	int unit, openings;
485 
486 	if (sc->sc_nunits != 0)
487 		openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits;
488 	else
489 		openings = 0;
490 	if (openings == sc->sc_openings)
491 		return;
492 	sc->sc_openings = openings;
493 
494 #ifdef TWE_DEBUG
495 	printf("%s: %d array%s, %d openings per array\n",
496 	    sc->sc_dv.dv_xname, sc->sc_nunits,
497 	    sc->sc_nunits == 1 ? "" : "s", sc->sc_openings);
498 #endif
499 
500 	for (unit = 0; unit < TWE_MAX_UNITS; unit++) {
501 		td = &sc->sc_units[unit];
502 		if (td->td_dev != NULL)
503 			(*td->td_callbacks->tcb_openings)(td->td_dev,
504 			    sc->sc_openings);
505 	}
506 }
507 
508 static int
509 twe_add_unit(struct twe_softc *sc, int unit)
510 {
511 	struct twe_param *dtp, *atp;
512 	struct twe_array_descriptor *ad;
513 	struct twe_drive *td;
514 	struct twe_attach_args twea;
515 	uint32_t newsize;
516 	int rv;
517 	uint16_t dsize;
518 	uint8_t newtype, newstripe;
519 	int help[2];
520 	locdesc_t *ldesc = (void *)help; /* XXX */
521 
522 	if (unit < 0 || unit >= TWE_MAX_UNITS)
523 		return (EINVAL);
524 
525 	/* Find attached units. */
526 	rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY,
527 	    TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp);
528 	if (rv != 0) {
529 		aprint_error("%s: error %d fetching unit summary\n",
530 		    sc->sc_dv.dv_xname, rv);
531 		return (rv);
532 	}
533 
534 	/* For each detected unit, collect size and store in an array. */
535 	td = &sc->sc_units[unit];
536 
537 	/* Unit present? */
538 	if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) {
539 		/*
540 		 * XXX Should we check to see if a device has been
541 		 * XXX attached at this index and detach it if it
542 		 * XXX has?  ("rescan" semantics)
543 		 */
544 		rv = 0;
545 		goto out;
546    	}
547 
548 	rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit,
549 	    TWE_PARAM_UNITINFO_DescriptorSize, &dsize);
550 	if (rv != 0) {
551 		aprint_error("%s: error %d fetching descriptor size "
552 		    "for unit %d\n", sc->sc_dv.dv_xname, rv, unit);
553 		goto out;
554 	}
555 
556 	rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit,
557 	    TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp);
558 	if (rv != 0) {
559 		aprint_error("%s: error %d fetching array descriptor "
560 		    "for unit %d\n", sc->sc_dv.dv_xname, rv, unit);
561 		goto out;
562 	}
563 
564 	ad = (struct twe_array_descriptor *)atp->tp_data;
565 	newtype = ad->configuration;
566 	newstripe = ad->stripe_size;
567 	free(atp, M_DEVBUF);
568 
569 	rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit,
570 	    TWE_PARAM_UNITINFO_Capacity, &newsize);
571 	if (rv != 0) {
572 		aprint_error(
573 		    "%s: error %d fetching capacity for unit %d\n",
574 		    sc->sc_dv.dv_xname, rv, unit);
575 		goto out;
576 	}
577 
578 	/*
579 	 * Have a device, so we need to attach it.  If there is currently
580 	 * something sitting at the slot, and the parameters are different,
581 	 * then we detach the old device before attaching the new one.
582 	 */
583 	if (td->td_dev != NULL &&
584 	    td->td_size == newsize &&
585 	    td->td_type == newtype &&
586 	    td->td_stripe == newstripe) {
587 		/* Same as the old device; just keep using it. */
588 		rv = 0;
589 		goto out;
590 	} else if (td->td_dev != NULL) {
591 		/* Detach the old device first. */
592 		(void) config_detach(td->td_dev, DETACH_FORCE);
593 		td->td_dev = NULL;
594 	} else if (td->td_size == 0)
595 		sc->sc_nunits++;
596 
597 	/*
598 	 * Committed to the new array unit; assign its parameters and
599 	 * recompute the number of available command openings.
600 	 */
601 	td->td_size = newsize;
602 	td->td_type = newtype;
603 	td->td_stripe = newstripe;
604 	twe_recompute_openings(sc);
605 
606 	twea.twea_unit = unit;
607 
608 	ldesc->len = 1;
609 	ldesc->locs[TWECF_UNIT] = unit;
610 
611 	td->td_dev = config_found_sm_loc(&sc->sc_dv, "twe", NULL, &twea,
612 					 twe_print, twe_submatch);
613 
614 	rv = 0;
615  out:
616 	free(dtp, M_DEVBUF);
617 	return (rv);
618 }
619 
620 static int
621 twe_del_unit(struct twe_softc *sc, int unit)
622 {
623 	struct twe_drive *td;
624 
625 	if (unit < 0 || unit >= TWE_MAX_UNITS)
626 		return (EINVAL);
627 
628 	td = &sc->sc_units[unit];
629 	if (td->td_size != 0)
630 		sc->sc_nunits--;
631 	td->td_size = 0;
632 	td->td_type = 0;
633 	td->td_stripe = 0;
634 	if (td->td_dev != NULL) {
635 		(void) config_detach(td->td_dev, DETACH_FORCE);
636 		td->td_dev = NULL;
637 	}
638 	twe_recompute_openings(sc);
639 	return (0);
640 }
641 
642 /*
643  * Reset the controller.
644  * MUST BE CALLED AT splbio()!
645  */
646 static int
647 twe_reset(struct twe_softc *sc)
648 {
649 	uint16_t aen;
650 	u_int status;
651 	volatile u_int32_t junk;
652 	int got, rv;
653 
654 	/* Issue a soft reset. */
655 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET |
656 	    TWE_CTL_CLEAR_HOST_INTR |
657 	    TWE_CTL_CLEAR_ATTN_INTR |
658 	    TWE_CTL_MASK_CMD_INTR |
659 	    TWE_CTL_MASK_RESP_INTR |
660 	    TWE_CTL_CLEAR_ERROR_STS |
661 	    TWE_CTL_DISABLE_INTRS);
662 
663 	/* Wait for attention... */
664 	if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) {
665 		printf("%s: timeout waiting for attention interrupt\n",
666 		    sc->sc_dv.dv_xname);
667 		return (-1);
668 	}
669 
670 	/* ...and ACK it. */
671 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
672 
673 	/*
674 	 * Pull AENs out of the controller; look for a soft reset AEN.
675 	 * Open code this, since we want to detect reset even if the
676 	 * queue for management tools is full.
677 	 *
678 	 * Note that since:
679 	 *	- interrupts are blocked
680 	 *	- we have reset the controller
681 	 *	- acknowledged the pending ATTENTION
682 	 * that there is no way a pending asynchronous AEN fetch would
683 	 * finish, so clear the flag.
684 	 */
685 	sc->sc_flags &= ~TWEF_AEN;
686 	for (got = 0;;) {
687 		rv = twe_aen_get(sc, &aen);
688 		if (rv != 0)
689 			printf("%s: error %d while draining event queue\n",
690 			    sc->sc_dv.dv_xname, rv);
691 		if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY)
692 			break;
693 		if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET)
694 			got = 1;
695 		twe_aen_enqueue(sc, aen, 1);
696 	}
697 
698 	if (!got) {
699 		printf("%s: reset not reported\n", sc->sc_dv.dv_xname);
700 		return (-1);
701 	}
702 
703 	/* Check controller status. */
704 	status = twe_inl(sc, TWE_REG_STS);
705 	if (twe_status_check(sc, status)) {
706 		printf("%s: controller errors detected\n",
707 		    sc->sc_dv.dv_xname);
708 		return (-1);
709 	}
710 
711 	/* Drain the response queue. */
712 	for (;;) {
713 		status = twe_inl(sc, TWE_REG_STS);
714 		if (twe_status_check(sc, status) != 0) {
715 			printf("%s: can't drain response queue\n",
716 			    sc->sc_dv.dv_xname);
717 			return (-1);
718 		}
719 		if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0)
720 			break;
721 		junk = twe_inl(sc, TWE_REG_RESP_QUEUE);
722 	}
723 
724 	return (0);
725 }
726 
727 /*
728  * Print autoconfiguration message for a sub-device.
729  */
730 static int
731 twe_print(void *aux, const char *pnp)
732 {
733 	struct twe_attach_args *twea;
734 
735 	twea = aux;
736 
737 	if (pnp != NULL)
738 		aprint_normal("block device at %s", pnp);
739 	aprint_normal(" unit %d", twea->twea_unit);
740 	return (UNCONF);
741 }
742 
743 /*
744  * Match a sub-device.
745  */
746 static int
747 twe_submatch(struct device *parent, struct cfdata *cf,
748 	     const locdesc_t *ldesc, void *aux)
749 {
750 
751 	if (cf->cf_loc[TWECF_UNIT] != TWECF_UNIT_DEFAULT &&
752 	    cf->cf_loc[TWECF_UNIT] != ldesc->locs[TWECF_UNIT])
753 		return (0);
754 
755 	return (config_match(parent, cf, aux));
756 }
757 
758 /*
759  * Interrupt service routine.
760  */
761 static int
762 twe_intr(void *arg)
763 {
764 	struct twe_softc *sc;
765 	u_int status;
766 	int caught, rv;
767 
768 	sc = arg;
769 	caught = 0;
770 	status = twe_inl(sc, TWE_REG_STS);
771 	twe_status_check(sc, status);
772 
773 	/* Host interrupts - purpose unknown. */
774 	if ((status & TWE_STS_HOST_INTR) != 0) {
775 #ifdef DEBUG
776 		printf("%s: host interrupt\n", sc->sc_dv.dv_xname);
777 #endif
778 		twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR);
779 		caught = 1;
780 	}
781 
782 	/*
783 	 * Attention interrupts, signalled when a controller or child device
784 	 * state change has occurred.
785 	 */
786 	if ((status & TWE_STS_ATTN_INTR) != 0) {
787 		rv = twe_aen_get(sc, NULL);
788 		if (rv != 0)
789 			printf("%s: unable to retrieve AEN (%d)\n",
790 			    sc->sc_dv.dv_xname, rv);
791 		else
792 			twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
793 		caught = 1;
794 	}
795 
796 	/*
797 	 * Command interrupts, signalled when the controller can accept more
798 	 * commands.  We don't use this; instead, we try to submit commands
799 	 * when we receive them, and when other commands have completed.
800 	 * Mask it so we don't get another one.
801 	 */
802 	if ((status & TWE_STS_CMD_INTR) != 0) {
803 #ifdef DEBUG
804 		printf("%s: command interrupt\n", sc->sc_dv.dv_xname);
805 #endif
806 		twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR);
807 		caught = 1;
808 	}
809 
810 	if ((status & TWE_STS_RESP_INTR) != 0) {
811 		twe_poll(sc);
812 		caught = 1;
813 	}
814 
815 	return (caught);
816 }
817 
818 /*
819  * Fetch an AEN.  Even though this is really like parameter
820  * retrieval, we handle this specially, because we issue this
821  * AEN retrieval command from interrupt context, and thus
822  * reserve a CCB for it to avoid resource shortage.
823  *
824  * XXX There are still potential resource shortages we could
825  * XXX encounter.  Consider pre-allocating all AEN-related
826  * XXX resources.
827  *
828  * MUST BE CALLED AT splbio()!
829  */
830 static int
831 twe_aen_get(struct twe_softc *sc, uint16_t *aenp)
832 {
833 	struct twe_ccb *ccb;
834 	struct twe_cmd *tc;
835 	struct twe_param *tp;
836 	int rv;
837 
838 	/*
839 	 * If we're already retrieving an AEN, just wait; another
840 	 * retrieval will be chained after the current one completes.
841 	 */
842 	if (sc->sc_flags & TWEF_AEN) {
843 		/*
844 		 * It is a fatal software programming error to attempt
845 		 * to fetch an AEN synchronously when an AEN fetch is
846 		 * already pending.
847 		 */
848 		KASSERT(aenp == NULL);
849 		return (0);
850 	}
851 
852 	tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
853 	if (tp == NULL)
854 		return (ENOMEM);
855 
856 	ccb = twe_ccb_alloc(sc,
857 	    TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
858 	KASSERT(ccb != NULL);
859 
860 	ccb->ccb_data = tp;
861 	ccb->ccb_datasize = TWE_SECTOR_SIZE;
862 	ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL;
863 	ccb->ccb_tx.tx_context = tp;
864 	ccb->ccb_tx.tx_dv = &sc->sc_dv;
865 
866 	tc = ccb->ccb_cmd;
867 	tc->tc_size = 2;
868 	tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
869 	tc->tc_unit = 0;
870 	tc->tc_count = htole16(1);
871 
872 	/* Fill in the outbound parameter data. */
873 	tp->tp_table_id = htole16(TWE_PARAM_AEN);
874 	tp->tp_param_id = TWE_PARAM_AEN_UnitCode;
875 	tp->tp_param_size = 2;
876 
877 	/* Map the transfer. */
878 	if ((rv = twe_ccb_map(sc, ccb)) != 0) {
879 		twe_ccb_free(sc, ccb);
880 		goto done;
881 	}
882 
883 	/* Enqueue the command and wait. */
884 	if (aenp != NULL) {
885 		rv = twe_ccb_poll(sc, ccb, 5);
886 		twe_ccb_unmap(sc, ccb);
887 		twe_ccb_free(sc, ccb);
888 		if (rv == 0)
889 			*aenp = le16toh(*(uint16_t *)tp->tp_data);
890 		free(tp, M_DEVBUF);
891 	} else {
892 		sc->sc_flags |= TWEF_AEN;
893 		twe_ccb_enqueue(sc, ccb);
894 		rv = 0;
895 	}
896 
897  done:
898 	return (rv);
899 }
900 
901 /*
902  * Handle an AEN returned by the controller.
903  * MUST BE CALLED AT splbio()!
904  */
905 static void
906 twe_aen_handler(struct twe_ccb *ccb, int error)
907 {
908 	struct twe_softc *sc;
909 	struct twe_param *tp;
910 	uint16_t aen;
911 	int rv;
912 
913 	sc = (struct twe_softc *)ccb->ccb_tx.tx_dv;
914 	tp = ccb->ccb_tx.tx_context;
915 	twe_ccb_unmap(sc, ccb);
916 
917 	sc->sc_flags &= ~TWEF_AEN;
918 
919 	if (error) {
920 		printf("%s: error retrieving AEN\n", sc->sc_dv.dv_xname);
921 		aen = TWE_AEN_QUEUE_EMPTY;
922 	} else
923 		aen = le16toh(*(u_int16_t *)tp->tp_data);
924 	free(tp, M_DEVBUF);
925 	twe_ccb_free(sc, ccb);
926 
927 	if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) {
928 		twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
929 		return;
930 	}
931 
932 	twe_aen_enqueue(sc, aen, 0);
933 
934 	/*
935 	 * Chain another retrieval in case interrupts have been
936 	 * coalesced.
937 	 */
938 	rv = twe_aen_get(sc, NULL);
939 	if (rv != 0)
940 		printf("%s: unable to retrieve AEN (%d)\n",
941 		    sc->sc_dv.dv_xname, rv);
942 }
943 
944 static void
945 twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet)
946 {
947 	const char *str, *msg;
948 	int s, next, nextnext, level;
949 
950 	/*
951 	 * First report the AEN on the console.  Maybe.
952 	 */
953 	if (! quiet) {
954 		str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen));
955 		if (str == NULL) {
956 			printf("%s: unknown AEN 0x%04x\n",
957 			    sc->sc_dv.dv_xname, aen);
958 		} else {
959 			msg = str + 3;
960 			switch (str[1]) {
961 			case 'E':	level = LOG_EMERG; break;
962 			case 'a':	level = LOG_ALERT; break;
963 			case 'c':	level = LOG_CRIT; break;
964 			case 'e':	level = LOG_ERR; break;
965 			case 'w':	level = LOG_WARNING; break;
966 			case 'n':	level = LOG_NOTICE; break;
967 			case 'i':	level = LOG_INFO; break;
968 			case 'd':	level = LOG_DEBUG; break;
969 			default:
970 				/* Don't use syslog. */
971 				level = -1;
972 			}
973 
974 			if (level < 0) {
975 				switch (str[0]) {
976 				case 'u':
977 				case 'p':
978 					printf("%s: %s %d: %s\n",
979 					    sc->sc_dv.dv_xname,
980 					    str[0] == 'u' ? "unit" : "port",
981 					    TWE_AEN_UNIT(aen), msg);
982 					break;
983 
984 				default:
985 					printf("%s: %s\n",
986 					    sc->sc_dv.dv_xname, msg);
987 				}
988 			} else {
989 				switch (str[0]) {
990 				case 'u':
991 				case 'p':
992 					log(level, "%s: %s %d: %s\n",
993 					    sc->sc_dv.dv_xname,
994 					    str[0] == 'u' ? "unit" : "port",
995 					    TWE_AEN_UNIT(aen), msg);
996 					break;
997 
998 				default:
999 					log(level, "%s: %s\n",
1000 					    sc->sc_dv.dv_xname, msg);
1001 				}
1002 			}
1003 		}
1004 	}
1005 
1006 	/* Now enqueue the AEN for mangement tools. */
1007 	s = splbio();
1008 
1009 	next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH;
1010 	nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH;
1011 
1012 	/*
1013 	 * If this is the last free slot, then queue up a "queue
1014 	 * full" message.
1015 	 */
1016 	if (nextnext == sc->sc_aen_tail)
1017 		aen = TWE_AEN_QUEUE_FULL;
1018 
1019 	if (next != sc->sc_aen_tail) {
1020 		sc->sc_aen_queue[sc->sc_aen_head] = aen;
1021 		sc->sc_aen_head = next;
1022 	}
1023 
1024 	if (sc->sc_flags & TWEF_AENQ_WAIT) {
1025 		sc->sc_flags &= ~TWEF_AENQ_WAIT;
1026 		wakeup(&sc->sc_aen_queue);
1027 	}
1028 
1029 	splx(s);
1030 }
1031 
1032 /* NOTE: Must be called at splbio(). */
1033 static uint16_t
1034 twe_aen_dequeue(struct twe_softc *sc)
1035 {
1036 	uint16_t aen;
1037 
1038 	if (sc->sc_aen_tail == sc->sc_aen_head)
1039 		aen = TWE_AEN_QUEUE_EMPTY;
1040 	else {
1041 		aen = sc->sc_aen_queue[sc->sc_aen_tail];
1042 		sc->sc_aen_tail = (sc->sc_aen_tail + 1) % TWE_AEN_Q_LENGTH;
1043 	}
1044 
1045 	return (aen);
1046 }
1047 
1048 /*
1049  * These are short-hand functions that execute TWE_OP_GET_PARAM to
1050  * fetch 1, 2, and 4 byte parameter values, respectively.
1051  */
1052 int
1053 twe_param_get_1(struct twe_softc *sc, int table_id, int param_id,
1054     uint8_t *valp)
1055 {
1056 	struct twe_param *tp;
1057 	int rv;
1058 
1059 	rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp);
1060 	if (rv != 0)
1061 		return (rv);
1062 	*valp = *(uint8_t *)tp->tp_data;
1063 	free(tp, M_DEVBUF);
1064 	return (0);
1065 }
1066 
1067 int
1068 twe_param_get_2(struct twe_softc *sc, int table_id, int param_id,
1069     uint16_t *valp)
1070 {
1071 	struct twe_param *tp;
1072 	int rv;
1073 
1074 	rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp);
1075 	if (rv != 0)
1076 		return (rv);
1077 	*valp = le16toh(*(uint16_t *)tp->tp_data);
1078 	free(tp, M_DEVBUF);
1079 	return (0);
1080 }
1081 
1082 int
1083 twe_param_get_4(struct twe_softc *sc, int table_id, int param_id,
1084     uint32_t *valp)
1085 {
1086 	struct twe_param *tp;
1087 	int rv;
1088 
1089 	rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp);
1090 	if (rv != 0)
1091 		return (rv);
1092 	*valp = le32toh(*(uint32_t *)tp->tp_data);
1093 	free(tp, M_DEVBUF);
1094 	return (0);
1095 }
1096 
1097 /*
1098  * Execute a TWE_OP_GET_PARAM command.  If a callback function is provided,
1099  * it will be called with generated context when the command has completed.
1100  * If no callback is provided, the command will be executed synchronously
1101  * and a pointer to a buffer containing the data returned.
1102  *
1103  * The caller or callback is responsible for freeing the buffer.
1104  *
1105  * NOTE: We assume we can sleep here to wait for a CCB to become available.
1106  */
1107 int
1108 twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size,
1109 	      void (*func)(struct twe_ccb *, int), struct twe_param **pbuf)
1110 {
1111 	struct twe_ccb *ccb;
1112 	struct twe_cmd *tc;
1113 	struct twe_param *tp;
1114 	int rv, s;
1115 
1116 	tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1117 	if (tp == NULL)
1118 		return ENOMEM;
1119 
1120 	ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1121 	KASSERT(ccb != NULL);
1122 
1123 	ccb->ccb_data = tp;
1124 	ccb->ccb_datasize = TWE_SECTOR_SIZE;
1125 	ccb->ccb_tx.tx_handler = func;
1126 	ccb->ccb_tx.tx_context = tp;
1127 	ccb->ccb_tx.tx_dv = &sc->sc_dv;
1128 
1129 	tc = ccb->ccb_cmd;
1130 	tc->tc_size = 2;
1131 	tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
1132 	tc->tc_unit = 0;
1133 	tc->tc_count = htole16(1);
1134 
1135 	/* Fill in the outbound parameter data. */
1136 	tp->tp_table_id = htole16(table_id);
1137 	tp->tp_param_id = param_id;
1138 	tp->tp_param_size = size;
1139 
1140 	/* Map the transfer. */
1141 	if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1142 		twe_ccb_free(sc, ccb);
1143 		goto done;
1144 	}
1145 
1146 	/* Submit the command and either wait or let the callback handle it. */
1147 	if (func == NULL) {
1148 		s = splbio();
1149 		rv = twe_ccb_poll(sc, ccb, 5);
1150 		twe_ccb_unmap(sc, ccb);
1151 		twe_ccb_free(sc, ccb);
1152 		splx(s);
1153 	} else {
1154 #ifdef DEBUG
1155 		if (pbuf != NULL)
1156 			panic("both func and pbuf defined");
1157 #endif
1158 		twe_ccb_enqueue(sc, ccb);
1159 		return 0;
1160 	}
1161 
1162 done:
1163 	if (pbuf == NULL || rv != 0)
1164 		free(tp, M_DEVBUF);
1165 	else if (pbuf != NULL && rv == 0)
1166 		*pbuf = tp;
1167 	return rv;
1168 }
1169 
1170 /*
1171  * Execute a TWE_OP_SET_PARAM command.
1172  *
1173  * NOTE: We assume we can sleep here to wait for a CCB to become available.
1174  */
1175 static int
1176 twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size,
1177 	      void *buf)
1178 {
1179 	struct twe_ccb *ccb;
1180 	struct twe_cmd *tc;
1181 	struct twe_param *tp;
1182 	int rv, s;
1183 
1184 	tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1185 	if (tp == NULL)
1186 		return ENOMEM;
1187 
1188 	ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1189 	KASSERT(ccb != NULL);
1190 
1191 	ccb->ccb_data = tp;
1192 	ccb->ccb_datasize = TWE_SECTOR_SIZE;
1193 	ccb->ccb_tx.tx_handler = 0;
1194 	ccb->ccb_tx.tx_context = tp;
1195 	ccb->ccb_tx.tx_dv = &sc->sc_dv;
1196 
1197 	tc = ccb->ccb_cmd;
1198 	tc->tc_size = 2;
1199 	tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5);
1200 	tc->tc_unit = 0;
1201 	tc->tc_count = htole16(1);
1202 
1203 	/* Fill in the outbound parameter data. */
1204 	tp->tp_table_id = htole16(table_id);
1205 	tp->tp_param_id = param_id;
1206 	tp->tp_param_size = size;
1207 	memcpy(tp->tp_data, buf, size);
1208 
1209 	/* Map the transfer. */
1210 	if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1211 		twe_ccb_free(sc, ccb);
1212 		goto done;
1213 	}
1214 
1215 	/* Submit the command and wait. */
1216 	s = splbio();
1217 	rv = twe_ccb_poll(sc, ccb, 5);
1218 	twe_ccb_unmap(sc, ccb);
1219 	twe_ccb_free(sc, ccb);
1220 	splx(s);
1221 done:
1222 	free(tp, M_DEVBUF);
1223 	return (rv);
1224 }
1225 
1226 /*
1227  * Execute a TWE_OP_INIT_CONNECTION command.  Return non-zero on error.
1228  * Must be called with interrupts blocked.
1229  */
1230 static int
1231 twe_init_connection(struct twe_softc *sc)
1232 /*###762 [cc] warning: `twe_init_connection' was used with no prototype before its definition%%%*/
1233 /*###762 [cc] warning: `twe_init_connection' was declared implicitly `extern' and later `static'%%%*/
1234 {
1235 	struct twe_ccb *ccb;
1236 	struct twe_cmd *tc;
1237 	int rv;
1238 
1239 	if ((ccb = twe_ccb_alloc(sc, 0)) == NULL)
1240 		return (EAGAIN);
1241 
1242 	/* Build the command. */
1243 	tc = ccb->ccb_cmd;
1244 	tc->tc_size = 3;
1245 	tc->tc_opcode = TWE_OP_INIT_CONNECTION;
1246 	tc->tc_unit = 0;
1247 	tc->tc_count = htole16(TWE_MAX_CMDS);
1248 	tc->tc_args.init_connection.response_queue_pointer = 0;
1249 
1250 	/* Submit the command for immediate execution. */
1251 	rv = twe_ccb_poll(sc, ccb, 5);
1252 	twe_ccb_free(sc, ccb);
1253 	return (rv);
1254 }
1255 
1256 /*
1257  * Poll the controller for completed commands.  Must be called with
1258  * interrupts blocked.
1259  */
1260 static void
1261 twe_poll(struct twe_softc *sc)
1262 {
1263 	struct twe_ccb *ccb;
1264 	int found;
1265 	u_int status, cmdid;
1266 
1267 	found = 0;
1268 
1269 	for (;;) {
1270 		status = twe_inl(sc, TWE_REG_STS);
1271 		twe_status_check(sc, status);
1272 
1273 		if ((status & TWE_STS_RESP_QUEUE_EMPTY))
1274 			break;
1275 
1276 		found = 1;
1277 		cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE);
1278 		cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT;
1279 		if (cmdid >= TWE_MAX_QUEUECNT) {
1280 			printf("%s: bad cmdid %d\n", sc->sc_dv.dv_xname, cmdid);
1281 			continue;
1282 		}
1283 
1284 		ccb = sc->sc_ccbs + cmdid;
1285 		if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) {
1286 			printf("%s: CCB for cmdid %d not active\n",
1287 			    sc->sc_dv.dv_xname, cmdid);
1288 			continue;
1289 		}
1290 		ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE;
1291 
1292 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1293 		    (caddr_t)ccb->ccb_cmd - sc->sc_cmds,
1294 		    sizeof(struct twe_cmd),
1295 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1296 
1297 		/* Pass notification to upper layers. */
1298 		if (ccb->ccb_tx.tx_handler != NULL)
1299 			(*ccb->ccb_tx.tx_handler)(ccb,
1300 			    ccb->ccb_cmd->tc_status != 0 ? EIO : 0);
1301 	}
1302 
1303 	/* If any commands have completed, run the software queue. */
1304 	if (found)
1305 		twe_ccb_enqueue(sc, NULL);
1306 }
1307 
1308 /*
1309  * Wait for `status' to be set in the controller status register.  Return
1310  * zero if found, non-zero if the operation timed out.
1311  */
1312 static int
1313 twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo)
1314 {
1315 
1316 	for (timo *= 10; timo != 0; timo--) {
1317 		if ((twe_inl(sc, TWE_REG_STS) & status) == status)
1318 			break;
1319 		delay(100000);
1320 	}
1321 
1322 	return (timo == 0);
1323 }
1324 
1325 /*
1326  * Complain if the status bits aren't what we expect.
1327  */
1328 static int
1329 twe_status_check(struct twe_softc *sc, u_int status)
1330 {
1331 	int rv;
1332 
1333 	rv = 0;
1334 
1335 	if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) {
1336 		printf("%s: missing status bits: 0x%08x\n", sc->sc_dv.dv_xname,
1337 		    status & ~TWE_STS_EXPECTED_BITS);
1338 		rv = -1;
1339 	}
1340 
1341 	if ((status & TWE_STS_UNEXPECTED_BITS) != 0) {
1342 		printf("%s: unexpected status bits: 0x%08x\n",
1343 		    sc->sc_dv.dv_xname, status & TWE_STS_UNEXPECTED_BITS);
1344 		rv = -1;
1345 	}
1346 
1347 	return (rv);
1348 }
1349 
1350 /*
1351  * Allocate and initialise a CCB.
1352  */
1353 static __inline void
1354 twe_ccb_init(struct twe_softc *sc, struct twe_ccb *ccb, int flags)
1355 {
1356 	struct twe_cmd *tc;
1357 
1358 	ccb->ccb_tx.tx_handler = NULL;
1359 	ccb->ccb_flags = flags;
1360 	tc = ccb->ccb_cmd;
1361 	tc->tc_status = 0;
1362 	tc->tc_flags = 0;
1363 	tc->tc_cmdid = ccb->ccb_cmdid;
1364 }
1365 
1366 struct twe_ccb *
1367 twe_ccb_alloc(struct twe_softc *sc, int flags)
1368 {
1369 	struct twe_ccb *ccb;
1370 	int s;
1371 
1372 	s = splbio();
1373 	if (__predict_false((flags & TWE_CCB_AEN) != 0)) {
1374 		/* Use the reserved CCB. */
1375 		ccb = sc->sc_ccbs;
1376 	} else {
1377 		/* Allocate a CCB and command block. */
1378 		if (__predict_false((ccb =
1379 				SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1380 			splx(s);
1381 			return (NULL);
1382 		}
1383 		SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1384 	}
1385 #ifdef DIAGNOSTIC
1386 	if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0)
1387 		panic("twe_ccb_alloc: got reserved CCB for non-AEN");
1388 	if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1389 		panic("twe_ccb_alloc: CCB %ld already allocated",
1390 		    (long)(ccb - sc->sc_ccbs));
1391 	flags |= TWE_CCB_ALLOCED;
1392 #endif
1393 	splx(s);
1394 
1395 	twe_ccb_init(sc, ccb, flags);
1396 	return (ccb);
1397 }
1398 
1399 struct twe_ccb *
1400 twe_ccb_alloc_wait(struct twe_softc *sc, int flags)
1401 {
1402 	struct twe_ccb *ccb;
1403 	int s;
1404 
1405 	KASSERT((flags & TWE_CCB_AEN) == 0);
1406 
1407 	s = splbio();
1408 	while (__predict_false((ccb =
1409 				SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1410 		sc->sc_flags |= TWEF_WAIT_CCB;
1411 		(void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0);
1412 	}
1413 	SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1414 #ifdef DIAGNOSTIC
1415 	if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1416 		panic("twe_ccb_alloc_wait: CCB %ld already allocated",
1417 		    (long)(ccb - sc->sc_ccbs));
1418 	flags |= TWE_CCB_ALLOCED;
1419 #endif
1420 	splx(s);
1421 
1422 	twe_ccb_init(sc, ccb, flags);
1423 	return (ccb);
1424 }
1425 
1426 /*
1427  * Free a CCB.
1428  */
1429 void
1430 twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb)
1431 {
1432 	int s;
1433 
1434 	s = splbio();
1435 	if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) {
1436 		SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist);
1437 		if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) {
1438 			sc->sc_flags &= ~TWEF_WAIT_CCB;
1439 			wakeup(&sc->sc_ccb_freelist);
1440 		}
1441 	}
1442 	ccb->ccb_flags = 0;
1443 	splx(s);
1444 }
1445 
1446 /*
1447  * Map the specified CCB's command block and data buffer (if any) into
1448  * controller visible space.  Perform DMA synchronisation.
1449  */
1450 int
1451 twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb)
1452 {
1453 	struct twe_cmd *tc;
1454 	int flags, nsegs, i, s, rv;
1455 	void *data;
1456 
1457 	/*
1458 	 * The data as a whole must be 512-byte aligned.
1459 	 */
1460 	if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) {
1461 		s = splvm();
1462 		/* XXX */
1463 		ccb->ccb_abuf = uvm_km_kmemalloc(kmem_map, NULL,
1464 		    ccb->ccb_datasize, UVM_KMF_NOWAIT);
1465 		splx(s);
1466 		data = (void *)ccb->ccb_abuf;
1467 		if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1468 			memcpy(data, ccb->ccb_data, ccb->ccb_datasize);
1469 	} else {
1470 		ccb->ccb_abuf = (vaddr_t)0;
1471 		data = ccb->ccb_data;
1472 	}
1473 
1474 	/*
1475 	 * Map the data buffer into bus space and build the S/G list.
1476 	 */
1477 	rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data,
1478 	    ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1479 	    ((ccb->ccb_flags & TWE_CCB_DATA_IN) ?
1480 	    BUS_DMA_READ : BUS_DMA_WRITE));
1481 	if (rv != 0) {
1482 		if (ccb->ccb_abuf != (vaddr_t)0) {
1483 			s = splvm();
1484 			/* XXX */
1485 			uvm_km_free(kmem_map, ccb->ccb_abuf,
1486 			    ccb->ccb_datasize);
1487 			splx(s);
1488 		}
1489 		return (rv);
1490 	}
1491 
1492 	nsegs = ccb->ccb_dmamap_xfer->dm_nsegs;
1493 	tc = ccb->ccb_cmd;
1494 	tc->tc_size += 2 * nsegs;
1495 
1496 	/* The location of the S/G list is dependant upon command type. */
1497 	switch (tc->tc_opcode >> 5) {
1498 	case 2:
1499 		for (i = 0; i < nsegs; i++) {
1500 			tc->tc_args.param.sgl[i].tsg_address =
1501 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1502 			tc->tc_args.param.sgl[i].tsg_length =
1503 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1504 		}
1505 		/* XXX Needed? */
1506 		for (; i < TWE_SG_SIZE; i++) {
1507 			tc->tc_args.param.sgl[i].tsg_address = 0;
1508 			tc->tc_args.param.sgl[i].tsg_length = 0;
1509 		}
1510 		break;
1511 	case 3:
1512 		for (i = 0; i < nsegs; i++) {
1513 			tc->tc_args.io.sgl[i].tsg_address =
1514 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1515 			tc->tc_args.io.sgl[i].tsg_length =
1516 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1517 		}
1518 		/* XXX Needed? */
1519 		for (; i < TWE_SG_SIZE; i++) {
1520 			tc->tc_args.io.sgl[i].tsg_address = 0;
1521 			tc->tc_args.io.sgl[i].tsg_length = 0;
1522 		}
1523 		break;
1524 	default:
1525 		/*
1526 		 * In all likelihood, this is a command passed from
1527 		 * management tools in userspace where no S/G list is
1528 		 * necessary because no data is being passed.
1529 		 */
1530 		break;
1531 	}
1532 
1533 	if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1534 		flags = BUS_DMASYNC_PREREAD;
1535 	else
1536 		flags = 0;
1537 	if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1538 		flags |= BUS_DMASYNC_PREWRITE;
1539 
1540 	bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1541 	    ccb->ccb_datasize, flags);
1542 	return (0);
1543 }
1544 
1545 /*
1546  * Unmap the specified CCB's command block and data buffer (if any) and
1547  * perform DMA synchronisation.
1548  */
1549 void
1550 twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb)
1551 {
1552 	int flags, s;
1553 
1554 	if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1555 		flags = BUS_DMASYNC_POSTREAD;
1556 	else
1557 		flags = 0;
1558 	if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1559 		flags |= BUS_DMASYNC_POSTWRITE;
1560 
1561 	bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1562 	    ccb->ccb_datasize, flags);
1563 	bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer);
1564 
1565 	if (ccb->ccb_abuf != (vaddr_t)0) {
1566 		if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1567 			memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf,
1568 			    ccb->ccb_datasize);
1569 		s = splvm();
1570 		/* XXX */
1571 		uvm_km_free(kmem_map, ccb->ccb_abuf, ccb->ccb_datasize);
1572 		splx(s);
1573 	}
1574 }
1575 
1576 /*
1577  * Submit a command to the controller and poll on completion.  Return
1578  * non-zero on timeout (but don't check status, as some command types don't
1579  * return status).  Must be called with interrupts blocked.
1580  */
1581 int
1582 twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo)
1583 {
1584 	int rv;
1585 
1586 	if ((rv = twe_ccb_submit(sc, ccb)) != 0)
1587 		return (rv);
1588 
1589 	for (timo *= 1000; timo != 0; timo--) {
1590 		twe_poll(sc);
1591 		if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0)
1592 			break;
1593 		DELAY(100);
1594 	}
1595 
1596 	return (timo == 0);
1597 }
1598 
1599 /*
1600  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
1601  * the order that they were enqueued and try to submit their command blocks
1602  * to the controller for execution.
1603  */
1604 void
1605 twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb)
1606 {
1607 	int s;
1608 
1609 	s = splbio();
1610 
1611 	if (ccb != NULL)
1612 		SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq);
1613 
1614 	while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) {
1615 		if (twe_ccb_submit(sc, ccb))
1616 			break;
1617 		SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq);
1618 	}
1619 
1620 	splx(s);
1621 }
1622 
1623 /*
1624  * Submit the command block associated with the specified CCB to the
1625  * controller for execution.  Must be called with interrupts blocked.
1626  */
1627 int
1628 twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb)
1629 {
1630 	bus_addr_t pa;
1631 	int rv;
1632 	u_int status;
1633 
1634 	/* Check to see if we can post a command. */
1635 	status = twe_inl(sc, TWE_REG_STS);
1636 	twe_status_check(sc, status);
1637 
1638 	if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) {
1639 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1640 		    (caddr_t)ccb->ccb_cmd - sc->sc_cmds, sizeof(struct twe_cmd),
1641 		    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1642 #ifdef DIAGNOSTIC
1643 		if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0)
1644 			panic("%s: CCB %ld not ALLOCED\n",
1645 			    sc->sc_dv.dv_xname, (long)(ccb - sc->sc_ccbs));
1646 #endif
1647 		ccb->ccb_flags |= TWE_CCB_ACTIVE;
1648 		pa = sc->sc_cmds_paddr +
1649 		    ccb->ccb_cmdid * sizeof(struct twe_cmd);
1650 		twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa);
1651 		rv = 0;
1652 	} else
1653 		rv = EBUSY;
1654 
1655 	return (rv);
1656 }
1657 
1658 
1659 /*
1660  * Accept an open operation on the control device.
1661  */
1662 int
1663 tweopen(dev_t dev, int flag, int mode, struct proc *p)
1664 {
1665 	struct twe_softc *twe;
1666 
1667 	if ((twe = device_lookup(&twe_cd, minor(dev))) == NULL)
1668 		return (ENXIO);
1669 	if ((twe->sc_flags & TWEF_OPEN) != 0)
1670 		return (EBUSY);
1671 
1672 	twe->sc_flags |= TWEF_OPEN;
1673 	return (0);
1674 }
1675 
1676 /*
1677  * Accept the last close on the control device.
1678  */
1679 int
1680 tweclose(dev_t dev, int flag, int mode, struct proc *p)
1681 {
1682 	struct twe_softc *twe;
1683 
1684 	twe = device_lookup(&twe_cd, minor(dev));
1685 	twe->sc_flags &= ~TWEF_OPEN;
1686 	return (0);
1687 }
1688 
1689 void
1690 twe_ccb_wait_handler(struct twe_ccb *ccb, int error)
1691 {
1692 
1693 	/* Just wake up the sleeper. */
1694 	wakeup(ccb);
1695 }
1696 
1697 /*
1698  * Handle control operations.
1699  */
1700 int
1701 tweioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
1702 {
1703 	struct twe_softc *twe;
1704 	struct twe_ccb *ccb;
1705 	struct twe_param *param;
1706 	struct twe_usercommand *tu;
1707 	struct twe_paramcommand *tp;
1708 	struct twe_drivecommand *td;
1709 	void *pdata = NULL;
1710 	int s, error = 0;
1711 	u_int8_t cmdid;
1712 
1713 	if (securelevel >= 2)
1714 		return (EPERM);
1715 
1716 	twe = device_lookup(&twe_cd, minor(dev));
1717 	tu = (struct twe_usercommand *)data;
1718 	tp = (struct twe_paramcommand *)data;
1719 	td = (struct twe_drivecommand *)data;
1720 
1721 	/* This is intended to be compatible with the FreeBSD interface. */
1722 	switch (cmd) {
1723 	case TWEIO_COMMAND:
1724 		/* XXX mutex */
1725 		if (tu->tu_size > 0) {
1726 			/*
1727 			 * XXX Handle > TWE_SECTOR_SIZE?  Let's see if
1728 			 * it's really necessary, first.
1729 			 */
1730 			if (tu->tu_size > TWE_SECTOR_SIZE) {
1731 #ifdef TWE_DEBUG
1732 				printf("%s: TWEIO_COMMAND: tu_size = %d\n",
1733 				    twe->sc_dv.dv_xname, tu->tu_size);
1734 #endif
1735 				return EINVAL;
1736 			}
1737 			pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK);
1738 			error = copyin(tu->tu_data, pdata, tu->tu_size);
1739 			if (error != 0)
1740 				goto done;
1741 			ccb = twe_ccb_alloc_wait(twe,
1742 			    TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1743 			KASSERT(ccb != NULL);
1744 			ccb->ccb_data = pdata;
1745 			ccb->ccb_datasize = TWE_SECTOR_SIZE;
1746 		} else {
1747 			ccb = twe_ccb_alloc_wait(twe, 0);
1748 			KASSERT(ccb != NULL);
1749 		}
1750 
1751 		ccb->ccb_tx.tx_handler = twe_ccb_wait_handler;
1752 		ccb->ccb_tx.tx_context = NULL;
1753 		ccb->ccb_tx.tx_dv = &twe->sc_dv;
1754 
1755 		cmdid = ccb->ccb_cmdid;
1756 		memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd));
1757 		ccb->ccb_cmd->tc_cmdid = cmdid;
1758 
1759 		/* Map the transfer. */
1760 		if ((error = twe_ccb_map(twe, ccb)) != 0) {
1761 			twe_ccb_free(twe, ccb);
1762 			goto done;
1763 		}
1764 
1765 		/* Submit the command and wait up to 1 minute. */
1766 		error = 0;
1767 		twe_ccb_enqueue(twe, ccb);
1768 		s = splbio();
1769 		while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0)
1770 			if ((error = tsleep(ccb, PRIBIO, "tweioctl",
1771 					    60 * hz)) != 0)
1772 				break;
1773 		splx(s);
1774 
1775 		/* Copy the command back to the ioctl argument. */
1776 		memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd));
1777 #ifdef TWE_DEBUG
1778 		printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, "
1779 		    "tc_status = 0x%02x\n", twe->sc_dv.dv_xname,
1780 		    tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status);
1781 #endif
1782 
1783 		s = splbio();
1784 		twe_ccb_free(twe, ccb);
1785 		splx(s);
1786 
1787 		if (tu->tu_size > 0)
1788 			error = copyout(pdata, tu->tu_data, tu->tu_size);
1789 		goto done;
1790 
1791 	case TWEIO_STATS:
1792 		return (ENOENT);
1793 
1794 	case TWEIO_AEN_POLL:
1795 		s = splbio();
1796 		*(u_int *)data = twe_aen_dequeue(twe);
1797 		splx(s);
1798 		return (0);
1799 
1800 	case TWEIO_AEN_WAIT:
1801 		s = splbio();
1802 		while ((*(u_int *)data =
1803 		    twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) {
1804 			twe->sc_flags |= TWEF_AENQ_WAIT;
1805 			error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH,
1806 			    "tweaen", 0);
1807 			if (error == EINTR) {
1808 				splx(s);
1809 				return (error);
1810 			}
1811 		}
1812 		splx(s);
1813 		return (0);
1814 
1815 	case TWEIO_GET_PARAM:
1816 		error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id,
1817 		    tp->tp_size, 0, &param);
1818 		if (error != 0)
1819 			return (error);
1820 		if (param->tp_param_size > tp->tp_size) {
1821 			error = EFAULT;
1822 			goto done;
1823 		}
1824 		error = copyout(param->tp_data, tp->tp_data,
1825 		    param->tp_param_size);
1826 		goto done;
1827 
1828 	case TWEIO_SET_PARAM:
1829 		pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK);
1830 		if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0)
1831 			goto done;
1832 		error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id,
1833 		    tp->tp_size, pdata);
1834 		goto done;
1835 
1836 	case TWEIO_RESET:
1837 		s = splbio();
1838 		twe_reset(twe);
1839 		splx(s);
1840 		return (0);
1841 
1842 	case TWEIO_ADD_UNIT:
1843 		/* XXX mutex */
1844 		return (twe_add_unit(twe, td->td_unit));
1845 
1846 	case TWEIO_DEL_UNIT:
1847 		/* XXX mutex */
1848 		return (twe_del_unit(twe, td->td_unit));
1849 
1850 	default:
1851 		return EINVAL;
1852 	}
1853 done:
1854 	if (pdata)
1855 		free(pdata, M_DEVBUF);
1856 	return error;
1857 }
1858 
1859 /*
1860  * Print some information about the controller
1861  */
1862 static void
1863 twe_describe_controller(struct twe_softc *sc)
1864 {
1865 	struct twe_param *p[6];
1866 	int i, rv = 0;
1867 	uint32_t dsize;
1868 	uint8_t ports;
1869 
1870 	/* get the port count */
1871 	rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER,
1872 		TWE_PARAM_CONTROLLER_PortCount, &ports);
1873 
1874 	/* get version strings */
1875 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon,
1876 		16, NULL, &p[0]);
1877 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW,
1878 		16, NULL, &p[1]);
1879 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS,
1880 		16, NULL, &p[2]);
1881 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB,
1882 		8, NULL, &p[3]);
1883 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA,
1884 		8, NULL, &p[4]);
1885 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI,
1886 		8, NULL, &p[5]);
1887 
1888 	if (rv) {
1889 		/* some error occurred */
1890 		aprint_error("%s: failed to fetch version information\n",
1891 			sc->sc_dv.dv_xname);
1892 		return;
1893 	}
1894 
1895 	aprint_normal("%s: %d ports, Firmware %.16s, BIOS %.16s\n",
1896 		sc->sc_dv.dv_xname, ports,
1897 		p[1]->tp_data, p[2]->tp_data);
1898 
1899 	aprint_verbose("%s: Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n",
1900 		sc->sc_dv.dv_xname,
1901 		p[0]->tp_data, p[3]->tp_data,
1902 		p[4]->tp_data, p[5]->tp_data);
1903 
1904 	free(p[0], M_DEVBUF);
1905 	free(p[1], M_DEVBUF);
1906 	free(p[2], M_DEVBUF);
1907 	free(p[3], M_DEVBUF);
1908 	free(p[4], M_DEVBUF);
1909 	free(p[5], M_DEVBUF);
1910 
1911 	rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY,
1912 	    TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]);
1913 	if (rv) {
1914 		aprint_error("%s: failed to get drive status summary\n",
1915 		    sc->sc_dv.dv_xname);
1916 		return;
1917 	}
1918 	for (i = 0; i < ports; i++) {
1919 		if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present)
1920 			continue;
1921 		rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i,
1922 		    TWE_PARAM_DRIVEINFO_Size, &dsize);
1923 		if (rv) {
1924 			aprint_error(
1925 			    "%s: unable to get drive size for port %d\n",
1926 			    sc->sc_dv.dv_xname, i);
1927 			continue;
1928 		}
1929 		rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i,
1930 		    TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]);
1931 		if (rv) {
1932 			aprint_error(
1933 			    "%s: unable to get drive model for port %d\n",
1934 			    sc->sc_dv.dv_xname, i);
1935 			continue;
1936 		}
1937 		aprint_verbose("%s: port %d: %.40s %d MB\n", sc->sc_dv.dv_xname,
1938 		    i, p[1]->tp_data, dsize / 2048);
1939 		free(p[1], M_DEVBUF);
1940 	}
1941 	free(p[0], M_DEVBUF);
1942 }
1943