1 /* $NetBSD: twe.c,v 1.108 2019/11/10 21:16:36 chs Exp $ */ 2 3 /*- 4 * Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c) 2000 Michael Smith 34 * Copyright (c) 2000 BSDi 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 56 * SUCH DAMAGE. 57 * 58 * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp 59 */ 60 61 /* 62 * Driver for the 3ware Escalade family of RAID controllers. 63 */ 64 65 #include <sys/cdefs.h> 66 __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.108 2019/11/10 21:16:36 chs Exp $"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/device.h> 72 #include <sys/queue.h> 73 #include <sys/proc.h> 74 #include <sys/buf.h> 75 #include <sys/endian.h> 76 #include <sys/malloc.h> 77 #include <sys/conf.h> 78 #include <sys/disk.h> 79 #include <sys/sysctl.h> 80 #include <sys/syslog.h> 81 #include <sys/kauth.h> 82 #include <sys/module.h> 83 #include <sys/bswap.h> 84 #include <sys/bus.h> 85 86 #include <dev/pci/pcireg.h> 87 #include <dev/pci/pcivar.h> 88 #include <dev/pci/pcidevs.h> 89 #include <dev/pci/twereg.h> 90 #include <dev/pci/twevar.h> 91 #include <dev/pci/tweio.h> 92 93 #include "locators.h" 94 #include "ioconf.h" 95 96 #define PCI_CBIO 0x10 97 98 static int twe_aen_get(struct twe_softc *, uint16_t *); 99 static void twe_aen_handler(struct twe_ccb *, int); 100 static void twe_aen_enqueue(struct twe_softc *sc, uint16_t, int); 101 static uint16_t twe_aen_dequeue(struct twe_softc *); 102 103 static void twe_attach(device_t, device_t, void *); 104 static int twe_rescan(device_t, const char *, const int *); 105 static int twe_init_connection(struct twe_softc *); 106 static int twe_intr(void *); 107 static int twe_match(device_t, cfdata_t, void *); 108 static int twe_param_set(struct twe_softc *, int, int, size_t, void *); 109 static void twe_poll(struct twe_softc *); 110 static int twe_print(void *, const char *); 111 static int twe_reset(struct twe_softc *); 112 static int twe_status_check(struct twe_softc *, u_int); 113 static int twe_status_wait(struct twe_softc *, u_int, int); 114 static void twe_describe_controller(struct twe_softc *); 115 static void twe_clear_pci_abort(struct twe_softc *sc); 116 static void twe_clear_pci_parity_error(struct twe_softc *sc); 117 118 static int twe_add_unit(struct twe_softc *, int); 119 static int twe_del_unit(struct twe_softc *, int); 120 static int twe_init_connection(struct twe_softc *); 121 122 static inline u_int32_t twe_inl(struct twe_softc *, int); 123 static inline void twe_outl(struct twe_softc *, int, u_int32_t); 124 125 extern struct cfdriver twe_cd; 126 127 CFATTACH_DECL3_NEW(twe, sizeof(struct twe_softc), 128 twe_match, twe_attach, NULL, NULL, twe_rescan, NULL, 0); 129 130 /* FreeBSD driver revision for sysctl expected by the 3ware cli */ 131 const char twever[] = "1.50.01.002"; 132 133 /* 134 * Tables to convert numeric codes to strings. 135 */ 136 const struct twe_code_table twe_table_status[] = { 137 { 0x00, "successful completion" }, 138 139 /* info */ 140 { 0x42, "command in progress" }, 141 { 0x6c, "retrying interface CRC error from UDMA command" }, 142 143 /* warning */ 144 { 0x81, "redundant/inconsequential request ignored" }, 145 { 0x8e, "failed to write zeroes to LBA 0" }, 146 { 0x8f, "failed to profile TwinStor zones" }, 147 148 /* fatal */ 149 { 0xc1, "aborted due to system command or reconfiguration" }, 150 { 0xc4, "aborted" }, 151 { 0xc5, "access error" }, 152 { 0xc6, "access violation" }, 153 { 0xc7, "device failure" }, /* high byte may be port # */ 154 { 0xc8, "controller error" }, 155 { 0xc9, "timed out" }, 156 { 0xcb, "invalid unit number" }, 157 { 0xcf, "unit not available" }, 158 { 0xd2, "undefined opcode" }, 159 { 0xdb, "request incompatible with unit" }, 160 { 0xdc, "invalid request" }, 161 { 0xff, "firmware error, reset requested" }, 162 163 { 0, NULL } 164 }; 165 166 const struct twe_code_table twe_table_unitstate[] = { 167 { TWE_PARAM_UNITSTATUS_Normal, "Normal" }, 168 { TWE_PARAM_UNITSTATUS_Initialising, "Initializing" }, 169 { TWE_PARAM_UNITSTATUS_Degraded, "Degraded" }, 170 { TWE_PARAM_UNITSTATUS_Rebuilding, "Rebuilding" }, 171 { TWE_PARAM_UNITSTATUS_Verifying, "Verifying" }, 172 { TWE_PARAM_UNITSTATUS_Corrupt, "Corrupt" }, 173 { TWE_PARAM_UNITSTATUS_Missing, "Missing" }, 174 175 { 0, NULL } 176 }; 177 178 const struct twe_code_table twe_table_unittype[] = { 179 /* array descriptor configuration */ 180 { TWE_AD_CONFIG_RAID0, "RAID0" }, 181 { TWE_AD_CONFIG_RAID1, "RAID1" }, 182 { TWE_AD_CONFIG_TwinStor, "TwinStor" }, 183 { TWE_AD_CONFIG_RAID5, "RAID5" }, 184 { TWE_AD_CONFIG_RAID10, "RAID10" }, 185 { TWE_UD_CONFIG_JBOD, "JBOD" }, 186 187 { 0, NULL } 188 }; 189 190 const struct twe_code_table twe_table_stripedepth[] = { 191 { TWE_AD_STRIPE_4k, "4K" }, 192 { TWE_AD_STRIPE_8k, "8K" }, 193 { TWE_AD_STRIPE_16k, "16K" }, 194 { TWE_AD_STRIPE_32k, "32K" }, 195 { TWE_AD_STRIPE_64k, "64K" }, 196 { TWE_AD_STRIPE_128k, "128K" }, 197 { TWE_AD_STRIPE_256k, "256K" }, 198 { TWE_AD_STRIPE_512k, "512K" }, 199 { TWE_AD_STRIPE_1024k, "1024K" }, 200 201 { 0, NULL } 202 }; 203 204 /* 205 * Asynchronous event notification messages are qualified: 206 * a - not unit/port specific 207 * u - unit specific 208 * p - port specific 209 * 210 * They are further qualified with a severity: 211 * E - LOG_EMERG 212 * a - LOG_ALERT 213 * c - LOG_CRIT 214 * e - LOG_ERR 215 * w - LOG_WARNING 216 * n - LOG_NOTICE 217 * i - LOG_INFO 218 * d - LOG_DEBUG 219 * blank - just use printf 220 */ 221 const struct twe_code_table twe_table_aen[] = { 222 { 0x00, "a queue empty" }, 223 { 0x01, "a soft reset" }, 224 { 0x02, "uc degraded mode" }, 225 { 0x03, "aa controller error" }, 226 { 0x04, "uE rebuild fail" }, 227 { 0x05, "un rebuild done" }, 228 { 0x06, "ue incomplete unit" }, 229 { 0x07, "un initialization done" }, 230 { 0x08, "uw unclean shutdown detected" }, 231 { 0x09, "pe drive timeout" }, 232 { 0x0a, "pc drive error" }, 233 { 0x0b, "un rebuild started" }, 234 { 0x0c, "un initialization started" }, 235 { 0x0d, "ui logical unit deleted" }, 236 { 0x0f, "pc SMART threshold exceeded" }, 237 { 0x15, "a table undefined" }, /* XXX: Not in FreeBSD's table */ 238 { 0x21, "pe ATA UDMA downgrade" }, 239 { 0x22, "pi ATA UDMA upgrade" }, 240 { 0x23, "pw sector repair occurred" }, 241 { 0x24, "aa SBUF integrity check failure" }, 242 { 0x25, "pa lost cached write" }, 243 { 0x26, "pa drive ECC error detected" }, 244 { 0x27, "pe DCB checksum error" }, 245 { 0x28, "pn DCB unsupported version" }, 246 { 0x29, "ui verify started" }, 247 { 0x2a, "ua verify failed" }, 248 { 0x2b, "ui verify complete" }, 249 { 0x2c, "pw overwrote bad sector during rebuild" }, 250 { 0x2d, "pa encountered bad sector during rebuild" }, 251 { 0x2e, "pe replacement drive too small" }, 252 { 0x2f, "ue array not previously initialized" }, 253 { 0x30, "p drive not supported" }, 254 { 0xff, "a aen queue full" }, 255 256 { 0, NULL }, 257 }; 258 259 const char * 260 twe_describe_code(const struct twe_code_table *table, uint32_t code) 261 { 262 263 for (; table->string != NULL; table++) { 264 if (table->code == code) 265 return (table->string); 266 } 267 return (NULL); 268 } 269 270 static inline u_int32_t 271 twe_inl(struct twe_softc *sc, int off) 272 { 273 274 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4, 275 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ); 276 return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off)); 277 } 278 279 static inline void 280 twe_outl(struct twe_softc *sc, int off, u_int32_t val) 281 { 282 283 bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val); 284 bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4, 285 BUS_SPACE_BARRIER_WRITE); 286 } 287 288 /* 289 * Match a supported board. 290 */ 291 static int 292 twe_match(device_t parent, cfdata_t cfdata, void *aux) 293 { 294 struct pci_attach_args *pa; 295 296 pa = aux; 297 298 return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE && 299 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE || 300 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC)); 301 } 302 303 /* 304 * Attach a supported board. 305 * 306 * XXX This doesn't fail gracefully. 307 */ 308 static void 309 twe_attach(device_t parent, device_t self, void *aux) 310 { 311 struct pci_attach_args *pa; 312 struct twe_softc *sc; 313 pci_chipset_tag_t pc; 314 pci_intr_handle_t ih; 315 pcireg_t csr; 316 const char *intrstr; 317 int s, size, i, rv, rseg; 318 size_t max_segs, max_xfer; 319 bus_dma_segment_t seg; 320 const struct sysctlnode *node; 321 struct twe_cmd *tc; 322 struct twe_ccb *ccb; 323 char intrbuf[PCI_INTRSTR_LEN]; 324 325 sc = device_private(self); 326 sc->sc_dev = self; 327 pa = aux; 328 pc = pa->pa_pc; 329 sc->sc_dmat = pa->pa_dmat; 330 SIMPLEQ_INIT(&sc->sc_ccb_queue); 331 SLIST_INIT(&sc->sc_ccb_freelist); 332 333 aprint_naive(": RAID controller\n"); 334 aprint_normal(": 3ware Escalade\n"); 335 336 337 if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0, 338 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) { 339 aprint_error_dev(self, "can't map i/o space\n"); 340 return; 341 } 342 343 /* Enable the device. */ 344 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 345 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 346 csr | PCI_COMMAND_MASTER_ENABLE); 347 348 /* Map and establish the interrupt. */ 349 if (pci_intr_map(pa, &ih)) { 350 aprint_error_dev(self, "can't map interrupt\n"); 351 return; 352 } 353 354 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf)); 355 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_BIO, twe_intr, sc, 356 device_xname(self)); 357 if (sc->sc_ih == NULL) { 358 aprint_error_dev(self, "can't establish interrupt%s%s\n", 359 (intrstr) ? " at " : "", 360 (intrstr) ? intrstr : ""); 361 return; 362 } 363 364 if (intrstr != NULL) 365 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 366 367 /* 368 * Allocate and initialise the command blocks and CCBs. 369 */ 370 size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT; 371 372 if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1, 373 &rseg, BUS_DMA_NOWAIT)) != 0) { 374 aprint_error_dev(self, 375 "unable to allocate commands, rv = %d\n", rv); 376 return; 377 } 378 379 if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size, 380 (void **)&sc->sc_cmds, 381 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { 382 aprint_error_dev(self, 383 "unable to map commands, rv = %d\n", rv); 384 return; 385 } 386 387 if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0, 388 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) { 389 aprint_error_dev(self, 390 "unable to create command DMA map, rv = %d\n", rv); 391 return; 392 } 393 394 if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds, 395 size, NULL, BUS_DMA_NOWAIT)) != 0) { 396 aprint_error_dev(self, 397 "unable to load command DMA map, rv = %d\n", rv); 398 return; 399 } 400 401 sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr; 402 memset(sc->sc_cmds, 0, size); 403 404 tc = (struct twe_cmd *)sc->sc_cmds; 405 max_segs = twe_get_maxsegs(); 406 max_xfer = twe_get_maxxfer(max_segs); 407 408 ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_WAITOK); 409 sc->sc_ccbs = ccb; 410 411 for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) { 412 ccb->ccb_cmd = tc; 413 ccb->ccb_cmdid = i; 414 ccb->ccb_flags = 0; 415 rv = bus_dmamap_create(sc->sc_dmat, max_xfer, 416 max_segs, PAGE_SIZE, 0, 417 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 418 &ccb->ccb_dmamap_xfer); 419 if (rv != 0) { 420 aprint_error_dev(self, 421 "can't create dmamap, rv = %d\n", rv); 422 return; 423 } 424 425 /* Save the first CCB for AEN retrieval. */ 426 if (i != 0) 427 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, 428 ccb_chain.slist); 429 } 430 431 /* Wait for the controller to become ready. */ 432 if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) { 433 aprint_error_dev(self, "microcontroller not ready\n"); 434 return; 435 } 436 437 twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS); 438 439 /* Reset the controller. */ 440 s = splbio(); 441 rv = twe_reset(sc); 442 splx(s); 443 if (rv) { 444 aprint_error_dev(self, "reset failed\n"); 445 return; 446 } 447 448 /* Initialise connection with controller. */ 449 twe_init_connection(sc); 450 451 twe_describe_controller(sc); 452 453 /* Find and attach RAID array units. */ 454 twe_rescan(self, "twe", 0); 455 456 /* ...and finally, enable interrupts. */ 457 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR | 458 TWE_CTL_UNMASK_RESP_INTR | 459 TWE_CTL_ENABLE_INTRS); 460 461 /* sysctl set-up for 3ware cli */ 462 if (sysctl_createv(NULL, 0, NULL, &node, 463 0, CTLTYPE_NODE, device_xname(self), 464 SYSCTL_DESCR("twe driver information"), 465 NULL, 0, NULL, 0, 466 CTL_HW, CTL_CREATE, CTL_EOL) != 0) { 467 aprint_error_dev(self, "could not create %s.%s sysctl node\n", 468 "hw", device_xname(self)); 469 return; 470 } 471 if ((i = sysctl_createv(NULL, 0, NULL, NULL, 472 0, CTLTYPE_STRING, "driver_version", 473 SYSCTL_DESCR("twe0 driver version"), 474 NULL, 0, __UNCONST(&twever), 0, 475 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL)) 476 != 0) { 477 aprint_error_dev(self, 478 "could not create %s.%s.driver_version sysctl\n", 479 "hw", device_xname(self)); 480 return; 481 } 482 } 483 484 static int 485 twe_rescan(device_t self, const char *attr, const int *flags) 486 { 487 struct twe_softc *sc; 488 int i; 489 490 sc = device_private(self); 491 sc->sc_nunits = 0; 492 for (i = 0; i < TWE_MAX_UNITS; i++) 493 (void) twe_add_unit(sc, i); 494 return 0; 495 } 496 497 498 void 499 twe_register_callbacks(struct twe_softc *sc, int unit, 500 const struct twe_callbacks *tcb) 501 { 502 503 sc->sc_units[unit].td_callbacks = tcb; 504 } 505 506 static void 507 twe_recompute_openings(struct twe_softc *sc) 508 { 509 struct twe_drive *td; 510 int unit, openings; 511 512 if (sc->sc_nunits != 0) 513 openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits; 514 else 515 openings = 0; 516 if (openings == sc->sc_openings) 517 return; 518 sc->sc_openings = openings; 519 520 #ifdef TWE_DEBUG 521 printf("%s: %d array%s, %d openings per array\n", 522 device_xname(sc->sc_dev), sc->sc_nunits, 523 sc->sc_nunits == 1 ? "" : "s", sc->sc_openings); 524 #endif 525 526 for (unit = 0; unit < TWE_MAX_UNITS; unit++) { 527 td = &sc->sc_units[unit]; 528 if (td->td_dev != NULL) 529 (*td->td_callbacks->tcb_openings)(td->td_dev, 530 sc->sc_openings); 531 } 532 } 533 534 static int 535 twe_add_unit(struct twe_softc *sc, int unit) 536 { 537 struct twe_param *dtp, *atp; 538 struct twe_array_descriptor *ad; 539 struct twe_drive *td; 540 struct twe_attach_args twea; 541 uint32_t newsize; 542 int rv; 543 uint16_t dsize; 544 uint8_t newtype, newstripe; 545 int locs[TWECF_NLOCS]; 546 547 if (unit < 0 || unit >= TWE_MAX_UNITS) 548 return (EINVAL); 549 550 /* Find attached units. */ 551 rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY, 552 TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp); 553 if (rv != 0) { 554 aprint_error_dev(sc->sc_dev, 555 "error %d fetching unit summary\n", rv); 556 return (rv); 557 } 558 559 /* For each detected unit, collect size and store in an array. */ 560 td = &sc->sc_units[unit]; 561 562 /* Unit present? */ 563 if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) { 564 /* 565 * XXX Should we check to see if a device has been 566 * XXX attached at this index and detach it if it 567 * XXX has? ("rescan" semantics) 568 */ 569 rv = 0; 570 goto out; 571 } 572 573 rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit, 574 TWE_PARAM_UNITINFO_DescriptorSize, &dsize); 575 if (rv != 0) { 576 aprint_error_dev(sc->sc_dev, 577 "error %d fetching descriptor size for unit %d\n", 578 rv, unit); 579 goto out; 580 } 581 582 rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit, 583 TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp); 584 if (rv != 0) { 585 aprint_error_dev(sc->sc_dev, 586 "error %d fetching array descriptor for unit %d\n", 587 rv, unit); 588 goto out; 589 } 590 591 ad = (struct twe_array_descriptor *)atp->tp_data; 592 newtype = ad->configuration; 593 newstripe = ad->stripe_size; 594 free(atp, M_DEVBUF); 595 596 rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit, 597 TWE_PARAM_UNITINFO_Capacity, &newsize); 598 if (rv != 0) { 599 aprint_error_dev(sc->sc_dev, 600 "error %d fetching capacity for unit %d\n", 601 rv, unit); 602 goto out; 603 } 604 605 /* 606 * Have a device, so we need to attach it. If there is currently 607 * something sitting at the slot, and the parameters are different, 608 * then we detach the old device before attaching the new one. 609 */ 610 if (td->td_dev != NULL && 611 td->td_size == newsize && 612 td->td_type == newtype && 613 td->td_stripe == newstripe) { 614 /* Same as the old device; just keep using it. */ 615 rv = 0; 616 goto out; 617 } else if (td->td_dev != NULL) { 618 /* Detach the old device first. */ 619 (void) config_detach(td->td_dev, DETACH_FORCE); 620 td->td_dev = NULL; 621 } else if (td->td_size == 0) 622 sc->sc_nunits++; 623 624 /* 625 * Committed to the new array unit; assign its parameters and 626 * recompute the number of available command openings. 627 */ 628 td->td_size = newsize; 629 td->td_type = newtype; 630 td->td_stripe = newstripe; 631 twe_recompute_openings(sc); 632 633 twea.twea_unit = unit; 634 635 locs[TWECF_UNIT] = unit; 636 637 td->td_dev = config_found_sm_loc(sc->sc_dev, "twe", locs, &twea, 638 twe_print, config_stdsubmatch); 639 640 rv = 0; 641 out: 642 free(dtp, M_DEVBUF); 643 return (rv); 644 } 645 646 static int 647 twe_del_unit(struct twe_softc *sc, int unit) 648 { 649 struct twe_drive *td; 650 651 if (unit < 0 || unit >= TWE_MAX_UNITS) 652 return (EINVAL); 653 654 td = &sc->sc_units[unit]; 655 if (td->td_size != 0) 656 sc->sc_nunits--; 657 td->td_size = 0; 658 td->td_type = 0; 659 td->td_stripe = 0; 660 if (td->td_dev != NULL) { 661 (void) config_detach(td->td_dev, DETACH_FORCE); 662 td->td_dev = NULL; 663 } 664 twe_recompute_openings(sc); 665 return (0); 666 } 667 668 /* 669 * Reset the controller. 670 * MUST BE CALLED AT splbio()! 671 */ 672 static int 673 twe_reset(struct twe_softc *sc) 674 { 675 uint16_t aen; 676 u_int status; 677 int got, rv; 678 679 /* Issue a soft reset. */ 680 twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET | 681 TWE_CTL_CLEAR_HOST_INTR | 682 TWE_CTL_CLEAR_ATTN_INTR | 683 TWE_CTL_MASK_CMD_INTR | 684 TWE_CTL_MASK_RESP_INTR | 685 TWE_CTL_CLEAR_ERROR_STS | 686 TWE_CTL_DISABLE_INTRS); 687 688 /* Wait for attention... */ 689 if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) { 690 aprint_error_dev(sc->sc_dev, 691 "timeout waiting for attention interrupt\n"); 692 return (-1); 693 } 694 695 /* ...and ACK it. */ 696 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR); 697 698 /* 699 * Pull AENs out of the controller; look for a soft reset AEN. 700 * Open code this, since we want to detect reset even if the 701 * queue for management tools is full. 702 * 703 * Note that since: 704 * - interrupts are blocked 705 * - we have reset the controller 706 * - acknowledged the pending ATTENTION 707 * that there is no way a pending asynchronous AEN fetch would 708 * finish, so clear the flag. 709 */ 710 sc->sc_flags &= ~TWEF_AEN; 711 for (got = 0;;) { 712 rv = twe_aen_get(sc, &aen); 713 if (rv != 0) 714 printf("%s: error %d while draining event queue\n", 715 device_xname(sc->sc_dev), rv); 716 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) 717 break; 718 if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET) 719 got = 1; 720 twe_aen_enqueue(sc, aen, 1); 721 } 722 723 if (!got) { 724 printf("%s: reset not reported\n", device_xname(sc->sc_dev)); 725 return (-1); 726 } 727 728 /* Check controller status. */ 729 status = twe_inl(sc, TWE_REG_STS); 730 if (twe_status_check(sc, status)) { 731 printf("%s: controller errors detected\n", 732 device_xname(sc->sc_dev)); 733 return (-1); 734 } 735 736 /* Drain the response queue. */ 737 for (;;) { 738 status = twe_inl(sc, TWE_REG_STS); 739 if (twe_status_check(sc, status) != 0) { 740 aprint_error_dev(sc->sc_dev, 741 "can't drain response queue\n"); 742 return (-1); 743 } 744 if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0) 745 break; 746 (void)twe_inl(sc, TWE_REG_RESP_QUEUE); 747 } 748 749 return (0); 750 } 751 752 /* 753 * Print autoconfiguration message for a sub-device. 754 */ 755 static int 756 twe_print(void *aux, const char *pnp) 757 { 758 struct twe_attach_args *twea; 759 760 twea = aux; 761 762 if (pnp != NULL) 763 aprint_normal("block device at %s", pnp); 764 aprint_normal(" unit %d", twea->twea_unit); 765 return (UNCONF); 766 } 767 768 /* 769 * Interrupt service routine. 770 */ 771 static int 772 twe_intr(void *arg) 773 { 774 struct twe_softc *sc; 775 u_int status; 776 int caught, rv; 777 778 sc = arg; 779 caught = 0; 780 status = twe_inl(sc, TWE_REG_STS); 781 twe_status_check(sc, status); 782 783 /* Host interrupts - purpose unknown. */ 784 if ((status & TWE_STS_HOST_INTR) != 0) { 785 #ifdef DEBUG 786 printf("%s: host interrupt\n", device_xname(sc->sc_dev)); 787 #endif 788 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR); 789 caught = 1; 790 } 791 792 /* 793 * Attention interrupts, signalled when a controller or child device 794 * state change has occurred. 795 */ 796 if ((status & TWE_STS_ATTN_INTR) != 0) { 797 rv = twe_aen_get(sc, NULL); 798 if (rv != 0) 799 aprint_error_dev(sc->sc_dev, 800 "unable to retrieve AEN (%d)\n", rv); 801 else 802 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR); 803 caught = 1; 804 } 805 806 /* 807 * Command interrupts, signalled when the controller can accept more 808 * commands. We don't use this; instead, we try to submit commands 809 * when we receive them, and when other commands have completed. 810 * Mask it so we don't get another one. 811 */ 812 if ((status & TWE_STS_CMD_INTR) != 0) { 813 #ifdef DEBUG 814 printf("%s: command interrupt\n", device_xname(sc->sc_dev)); 815 #endif 816 twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR); 817 caught = 1; 818 } 819 820 if ((status & TWE_STS_RESP_INTR) != 0) { 821 twe_poll(sc); 822 caught = 1; 823 } 824 825 return (caught); 826 } 827 828 /* 829 * Fetch an AEN. Even though this is really like parameter 830 * retrieval, we handle this specially, because we issue this 831 * AEN retrieval command from interrupt context, and thus 832 * reserve a CCB for it to avoid resource shortage. 833 * 834 * XXX There are still potential resource shortages we could 835 * XXX encounter. Consider pre-allocating all AEN-related 836 * XXX resources. 837 * 838 * MUST BE CALLED AT splbio()! 839 */ 840 static int 841 twe_aen_get(struct twe_softc *sc, uint16_t *aenp) 842 { 843 struct twe_ccb *ccb; 844 struct twe_cmd *tc; 845 struct twe_param *tp; 846 int rv; 847 848 /* 849 * If we're already retrieving an AEN, just wait; another 850 * retrieval will be chained after the current one completes. 851 */ 852 if (sc->sc_flags & TWEF_AEN) { 853 /* 854 * It is a fatal software programming error to attempt 855 * to fetch an AEN synchronously when an AEN fetch is 856 * already pending. 857 */ 858 KASSERT(aenp == NULL); 859 return (0); 860 } 861 862 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT); 863 if (tp == NULL) 864 return (ENOMEM); 865 866 ccb = twe_ccb_alloc(sc, 867 TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); 868 KASSERT(ccb != NULL); 869 870 ccb->ccb_data = tp; 871 ccb->ccb_datasize = TWE_SECTOR_SIZE; 872 ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL; 873 ccb->ccb_tx.tx_context = tp; 874 ccb->ccb_tx.tx_dv = sc->sc_dev; 875 876 tc = ccb->ccb_cmd; 877 tc->tc_size = 2; 878 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5); 879 tc->tc_unit = 0; 880 tc->tc_count = htole16(1); 881 882 /* Fill in the outbound parameter data. */ 883 tp->tp_table_id = htole16(TWE_PARAM_AEN); 884 tp->tp_param_id = TWE_PARAM_AEN_UnitCode; 885 tp->tp_param_size = 2; 886 887 /* Map the transfer. */ 888 if ((rv = twe_ccb_map(sc, ccb)) != 0) { 889 twe_ccb_free(sc, ccb); 890 goto done; 891 } 892 893 /* Enqueue the command and wait. */ 894 if (aenp != NULL) { 895 rv = twe_ccb_poll(sc, ccb, 5); 896 twe_ccb_unmap(sc, ccb); 897 twe_ccb_free(sc, ccb); 898 if (rv == 0) 899 *aenp = le16toh(*(uint16_t *)tp->tp_data); 900 free(tp, M_DEVBUF); 901 } else { 902 sc->sc_flags |= TWEF_AEN; 903 twe_ccb_enqueue(sc, ccb); 904 rv = 0; 905 } 906 907 done: 908 return (rv); 909 } 910 911 /* 912 * Handle an AEN returned by the controller. 913 * MUST BE CALLED AT splbio()! 914 */ 915 static void 916 twe_aen_handler(struct twe_ccb *ccb, int error) 917 { 918 struct twe_softc *sc; 919 struct twe_param *tp; 920 uint16_t aen; 921 int rv; 922 923 sc = device_private(ccb->ccb_tx.tx_dv); 924 tp = ccb->ccb_tx.tx_context; 925 twe_ccb_unmap(sc, ccb); 926 927 sc->sc_flags &= ~TWEF_AEN; 928 929 if (error) { 930 aprint_error_dev(sc->sc_dev, "error retrieving AEN\n"); 931 aen = TWE_AEN_QUEUE_EMPTY; 932 } else 933 aen = le16toh(*(u_int16_t *)tp->tp_data); 934 free(tp, M_DEVBUF); 935 twe_ccb_free(sc, ccb); 936 937 if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) { 938 twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR); 939 return; 940 } 941 942 twe_aen_enqueue(sc, aen, 0); 943 944 /* 945 * Chain another retrieval in case interrupts have been 946 * coalesced. 947 */ 948 rv = twe_aen_get(sc, NULL); 949 if (rv != 0) 950 aprint_error_dev(sc->sc_dev, 951 "unable to retrieve AEN (%d)\n", rv); 952 } 953 954 static void 955 twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet) 956 { 957 const char *str, *msg; 958 int s, next, nextnext, level; 959 960 /* 961 * First report the AEN on the console. Maybe. 962 */ 963 if (! quiet) { 964 str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen)); 965 if (str == NULL) { 966 aprint_error_dev(sc->sc_dev, 967 "unknown AEN 0x%04x\n", aen); 968 } else { 969 msg = str + 3; 970 switch (str[1]) { 971 case 'E': level = LOG_EMERG; break; 972 case 'a': level = LOG_ALERT; break; 973 case 'c': level = LOG_CRIT; break; 974 case 'e': level = LOG_ERR; break; 975 case 'w': level = LOG_WARNING; break; 976 case 'n': level = LOG_NOTICE; break; 977 case 'i': level = LOG_INFO; break; 978 case 'd': level = LOG_DEBUG; break; 979 default: 980 /* Don't use syslog. */ 981 level = -1; 982 } 983 984 if (level < 0) { 985 switch (str[0]) { 986 case 'u': 987 case 'p': 988 printf("%s: %s %d: %s\n", 989 device_xname(sc->sc_dev), 990 str[0] == 'u' ? "unit" : "port", 991 TWE_AEN_UNIT(aen), msg); 992 break; 993 994 default: 995 printf("%s: %s\n", 996 device_xname(sc->sc_dev), msg); 997 } 998 } else { 999 switch (str[0]) { 1000 case 'u': 1001 case 'p': 1002 log(level, "%s: %s %d: %s\n", 1003 device_xname(sc->sc_dev), 1004 str[0] == 'u' ? "unit" : "port", 1005 TWE_AEN_UNIT(aen), msg); 1006 break; 1007 1008 default: 1009 log(level, "%s: %s\n", 1010 device_xname(sc->sc_dev), msg); 1011 } 1012 } 1013 } 1014 } 1015 1016 /* Now enqueue the AEN for mangement tools. */ 1017 s = splbio(); 1018 1019 next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH; 1020 nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH; 1021 1022 /* 1023 * If this is the last free slot, then queue up a "queue 1024 * full" message. 1025 */ 1026 if (nextnext == sc->sc_aen_tail) 1027 aen = TWE_AEN_QUEUE_FULL; 1028 1029 if (next != sc->sc_aen_tail) { 1030 sc->sc_aen_queue[sc->sc_aen_head] = aen; 1031 sc->sc_aen_head = next; 1032 } 1033 1034 if (sc->sc_flags & TWEF_AENQ_WAIT) { 1035 sc->sc_flags &= ~TWEF_AENQ_WAIT; 1036 wakeup(&sc->sc_aen_queue); 1037 } 1038 1039 splx(s); 1040 } 1041 1042 /* NOTE: Must be called at splbio(). */ 1043 static uint16_t 1044 twe_aen_dequeue(struct twe_softc *sc) 1045 { 1046 uint16_t aen; 1047 1048 if (sc->sc_aen_tail == sc->sc_aen_head) 1049 aen = TWE_AEN_QUEUE_EMPTY; 1050 else { 1051 aen = sc->sc_aen_queue[sc->sc_aen_tail]; 1052 sc->sc_aen_tail = (sc->sc_aen_tail + 1) % TWE_AEN_Q_LENGTH; 1053 } 1054 1055 return (aen); 1056 } 1057 1058 /* 1059 * These are short-hand functions that execute TWE_OP_GET_PARAM to 1060 * fetch 1, 2, and 4 byte parameter values, respectively. 1061 */ 1062 int 1063 twe_param_get_1(struct twe_softc *sc, int table_id, int param_id, 1064 uint8_t *valp) 1065 { 1066 struct twe_param *tp; 1067 int rv; 1068 1069 rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp); 1070 if (rv != 0) 1071 return (rv); 1072 *valp = *(uint8_t *)tp->tp_data; 1073 free(tp, M_DEVBUF); 1074 return (0); 1075 } 1076 1077 int 1078 twe_param_get_2(struct twe_softc *sc, int table_id, int param_id, 1079 uint16_t *valp) 1080 { 1081 struct twe_param *tp; 1082 int rv; 1083 1084 rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp); 1085 if (rv != 0) 1086 return (rv); 1087 *valp = le16toh(*(uint16_t *)tp->tp_data); 1088 free(tp, M_DEVBUF); 1089 return (0); 1090 } 1091 1092 int 1093 twe_param_get_4(struct twe_softc *sc, int table_id, int param_id, 1094 uint32_t *valp) 1095 { 1096 struct twe_param *tp; 1097 int rv; 1098 1099 rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp); 1100 if (rv != 0) 1101 return (rv); 1102 *valp = le32toh(*(uint32_t *)tp->tp_data); 1103 free(tp, M_DEVBUF); 1104 return (0); 1105 } 1106 1107 /* 1108 * Execute a TWE_OP_GET_PARAM command. If a callback function is provided, 1109 * it will be called with generated context when the command has completed. 1110 * If no callback is provided, the command will be executed synchronously 1111 * and a pointer to a buffer containing the data returned. 1112 * 1113 * The caller or callback is responsible for freeing the buffer. 1114 * 1115 * NOTE: We assume we can sleep here to wait for a CCB to become available. 1116 */ 1117 int 1118 twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size, 1119 void (*func)(struct twe_ccb *, int), struct twe_param **pbuf) 1120 { 1121 struct twe_ccb *ccb; 1122 struct twe_cmd *tc; 1123 struct twe_param *tp; 1124 int rv, s; 1125 1126 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT); 1127 if (tp == NULL) 1128 return ENOMEM; 1129 1130 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); 1131 KASSERT(ccb != NULL); 1132 1133 ccb->ccb_data = tp; 1134 ccb->ccb_datasize = TWE_SECTOR_SIZE; 1135 ccb->ccb_tx.tx_handler = func; 1136 ccb->ccb_tx.tx_context = tp; 1137 ccb->ccb_tx.tx_dv = sc->sc_dev; 1138 1139 tc = ccb->ccb_cmd; 1140 tc->tc_size = 2; 1141 tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5); 1142 tc->tc_unit = 0; 1143 tc->tc_count = htole16(1); 1144 1145 /* Fill in the outbound parameter data. */ 1146 tp->tp_table_id = htole16(table_id); 1147 tp->tp_param_id = param_id; 1148 tp->tp_param_size = size; 1149 1150 /* Map the transfer. */ 1151 if ((rv = twe_ccb_map(sc, ccb)) != 0) { 1152 twe_ccb_free(sc, ccb); 1153 goto done; 1154 } 1155 1156 /* Submit the command and either wait or let the callback handle it. */ 1157 if (func == NULL) { 1158 s = splbio(); 1159 rv = twe_ccb_poll(sc, ccb, 5); 1160 twe_ccb_unmap(sc, ccb); 1161 twe_ccb_free(sc, ccb); 1162 splx(s); 1163 } else { 1164 #ifdef DEBUG 1165 if (pbuf != NULL) 1166 panic("both func and pbuf defined"); 1167 #endif 1168 twe_ccb_enqueue(sc, ccb); 1169 return 0; 1170 } 1171 1172 done: 1173 if (pbuf == NULL || rv != 0) 1174 free(tp, M_DEVBUF); 1175 else if (pbuf != NULL && rv == 0) 1176 *pbuf = tp; 1177 return rv; 1178 } 1179 1180 /* 1181 * Execute a TWE_OP_SET_PARAM command. 1182 * 1183 * NOTE: We assume we can sleep here to wait for a CCB to become available. 1184 */ 1185 static int 1186 twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size, 1187 void *sbuf) 1188 { 1189 struct twe_ccb *ccb; 1190 struct twe_cmd *tc; 1191 struct twe_param *tp; 1192 int rv, s; 1193 1194 tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK); 1195 ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); 1196 ccb->ccb_data = tp; 1197 ccb->ccb_datasize = TWE_SECTOR_SIZE; 1198 ccb->ccb_tx.tx_handler = 0; 1199 ccb->ccb_tx.tx_context = tp; 1200 ccb->ccb_tx.tx_dv = sc->sc_dev; 1201 1202 tc = ccb->ccb_cmd; 1203 tc->tc_size = 2; 1204 tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5); 1205 tc->tc_unit = 0; 1206 tc->tc_count = htole16(1); 1207 1208 /* Fill in the outbound parameter data. */ 1209 tp->tp_table_id = htole16(table_id); 1210 tp->tp_param_id = param_id; 1211 tp->tp_param_size = size; 1212 memcpy(tp->tp_data, sbuf, size); 1213 1214 /* Map the transfer. */ 1215 if ((rv = twe_ccb_map(sc, ccb)) != 0) { 1216 twe_ccb_free(sc, ccb); 1217 goto done; 1218 } 1219 1220 /* Submit the command and wait. */ 1221 s = splbio(); 1222 rv = twe_ccb_poll(sc, ccb, 5); 1223 twe_ccb_unmap(sc, ccb); 1224 twe_ccb_free(sc, ccb); 1225 splx(s); 1226 done: 1227 free(tp, M_DEVBUF); 1228 return (rv); 1229 } 1230 1231 /* 1232 * Execute a TWE_OP_INIT_CONNECTION command. Return non-zero on error. 1233 * Must be called with interrupts blocked. 1234 */ 1235 static int 1236 twe_init_connection(struct twe_softc *sc) 1237 { 1238 struct twe_ccb *ccb; 1239 struct twe_cmd *tc; 1240 int rv; 1241 1242 if ((ccb = twe_ccb_alloc(sc, 0)) == NULL) 1243 return (EAGAIN); 1244 1245 /* Build the command. */ 1246 tc = ccb->ccb_cmd; 1247 tc->tc_size = 3; 1248 tc->tc_opcode = TWE_OP_INIT_CONNECTION; 1249 tc->tc_unit = 0; 1250 tc->tc_count = htole16(TWE_MAX_CMDS); 1251 tc->tc_args.init_connection.response_queue_pointer = 0; 1252 1253 /* Submit the command for immediate execution. */ 1254 rv = twe_ccb_poll(sc, ccb, 5); 1255 twe_ccb_free(sc, ccb); 1256 return (rv); 1257 } 1258 1259 /* 1260 * Poll the controller for completed commands. Must be called with 1261 * interrupts blocked. 1262 */ 1263 static void 1264 twe_poll(struct twe_softc *sc) 1265 { 1266 struct twe_ccb *ccb; 1267 int found; 1268 u_int status, cmdid; 1269 1270 found = 0; 1271 1272 for (;;) { 1273 status = twe_inl(sc, TWE_REG_STS); 1274 twe_status_check(sc, status); 1275 1276 if ((status & TWE_STS_RESP_QUEUE_EMPTY)) 1277 break; 1278 1279 found = 1; 1280 cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE); 1281 cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT; 1282 if (cmdid >= TWE_MAX_QUEUECNT) { 1283 aprint_error_dev(sc->sc_dev, "bad cmdid %d\n", cmdid); 1284 continue; 1285 } 1286 1287 ccb = sc->sc_ccbs + cmdid; 1288 if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) { 1289 printf("%s: CCB for cmdid %d not active\n", 1290 device_xname(sc->sc_dev), cmdid); 1291 continue; 1292 } 1293 ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE; 1294 1295 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, 1296 (char *)ccb->ccb_cmd - (char *)sc->sc_cmds, 1297 sizeof(struct twe_cmd), 1298 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1299 1300 /* Pass notification to upper layers. */ 1301 if (ccb->ccb_tx.tx_handler != NULL) 1302 (*ccb->ccb_tx.tx_handler)(ccb, 1303 ccb->ccb_cmd->tc_status != 0 ? EIO : 0); 1304 } 1305 1306 /* If any commands have completed, run the software queue. */ 1307 if (found) 1308 twe_ccb_enqueue(sc, NULL); 1309 } 1310 1311 /* 1312 * Wait for `status' to be set in the controller status register. Return 1313 * zero if found, non-zero if the operation timed out. 1314 */ 1315 static int 1316 twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo) 1317 { 1318 1319 for (timo *= 10; timo != 0; timo--) { 1320 if ((twe_inl(sc, TWE_REG_STS) & status) == status) 1321 break; 1322 delay(100000); 1323 } 1324 1325 return (timo == 0); 1326 } 1327 1328 /* 1329 * Clear a PCI parity error. 1330 */ 1331 static void 1332 twe_clear_pci_parity_error(struct twe_softc *sc) 1333 { 1334 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, 1335 TWE_CTL_CLEAR_PARITY_ERROR); 1336 1337 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2); 1338 } 1339 1340 1341 /* 1342 * Clear a PCI abort. 1343 */ 1344 static void 1345 twe_clear_pci_abort(struct twe_softc *sc) 1346 { 1347 bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PCI_ABORT); 1348 1349 //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2); 1350 } 1351 1352 /* 1353 * Complain if the status bits aren't what we expect. 1354 */ 1355 static int 1356 twe_status_check(struct twe_softc *sc, u_int status) 1357 { 1358 int rv; 1359 1360 rv = 0; 1361 1362 if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) { 1363 aprint_error_dev(sc->sc_dev, "missing status bits: 0x%08x\n", 1364 status & ~TWE_STS_EXPECTED_BITS); 1365 rv = -1; 1366 } 1367 1368 if ((status & TWE_STS_UNEXPECTED_BITS) != 0) { 1369 aprint_error_dev(sc->sc_dev, "unexpected status bits: 0x%08x\n", 1370 status & TWE_STS_UNEXPECTED_BITS); 1371 rv = -1; 1372 if (status & TWE_STS_PCI_PARITY_ERROR) { 1373 aprint_error_dev(sc->sc_dev, "PCI parity error: Reseat" 1374 " card, move card or buggy device present.\n"); 1375 twe_clear_pci_parity_error(sc); 1376 } 1377 if (status & TWE_STS_PCI_ABORT) { 1378 aprint_error_dev(sc->sc_dev, "PCI abort, clearing.\n"); 1379 twe_clear_pci_abort(sc); 1380 } 1381 } 1382 1383 return (rv); 1384 } 1385 1386 /* 1387 * Allocate and initialise a CCB. 1388 */ 1389 static inline void 1390 twe_ccb_init(struct twe_softc *sc, struct twe_ccb *ccb, int flags) 1391 { 1392 struct twe_cmd *tc; 1393 1394 ccb->ccb_tx.tx_handler = NULL; 1395 ccb->ccb_flags = flags; 1396 tc = ccb->ccb_cmd; 1397 tc->tc_status = 0; 1398 tc->tc_flags = 0; 1399 tc->tc_cmdid = ccb->ccb_cmdid; 1400 } 1401 1402 struct twe_ccb * 1403 twe_ccb_alloc(struct twe_softc *sc, int flags) 1404 { 1405 struct twe_ccb *ccb; 1406 int s; 1407 1408 s = splbio(); 1409 if (__predict_false((flags & TWE_CCB_AEN) != 0)) { 1410 /* Use the reserved CCB. */ 1411 ccb = sc->sc_ccbs; 1412 } else { 1413 /* Allocate a CCB and command block. */ 1414 if (__predict_false((ccb = 1415 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) { 1416 splx(s); 1417 return (NULL); 1418 } 1419 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist); 1420 } 1421 #ifdef DIAGNOSTIC 1422 if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0) 1423 panic("twe_ccb_alloc: got reserved CCB for non-AEN"); 1424 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0) 1425 panic("twe_ccb_alloc: CCB %ld already allocated", 1426 (long)(ccb - sc->sc_ccbs)); 1427 flags |= TWE_CCB_ALLOCED; 1428 #endif 1429 splx(s); 1430 1431 twe_ccb_init(sc, ccb, flags); 1432 return (ccb); 1433 } 1434 1435 struct twe_ccb * 1436 twe_ccb_alloc_wait(struct twe_softc *sc, int flags) 1437 { 1438 struct twe_ccb *ccb; 1439 int s; 1440 1441 KASSERT((flags & TWE_CCB_AEN) == 0); 1442 1443 s = splbio(); 1444 while (__predict_false((ccb = 1445 SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) { 1446 sc->sc_flags |= TWEF_WAIT_CCB; 1447 (void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0); 1448 } 1449 SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist); 1450 #ifdef DIAGNOSTIC 1451 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0) 1452 panic("twe_ccb_alloc_wait: CCB %ld already allocated", 1453 (long)(ccb - sc->sc_ccbs)); 1454 flags |= TWE_CCB_ALLOCED; 1455 #endif 1456 splx(s); 1457 1458 twe_ccb_init(sc, ccb, flags); 1459 return (ccb); 1460 } 1461 1462 /* 1463 * Free a CCB. 1464 */ 1465 void 1466 twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb) 1467 { 1468 int s; 1469 1470 s = splbio(); 1471 if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) { 1472 SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist); 1473 if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) { 1474 sc->sc_flags &= ~TWEF_WAIT_CCB; 1475 wakeup(&sc->sc_ccb_freelist); 1476 } 1477 } 1478 ccb->ccb_flags = 0; 1479 splx(s); 1480 } 1481 1482 /* 1483 * Map the specified CCB's command block and data buffer (if any) into 1484 * controller visible space. Perform DMA synchronisation. 1485 */ 1486 int 1487 twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb) 1488 { 1489 struct twe_cmd *tc; 1490 int flags, nsegs, i, s, rv; 1491 void *data; 1492 1493 /* 1494 * The data as a whole must be 512-byte aligned. 1495 */ 1496 if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) { 1497 s = splvm(); 1498 /* XXX */ 1499 rv = uvm_km_kmem_alloc(kmem_va_arena, 1500 ccb->ccb_datasize, (VM_NOSLEEP | VM_INSTANTFIT), 1501 (vmem_addr_t *)&ccb->ccb_abuf); 1502 splx(s); 1503 data = (void *)ccb->ccb_abuf; 1504 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0) 1505 memcpy(data, ccb->ccb_data, ccb->ccb_datasize); 1506 } else { 1507 ccb->ccb_abuf = (vaddr_t)0; 1508 data = ccb->ccb_data; 1509 } 1510 1511 /* 1512 * Map the data buffer into bus space and build the S/G list. 1513 */ 1514 rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data, 1515 ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING | 1516 ((ccb->ccb_flags & TWE_CCB_DATA_IN) ? 1517 BUS_DMA_READ : BUS_DMA_WRITE)); 1518 if (rv != 0) { 1519 if (ccb->ccb_abuf != (vaddr_t)0) { 1520 s = splvm(); 1521 /* XXX */ 1522 uvm_km_kmem_free(kmem_va_arena, ccb->ccb_abuf, 1523 ccb->ccb_datasize); 1524 splx(s); 1525 } 1526 return (rv); 1527 } 1528 1529 nsegs = ccb->ccb_dmamap_xfer->dm_nsegs; 1530 tc = ccb->ccb_cmd; 1531 tc->tc_size += 2 * nsegs; 1532 1533 /* The location of the S/G list is dependent upon command type. */ 1534 switch (tc->tc_opcode >> 5) { 1535 case 2: 1536 for (i = 0; i < nsegs; i++) { 1537 tc->tc_args.param.sgl[i].tsg_address = 1538 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr); 1539 tc->tc_args.param.sgl[i].tsg_length = 1540 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len); 1541 } 1542 /* XXX Needed? */ 1543 for (; i < TWE_SG_SIZE; i++) { 1544 tc->tc_args.param.sgl[i].tsg_address = 0; 1545 tc->tc_args.param.sgl[i].tsg_length = 0; 1546 } 1547 break; 1548 case 3: 1549 for (i = 0; i < nsegs; i++) { 1550 tc->tc_args.io.sgl[i].tsg_address = 1551 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr); 1552 tc->tc_args.io.sgl[i].tsg_length = 1553 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len); 1554 } 1555 /* XXX Needed? */ 1556 for (; i < TWE_SG_SIZE; i++) { 1557 tc->tc_args.io.sgl[i].tsg_address = 0; 1558 tc->tc_args.io.sgl[i].tsg_length = 0; 1559 } 1560 break; 1561 default: 1562 /* 1563 * In all likelihood, this is a command passed from 1564 * management tools in userspace where no S/G list is 1565 * necessary because no data is being passed. 1566 */ 1567 break; 1568 } 1569 1570 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0) 1571 flags = BUS_DMASYNC_PREREAD; 1572 else 1573 flags = 0; 1574 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0) 1575 flags |= BUS_DMASYNC_PREWRITE; 1576 1577 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0, 1578 ccb->ccb_datasize, flags); 1579 return (0); 1580 } 1581 1582 /* 1583 * Unmap the specified CCB's command block and data buffer (if any) and 1584 * perform DMA synchronisation. 1585 */ 1586 void 1587 twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb) 1588 { 1589 int flags, s; 1590 1591 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0) 1592 flags = BUS_DMASYNC_POSTREAD; 1593 else 1594 flags = 0; 1595 if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0) 1596 flags |= BUS_DMASYNC_POSTWRITE; 1597 1598 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0, 1599 ccb->ccb_datasize, flags); 1600 bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer); 1601 1602 if (ccb->ccb_abuf != (vaddr_t)0) { 1603 if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0) 1604 memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf, 1605 ccb->ccb_datasize); 1606 s = splvm(); 1607 /* XXX */ 1608 uvm_km_kmem_free(kmem_va_arena, ccb->ccb_abuf, 1609 ccb->ccb_datasize); 1610 splx(s); 1611 } 1612 } 1613 1614 /* 1615 * Submit a command to the controller and poll on completion. Return 1616 * non-zero on timeout (but don't check status, as some command types don't 1617 * return status). Must be called with interrupts blocked. 1618 */ 1619 int 1620 twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo) 1621 { 1622 int rv; 1623 1624 if ((rv = twe_ccb_submit(sc, ccb)) != 0) 1625 return (rv); 1626 1627 for (timo *= 1000; timo != 0; timo--) { 1628 twe_poll(sc); 1629 if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0) 1630 break; 1631 DELAY(100); 1632 } 1633 1634 return (timo == 0); 1635 } 1636 1637 /* 1638 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in 1639 * the order that they were enqueued and try to submit their command blocks 1640 * to the controller for execution. 1641 */ 1642 void 1643 twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb) 1644 { 1645 int s; 1646 1647 s = splbio(); 1648 1649 if (ccb != NULL) 1650 SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq); 1651 1652 while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) { 1653 if (twe_ccb_submit(sc, ccb)) 1654 break; 1655 SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq); 1656 } 1657 1658 splx(s); 1659 } 1660 1661 /* 1662 * Submit the command block associated with the specified CCB to the 1663 * controller for execution. Must be called with interrupts blocked. 1664 */ 1665 int 1666 twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb) 1667 { 1668 bus_addr_t pa; 1669 int rv; 1670 u_int status; 1671 1672 /* Check to see if we can post a command. */ 1673 status = twe_inl(sc, TWE_REG_STS); 1674 twe_status_check(sc, status); 1675 1676 if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) { 1677 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, 1678 (char *)ccb->ccb_cmd - (char *)sc->sc_cmds, 1679 sizeof(struct twe_cmd), 1680 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 1681 #ifdef DIAGNOSTIC 1682 if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0) 1683 panic("%s: CCB %ld not ALLOCED\n", 1684 device_xname(sc->sc_dev), (long)(ccb - sc->sc_ccbs)); 1685 #endif 1686 ccb->ccb_flags |= TWE_CCB_ACTIVE; 1687 pa = sc->sc_cmds_paddr + 1688 ccb->ccb_cmdid * sizeof(struct twe_cmd); 1689 twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa); 1690 rv = 0; 1691 } else 1692 rv = EBUSY; 1693 1694 return (rv); 1695 } 1696 1697 1698 /* 1699 * Accept an open operation on the control device. 1700 */ 1701 static int 1702 tweopen(dev_t dev, int flag, int mode, struct lwp *l) 1703 { 1704 struct twe_softc *twe; 1705 1706 if ((twe = device_lookup_private(&twe_cd, minor(dev))) == NULL) 1707 return (ENXIO); 1708 if ((twe->sc_flags & TWEF_OPEN) != 0) 1709 return (EBUSY); 1710 1711 twe->sc_flags |= TWEF_OPEN; 1712 return (0); 1713 } 1714 1715 /* 1716 * Accept the last close on the control device. 1717 */ 1718 static int 1719 tweclose(dev_t dev, int flag, int mode, 1720 struct lwp *l) 1721 { 1722 struct twe_softc *twe; 1723 1724 twe = device_lookup_private(&twe_cd, minor(dev)); 1725 twe->sc_flags &= ~TWEF_OPEN; 1726 return (0); 1727 } 1728 1729 void 1730 twe_ccb_wait_handler(struct twe_ccb *ccb, int error) 1731 { 1732 1733 /* Just wake up the sleeper. */ 1734 wakeup(ccb); 1735 } 1736 1737 /* 1738 * Handle control operations. 1739 */ 1740 static int 1741 tweioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l) 1742 { 1743 struct twe_softc *twe; 1744 struct twe_ccb *ccb; 1745 struct twe_param *param; 1746 struct twe_usercommand *tu; 1747 struct twe_paramcommand *tp; 1748 struct twe_drivecommand *td; 1749 void *pdata = NULL; 1750 int s, error = 0; 1751 u_int8_t cmdid; 1752 1753 twe = device_lookup_private(&twe_cd, minor(dev)); 1754 tu = (struct twe_usercommand *)data; 1755 tp = (struct twe_paramcommand *)data; 1756 td = (struct twe_drivecommand *)data; 1757 1758 /* This is intended to be compatible with the FreeBSD interface. */ 1759 switch (cmd) { 1760 case TWEIO_COMMAND: 1761 error = kauth_authorize_device_passthru(l->l_cred, dev, 1762 KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data); 1763 if (error) 1764 return (error); 1765 1766 /* XXX mutex */ 1767 if (tu->tu_size > 0) { 1768 /* 1769 * XXX Handle > TWE_SECTOR_SIZE? Let's see if 1770 * it's really necessary, first. 1771 */ 1772 if (tu->tu_size > TWE_SECTOR_SIZE) { 1773 #ifdef TWE_DEBUG 1774 printf("%s: TWEIO_COMMAND: tu_size = %zu\n", 1775 device_xname(twe->sc_dev), tu->tu_size); 1776 #endif 1777 return EINVAL; 1778 } 1779 pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK); 1780 error = copyin(tu->tu_data, pdata, tu->tu_size); 1781 if (error != 0) 1782 goto done; 1783 ccb = twe_ccb_alloc_wait(twe, 1784 TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); 1785 KASSERT(ccb != NULL); 1786 ccb->ccb_data = pdata; 1787 ccb->ccb_datasize = TWE_SECTOR_SIZE; 1788 } else { 1789 ccb = twe_ccb_alloc_wait(twe, 0); 1790 KASSERT(ccb != NULL); 1791 } 1792 1793 ccb->ccb_tx.tx_handler = twe_ccb_wait_handler; 1794 ccb->ccb_tx.tx_context = NULL; 1795 ccb->ccb_tx.tx_dv = twe->sc_dev; 1796 1797 cmdid = ccb->ccb_cmdid; 1798 memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd)); 1799 ccb->ccb_cmd->tc_cmdid = cmdid; 1800 1801 /* Map the transfer. */ 1802 if ((error = twe_ccb_map(twe, ccb)) != 0) { 1803 twe_ccb_free(twe, ccb); 1804 goto done; 1805 } 1806 1807 /* Submit the command and wait up to 1 minute. */ 1808 error = 0; 1809 twe_ccb_enqueue(twe, ccb); 1810 s = splbio(); 1811 while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0) 1812 if ((error = tsleep(ccb, PRIBIO, "tweioctl", 1813 60 * hz)) != 0) 1814 break; 1815 splx(s); 1816 1817 /* Copy the command back to the ioctl argument. */ 1818 memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd)); 1819 #ifdef TWE_DEBUG 1820 printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, " 1821 "tc_status = 0x%02x\n", device_xname(twe->sc_dev), 1822 tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status); 1823 #endif 1824 1825 s = splbio(); 1826 twe_ccb_free(twe, ccb); 1827 splx(s); 1828 1829 if (tu->tu_size > 0) 1830 error = copyout(pdata, tu->tu_data, tu->tu_size); 1831 goto done; 1832 1833 case TWEIO_STATS: 1834 return (ENOENT); 1835 1836 case TWEIO_AEN_POLL: 1837 s = splbio(); 1838 *(u_int *)data = twe_aen_dequeue(twe); 1839 splx(s); 1840 return (0); 1841 1842 case TWEIO_AEN_WAIT: 1843 s = splbio(); 1844 while ((*(u_int *)data = 1845 twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) { 1846 twe->sc_flags |= TWEF_AENQ_WAIT; 1847 error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH, 1848 "tweaen", 0); 1849 if (error == EINTR) { 1850 splx(s); 1851 return (error); 1852 } 1853 } 1854 splx(s); 1855 return (0); 1856 1857 case TWEIO_GET_PARAM: 1858 error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id, 1859 tp->tp_size, 0, ¶m); 1860 if (error != 0) 1861 return (error); 1862 if (param->tp_param_size > tp->tp_size) { 1863 error = EFAULT; 1864 goto done; 1865 } 1866 error = copyout(param->tp_data, tp->tp_data, 1867 param->tp_param_size); 1868 free(param, M_DEVBUF); 1869 goto done; 1870 1871 case TWEIO_SET_PARAM: 1872 pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK); 1873 if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0) 1874 goto done; 1875 error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id, 1876 tp->tp_size, pdata); 1877 goto done; 1878 1879 case TWEIO_RESET: 1880 s = splbio(); 1881 twe_reset(twe); 1882 splx(s); 1883 return (0); 1884 1885 case TWEIO_ADD_UNIT: 1886 /* XXX mutex */ 1887 return (twe_add_unit(twe, td->td_unit)); 1888 1889 case TWEIO_DEL_UNIT: 1890 /* XXX mutex */ 1891 return (twe_del_unit(twe, td->td_unit)); 1892 1893 default: 1894 return EINVAL; 1895 } 1896 done: 1897 if (pdata) 1898 free(pdata, M_DEVBUF); 1899 return error; 1900 } 1901 1902 const struct cdevsw twe_cdevsw = { 1903 .d_open = tweopen, 1904 .d_close = tweclose, 1905 .d_read = noread, 1906 .d_write = nowrite, 1907 .d_ioctl = tweioctl, 1908 .d_stop = nostop, 1909 .d_tty = notty, 1910 .d_poll = nopoll, 1911 .d_mmap = nommap, 1912 .d_kqfilter = nokqfilter, 1913 .d_discard = nodiscard, 1914 .d_flag = D_OTHER 1915 }; 1916 1917 /* 1918 * Print some information about the controller 1919 */ 1920 static void 1921 twe_describe_controller(struct twe_softc *sc) 1922 { 1923 struct twe_param *p[6]; 1924 int i, rv = 0; 1925 uint32_t dsize; 1926 uint8_t ports; 1927 1928 ports = 0; 1929 1930 /* get the port count */ 1931 rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER, 1932 TWE_PARAM_CONTROLLER_PortCount, &ports); 1933 1934 /* get version strings */ 1935 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon, 1936 16, NULL, &p[0]); 1937 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW, 1938 16, NULL, &p[1]); 1939 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS, 1940 16, NULL, &p[2]); 1941 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB, 1942 8, NULL, &p[3]); 1943 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA, 1944 8, NULL, &p[4]); 1945 rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI, 1946 8, NULL, &p[5]); 1947 1948 if (rv) { 1949 /* some error occurred */ 1950 aprint_error_dev(sc->sc_dev, 1951 "failed to fetch version information\n"); 1952 return; 1953 } 1954 1955 aprint_normal_dev(sc->sc_dev, "%d ports, Firmware %.16s, BIOS %.16s\n", 1956 ports, p[1]->tp_data, p[2]->tp_data); 1957 1958 aprint_verbose_dev(sc->sc_dev, 1959 "Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n", 1960 p[0]->tp_data, p[3]->tp_data, 1961 p[4]->tp_data, p[5]->tp_data); 1962 1963 free(p[0], M_DEVBUF); 1964 free(p[1], M_DEVBUF); 1965 free(p[2], M_DEVBUF); 1966 free(p[3], M_DEVBUF); 1967 free(p[4], M_DEVBUF); 1968 free(p[5], M_DEVBUF); 1969 1970 rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY, 1971 TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]); 1972 if (rv) { 1973 aprint_error_dev(sc->sc_dev, 1974 "failed to get drive status summary\n"); 1975 return; 1976 } 1977 for (i = 0; i < ports; i++) { 1978 if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present) 1979 continue; 1980 rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i, 1981 TWE_PARAM_DRIVEINFO_Size, &dsize); 1982 if (rv) { 1983 aprint_error_dev(sc->sc_dev, 1984 "unable to get drive size for port %d\n", i); 1985 continue; 1986 } 1987 rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i, 1988 TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]); 1989 if (rv) { 1990 aprint_error_dev(sc->sc_dev, 1991 "unable to get drive model for port %d\n", i); 1992 continue; 1993 } 1994 aprint_verbose_dev(sc->sc_dev, "port %d: %.40s %d MB\n", 1995 i, p[1]->tp_data, dsize / 2048); 1996 free(p[1], M_DEVBUF); 1997 } 1998 free(p[0], M_DEVBUF); 1999 } 2000 2001 MODULE(MODULE_CLASS_DRIVER, twe, "pci"); 2002 2003 #ifdef _MODULE 2004 #include "ioconf.c" 2005 #endif 2006 2007 static int 2008 twe_modcmd(modcmd_t cmd, void *opaque) 2009 { 2010 int error = 0; 2011 2012 #ifdef _MODULE 2013 switch (cmd) { 2014 case MODULE_CMD_INIT: 2015 error = config_init_component(cfdriver_ioconf_twe, 2016 cfattach_ioconf_twe, cfdata_ioconf_twe); 2017 break; 2018 case MODULE_CMD_FINI: 2019 error = config_fini_component(cfdriver_ioconf_twe, 2020 cfattach_ioconf_twe, cfdata_ioconf_twe); 2021 break; 2022 default: 2023 error = ENOTTY; 2024 break; 2025 } 2026 #endif 2027 2028 return error; 2029 } 2030