1 /* $NetBSD: twe.c,v 1.58 2004/06/04 20:11:17 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /*- 40 * Copyright (c) 2000 Michael Smith 41 * Copyright (c) 2000 BSDi 42 * All rights reserved. 43 * 44 * Redistribution and use in source and binary forms, with or without 45 * modification, are permitted provided that the following conditions 46 * are met: 47 * 1. Redistributions of source code must retain the above copyright 48 * notice, this list of conditions and the following disclaimer. 49 * 2. Redistributions in binary form must reproduce the above copyright 50 * notice, this list of conditions and the following disclaimer in the 51 * documentation and/or other materials provided with the distribution. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp 66 */ 67 68 /* 69 * Driver for the 3ware Escalade family of RAID controllers. 70 */ 71 72 #include <sys/cdefs.h> 73 __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.58 2004/06/04 20:11:17 thorpej Exp $"); 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/kernel.h> 78 #include <sys/device.h> 79 #include <sys/queue.h> 80 #include <sys/proc.h> 81 #include <sys/buf.h> 82 #include <sys/endian.h> 83 #include <sys/malloc.h> 84 #include <sys/conf.h> 85 #include <sys/disk.h> 86 #include <sys/syslog.h> 87 88 #include <uvm/uvm_extern.h> 89 90 #include <machine/bswap.h> 91 #include <machine/bus.h> 92 93 #include <dev/pci/pcireg.h> 94 #include <dev/pci/pcivar.h> 95 #include <dev/pci/pcidevs.h> 96 #include <dev/pci/twereg.h> 97 #include <dev/pci/twevar.h> 98 #include <dev/pci/tweio.h> 99 100 #define PCI_CBIO 0x10 101 102 static int twe_aen_get(struct twe_softc *, uint16_t *); 103 static void twe_aen_handler(struct twe_ccb *, int); 104 static void twe_aen_enqueue(struct twe_softc *sc, uint16_t, int); 105 static uint16_t twe_aen_dequeue(struct twe_softc *); 106 107 static void twe_attach(struct device *, struct device *, void *); 108 static int twe_init_connection(struct twe_softc *); 109 static int twe_intr(void *); 110 static int twe_match(struct device *, struct cfdata *, void *); 111 static int twe_param_set(struct twe_softc *, int, int, size_t, void *); 112 static void twe_poll(struct twe_softc *); 113 static int twe_print(void *, const char *); 114 static int twe_reset(struct twe_softc *); 115 static int twe_submatch(struct device *, struct cfdata *, void *); 116 static int twe_status_check(struct twe_softc *, u_int); 117 static int twe_status_wait(struct twe_softc *, u_int, int); 118 static void twe_describe_controller(struct twe_softc *); 119 120 static int twe_add_unit(struct twe_softc *, int); 121 static int twe_del_unit(struct twe_softc *, int); 122 123 static inline u_int32_t twe_inl(struct twe_softc *, int); 124 static inline void twe_outl(struct twe_softc *, int, u_int32_t); 125 126 dev_type_open(tweopen); 127 dev_type_close(tweclose); 128 dev_type_ioctl(tweioctl); 129 130 const struct cdevsw twe_cdevsw = { 131 tweopen, tweclose, noread, nowrite, tweioctl, 132 nostop, notty, nopoll, nommap, 133 }; 134 135 extern struct cfdriver twe_cd; 136 137 CFATTACH_DECL(twe, sizeof(struct twe_softc), 138 twe_match, twe_attach, NULL, NULL); 139 140 /* 141 * Tables to convert numeric codes to strings. 142 */ 143 const struct twe_code_table twe_table_status[] = { 144 { 0x00, "successful completion" }, 145 146 /* info */ 147 { 0x42, "command in progress" }, 148 { 0x6c, "retrying interface CRC error from UDMA command" }, 149 150 /* warning */ 151 { 0x81, "redundant/inconsequential request ignored" }, 152 { 0x8e, "failed to write zeroes to LBA 0" }, 153 { 0x8f, "failed to profile TwinStor zones" }, 154 155 /* fatal */ 156 { 0xc1, "aborted due to system command or reconfiguration" }, 157 { 0xc4, "aborted" }, 158 { 0xc5, "access error" }, 159 { 0xc6, "access violation" }, 160 { 0xc7, "device failure" }, /* high byte may be port # */ 161 { 0xc8, "controller error" }, 162 { 0xc9, "timed out" }, 163 { 0xcb, "invalid unit number" }, 164 { 0xcf, "unit not available" }, 165 { 0xd2, "undefined opcode" }, 166 { 0xdb, "request incompatible with unit" }, 167 { 0xdc, "invalid request" }, 168 { 0xff, "firmware error, reset requested" }, 169 170 { 0, NULL } 171 }; 172 173 const struct twe_code_table twe_table_unitstate[] = { 174 { TWE_PARAM_UNITSTATUS_Normal, "Normal" }, 175 { TWE_PARAM_UNITSTATUS_Initialising, "Initializing" }, 176 { TWE_PARAM_UNITSTATUS_Degraded, "Degraded" }, 177 { TWE_PARAM_UNITSTATUS_Rebuilding, "Rebuilding" }, 178 { TWE_PARAM_UNITSTATUS_Verifying, "Verifying" }, 179 { TWE_PARAM_UNITSTATUS_Corrupt, "Corrupt" }, 180 { TWE_PARAM_UNITSTATUS_Missing, "Missing" }, 181 182 { 0, NULL } 183 }; 184 185 const struct twe_code_table twe_table_unittype[] = { 186 /* array descriptor configuration */ 187 { TWE_AD_CONFIG_RAID0, "RAID0" }, 188 { TWE_AD_CONFIG_RAID1, "RAID1" }, 189 { TWE_AD_CONFIG_TwinStor, "TwinStor" }, 190 { TWE_AD_CONFIG_RAID5, "RAID5" }, 191 { TWE_AD_CONFIG_RAID10, "RAID10" }, 192 193 { 0, NULL } 194 }; 195 196 const struct twe_code_table twe_table_stripedepth[] = { 197 { TWE_AD_STRIPE_4k, "4K" }, 198 { TWE_AD_STRIPE_8k, "8K" }, 199 { TWE_AD_STRIPE_16k, "16K" }, 200 { TWE_AD_STRIPE_32k, "32K" }, 201 { TWE_AD_STRIPE_64k, "64K" }, 202 203 { 0, NULL } 204 }; 205 206 /* 207 * Asynchronous event notification messages are qualified: 208 * a - not unit/port specific 209 * u - unit specific 210 * p - port specific 211 * 212 * They are further qualified with a severity: 213 * E - LOG_EMERG 214 * a - LOG_ALERT 215 * c - LOG_CRIT 216 * e - LOG_ERR 217 * w - LOG_WARNING 218 * n - LOG_NOTICE 219 * i - LOG_INFO 220 * d - LOG_DEBUG 221 * blank - just use printf 222 */ 223 const struct twe_code_table twe_table_aen[] = { 224 { 0x00, "a queue empty" }, 225 { 0x01, "a soft reset" }, 226 { 0x02, "uc degraded mode" }, 227 { 0x03, "aa controller error" }, 228 { 0x04, "uE rebuild fail" }, 229 { 0x05, "un rebuild done" }, 230 { 0x06, "ue incomplete unit" }, 231 { 0x07, "un initialization done" }, 232 { 0x08, "uw unclean shutdown detected" }, 233 { 0x09, "pe drive timeout" }, 234 { 0x0a, "pc drive error" }, 235 { 0x0b, "un rebuild started" }, 236 { 0x0c, "un initialization started" }, 237 { 0x0d, "ui logical unit deleted" }, 238 { 0x0f, "pc SMART threshold exceeded" }, 239 { 0x15, "a table undefined" }, /* XXX: Not in FreeBSD's table */ 240 { 0x21, "pe ATA UDMA downgrade" }, 241 { 0x22, "pi ATA UDMA upgrade" }, 242 { 0x23, "pw sector repair occurred" }, 243 { 0x24, "aa SBUF integrity check failure" }, 244 { 0x25, "pa lost cached write" }, 245 { 0x26, "pa drive ECC error detected" }, 246 { 0x27, "pe DCB checksum error" }, 247 { 0x28, "pn DCB unsupported version" }, 248 { 0x29, "ui verify started" }, 249 { 0x2a, "ua verify failed" }, 250 { 0x2b, "ui verify complete" }, 251 { 0x2c, "pw overwrote bad sector during rebuild" }, 252 { 0x2d, "pa encountered bad sector during rebuild" }, 253 { 0x2e, "pe replacement drive too small" }, 254 { 0x2f, "ue array not previously initialized" }, 255 { 0x30, "p drive not supported" }, 256 { 0xff, "a aen queue full" }, 257 258 { 0, NULL }, 259 }; 260 261 const char * 262 twe_describe_code(const struct twe_code_table *table, uint32_t code) 263 { 264 265 for (; table->string != NULL; table++) { 266 if (table->code == code) 267 return (table->string); 268 } 269 return (NULL); 270 } 271 272 static inline u_int32_t 273 twe_inl(struct twe_softc *sc, int off) 274 { 275 276 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4, 277 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ); 278 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off)); 279 } 280 281 static inline void 282 twe_outl(struct twe_softc *sc, int off, u_int32_t val) 283 { 284 285 bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val); 286 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4, 287 BUS_SPACE_BARRIER_WRITE); 288 } 289 290 /* 291 * Match a supported board. 292 */ 293 static int 294 twe_match(struct device *parent, struct cfdata *cfdata, void *aux) 295 { 296 struct pci_attach_args *pa; 297 298 pa = aux; 299 300 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE && 301 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE || 302 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC)); 303 } 304 305 /* 306 * Attach a supported board. 307 * 308 * XXX This doesn't fail gracefully. 309 */ 310 static void 311 twe_attach(struct device *parent, struct device *self, void *aux) 312 { 313 struct pci_attach_args *pa; 314 struct twe_softc *sc; 315 pci_chipset_tag_t pc; 316 pci_intr_handle_t ih; 317 pcireg_t csr; 318 const char *intrstr; 319 int s, size, i, rv, rseg; 320 size_t max_segs, max_xfer; 321 bus_dma_segment_t seg; 322 struct twe_cmd *tc; 323 struct twe_ccb *ccb; 324 325 sc = (struct twe_softc *)self; 326 pa = aux; 327 pc = pa->pa_pc; 328 sc->sc_dmat = pa->pa_dmat; 329 SIMPLEQ_INIT(&sc->sc_ccb_queue); 330 SLIST_INIT(&sc->sc_ccb_freelist); 331 332 aprint_naive(": RAID controller\n"); 333 aprint_normal(": 3ware Escalade\n"); 334 335 ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_NOWAIT); 336 if (ccb == NULL) { 337 aprint_error("%s: unable to allocate memory for ccbs\n", 338 sc->sc_dv.dv_xname); 339 return; 340 } 341 342 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0, 343 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) { 344 aprint_error("%s: can't map i/o space\n", sc->sc_dv.dv_xname); 345 return; 346 } 347 348 /* Enable the device. */ 349 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 350 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 351 csr | PCI_COMMAND_MASTER_ENABLE); 352 353 /* Map and establish the interrupt. */ 354 if (pci_intr_map(pa, &ih)) { 355 aprint_error("%s: can't map interrupt\n", sc->sc_dv.dv_xname); 356 return; 357 } 358 359 intrstr = pci_intr_string(pc, ih); 360 sc->sc_ih = pci_intr_establish(pc, ih, IPL_BIO, twe_intr, sc); 361 if (sc->sc_ih == NULL) { 362 aprint_error("%s: can't establish interrupt%s%s\n", 363 sc->sc_dv.dv_xname, 364 (intrstr) ? " at " : "", 365 (intrstr) ? intrstr : ""); 366 return; 367 } 368 369 if (intrstr != NULL) 370 aprint_normal("%s: interrupting at %s\n", 371 sc->sc_dv.dv_xname, intrstr); 372 373 /* 374 * Allocate and initialise the command blocks and CCBs. 375 */ 376 size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT; 377 378 if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1, 379 &rseg, BUS_DMA_NOWAIT)) != 0) { 380 aprint_error("%s: unable to allocate commands, rv = %d\n", 381 sc->sc_dv.dv_xname, rv); 382 return; 383 } 384 385 if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size, 386 (caddr_t *)&sc->sc_cmds, 387 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { 388 aprint_error("%s: unable to map commands, rv = %d\n", 389 sc->sc_dv.dv_xname, rv); 390 return; 391 } 392 393 if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0, 394 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) { 395 aprint_error("%s: unable to create command DMA map, rv = %d\n", 396 sc->sc_dv.dv_xname, rv); 397 return; 398 } 399 400 if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds, 401 size, NULL, BUS_DMA_NOWAIT)) != 0) { 402 aprint_error("%s: unable to load command DMA map, rv = %d\n", 403 sc->sc_dv.dv_xname, rv); 404 return; 405 } 406 407 sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr; 408 memset(sc->sc_cmds, 0, size); 409 410 sc->sc_ccbs = ccb; 411 tc = (struct twe_cmd *)sc->sc_cmds; 412 max_segs = twe_get_maxsegs(); 413 max_xfer = twe_get_maxxfer(max_segs); 414 415 for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) { 416 ccb->ccb_cmd = tc; 417 ccb->ccb_cmdid = i; 418 ccb->ccb_flags = 0; 419 rv = bus_dmamap_create(sc->sc_dmat, max_xfer, 420 max_segs, PAGE_SIZE, 0, 421 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 422 &ccb->ccb_dmamap_xfer); 423 if (rv != 0) { 424 aprint_error("%s: can't create dmamap, rv = %d\n", 425 sc->sc_dv.dv_xname, rv); 426 return; 427 } 428 429 /* Save the first CCB for AEN retrieval. */ 430 if (i != 0) 431 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, 432 ccb_chain.slist); 433 } 434 435 /* Wait for the controller to become ready. */ 436 if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) { 437 aprint_error("%s: microcontroller not ready\n", 438 sc->sc_dv.dv_xname); 439 return; 440 } 441 442 twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS); 443 444 /* Reset the controller. */ 445 s = splbio(); 446 rv = twe_reset(sc); 447 splx(s); 448 if (rv) { 449 aprint_error("%s: reset failed\n", sc->sc_dv.dv_xname); 450 return; 451 } 452 453 /* Initialise connection with controller. */ 454 twe_init_connection(sc); 455 456 twe_describe_controller(sc); 457 458 /* Find and attach RAID array units. */ 459 sc->sc_nunits = 0; 460 for (i = 0; i < TWE_MAX_UNITS; i++) 461 (void) twe_add_unit(sc, i); 462 463 /* ...and finally, enable interrupts. */ 464 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR | 465 TWE_CTL_UNMASK_RESP_INTR | 466 TWE_CTL_ENABLE_INTRS); 467 } 468 469 void 470 twe_register_callbacks(struct twe_softc *sc, int unit, 471 const struct twe_callbacks *tcb) 472 { 473 474 sc->sc_units[unit].td_callbacks = tcb; 475 } 476 477 static void 478 twe_recompute_openings(struct twe_softc *sc) 479 { 480 struct twe_drive *td; 481 int unit, openings; 482 483 if (sc->sc_nunits != 0) 484 openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits; 485 else 486 openings = 0; 487 if (openings == sc->sc_openings) 488 return; 489 sc->sc_openings = openings; 490 491 #ifdef TWE_DEBUG 492 printf("%s: %d array%s, %d openings per array\n", 493 sc->sc_dv.dv_xname, sc->sc_nunits, 494 sc->sc_nunits == 1 ? "" : "s", sc->sc_openings); 495 #endif 496 497 for (unit = 0; unit < TWE_MAX_UNITS; unit++) { 498 td = &sc->sc_units[unit]; 499 if (td->td_dev != NULL) 500 (*td->td_callbacks->tcb_openings)(td->td_dev, 501 sc->sc_openings); 502 } 503 } 504 505 static int 506 twe_add_unit(struct twe_softc *sc, int unit) 507 { 508 struct twe_param *dtp, *atp; 509 struct twe_array_descriptor *ad; 510 struct twe_drive *td; 511 struct twe_attach_args twea; 512 uint32_t newsize; 513 int rv; 514 uint16_t dsize; 515 uint8_t newtype, newstripe; 516 517 if (unit < 0 || unit >= TWE_MAX_UNITS) 518 return (EINVAL); 519 520 /* Find attached units. */ 521 rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY, 522 TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp); 523 if (rv != 0) { 524 aprint_error("%s: error %d fetching unit summary\n", 525 sc->sc_dv.dv_xname, rv); 526 return (rv); 527 } 528 529 /* For each detected unit, collect size and store in an array. */ 530 td = &sc->sc_units[unit]; 531 532 /* Unit present? */ 533 if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) { 534 /* 535 * XXX Should we check to see if a device has been 536 * XXX attached at this index and detach it if it 537 * XXX has? ("rescan" semantics) 538 */ 539 rv = 0; 540 goto out; 541 } 542 543 rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit, 544 TWE_PARAM_UNITINFO_DescriptorSize, &dsize); 545 if (rv != 0) { 546 aprint_error("%s: error %d fetching descriptor size " 547 "for unit %d\n", sc->sc_dv.dv_xname, rv, unit); 548 goto out; 549 } 550 551 rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit, 552 TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp); 553 if (rv != 0) { 554 aprint_error("%s: error %d fetching array descriptor " 555 "for unit %d\n", sc->sc_dv.dv_xname, rv, unit); 556 goto out; 557 } 558 559 ad = (struct twe_array_descriptor *)atp->tp_data; 560 newtype = ad->configuration; 561 newstripe = ad->stripe_size; 562 free(atp, M_DEVBUF); 563 564 rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit, 565 TWE_PARAM_UNITINFO_Capacity, &newsize); 566 if (rv != 0) { 567 aprint_error( 568 "%s: error %d fetching capacity for unit %d\n", 569 sc->sc_dv.dv_xname, rv, unit); 570 goto out; 571 } 572 573 /* 574 * Have a device, so we need to attach it. If there is currently 575 * something sitting at the slot, and the parameters are different, 576 * then we detach the old device before attaching the new one. 577 */ 578 if (td->td_dev != NULL && 579 td->td_size == newsize && 580 td->td_type == newtype && 581 td->td_stripe == newstripe) { 582 /* Same as the old device; just keep using it. */ 583 rv = 0; 584 goto out; 585 } else if (td->td_dev != NULL) { 586 /* Detach the old device first. */ 587 (void) config_detach(td->td_dev, DETACH_FORCE); 588 td->td_dev = NULL; 589 } else if (td->td_size == 0) 590 sc->sc_nunits++; 591 592 /* 593 * Committed to the new array unit; assign its parameters and 594 * recompute the number of available command openings. 595 */ 596 td->td_size = newsize; 597 td->td_type = newtype; 598 td->td_stripe = newstripe; 599 twe_recompute_openings(sc); 600 601 twea.twea_unit = unit; 602 td->td_dev = config_found_sm(&sc->sc_dv, &twea, twe_print, 603 twe_submatch); 604 605 rv = 0; 606 out: 607 free(dtp, M_DEVBUF); 608 return (rv); 609 } 610 611 static int 612 twe_del_unit(struct twe_softc *sc, int unit) 613 { 614 struct twe_drive *td; 615 616 if (unit < 0 || unit >= TWE_MAX_UNITS) 617 return (EINVAL); 618 619 td = &sc->sc_units[unit]; 620 if (td->td_size != 0) 621 sc->sc_nunits--; 622 td->td_size = 0; 623 td->td_type = 0; 624 td->td_stripe = 0; 625 if (td->td_dev != NULL) { 626 (void) config_detach(td->td_dev, DETACH_FORCE); 627 td->td_dev = NULL; 628 } 629 twe_recompute_openings(sc); 630 return (0); 631 } 632 633 /* 634 * Reset the controller. 635 * MUST BE CALLED AT splbio()! 636 */ 637 static int 638 twe_reset(struct twe_softc *sc) 639 { 640 uint16_t aen; 641 u_int status; 642 volatile u_int32_t junk; 643 int got, rv; 644 645 /* Issue a soft reset. */ 646 twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET | 647 TWE_CTL_CLEAR_HOST_INTR | 648 TWE_CTL_CLEAR_ATTN_INTR | 649 TWE_CTL_MASK_CMD_INTR | 650 TWE_CTL_MASK_RESP_INTR | 651 TWE_CTL_CLEAR_ERROR_STS | 652 TWE_CTL_DISABLE_INTRS); 653 654 /* Wait for attention... */ 655 if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) { 656 printf("%s: timeout waiting for attention interrupt\n", 657 sc->sc_dv.dv_xname); 658 return (-1); 659 } 660 661 /* ...and ACK it. */ 662 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR); 663 664 /* 665 * Pull AENs out of the controller; look for a soft reset AEN. 666 * Open code this, since we want to detect reset even if the 667 * queue for management tools is full. 668 * 669 * Note that since: 670 * - interrupts are blocked 671 * - we have reset the controller 672 * - acknowledged the pending ATTENTION 673 * that there is no way a pending asynchronous AEN fetch would 674 * finish, so clear the flag. 675 */ 676 sc->sc_flags &= ~TWEF_AEN; 677 for (got = 0;;) { 678 rv = twe_aen_get(sc, &aen); 679 if (rv != 0) 680 printf("%s: error %d while draining event queue\n", 681 sc->sc_dv.dv_xname, rv); 682 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) 683 break; 684 if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET) 685 got = 1; 686 twe_aen_enqueue(sc, aen, 1); 687 } 688 689 if (!got) { 690 printf("%s: reset not reported\n", sc->sc_dv.dv_xname); 691 return (-1); 692 } 693 694 /* Check controller status. */ 695 status = twe_inl(sc, TWE_REG_STS); 696 if (twe_status_check(sc, status)) { 697 printf("%s: controller errors detected\n", 698 sc->sc_dv.dv_xname); 699 return (-1); 700 } 701 702 /* Drain the response queue. */ 703 for (;;) { 704 status = twe_inl(sc, TWE_REG_STS); 705 if (twe_status_check(sc, status) != 0) { 706 printf("%s: can't drain response queue\n", 707 sc->sc_dv.dv_xname); 708 return (-1); 709 } 710 if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0) 711 break; 712 junk = twe_inl(sc, TWE_REG_RESP_QUEUE); 713 } 714 715 return (0); 716 } 717 718 /* 719 * Print autoconfiguration message for a sub-device. 720 */ 721 static int 722 twe_print(void *aux, const char *pnp) 723 { 724 struct twe_attach_args *twea; 725 726 twea = aux; 727 728 if (pnp != NULL) 729 aprint_normal("block device at %s", pnp); 730 aprint_normal(" unit %d", twea->twea_unit); 731 return (UNCONF); 732 } 733 734 /* 735 * Match a sub-device. 736 */ 737 static int 738 twe_submatch(struct device *parent, struct cfdata *cf, void *aux) 739 { 740 struct twe_attach_args *twea; 741 742 twea = aux; 743 744 if (cf->tweacf_unit != TWECF_UNIT_DEFAULT && 745 cf->tweacf_unit != twea->twea_unit) 746 return (0); 747 748 return (config_match(parent, cf, aux)); 749 } 750 751 /* 752 * Interrupt service routine. 753 */ 754 static int 755 twe_intr(void *arg) 756 { 757 struct twe_softc *sc; 758 u_int status; 759 int caught, rv; 760 761 sc = arg; 762 caught = 0; 763 status = twe_inl(sc, TWE_REG_STS); 764 twe_status_check(sc, status); 765 766 /* Host interrupts - purpose unknown. */ 767 if ((status & TWE_STS_HOST_INTR) != 0) { 768 #ifdef DEBUG 769 printf("%s: host interrupt\n", sc->sc_dv.dv_xname); 770 #endif 771 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR); 772 caught = 1; 773 } 774 775 /* 776 * Attention interrupts, signalled when a controller or child device 777 * state change has occurred. 778 */ 779 if ((status & TWE_STS_ATTN_INTR) != 0) { 780 rv = twe_aen_get(sc, NULL); 781 if (rv != 0) 782 printf("%s: unable to retrieve AEN (%d)\n", 783 sc->sc_dv.dv_xname, rv); 784 else 785 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR); 786 caught = 1; 787 } 788 789 /* 790 * Command interrupts, signalled when the controller can accept more 791 * commands. We don't use this; instead, we try to submit commands 792 * when we receive them, and when other commands have completed. 793 * Mask it so we don't get another one. 794 */ 795 if ((status & TWE_STS_CMD_INTR) != 0) { 796 #ifdef DEBUG 797 printf("%s: command interrupt\n", sc->sc_dv.dv_xname); 798 #endif 799 twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR); 800 caught = 1; 801 } 802 803 if ((status & TWE_STS_RESP_INTR) != 0) { 804 twe_poll(sc); 805 caught = 1; 806 } 807 808 return (caught); 809 } 810 811 /* 812 * Fetch an AEN. Even though this is really like parameter 813 * retrieval, we handle this specially, because we issue this 814 * AEN retrieval command from interrupt context, and thus 815 * reserve a CCB for it to avoid resource shortage. 816 * 817 * XXX There are still potential resource shortages we could 818 * XXX encounter. Consider pre-allocating all AEN-related 819 * XXX resources. 820 * 821 * MUST BE CALLED AT splbio()! 822 */ 823 static int 824 twe_aen_get(struct twe_softc *sc, uint16_t *aenp) 825 { 826 struct twe_ccb *ccb; 827 struct twe_cmd *tc; 828 struct twe_param *tp; 829 int rv; 830 831 /* 832 * If we're already retrieving an AEN, just wait; another 833 * retrieval will be chained after the current one completes. 834 */ 835 if (sc->sc_flags & TWEF_AEN) { 836 /* 837 * It is a fatal software programming error to attempt 838 * to fetch an AEN synchronously when an AEN fetch is 839 * already pending. 840 */ 841 KASSERT(aenp == NULL); 842 return (0); 843 } 844 845 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT); 846 if (tp == NULL) 847 return (ENOMEM); 848 849 ccb = twe_ccb_alloc(sc, 850 TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); 851 KASSERT(ccb != NULL); 852 853 ccb->ccb_data = tp; 854 ccb->ccb_datasize = TWE_SECTOR_SIZE; 855 ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL; 856 ccb->ccb_tx.tx_context = tp; 857 ccb->ccb_tx.tx_dv = &sc->sc_dv; 858 859 tc = ccb->ccb_cmd; 860 tc->tc_size = 2; 861 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5); 862 tc->tc_unit = 0; 863 tc->tc_count = htole16(1); 864 865 /* Fill in the outbound parameter data. */ 866 tp->tp_table_id = htole16(TWE_PARAM_AEN); 867 tp->tp_param_id = TWE_PARAM_AEN_UnitCode; 868 tp->tp_param_size = 2; 869 870 /* Map the transfer. */ 871 if ((rv = twe_ccb_map(sc, ccb)) != 0) { 872 twe_ccb_free(sc, ccb); 873 goto done; 874 } 875 876 /* Enqueue the command and wait. */ 877 if (aenp != NULL) { 878 rv = twe_ccb_poll(sc, ccb, 5); 879 twe_ccb_unmap(sc, ccb); 880 twe_ccb_free(sc, ccb); 881 if (rv == 0) 882 *aenp = le16toh(*(uint16_t *)tp->tp_data); 883 free(tp, M_DEVBUF); 884 } else { 885 sc->sc_flags |= TWEF_AEN; 886 twe_ccb_enqueue(sc, ccb); 887 rv = 0; 888 } 889 890 done: 891 return (rv); 892 } 893 894 /* 895 * Handle an AEN returned by the controller. 896 * MUST BE CALLED AT splbio()! 897 */ 898 static void 899 twe_aen_handler(struct twe_ccb *ccb, int error) 900 { 901 struct twe_softc *sc; 902 struct twe_param *tp; 903 uint16_t aen; 904 int rv; 905 906 sc = (struct twe_softc *)ccb->ccb_tx.tx_dv; 907 tp = ccb->ccb_tx.tx_context; 908 twe_ccb_unmap(sc, ccb); 909 910 sc->sc_flags &= ~TWEF_AEN; 911 912 if (error) { 913 printf("%s: error retrieving AEN\n", sc->sc_dv.dv_xname); 914 aen = TWE_AEN_QUEUE_EMPTY; 915 } else 916 aen = le16toh(*(u_int16_t *)tp->tp_data); 917 free(tp, M_DEVBUF); 918 twe_ccb_free(sc, ccb); 919 920 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) { 921 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR); 922 return; 923 } 924 925 twe_aen_enqueue(sc, aen, 0); 926 927 /* 928 * Chain another retrieval in case interrupts have been 929 * coalesced. 930 */ 931 rv = twe_aen_get(sc, NULL); 932 if (rv != 0) 933 printf("%s: unable to retrieve AEN (%d)\n", 934 sc->sc_dv.dv_xname, rv); 935 } 936 937 static void 938 twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet) 939 { 940 const char *str, *msg; 941 int s, next, nextnext, level; 942 943 /* 944 * First report the AEN on the console. Maybe. 945 */ 946 if (! quiet) { 947 str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen)); 948 if (str == NULL) { 949 printf("%s: unknown AEN 0x%04x\n", 950 sc->sc_dv.dv_xname, aen); 951 } else { 952 msg = str + 3; 953 switch (str[1]) { 954 case 'E': level = LOG_EMERG; break; 955 case 'a': level = LOG_ALERT; break; 956 case 'c': level = LOG_CRIT; break; 957 case 'e': level = LOG_ERR; break; 958 case 'w': level = LOG_WARNING; break; 959 case 'n': level = LOG_NOTICE; break; 960 case 'i': level = LOG_INFO; break; 961 case 'd': level = LOG_DEBUG; break; 962 default: 963 /* Don't use syslog. */ 964 level = -1; 965 } 966 967 if (level < 0) { 968 switch (str[0]) { 969 case 'u': 970 case 'p': 971 printf("%s: %s %d: %s\n", 972 sc->sc_dv.dv_xname, 973 str[0] == 'u' ? "unit" : "port", 974 TWE_AEN_UNIT(aen), msg); 975 break; 976 977 default: 978 printf("%s: %s\n", 979 sc->sc_dv.dv_xname, msg); 980 } 981 } else { 982 switch (str[0]) { 983 case 'u': 984 case 'p': 985 log(level, "%s: %s %d: %s\n", 986 sc->sc_dv.dv_xname, 987 str[0] == 'u' ? "unit" : "port", 988 TWE_AEN_UNIT(aen), msg); 989 break; 990 991 default: 992 log(level, "%s: %s\n", 993 sc->sc_dv.dv_xname, msg); 994 } 995 } 996 } 997 } 998 999 /* Now enqueue the AEN for mangement tools. */ 1000 s = splbio(); 1001 1002 next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH; 1003 nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH; 1004 1005 /* 1006 * If this is the last free slot, then queue up a "queue 1007 * full" message. 1008 */ 1009 if (nextnext == sc->sc_aen_tail) 1010 aen = TWE_AEN_QUEUE_FULL; 1011 1012 if (next != sc->sc_aen_tail) { 1013 sc->sc_aen_queue[sc->sc_aen_head] = aen; 1014 sc->sc_aen_head = next; 1015 } 1016 1017 if (sc->sc_flags & TWEF_AENQ_WAIT) { 1018 sc->sc_flags &= ~TWEF_AENQ_WAIT; 1019 wakeup(&sc->sc_aen_queue); 1020 } 1021 1022 splx(s); 1023 } 1024 1025 /* NOTE: Must be called at splbio(). */ 1026 static uint16_t 1027 twe_aen_dequeue(struct twe_softc *sc) 1028 { 1029 uint16_t aen; 1030 1031 if (sc->sc_aen_tail == sc->sc_aen_head) 1032 aen = TWE_AEN_QUEUE_EMPTY; 1033 else { 1034 aen = sc->sc_aen_queue[sc->sc_aen_tail]; 1035 sc->sc_aen_tail = (sc->sc_aen_tail + 1) & TWE_AEN_Q_LENGTH; 1036 } 1037 1038 return (aen); 1039 } 1040 1041 /* 1042 * These are short-hand functions that execute TWE_OP_GET_PARAM to 1043 * fetch 1, 2, and 4 byte parameter values, respectively. 1044 */ 1045 int 1046 twe_param_get_1(struct twe_softc *sc, int table_id, int param_id, 1047 uint8_t *valp) 1048 { 1049 struct twe_param *tp; 1050 int rv; 1051 1052 rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp); 1053 if (rv != 0) 1054 return (rv); 1055 *valp = *(uint8_t *)tp->tp_data; 1056 free(tp, M_DEVBUF); 1057 return (0); 1058 } 1059 1060 int 1061 twe_param_get_2(struct twe_softc *sc, int table_id, int param_id, 1062 uint16_t *valp) 1063 { 1064 struct twe_param *tp; 1065 int rv; 1066 1067 rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp); 1068 if (rv != 0) 1069 return (rv); 1070 *valp = le16toh(*(uint16_t *)tp->tp_data); 1071 free(tp, M_DEVBUF); 1072 return (0); 1073 } 1074 1075 int 1076 twe_param_get_4(struct twe_softc *sc, int table_id, int param_id, 1077 uint32_t *valp) 1078 { 1079 struct twe_param *tp; 1080 int rv; 1081 1082 rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp); 1083 if (rv != 0) 1084 return (rv); 1085 *valp = le32toh(*(uint32_t *)tp->tp_data); 1086 free(tp, M_DEVBUF); 1087 return (0); 1088 } 1089 1090 /* 1091 * Execute a TWE_OP_GET_PARAM command. If a callback function is provided, 1092 * it will be called with generated context when the command has completed. 1093 * If no callback is provided, the command will be executed synchronously 1094 * and a pointer to a buffer containing the data returned. 1095 * 1096 * The caller or callback is responsible for freeing the buffer. 1097 * 1098 * NOTE: We assume we can sleep here to wait for a CCB to become available. 1099 */ 1100 int 1101 twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size, 1102 void (*func)(struct twe_ccb *, int), struct twe_param **pbuf) 1103 { 1104 struct twe_ccb *ccb; 1105 struct twe_cmd *tc; 1106 struct twe_param *tp; 1107 int rv, s; 1108 1109 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT); 1110 if (tp == NULL) 1111 return ENOMEM; 1112 1113 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); 1114 KASSERT(ccb != NULL); 1115 1116 ccb->ccb_data = tp; 1117 ccb->ccb_datasize = TWE_SECTOR_SIZE; 1118 ccb->ccb_tx.tx_handler = func; 1119 ccb->ccb_tx.tx_context = tp; 1120 ccb->ccb_tx.tx_dv = &sc->sc_dv; 1121 1122 tc = ccb->ccb_cmd; 1123 tc->tc_size = 2; 1124 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5); 1125 tc->tc_unit = 0; 1126 tc->tc_count = htole16(1); 1127 1128 /* Fill in the outbound parameter data. */ 1129 tp->tp_table_id = htole16(table_id); 1130 tp->tp_param_id = param_id; 1131 tp->tp_param_size = size; 1132 1133 /* Map the transfer. */ 1134 if ((rv = twe_ccb_map(sc, ccb)) != 0) { 1135 twe_ccb_free(sc, ccb); 1136 goto done; 1137 } 1138 1139 /* Submit the command and either wait or let the callback handle it. */ 1140 if (func == NULL) { 1141 s = splbio(); 1142 rv = twe_ccb_poll(sc, ccb, 5); 1143 twe_ccb_unmap(sc, ccb); 1144 twe_ccb_free(sc, ccb); 1145 splx(s); 1146 } else { 1147 #ifdef DEBUG 1148 if (pbuf != NULL) 1149 panic("both func and pbuf defined"); 1150 #endif 1151 twe_ccb_enqueue(sc, ccb); 1152 return 0; 1153 } 1154 1155 done: 1156 if (pbuf == NULL || rv != 0) 1157 free(tp, M_DEVBUF); 1158 else if (pbuf != NULL && rv == 0) 1159 *pbuf = tp; 1160 return rv; 1161 } 1162 1163 /* 1164 * Execute a TWE_OP_SET_PARAM command. 1165 * 1166 * NOTE: We assume we can sleep here to wait for a CCB to become available. 1167 */ 1168 static int 1169 twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size, 1170 void *buf) 1171 { 1172 struct twe_ccb *ccb; 1173 struct twe_cmd *tc; 1174 struct twe_param *tp; 1175 int rv, s; 1176 1177 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT); 1178 if (tp == NULL) 1179 return ENOMEM; 1180 1181 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); 1182 KASSERT(ccb != NULL); 1183 1184 ccb->ccb_data = tp; 1185 ccb->ccb_datasize = TWE_SECTOR_SIZE; 1186 ccb->ccb_tx.tx_handler = 0; 1187 ccb->ccb_tx.tx_context = tp; 1188 ccb->ccb_tx.tx_dv = &sc->sc_dv; 1189 1190 tc = ccb->ccb_cmd; 1191 tc->tc_size = 2; 1192 tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5); 1193 tc->tc_unit = 0; 1194 tc->tc_count = htole16(1); 1195 1196 /* Fill in the outbound parameter data. */ 1197 tp->tp_table_id = htole16(table_id); 1198 tp->tp_param_id = param_id; 1199 tp->tp_param_size = size; 1200 memcpy(tp->tp_data, buf, size); 1201 1202 /* Map the transfer. */ 1203 if ((rv = twe_ccb_map(sc, ccb)) != 0) { 1204 twe_ccb_free(sc, ccb); 1205 goto done; 1206 } 1207 1208 /* Submit the command and wait. */ 1209 s = splbio(); 1210 rv = twe_ccb_poll(sc, ccb, 5); 1211 twe_ccb_unmap(sc, ccb); 1212 twe_ccb_free(sc, ccb); 1213 splx(s); 1214 done: 1215 free(tp, M_DEVBUF); 1216 return (rv); 1217 } 1218 1219 /* 1220 * Execute a TWE_OP_INIT_CONNECTION command. Return non-zero on error. 1221 * Must be called with interrupts blocked. 1222 */ 1223 static int 1224 twe_init_connection(struct twe_softc *sc) 1225 /*###762 [cc] warning: `twe_init_connection' was used with no prototype before its definition%%%*/ 1226 /*###762 [cc] warning: `twe_init_connection' was declared implicitly `extern' and later `static'%%%*/ 1227 { 1228 struct twe_ccb *ccb; 1229 struct twe_cmd *tc; 1230 int rv; 1231 1232 if ((ccb = twe_ccb_alloc(sc, 0)) == NULL) 1233 return (EAGAIN); 1234 1235 /* Build the command. */ 1236 tc = ccb->ccb_cmd; 1237 tc->tc_size = 3; 1238 tc->tc_opcode = TWE_OP_INIT_CONNECTION; 1239 tc->tc_unit = 0; 1240 tc->tc_count = htole16(TWE_MAX_CMDS); 1241 tc->tc_args.init_connection.response_queue_pointer = 0; 1242 1243 /* Submit the command for immediate execution. */ 1244 rv = twe_ccb_poll(sc, ccb, 5); 1245 twe_ccb_free(sc, ccb); 1246 return (rv); 1247 } 1248 1249 /* 1250 * Poll the controller for completed commands. Must be called with 1251 * interrupts blocked. 1252 */ 1253 static void 1254 twe_poll(struct twe_softc *sc) 1255 { 1256 struct twe_ccb *ccb; 1257 int found; 1258 u_int status, cmdid; 1259 1260 found = 0; 1261 1262 for (;;) { 1263 status = twe_inl(sc, TWE_REG_STS); 1264 twe_status_check(sc, status); 1265 1266 if ((status & TWE_STS_RESP_QUEUE_EMPTY)) 1267 break; 1268 1269 found = 1; 1270 cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE); 1271 cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT; 1272 if (cmdid >= TWE_MAX_QUEUECNT) { 1273 printf("%s: bad cmdid %d\n", sc->sc_dv.dv_xname, cmdid); 1274 continue; 1275 } 1276 1277 ccb = sc->sc_ccbs + cmdid; 1278 if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) { 1279 printf("%s: CCB for cmdid %d not active\n", 1280 sc->sc_dv.dv_xname, cmdid); 1281 continue; 1282 } 1283 ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE; 1284 1285 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, 1286 (caddr_t)ccb->ccb_cmd - sc->sc_cmds, 1287 sizeof(struct twe_cmd), 1288 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1289 1290 /* Pass notification to upper layers. */ 1291 if (ccb->ccb_tx.tx_handler != NULL) 1292 (*ccb->ccb_tx.tx_handler)(ccb, 1293 ccb->ccb_cmd->tc_status != 0 ? EIO : 0); 1294 } 1295 1296 /* If any commands have completed, run the software queue. */ 1297 if (found) 1298 twe_ccb_enqueue(sc, NULL); 1299 } 1300 1301 /* 1302 * Wait for `status' to be set in the controller status register. Return 1303 * zero if found, non-zero if the operation timed out. 1304 */ 1305 static int 1306 twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo) 1307 { 1308 1309 for (timo *= 10; timo != 0; timo--) { 1310 if ((twe_inl(sc, TWE_REG_STS) & status) == status) 1311 break; 1312 delay(100000); 1313 } 1314 1315 return (timo == 0); 1316 } 1317 1318 /* 1319 * Complain if the status bits aren't what we expect. 1320 */ 1321 static int 1322 twe_status_check(struct twe_softc *sc, u_int status) 1323 { 1324 int rv; 1325 1326 rv = 0; 1327 1328 if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) { 1329 printf("%s: missing status bits: 0x%08x\n", sc->sc_dv.dv_xname, 1330 status & ~TWE_STS_EXPECTED_BITS); 1331 rv = -1; 1332 } 1333 1334 if ((status & TWE_STS_UNEXPECTED_BITS) != 0) { 1335 printf("%s: unexpected status bits: 0x%08x\n", 1336 sc->sc_dv.dv_xname, status & TWE_STS_UNEXPECTED_BITS); 1337 rv = -1; 1338 } 1339 1340 return (rv); 1341 } 1342 1343 /* 1344 * Allocate and initialise a CCB. 1345 */ 1346 static __inline void 1347 twe_ccb_init(struct twe_softc *sc, struct twe_ccb *ccb, int flags) 1348 { 1349 struct twe_cmd *tc; 1350 1351 ccb->ccb_tx.tx_handler = NULL; 1352 ccb->ccb_flags = flags; 1353 tc = ccb->ccb_cmd; 1354 tc->tc_status = 0; 1355 tc->tc_flags = 0; 1356 tc->tc_cmdid = ccb->ccb_cmdid; 1357 } 1358 1359 struct twe_ccb * 1360 twe_ccb_alloc(struct twe_softc *sc, int flags) 1361 { 1362 struct twe_ccb *ccb; 1363 int s; 1364 1365 s = splbio(); 1366 if (__predict_false((flags & TWE_CCB_AEN) != 0)) { 1367 /* Use the reserved CCB. */ 1368 ccb = sc->sc_ccbs; 1369 } else { 1370 /* Allocate a CCB and command block. */ 1371 if (__predict_false((ccb = 1372 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) { 1373 splx(s); 1374 return (NULL); 1375 } 1376 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist); 1377 } 1378 #ifdef DIAGNOSTIC 1379 if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0) 1380 panic("twe_ccb_alloc: got reserved CCB for non-AEN"); 1381 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0) 1382 panic("twe_ccb_alloc: CCB %ld already allocated", 1383 (long)(ccb - sc->sc_ccbs)); 1384 flags |= TWE_CCB_ALLOCED; 1385 #endif 1386 splx(s); 1387 1388 twe_ccb_init(sc, ccb, flags); 1389 return (ccb); 1390 } 1391 1392 struct twe_ccb * 1393 twe_ccb_alloc_wait(struct twe_softc *sc, int flags) 1394 { 1395 struct twe_ccb *ccb; 1396 int s; 1397 1398 KASSERT((flags & TWE_CCB_AEN) == 0); 1399 1400 s = splbio(); 1401 while (__predict_false((ccb = 1402 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) { 1403 sc->sc_flags |= TWEF_WAIT_CCB; 1404 (void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0); 1405 } 1406 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist); 1407 #ifdef DIAGNOSTIC 1408 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0) 1409 panic("twe_ccb_alloc_wait: CCB %ld already allocated", 1410 (long)(ccb - sc->sc_ccbs)); 1411 flags |= TWE_CCB_ALLOCED; 1412 #endif 1413 splx(s); 1414 1415 twe_ccb_init(sc, ccb, flags); 1416 return (ccb); 1417 } 1418 1419 /* 1420 * Free a CCB. 1421 */ 1422 void 1423 twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb) 1424 { 1425 int s; 1426 1427 s = splbio(); 1428 if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) { 1429 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist); 1430 if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) { 1431 sc->sc_flags &= ~TWEF_WAIT_CCB; 1432 wakeup(&sc->sc_ccb_freelist); 1433 } 1434 } 1435 ccb->ccb_flags = 0; 1436 splx(s); 1437 } 1438 1439 /* 1440 * Map the specified CCB's command block and data buffer (if any) into 1441 * controller visible space. Perform DMA synchronisation. 1442 */ 1443 int 1444 twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb) 1445 { 1446 struct twe_cmd *tc; 1447 int flags, nsegs, i, s, rv; 1448 void *data; 1449 1450 /* 1451 * The data as a whole must be 512-byte aligned. 1452 */ 1453 if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) { 1454 s = splvm(); 1455 /* XXX */ 1456 ccb->ccb_abuf = uvm_km_kmemalloc(kmem_map, NULL, 1457 ccb->ccb_datasize, UVM_KMF_NOWAIT); 1458 splx(s); 1459 data = (void *)ccb->ccb_abuf; 1460 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0) 1461 memcpy(data, ccb->ccb_data, ccb->ccb_datasize); 1462 } else { 1463 ccb->ccb_abuf = (vaddr_t)0; 1464 data = ccb->ccb_data; 1465 } 1466 1467 /* 1468 * Map the data buffer into bus space and build the S/G list. 1469 */ 1470 rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data, 1471 ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING | 1472 ((ccb->ccb_flags & TWE_CCB_DATA_IN) ? 1473 BUS_DMA_READ : BUS_DMA_WRITE)); 1474 if (rv != 0) { 1475 if (ccb->ccb_abuf != (vaddr_t)0) { 1476 s = splvm(); 1477 /* XXX */ 1478 uvm_km_free(kmem_map, ccb->ccb_abuf, 1479 ccb->ccb_datasize); 1480 splx(s); 1481 } 1482 return (rv); 1483 } 1484 1485 nsegs = ccb->ccb_dmamap_xfer->dm_nsegs; 1486 tc = ccb->ccb_cmd; 1487 tc->tc_size += 2 * nsegs; 1488 1489 /* The location of the S/G list is dependant upon command type. */ 1490 switch (tc->tc_opcode >> 5) { 1491 case 2: 1492 for (i = 0; i < nsegs; i++) { 1493 tc->tc_args.param.sgl[i].tsg_address = 1494 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr); 1495 tc->tc_args.param.sgl[i].tsg_length = 1496 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len); 1497 } 1498 /* XXX Needed? */ 1499 for (; i < TWE_SG_SIZE; i++) { 1500 tc->tc_args.param.sgl[i].tsg_address = 0; 1501 tc->tc_args.param.sgl[i].tsg_length = 0; 1502 } 1503 break; 1504 case 3: 1505 for (i = 0; i < nsegs; i++) { 1506 tc->tc_args.io.sgl[i].tsg_address = 1507 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr); 1508 tc->tc_args.io.sgl[i].tsg_length = 1509 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len); 1510 } 1511 /* XXX Needed? */ 1512 for (; i < TWE_SG_SIZE; i++) { 1513 tc->tc_args.io.sgl[i].tsg_address = 0; 1514 tc->tc_args.io.sgl[i].tsg_length = 0; 1515 } 1516 break; 1517 default: 1518 /* 1519 * In all likelihood, this is a command passed from 1520 * management tools in userspace where no S/G list is 1521 * necessary because no data is being passed. 1522 */ 1523 break; 1524 } 1525 1526 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0) 1527 flags = BUS_DMASYNC_PREREAD; 1528 else 1529 flags = 0; 1530 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0) 1531 flags |= BUS_DMASYNC_PREWRITE; 1532 1533 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0, 1534 ccb->ccb_datasize, flags); 1535 return (0); 1536 } 1537 1538 /* 1539 * Unmap the specified CCB's command block and data buffer (if any) and 1540 * perform DMA synchronisation. 1541 */ 1542 void 1543 twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb) 1544 { 1545 int flags, s; 1546 1547 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0) 1548 flags = BUS_DMASYNC_POSTREAD; 1549 else 1550 flags = 0; 1551 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0) 1552 flags |= BUS_DMASYNC_POSTWRITE; 1553 1554 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0, 1555 ccb->ccb_datasize, flags); 1556 bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer); 1557 1558 if (ccb->ccb_abuf != (vaddr_t)0) { 1559 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0) 1560 memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf, 1561 ccb->ccb_datasize); 1562 s = splvm(); 1563 /* XXX */ 1564 uvm_km_free(kmem_map, ccb->ccb_abuf, ccb->ccb_datasize); 1565 splx(s); 1566 } 1567 } 1568 1569 /* 1570 * Submit a command to the controller and poll on completion. Return 1571 * non-zero on timeout (but don't check status, as some command types don't 1572 * return status). Must be called with interrupts blocked. 1573 */ 1574 int 1575 twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo) 1576 { 1577 int rv; 1578 1579 if ((rv = twe_ccb_submit(sc, ccb)) != 0) 1580 return (rv); 1581 1582 for (timo *= 1000; timo != 0; timo--) { 1583 twe_poll(sc); 1584 if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0) 1585 break; 1586 DELAY(100); 1587 } 1588 1589 return (timo == 0); 1590 } 1591 1592 /* 1593 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in 1594 * the order that they were enqueued and try to submit their command blocks 1595 * to the controller for execution. 1596 */ 1597 void 1598 twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb) 1599 { 1600 int s; 1601 1602 s = splbio(); 1603 1604 if (ccb != NULL) 1605 SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq); 1606 1607 while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) { 1608 if (twe_ccb_submit(sc, ccb)) 1609 break; 1610 SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq); 1611 } 1612 1613 splx(s); 1614 } 1615 1616 /* 1617 * Submit the command block associated with the specified CCB to the 1618 * controller for execution. Must be called with interrupts blocked. 1619 */ 1620 int 1621 twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb) 1622 { 1623 bus_addr_t pa; 1624 int rv; 1625 u_int status; 1626 1627 /* Check to see if we can post a command. */ 1628 status = twe_inl(sc, TWE_REG_STS); 1629 twe_status_check(sc, status); 1630 1631 if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) { 1632 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, 1633 (caddr_t)ccb->ccb_cmd - sc->sc_cmds, sizeof(struct twe_cmd), 1634 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 1635 #ifdef DIAGNOSTIC 1636 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0) 1637 panic("%s: CCB %ld not ALLOCED\n", 1638 sc->sc_dv.dv_xname, (long)(ccb - sc->sc_ccbs)); 1639 #endif 1640 ccb->ccb_flags |= TWE_CCB_ACTIVE; 1641 pa = sc->sc_cmds_paddr + 1642 ccb->ccb_cmdid * sizeof(struct twe_cmd); 1643 twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa); 1644 rv = 0; 1645 } else 1646 rv = EBUSY; 1647 1648 return (rv); 1649 } 1650 1651 1652 /* 1653 * Accept an open operation on the control device. 1654 */ 1655 int 1656 tweopen(dev_t dev, int flag, int mode, struct proc *p) 1657 { 1658 struct twe_softc *twe; 1659 1660 if ((twe = device_lookup(&twe_cd, minor(dev))) == NULL) 1661 return (ENXIO); 1662 if ((twe->sc_flags & TWEF_OPEN) != 0) 1663 return (EBUSY); 1664 1665 twe->sc_flags |= TWEF_OPEN; 1666 return (0); 1667 } 1668 1669 /* 1670 * Accept the last close on the control device. 1671 */ 1672 int 1673 tweclose(dev_t dev, int flag, int mode, struct proc *p) 1674 { 1675 struct twe_softc *twe; 1676 1677 twe = device_lookup(&twe_cd, minor(dev)); 1678 twe->sc_flags &= ~TWEF_OPEN; 1679 return (0); 1680 } 1681 1682 void 1683 twe_ccb_wait_handler(struct twe_ccb *ccb, int error) 1684 { 1685 1686 /* Just wake up the sleeper. */ 1687 wakeup(ccb); 1688 } 1689 1690 /* 1691 * Handle control operations. 1692 */ 1693 int 1694 tweioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p) 1695 { 1696 struct twe_softc *twe; 1697 struct twe_ccb *ccb; 1698 struct twe_param *param; 1699 struct twe_usercommand *tu; 1700 struct twe_paramcommand *tp; 1701 struct twe_drivecommand *td; 1702 void *pdata = NULL; 1703 int s, error = 0; 1704 u_int8_t cmdid; 1705 1706 if (securelevel >= 2) 1707 return (EPERM); 1708 1709 twe = device_lookup(&twe_cd, minor(dev)); 1710 tu = (struct twe_usercommand *)data; 1711 tp = (struct twe_paramcommand *)data; 1712 td = (struct twe_drivecommand *)data; 1713 1714 /* This is intended to be compatible with the FreeBSD interface. */ 1715 switch (cmd) { 1716 case TWEIO_COMMAND: 1717 /* XXX mutex */ 1718 if (tu->tu_size > 0) { 1719 /* 1720 * XXX Handle > TWE_SECTOR_SIZE? Let's see if 1721 * it's really necessary, first. 1722 */ 1723 if (tu->tu_size > TWE_SECTOR_SIZE) { 1724 #ifdef TWE_DEBUG 1725 printf("%s: TWEIO_COMMAND: tu_size = %d\n", 1726 twe->sc_dv.dv_xname, tu->tu_size); 1727 #endif 1728 return EINVAL; 1729 } 1730 pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK); 1731 error = copyin(tu->tu_data, pdata, tu->tu_size); 1732 if (error != 0) 1733 goto done; 1734 ccb = twe_ccb_alloc_wait(twe, 1735 TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); 1736 KASSERT(ccb != NULL); 1737 ccb->ccb_data = pdata; 1738 ccb->ccb_datasize = TWE_SECTOR_SIZE; 1739 } else { 1740 ccb = twe_ccb_alloc_wait(twe, 0); 1741 KASSERT(ccb != NULL); 1742 } 1743 1744 ccb->ccb_tx.tx_handler = twe_ccb_wait_handler; 1745 ccb->ccb_tx.tx_context = NULL; 1746 ccb->ccb_tx.tx_dv = &twe->sc_dv; 1747 1748 cmdid = ccb->ccb_cmdid; 1749 memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd)); 1750 ccb->ccb_cmd->tc_cmdid = cmdid; 1751 1752 /* Map the transfer. */ 1753 if ((error = twe_ccb_map(twe, ccb)) != 0) { 1754 twe_ccb_free(twe, ccb); 1755 goto done; 1756 } 1757 1758 /* Submit the command and wait up to 1 minute. */ 1759 error = 0; 1760 twe_ccb_enqueue(twe, ccb); 1761 s = splbio(); 1762 while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0) 1763 if ((error = tsleep(ccb, PRIBIO, "tweioctl", 1764 60 * hz)) != 0) 1765 break; 1766 splx(s); 1767 1768 /* Copy the command back to the ioctl argument. */ 1769 memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd)); 1770 #ifdef TWE_DEBUG 1771 printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, " 1772 "tc_status = 0x%02x\n", twe->sc_dv.dv_xname, 1773 tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status); 1774 #endif 1775 1776 s = splbio(); 1777 twe_ccb_free(twe, ccb); 1778 splx(s); 1779 1780 if (tu->tu_size > 0) 1781 error = copyout(pdata, tu->tu_data, tu->tu_size); 1782 goto done; 1783 1784 case TWEIO_STATS: 1785 return (ENOENT); 1786 1787 case TWEIO_AEN_POLL: 1788 s = splbio(); 1789 *(u_int *)data = twe_aen_dequeue(twe); 1790 splx(s); 1791 return (0); 1792 1793 case TWEIO_AEN_WAIT: 1794 s = splbio(); 1795 while ((*(u_int *)data = 1796 twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) { 1797 twe->sc_flags |= TWEF_AENQ_WAIT; 1798 error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH, 1799 "tweaen", 0); 1800 if (error == EINTR) { 1801 splx(s); 1802 return (error); 1803 } 1804 } 1805 splx(s); 1806 return (0); 1807 1808 case TWEIO_GET_PARAM: 1809 error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id, 1810 tp->tp_size, 0, ¶m); 1811 if (error != 0) 1812 return (error); 1813 if (param->tp_param_size > tp->tp_size) { 1814 error = EFAULT; 1815 goto done; 1816 } 1817 error = copyout(param->tp_data, tp->tp_data, 1818 param->tp_param_size); 1819 goto done; 1820 1821 case TWEIO_SET_PARAM: 1822 pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK); 1823 if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0) 1824 goto done; 1825 error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id, 1826 tp->tp_size, pdata); 1827 goto done; 1828 1829 case TWEIO_RESET: 1830 s = splbio(); 1831 twe_reset(twe); 1832 splx(s); 1833 return (0); 1834 1835 case TWEIO_ADD_UNIT: 1836 /* XXX mutex */ 1837 return (twe_add_unit(twe, td->td_unit)); 1838 1839 case TWEIO_DEL_UNIT: 1840 /* XXX mutex */ 1841 return (twe_del_unit(twe, td->td_unit)); 1842 1843 default: 1844 return EINVAL; 1845 } 1846 done: 1847 if (pdata) 1848 free(pdata, M_DEVBUF); 1849 return error; 1850 } 1851 1852 /* 1853 * Print some information about the controller 1854 */ 1855 static void 1856 twe_describe_controller(struct twe_softc *sc) 1857 { 1858 struct twe_param *p[6]; 1859 int i, rv = 0; 1860 uint32_t dsize; 1861 uint8_t ports; 1862 1863 /* get the port count */ 1864 rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER, 1865 TWE_PARAM_CONTROLLER_PortCount, &ports); 1866 1867 /* get version strings */ 1868 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon, 1869 16, NULL, &p[0]); 1870 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW, 1871 16, NULL, &p[1]); 1872 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS, 1873 16, NULL, &p[2]); 1874 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB, 1875 8, NULL, &p[3]); 1876 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA, 1877 8, NULL, &p[4]); 1878 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI, 1879 8, NULL, &p[5]); 1880 1881 if (rv) { 1882 /* some error occurred */ 1883 aprint_error("%s: failed to fetch version information\n", 1884 sc->sc_dv.dv_xname); 1885 return; 1886 } 1887 1888 aprint_normal("%s: %d ports, Firmware %.16s, BIOS %.16s\n", 1889 sc->sc_dv.dv_xname, ports, 1890 p[1]->tp_data, p[2]->tp_data); 1891 1892 aprint_verbose("%s: Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n", 1893 sc->sc_dv.dv_xname, 1894 p[0]->tp_data, p[3]->tp_data, 1895 p[4]->tp_data, p[5]->tp_data); 1896 1897 free(p[0], M_DEVBUF); 1898 free(p[1], M_DEVBUF); 1899 free(p[2], M_DEVBUF); 1900 free(p[3], M_DEVBUF); 1901 free(p[4], M_DEVBUF); 1902 free(p[5], M_DEVBUF); 1903 1904 rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY, 1905 TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]); 1906 if (rv) { 1907 aprint_error("%s: failed to get drive status summary\n", 1908 sc->sc_dv.dv_xname); 1909 return; 1910 } 1911 for (i = 0; i < ports; i++) { 1912 if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present) 1913 continue; 1914 rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i, 1915 TWE_PARAM_DRIVEINFO_Size, &dsize); 1916 if (rv) { 1917 aprint_error( 1918 "%s: unable to get drive size for port %d\n", 1919 sc->sc_dv.dv_xname, i); 1920 continue; 1921 } 1922 rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i, 1923 TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]); 1924 if (rv) { 1925 aprint_error( 1926 "%s: unable to get drive model for port %d\n", 1927 sc->sc_dv.dv_xname, i); 1928 continue; 1929 } 1930 aprint_verbose("%s: port %d: %.40s %d MB\n", sc->sc_dv.dv_xname, 1931 i, p[1]->tp_data, dsize / 2048); 1932 free(p[1], M_DEVBUF); 1933 } 1934 free(p[0], M_DEVBUF); 1935 } 1936