1 /* $NetBSD: sv.c,v 1.27 2005/01/15 15:19:52 kent Exp $ */ 2 /* $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */ 3 4 /* 5 * Copyright (c) 1999 The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Charles M. Hannum. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * Copyright (c) 1998 Constantine Paul Sapuntzakis 42 * All rights reserved 43 * 44 * Author: Constantine Paul Sapuntzakis (csapuntz@cvs.openbsd.org) 45 * 46 * Redistribution and use in source and binary forms, with or without 47 * modification, are permitted provided that the following conditions 48 * are met: 49 * 1. Redistributions of source code must retain the above copyright 50 * notice, this list of conditions and the following disclaimer. 51 * 2. Redistributions in binary form must reproduce the above copyright 52 * notice, this list of conditions and the following disclaimer in the 53 * documentation and/or other materials provided with the distribution. 54 * 3. The author's name or those of the contributors may be used to 55 * endorse or promote products derived from this software without 56 * specific prior written permission. 57 * 58 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS 59 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 60 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 61 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 68 * POSSIBILITY OF SUCH DAMAGE. 69 */ 70 71 /* 72 * S3 SonicVibes driver 73 * Heavily based on the eap driver by Lennart Augustsson 74 */ 75 76 #include <sys/cdefs.h> 77 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.27 2005/01/15 15:19:52 kent Exp $"); 78 79 #include <sys/param.h> 80 #include <sys/systm.h> 81 #include <sys/kernel.h> 82 #include <sys/malloc.h> 83 #include <sys/device.h> 84 85 #include <dev/pci/pcireg.h> 86 #include <dev/pci/pcivar.h> 87 #include <dev/pci/pcidevs.h> 88 89 #include <sys/audioio.h> 90 #include <dev/audio_if.h> 91 #include <dev/mulaw.h> 92 #include <dev/auconv.h> 93 94 #include <dev/ic/i8237reg.h> 95 #include <dev/pci/svreg.h> 96 #include <dev/pci/svvar.h> 97 98 #include <machine/bus.h> 99 100 /* XXX 101 * The SonicVibes DMA is broken and only works on 24-bit addresses. 102 * As long as bus_dmamem_alloc_range() is missing we use the ISA 103 * DMA tag on i386. 104 */ 105 #if defined(i386) 106 #include "isa.h" 107 #if NISA > 0 108 #include <dev/isa/isavar.h> 109 #endif 110 #endif 111 112 #ifdef AUDIO_DEBUG 113 #define DPRINTF(x) if (svdebug) printf x 114 #define DPRINTFN(n,x) if (svdebug>(n)) printf x 115 int svdebug = 0; 116 #else 117 #define DPRINTF(x) 118 #define DPRINTFN(n,x) 119 #endif 120 121 int sv_match(struct device *, struct cfdata *, void *); 122 void sv_attach(struct device *, struct device *, void *); 123 int sv_intr(void *); 124 125 struct sv_dma { 126 bus_dmamap_t map; 127 caddr_t addr; 128 bus_dma_segment_t segs[1]; 129 int nsegs; 130 size_t size; 131 struct sv_dma *next; 132 }; 133 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr) 134 #define KERNADDR(p) ((void *)((p)->addr)) 135 136 CFATTACH_DECL(sv, sizeof(struct sv_softc), 137 sv_match, sv_attach, NULL, NULL); 138 139 struct audio_device sv_device = { 140 "S3 SonicVibes", 141 "", 142 "sv" 143 }; 144 145 #define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0])) 146 147 int sv_allocmem(struct sv_softc *, size_t, size_t, int, struct sv_dma *); 148 int sv_freemem(struct sv_softc *, struct sv_dma *); 149 150 int sv_open(void *, int); 151 int sv_query_encoding(void *, struct audio_encoding *); 152 int sv_set_params(void *, int, int, audio_params_t *, audio_params_t *, 153 stream_filter_list_t *, stream_filter_list_t *); 154 int sv_round_blocksize(void *, int, int, const audio_params_t *); 155 int sv_trigger_output(void *, void *, void *, int, void (*)(void *), 156 void *, const audio_params_t *); 157 int sv_trigger_input(void *, void *, void *, int, void (*)(void *), 158 void *, const audio_params_t *); 159 int sv_halt_output(void *); 160 int sv_halt_input(void *); 161 int sv_getdev(void *, struct audio_device *); 162 int sv_mixer_set_port(void *, mixer_ctrl_t *); 163 int sv_mixer_get_port(void *, mixer_ctrl_t *); 164 int sv_query_devinfo(void *, mixer_devinfo_t *); 165 void *sv_malloc(void *, int, size_t, struct malloc_type *, int); 166 void sv_free(void *, void *, struct malloc_type *); 167 size_t sv_round_buffersize(void *, int, size_t); 168 paddr_t sv_mappage(void *, void *, off_t, int); 169 int sv_get_props(void *); 170 171 #ifdef AUDIO_DEBUG 172 void sv_dumpregs(struct sv_softc *sc); 173 #endif 174 175 const struct audio_hw_if sv_hw_if = { 176 sv_open, 177 NULL, /* close */ 178 NULL, 179 sv_query_encoding, 180 sv_set_params, 181 sv_round_blocksize, 182 NULL, 183 NULL, 184 NULL, 185 NULL, 186 NULL, 187 sv_halt_output, 188 sv_halt_input, 189 NULL, 190 sv_getdev, 191 NULL, 192 sv_mixer_set_port, 193 sv_mixer_get_port, 194 sv_query_devinfo, 195 sv_malloc, 196 sv_free, 197 sv_round_buffersize, 198 sv_mappage, 199 sv_get_props, 200 sv_trigger_output, 201 sv_trigger_input, 202 NULL, 203 }; 204 205 #define SV_NFORMATS 4 206 static const struct audio_format sv_formats[SV_NFORMATS] = { 207 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16, 208 2, AUFMT_STEREO, 0, {2000, 48000}}, 209 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16, 210 1, AUFMT_MONAURAL, 0, {2000, 48000}}, 211 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8, 212 2, AUFMT_STEREO, 0, {2000, 48000}}, 213 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8, 214 1, AUFMT_MONAURAL, 0, {2000, 48000}}, 215 }; 216 217 218 static uint8_t sv_read(struct sv_softc *, uint8_t); 219 static uint8_t sv_read_indirect(struct sv_softc *, uint8_t); 220 static void sv_write(struct sv_softc *, uint8_t, uint8_t); 221 static void sv_write_indirect(struct sv_softc *, uint8_t, uint8_t); 222 static void sv_init_mixer(struct sv_softc *); 223 224 static void sv_defer(struct device *self); 225 226 static void 227 sv_write(struct sv_softc *sc, uint8_t reg, uint8_t val) 228 { 229 230 DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val)); 231 bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val); 232 } 233 234 static uint8_t 235 sv_read(struct sv_softc *sc, uint8_t reg) 236 { 237 uint8_t val; 238 239 val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg); 240 DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val)); 241 return val; 242 } 243 244 static uint8_t 245 sv_read_indirect(struct sv_softc *sc, uint8_t reg) 246 { 247 uint8_t val; 248 int s; 249 250 s = splaudio(); 251 sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK); 252 val = sv_read(sc, SV_CODEC_IDATA); 253 splx(s); 254 return val; 255 } 256 257 static void 258 sv_write_indirect(struct sv_softc *sc, uint8_t reg, uint8_t val) 259 { 260 uint8_t iaddr; 261 int s; 262 263 iaddr = reg & SV_IADDR_MASK; 264 s = splaudio(); 265 if (reg == SV_DMA_DATA_FORMAT) 266 iaddr |= SV_IADDR_MCE; 267 268 sv_write(sc, SV_CODEC_IADDR, iaddr); 269 sv_write(sc, SV_CODEC_IDATA, val); 270 splx(s); 271 } 272 273 int 274 sv_match(struct device *parent, struct cfdata *match, void *aux) 275 { 276 struct pci_attach_args *pa; 277 278 pa = aux; 279 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 && 280 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES) 281 return 1; 282 283 return 0; 284 } 285 286 int pci_alloc_io(pci_chipset_tag_t, pcitag_t, int, 287 bus_space_tag_t, bus_size_t, 288 bus_size_t, bus_size_t, int, 289 bus_space_handle_t *); 290 291 static pcireg_t pci_io_alloc_low, pci_io_alloc_high; 292 293 int 294 pci_alloc_io(pci_chipset_tag_t pc, pcitag_t pt, int pcioffs, 295 bus_space_tag_t iot, bus_size_t size, bus_size_t align, 296 bus_size_t bound, int flags, bus_space_handle_t *ioh) 297 { 298 bus_addr_t addr; 299 int error; 300 301 error = bus_space_alloc(iot, pci_io_alloc_low, pci_io_alloc_high, 302 size, align, bound, flags, &addr, ioh); 303 if (error) 304 return error; 305 306 pci_conf_write(pc, pt, pcioffs, addr); 307 return 0; 308 } 309 310 /* 311 * Allocate IO addresses when all other configuration is done. 312 */ 313 void 314 sv_defer(struct device *self) 315 { 316 struct sv_softc *sc; 317 pci_chipset_tag_t pc; 318 pcitag_t pt; 319 pcireg_t dmaio; 320 321 sc = (struct sv_softc *)self; 322 pc = sc->sc_pa.pa_pc; 323 pt = sc->sc_pa.pa_tag; 324 DPRINTF(("sv_defer: %p\n", sc)); 325 326 /* XXX 327 * Get a reasonable default for the I/O range. 328 * Assume the range around SB_PORTBASE is valid on this PCI bus. 329 */ 330 pci_io_alloc_low = pci_conf_read(pc, pt, SV_SB_PORTBASE_SLOT); 331 pci_io_alloc_high = pci_io_alloc_low + 0x1000; 332 333 if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF, 334 sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0, 335 0, &sc->sc_dmaa_ioh)) { 336 printf("sv_attach: cannot allocate DMA A range\n"); 337 return; 338 } 339 dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF); 340 DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio)); 341 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, 342 dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR); 343 344 if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF, 345 sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0, 346 0, &sc->sc_dmac_ioh)) { 347 printf("sv_attach: cannot allocate DMA C range\n"); 348 return; 349 } 350 dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF); 351 DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio)); 352 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 353 dmaio | SV_DMA_CHANNEL_ENABLE); 354 355 sc->sc_dmaset = 1; 356 } 357 358 void 359 sv_attach(struct device *parent, struct device *self, void *aux) 360 { 361 struct sv_softc *sc; 362 struct pci_attach_args *pa; 363 pci_chipset_tag_t pc; 364 pcitag_t pt; 365 pci_intr_handle_t ih; 366 pcireg_t csr; 367 char const *intrstr; 368 uint8_t reg; 369 struct audio_attach_args arg; 370 371 sc = (struct sv_softc *)self; 372 pa = aux; 373 pc = pa->pa_pc; 374 pt = pa->pa_tag; 375 printf ("\n"); 376 377 /* Map I/O registers */ 378 if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT, 379 PCI_MAPREG_TYPE_IO, 0, 380 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) { 381 printf("%s: can't map enhanced i/o space\n", 382 sc->sc_dev.dv_xname); 383 return; 384 } 385 if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT, 386 PCI_MAPREG_TYPE_IO, 0, 387 &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) { 388 printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname); 389 return; 390 } 391 if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT, 392 PCI_MAPREG_TYPE_IO, 0, 393 &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) { 394 printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname); 395 return; 396 } 397 DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n", 398 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh)); 399 400 #if defined(alpha) 401 /* XXX Force allocation through the SGMAP. */ 402 sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA); 403 #elif defined(i386) && NISA > 0 404 /* XXX 405 * The SonicVibes DMA is broken and only works on 24-bit addresses. 406 * As long as bus_dmamem_alloc_range() is missing we use the ISA 407 * DMA tag on i386. 408 */ 409 sc->sc_dmatag = &isa_bus_dma_tag; 410 #else 411 sc->sc_dmatag = pa->pa_dmat; 412 #endif 413 414 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR); 415 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0); 416 417 /* Enable the device. */ 418 csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG); 419 pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG, 420 csr | PCI_COMMAND_MASTER_ENABLE); 421 422 sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0); 423 sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0); 424 425 /* initialize codec registers */ 426 reg = sv_read(sc, SV_CODEC_CONTROL); 427 reg |= SV_CTL_RESET; 428 sv_write(sc, SV_CODEC_CONTROL, reg); 429 delay(50); 430 431 reg = sv_read(sc, SV_CODEC_CONTROL); 432 reg &= ~SV_CTL_RESET; 433 reg |= SV_CTL_INTA | SV_CTL_ENHANCED; 434 435 /* This write clears the reset */ 436 sv_write(sc, SV_CODEC_CONTROL, reg); 437 delay(50); 438 439 /* This write actually shoves the new values in */ 440 sv_write(sc, SV_CODEC_CONTROL, reg); 441 442 DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL))); 443 444 /* Enable DMA interrupts */ 445 reg = sv_read(sc, SV_CODEC_INTMASK); 446 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC); 447 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI; 448 sv_write(sc, SV_CODEC_INTMASK, reg); 449 450 sv_read(sc, SV_CODEC_STATUS); 451 452 /* Map and establish the interrupt. */ 453 if (pci_intr_map(pa, &ih)) { 454 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname); 455 return; 456 } 457 intrstr = pci_intr_string(pc, ih); 458 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc); 459 if (sc->sc_ih == NULL) { 460 printf("%s: couldn't establish interrupt", 461 sc->sc_dev.dv_xname); 462 if (intrstr != NULL) 463 printf(" at %s", intrstr); 464 printf("\n"); 465 return; 466 } 467 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); 468 printf("%s: rev %d", sc->sc_dev.dv_xname, 469 sv_read_indirect(sc, SV_REVISION_LEVEL)); 470 if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1) 471 printf(", reverb SRAM present"); 472 if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0)) 473 printf(", wavetable ROM present"); 474 printf("\n"); 475 476 sv_init_mixer(sc); 477 478 audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev); 479 480 arg.type = AUDIODEV_TYPE_OPL; 481 arg.hwif = 0; 482 arg.hdl = 0; 483 (void)config_found(&sc->sc_dev, &arg, audioprint); 484 485 sc->sc_pa = *pa; /* for deferred setup */ 486 config_defer(self, sv_defer); 487 } 488 489 #ifdef AUDIO_DEBUG 490 void 491 sv_dumpregs(struct sv_softc *sc) 492 { 493 int idx; 494 495 #if 0 496 for (idx = 0; idx < 0x50; idx += 4) 497 printf ("%02x = %x\n", idx, 498 pci_conf_read(pa->pa_pc, pa->pa_tag, idx)); 499 #endif 500 501 for (idx = 0; idx < 6; idx++) 502 printf ("REG %02x = %02x\n", idx, sv_read(sc, idx)); 503 504 for (idx = 0; idx < 0x32; idx++) 505 printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx)); 506 507 for (idx = 0; idx < 0x10; idx++) 508 printf ("DMA %02x = %02x\n", idx, 509 bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx)); 510 } 511 #endif 512 513 int 514 sv_intr(void *p) 515 { 516 struct sv_softc *sc; 517 uint8_t intr; 518 519 sc = p; 520 intr = sv_read(sc, SV_CODEC_STATUS); 521 DPRINTFN(5,("sv_intr: intr=0x%x\n", intr)); 522 523 if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC))) 524 return 0; 525 526 if (intr & SV_INTSTATUS_DMAA) { 527 if (sc->sc_pintr) 528 sc->sc_pintr(sc->sc_parg); 529 } 530 531 if (intr & SV_INTSTATUS_DMAC) { 532 if (sc->sc_rintr) 533 sc->sc_rintr(sc->sc_rarg); 534 } 535 536 return 1; 537 } 538 539 int 540 sv_allocmem(struct sv_softc *sc, size_t size, size_t align, 541 int direction, struct sv_dma *p) 542 { 543 int error; 544 545 p->size = size; 546 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0, 547 p->segs, ARRAY_SIZE(p->segs), &p->nsegs, BUS_DMA_NOWAIT); 548 if (error) 549 return error; 550 551 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size, 552 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT); 553 if (error) 554 goto free; 555 556 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size, 557 0, BUS_DMA_NOWAIT, &p->map); 558 if (error) 559 goto unmap; 560 561 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL, 562 BUS_DMA_NOWAIT | (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE); 563 if (error) 564 goto destroy; 565 DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n", 566 (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p))); 567 return 0; 568 569 destroy: 570 bus_dmamap_destroy(sc->sc_dmatag, p->map); 571 unmap: 572 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); 573 free: 574 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); 575 return error; 576 } 577 578 int 579 sv_freemem(struct sv_softc *sc, struct sv_dma *p) 580 { 581 582 bus_dmamap_unload(sc->sc_dmatag, p->map); 583 bus_dmamap_destroy(sc->sc_dmatag, p->map); 584 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); 585 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); 586 return 0; 587 } 588 589 int 590 sv_open(void *addr, int flags) 591 { 592 struct sv_softc *sc; 593 594 sc = addr; 595 DPRINTF(("sv_open\n")); 596 if (!sc->sc_dmaset) 597 return ENXIO; 598 599 return 0; 600 } 601 602 int 603 sv_query_encoding(void *addr, struct audio_encoding *fp) 604 { 605 606 switch (fp->index) { 607 case 0: 608 strcpy(fp->name, AudioEulinear); 609 fp->encoding = AUDIO_ENCODING_ULINEAR; 610 fp->precision = 8; 611 fp->flags = 0; 612 return 0; 613 case 1: 614 strcpy(fp->name, AudioEmulaw); 615 fp->encoding = AUDIO_ENCODING_ULAW; 616 fp->precision = 8; 617 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 618 return 0; 619 case 2: 620 strcpy(fp->name, AudioEalaw); 621 fp->encoding = AUDIO_ENCODING_ALAW; 622 fp->precision = 8; 623 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 624 return 0; 625 case 3: 626 strcpy(fp->name, AudioEslinear); 627 fp->encoding = AUDIO_ENCODING_SLINEAR; 628 fp->precision = 8; 629 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 630 return 0; 631 case 4: 632 strcpy(fp->name, AudioEslinear_le); 633 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 634 fp->precision = 16; 635 fp->flags = 0; 636 return 0; 637 case 5: 638 strcpy(fp->name, AudioEulinear_le); 639 fp->encoding = AUDIO_ENCODING_ULINEAR_LE; 640 fp->precision = 16; 641 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 642 return 0; 643 case 6: 644 strcpy(fp->name, AudioEslinear_be); 645 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 646 fp->precision = 16; 647 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 648 return 0; 649 case 7: 650 strcpy(fp->name, AudioEulinear_be); 651 fp->encoding = AUDIO_ENCODING_ULINEAR_BE; 652 fp->precision = 16; 653 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 654 return 0; 655 default: 656 return EINVAL; 657 } 658 } 659 660 int 661 sv_set_params(void *addr, int setmode, int usemode, audio_params_t *play, 662 audio_params_t *rec, stream_filter_list_t *pfil, stream_filter_list_t *rfil) 663 { 664 struct sv_softc *sc; 665 audio_params_t *p; 666 uint32_t val; 667 668 sc = addr; 669 p = NULL; 670 /* 671 * This device only has one clock, so make the sample rates match. 672 */ 673 if (play->sample_rate != rec->sample_rate && 674 usemode == (AUMODE_PLAY | AUMODE_RECORD)) { 675 if (setmode == AUMODE_PLAY) { 676 rec->sample_rate = play->sample_rate; 677 setmode |= AUMODE_RECORD; 678 } else if (setmode == AUMODE_RECORD) { 679 play->sample_rate = rec->sample_rate; 680 setmode |= AUMODE_PLAY; 681 } else 682 return EINVAL; 683 } 684 685 if (setmode & AUMODE_RECORD) { 686 p = rec; 687 if (auconv_set_converter(sv_formats, SV_NFORMATS, 688 AUMODE_RECORD, rec, FALSE, rfil) < 0) 689 return EINVAL; 690 } 691 if (setmode & AUMODE_PLAY) { 692 p = play; 693 if (auconv_set_converter(sv_formats, SV_NFORMATS, 694 AUMODE_PLAY, play, FALSE, pfil) < 0) 695 return EINVAL; 696 } 697 698 val = p->sample_rate * 65536 / 48000; 699 /* 700 * If the sample rate is exactly 48KHz, the fraction would overflow the 701 * register, so we have to bias it. This causes a little clock drift. 702 * The drift is below normal crystal tolerance (.0001%), so although 703 * this seems a little silly, we can pretty much ignore it. 704 * (I tested the output speed with values of 1-20, just to be sure this 705 * register isn't *supposed* to have a bias. It isn't.) 706 * - mycroft 707 */ 708 if (val > 65535) 709 val = 65535; 710 711 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff); 712 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8); 713 714 #define F_REF 24576000 715 716 #define ABS(x) (((x) < 0) ? (-x) : (x)) 717 718 if (setmode & AUMODE_RECORD) { 719 /* The ADC reference frequency (f_out) is 512 * sample rate */ 720 721 /* f_out is dervied from the 24.576MHz crystal by three values: 722 M & N & R. The equation is as follows: 723 724 f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a)) 725 726 with the constraint that: 727 728 80 MHz < (m + 2) / (n + 2) * f_ref <= 150MHz 729 and n, m >= 1 730 */ 731 732 int goal_f_out; 733 int a, n, m, best_n, best_m, best_error; 734 int pll_sample; 735 int error; 736 737 goal_f_out = 512 * rec->sample_rate; 738 best_n = 0; 739 best_m = 0; 740 best_error = 10000000; 741 for (a = 0; a < 8; a++) { 742 if ((goal_f_out * (1 << a)) >= 80000000) 743 break; 744 } 745 746 /* a != 8 because sample_rate >= 2000 */ 747 748 for (n = 33; n > 2; n--) { 749 m = (goal_f_out * n * (1 << a)) / F_REF; 750 if ((m > 257) || (m < 3)) 751 continue; 752 753 pll_sample = (m * F_REF) / (n * (1 << a)); 754 pll_sample /= 512; 755 756 /* Threshold might be good here */ 757 error = pll_sample - rec->sample_rate; 758 error = ABS(error); 759 760 if (error < best_error) { 761 best_error = error; 762 best_n = n; 763 best_m = m; 764 if (error == 0) break; 765 } 766 } 767 768 best_n -= 2; 769 best_m -= 2; 770 771 sv_write_indirect(sc, SV_ADC_PLL_M, best_m); 772 sv_write_indirect(sc, SV_ADC_PLL_N, 773 best_n | (a << SV_PLL_R_SHIFT)); 774 } 775 776 return 0; 777 } 778 779 int 780 sv_round_blocksize(void *addr, int blk, int mode, const audio_params_t *param) 781 { 782 783 return blk & -32; /* keep good alignment */ 784 } 785 786 int 787 sv_trigger_output(void *addr, void *start, void *end, int blksize, 788 void (*intr)(void *), void *arg, const audio_params_t *param) 789 { 790 struct sv_softc *sc; 791 struct sv_dma *p; 792 uint8_t mode; 793 int dma_count; 794 795 DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d " 796 "intr=%p(%p)\n", addr, start, end, blksize, intr, arg)); 797 sc = addr; 798 sc->sc_pintr = intr; 799 sc->sc_parg = arg; 800 801 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT); 802 mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO); 803 if (param->precision == 16) 804 mode |= SV_DMAA_FORMAT16; 805 if (param->channels == 2) 806 mode |= SV_DMAA_STEREO; 807 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode); 808 809 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next) 810 continue; 811 if (p == NULL) { 812 printf("sv_trigger_output: bad addr %p\n", start); 813 return EINVAL; 814 } 815 816 dma_count = ((char *)end - (char *)start) - 1; 817 DPRINTF(("sv_trigger_output: DMA start loop input addr=%x cc=%d\n", 818 (int)DMAADDR(p), dma_count)); 819 820 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0, 821 DMAADDR(p)); 822 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0, 823 dma_count); 824 bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE, 825 DMA37MD_READ | DMA37MD_LOOP); 826 827 DPRINTF(("sv_trigger_output: current addr=%x\n", 828 bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0))); 829 830 dma_count = blksize - 1; 831 832 sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8); 833 sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF); 834 835 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 836 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE); 837 838 return 0; 839 } 840 841 int 842 sv_trigger_input(void *addr, void *start, void *end, int blksize, 843 void (*intr)(void *), void *arg, const audio_params_t *param) 844 { 845 struct sv_softc *sc; 846 struct sv_dma *p; 847 uint8_t mode; 848 int dma_count; 849 850 DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d " 851 "intr=%p(%p)\n", addr, start, end, blksize, intr, arg)); 852 sc = addr; 853 sc->sc_rintr = intr; 854 sc->sc_rarg = arg; 855 856 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT); 857 mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO); 858 if (param->precision == 16) 859 mode |= SV_DMAC_FORMAT16; 860 if (param->channels == 2) 861 mode |= SV_DMAC_STEREO; 862 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode); 863 864 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next) 865 continue; 866 if (!p) { 867 printf("sv_trigger_input: bad addr %p\n", start); 868 return EINVAL; 869 } 870 871 dma_count = (((char *)end - (char *)start) >> 1) - 1; 872 DPRINTF(("sv_trigger_input: DMA start loop input addr=%x cc=%d\n", 873 (int)DMAADDR(p), dma_count)); 874 875 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0, 876 DMAADDR(p)); 877 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0, 878 dma_count); 879 bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE, 880 DMA37MD_WRITE | DMA37MD_LOOP); 881 882 DPRINTF(("sv_trigger_input: current addr=%x\n", 883 bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0))); 884 885 dma_count = (blksize >> 1) - 1; 886 887 sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8); 888 sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF); 889 890 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 891 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE); 892 893 return 0; 894 } 895 896 int 897 sv_halt_output(void *addr) 898 { 899 struct sv_softc *sc; 900 uint8_t mode; 901 902 DPRINTF(("sv: sv_halt_output\n")); 903 sc = addr; 904 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 905 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE); 906 sc->sc_pintr = 0; 907 908 return 0; 909 } 910 911 int 912 sv_halt_input(void *addr) 913 { 914 struct sv_softc *sc; 915 uint8_t mode; 916 917 DPRINTF(("sv: sv_halt_input\n")); 918 sc = addr; 919 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 920 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE); 921 sc->sc_rintr = 0; 922 923 return 0; 924 } 925 926 int 927 sv_getdev(void *addr, struct audio_device *retp) 928 { 929 930 *retp = sv_device; 931 return 0; 932 } 933 934 935 /* 936 * Mixer related code is here 937 * 938 */ 939 940 #define SV_INPUT_CLASS 0 941 #define SV_OUTPUT_CLASS 1 942 #define SV_RECORD_CLASS 2 943 944 #define SV_LAST_CLASS 2 945 946 static const char *mixer_classes[] = 947 { AudioCinputs, AudioCoutputs, AudioCrecord }; 948 949 static const struct { 950 uint8_t l_port; 951 uint8_t r_port; 952 uint8_t mask; 953 uint8_t class; 954 const char *audio; 955 } ports[] = { 956 { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK, 957 SV_INPUT_CLASS, "aux1" }, 958 { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK, 959 SV_INPUT_CLASS, AudioNcd }, 960 { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK, 961 SV_INPUT_CLASS, AudioNline }, 962 { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone }, 963 { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL, 964 SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth }, 965 { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK, 966 SV_INPUT_CLASS, "aux2" }, 967 { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK, 968 SV_INPUT_CLASS, AudioNdac }, 969 { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL, 970 SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster } 971 }; 972 973 974 static const struct { 975 int idx; 976 const char *name; 977 } record_sources[] = { 978 { SV_REC_CD, AudioNcd }, 979 { SV_REC_DAC, AudioNdac }, 980 { SV_REC_AUX2, "aux2" }, 981 { SV_REC_LINE, AudioNline }, 982 { SV_REC_AUX1, "aux1" }, 983 { SV_REC_MIC, AudioNmicrophone }, 984 { SV_REC_MIXER, AudioNmixerout } 985 }; 986 987 988 #define SV_DEVICES_PER_PORT 2 989 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1) 990 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS) 991 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1) 992 #define SV_MIC_BOOST (SV_LAST_MIXER + 2) 993 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3) 994 #define SV_SRS_MODE (SV_LAST_MIXER + 4) 995 996 int 997 sv_query_devinfo(void *addr, mixer_devinfo_t *dip) 998 { 999 int i; 1000 1001 /* It's a class */ 1002 if (dip->index <= SV_LAST_CLASS) { 1003 dip->type = AUDIO_MIXER_CLASS; 1004 dip->mixer_class = dip->index; 1005 dip->next = dip->prev = AUDIO_MIXER_LAST; 1006 strcpy(dip->label.name, mixer_classes[dip->index]); 1007 return 0; 1008 } 1009 1010 if (dip->index >= SV_FIRST_MIXER && 1011 dip->index <= SV_LAST_MIXER) { 1012 int off, mute ,idx; 1013 1014 off = dip->index - SV_FIRST_MIXER; 1015 mute = (off % SV_DEVICES_PER_PORT); 1016 idx = off / SV_DEVICES_PER_PORT; 1017 dip->mixer_class = ports[idx].class; 1018 strcpy(dip->label.name, ports[idx].audio); 1019 1020 if (!mute) { 1021 dip->type = AUDIO_MIXER_VALUE; 1022 dip->prev = AUDIO_MIXER_LAST; 1023 dip->next = dip->index + 1; 1024 1025 if (ports[idx].r_port != 0) 1026 dip->un.v.num_channels = 2; 1027 else 1028 dip->un.v.num_channels = 1; 1029 1030 strcpy(dip->un.v.units.name, AudioNvolume); 1031 } else { 1032 dip->type = AUDIO_MIXER_ENUM; 1033 dip->prev = dip->index - 1; 1034 dip->next = AUDIO_MIXER_LAST; 1035 1036 strcpy(dip->label.name, AudioNmute); 1037 dip->un.e.num_mem = 2; 1038 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1039 dip->un.e.member[0].ord = 0; 1040 strcpy(dip->un.e.member[1].label.name, AudioNon); 1041 dip->un.e.member[1].ord = 1; 1042 } 1043 1044 return 0; 1045 } 1046 1047 switch (dip->index) { 1048 case SV_RECORD_SOURCE: 1049 dip->mixer_class = SV_RECORD_CLASS; 1050 dip->prev = AUDIO_MIXER_LAST; 1051 dip->next = SV_RECORD_GAIN; 1052 strcpy(dip->label.name, AudioNsource); 1053 dip->type = AUDIO_MIXER_ENUM; 1054 1055 dip->un.e.num_mem = ARRAY_SIZE(record_sources); 1056 for (i = 0; i < ARRAY_SIZE(record_sources); i++) { 1057 strcpy(dip->un.e.member[i].label.name, 1058 record_sources[i].name); 1059 dip->un.e.member[i].ord = record_sources[i].idx; 1060 } 1061 return 0; 1062 1063 case SV_RECORD_GAIN: 1064 dip->mixer_class = SV_RECORD_CLASS; 1065 dip->prev = SV_RECORD_SOURCE; 1066 dip->next = AUDIO_MIXER_LAST; 1067 strcpy(dip->label.name, "gain"); 1068 dip->type = AUDIO_MIXER_VALUE; 1069 dip->un.v.num_channels = 1; 1070 strcpy(dip->un.v.units.name, AudioNvolume); 1071 return 0; 1072 1073 case SV_MIC_BOOST: 1074 dip->mixer_class = SV_RECORD_CLASS; 1075 dip->prev = AUDIO_MIXER_LAST; 1076 dip->next = AUDIO_MIXER_LAST; 1077 strcpy(dip->label.name, "micboost"); 1078 goto on_off; 1079 1080 case SV_SRS_MODE: 1081 dip->mixer_class = SV_OUTPUT_CLASS; 1082 dip->prev = dip->next = AUDIO_MIXER_LAST; 1083 strcpy(dip->label.name, AudioNspatial); 1084 1085 on_off: 1086 dip->type = AUDIO_MIXER_ENUM; 1087 dip->un.e.num_mem = 2; 1088 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1089 dip->un.e.member[0].ord = 0; 1090 strcpy(dip->un.e.member[1].label.name, AudioNon); 1091 dip->un.e.member[1].ord = 1; 1092 return 0; 1093 } 1094 1095 return ENXIO; 1096 } 1097 1098 int 1099 sv_mixer_set_port(void *addr, mixer_ctrl_t *cp) 1100 { 1101 struct sv_softc *sc; 1102 uint8_t reg; 1103 int idx; 1104 1105 sc = addr; 1106 if (cp->dev >= SV_FIRST_MIXER && 1107 cp->dev <= SV_LAST_MIXER) { 1108 int off, mute; 1109 1110 off = cp->dev - SV_FIRST_MIXER; 1111 mute = (off % SV_DEVICES_PER_PORT); 1112 idx = off / SV_DEVICES_PER_PORT; 1113 1114 if (mute) { 1115 if (cp->type != AUDIO_MIXER_ENUM) 1116 return EINVAL; 1117 1118 reg = sv_read_indirect(sc, ports[idx].l_port); 1119 if (cp->un.ord) 1120 reg |= SV_MUTE_BIT; 1121 else 1122 reg &= ~SV_MUTE_BIT; 1123 sv_write_indirect(sc, ports[idx].l_port, reg); 1124 1125 if (ports[idx].r_port) { 1126 reg = sv_read_indirect(sc, ports[idx].r_port); 1127 if (cp->un.ord) 1128 reg |= SV_MUTE_BIT; 1129 else 1130 reg &= ~SV_MUTE_BIT; 1131 sv_write_indirect(sc, ports[idx].r_port, reg); 1132 } 1133 } else { 1134 int lval, rval; 1135 1136 if (cp->type != AUDIO_MIXER_VALUE) 1137 return EINVAL; 1138 1139 if (cp->un.value.num_channels != 1 && 1140 cp->un.value.num_channels != 2) 1141 return (EINVAL); 1142 1143 if (ports[idx].r_port == 0) { 1144 if (cp->un.value.num_channels != 1) 1145 return (EINVAL); 1146 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; 1147 rval = 0; /* shut up GCC */ 1148 } else { 1149 if (cp->un.value.num_channels != 2) 1150 return (EINVAL); 1151 1152 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]; 1153 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]; 1154 } 1155 1156 1157 reg = sv_read_indirect(sc, ports[idx].l_port); 1158 reg &= ~(ports[idx].mask); 1159 lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask / 1160 AUDIO_MAX_GAIN; 1161 reg |= lval; 1162 sv_write_indirect(sc, ports[idx].l_port, reg); 1163 1164 if (ports[idx].r_port != 0) { 1165 reg = sv_read_indirect(sc, ports[idx].r_port); 1166 reg &= ~(ports[idx].mask); 1167 1168 rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask / 1169 AUDIO_MAX_GAIN; 1170 reg |= rval; 1171 1172 sv_write_indirect(sc, ports[idx].r_port, reg); 1173 } 1174 1175 sv_read_indirect(sc, ports[idx].l_port); 1176 } 1177 1178 return 0; 1179 } 1180 1181 1182 switch (cp->dev) { 1183 case SV_RECORD_SOURCE: 1184 if (cp->type != AUDIO_MIXER_ENUM) 1185 return EINVAL; 1186 1187 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) { 1188 if (record_sources[idx].idx == cp->un.ord) 1189 goto found; 1190 } 1191 1192 return EINVAL; 1193 1194 found: 1195 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1196 reg &= ~SV_REC_SOURCE_MASK; 1197 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK); 1198 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1199 1200 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL); 1201 reg &= ~SV_REC_SOURCE_MASK; 1202 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK); 1203 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg); 1204 return 0; 1205 1206 case SV_RECORD_GAIN: 1207 { 1208 int val; 1209 1210 if (cp->type != AUDIO_MIXER_VALUE) 1211 return EINVAL; 1212 1213 if (cp->un.value.num_channels != 1) 1214 return EINVAL; 1215 1216 val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] 1217 * SV_REC_GAIN_MASK) / AUDIO_MAX_GAIN; 1218 1219 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1220 reg &= ~SV_REC_GAIN_MASK; 1221 reg |= val; 1222 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1223 1224 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL); 1225 reg &= ~SV_REC_GAIN_MASK; 1226 reg |= val; 1227 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg); 1228 } 1229 return (0); 1230 1231 case SV_MIC_BOOST: 1232 if (cp->type != AUDIO_MIXER_ENUM) 1233 return EINVAL; 1234 1235 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1236 if (cp->un.ord) { 1237 reg |= SV_MIC_BOOST_BIT; 1238 } else { 1239 reg &= ~SV_MIC_BOOST_BIT; 1240 } 1241 1242 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1243 return 0; 1244 1245 case SV_SRS_MODE: 1246 if (cp->type != AUDIO_MIXER_ENUM) 1247 return EINVAL; 1248 1249 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL); 1250 if (cp->un.ord) { 1251 reg &= ~SV_SRS_SPACE_ONOFF; 1252 } else { 1253 reg |= SV_SRS_SPACE_ONOFF; 1254 } 1255 1256 sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg); 1257 return 0; 1258 } 1259 1260 return EINVAL; 1261 } 1262 1263 int 1264 sv_mixer_get_port(void *addr, mixer_ctrl_t *cp) 1265 { 1266 struct sv_softc *sc; 1267 int val; 1268 uint8_t reg; 1269 1270 sc = addr; 1271 if (cp->dev >= SV_FIRST_MIXER && 1272 cp->dev <= SV_LAST_MIXER) { 1273 int off = cp->dev - SV_FIRST_MIXER; 1274 int mute = (off % 2); 1275 int idx = off / 2; 1276 1277 off = cp->dev - SV_FIRST_MIXER; 1278 mute = (off % 2); 1279 idx = off / 2; 1280 if (mute) { 1281 if (cp->type != AUDIO_MIXER_ENUM) 1282 return EINVAL; 1283 1284 reg = sv_read_indirect(sc, ports[idx].l_port); 1285 cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0); 1286 } else { 1287 if (cp->type != AUDIO_MIXER_VALUE) 1288 return EINVAL; 1289 1290 if (cp->un.value.num_channels != 1 && 1291 cp->un.value.num_channels != 2) 1292 return EINVAL; 1293 1294 if ((ports[idx].r_port == 0 && 1295 cp->un.value.num_channels != 1) || 1296 (ports[idx].r_port != 0 && 1297 cp->un.value.num_channels != 2)) 1298 return EINVAL; 1299 1300 reg = sv_read_indirect(sc, ports[idx].l_port); 1301 reg &= ports[idx].mask; 1302 1303 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask); 1304 1305 if (ports[idx].r_port != 0) { 1306 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val; 1307 1308 reg = sv_read_indirect(sc, ports[idx].r_port); 1309 reg &= ports[idx].mask; 1310 1311 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) 1312 / ports[idx].mask); 1313 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val; 1314 } else 1315 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val; 1316 } 1317 1318 return 0; 1319 } 1320 1321 switch (cp->dev) { 1322 case SV_RECORD_SOURCE: 1323 if (cp->type != AUDIO_MIXER_ENUM) 1324 return EINVAL; 1325 1326 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1327 cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT); 1328 1329 return 0; 1330 1331 case SV_RECORD_GAIN: 1332 if (cp->type != AUDIO_MIXER_VALUE) 1333 return EINVAL; 1334 if (cp->un.value.num_channels != 1) 1335 return EINVAL; 1336 1337 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK; 1338 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1339 (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK; 1340 1341 return 0; 1342 1343 case SV_MIC_BOOST: 1344 if (cp->type != AUDIO_MIXER_ENUM) 1345 return EINVAL; 1346 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1347 cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0); 1348 return 0; 1349 1350 case SV_SRS_MODE: 1351 if (cp->type != AUDIO_MIXER_ENUM) 1352 return EINVAL; 1353 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL); 1354 cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1); 1355 return 0; 1356 } 1357 1358 return EINVAL; 1359 } 1360 1361 static void 1362 sv_init_mixer(struct sv_softc *sc) 1363 { 1364 mixer_ctrl_t cp; 1365 int i; 1366 1367 cp.type = AUDIO_MIXER_ENUM; 1368 cp.dev = SV_SRS_MODE; 1369 cp.un.ord = 0; 1370 1371 sv_mixer_set_port(sc, &cp); 1372 1373 for (i = 0; i < ARRAY_SIZE(ports); i++) { 1374 if (ports[i].audio == AudioNdac) { 1375 cp.type = AUDIO_MIXER_ENUM; 1376 cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1; 1377 cp.un.ord = 0; 1378 sv_mixer_set_port(sc, &cp); 1379 break; 1380 } 1381 } 1382 } 1383 1384 void * 1385 sv_malloc(void *addr, int direction, size_t size, 1386 struct malloc_type *pool, int flags) 1387 { 1388 struct sv_softc *sc; 1389 struct sv_dma *p; 1390 int error; 1391 1392 sc = addr; 1393 p = malloc(sizeof(*p), pool, flags); 1394 if (p == NULL) 1395 return NULL; 1396 error = sv_allocmem(sc, size, 16, direction, p); 1397 if (error) { 1398 free(p, pool); 1399 return 0; 1400 } 1401 p->next = sc->sc_dmas; 1402 sc->sc_dmas = p; 1403 return KERNADDR(p); 1404 } 1405 1406 void 1407 sv_free(void *addr, void *ptr, struct malloc_type *pool) 1408 { 1409 struct sv_softc *sc; 1410 struct sv_dma **pp, *p; 1411 1412 sc = addr; 1413 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) { 1414 if (KERNADDR(p) == ptr) { 1415 sv_freemem(sc, p); 1416 *pp = p->next; 1417 free(p, pool); 1418 return; 1419 } 1420 } 1421 } 1422 1423 size_t 1424 sv_round_buffersize(void *addr, int direction, size_t size) 1425 { 1426 1427 return size; 1428 } 1429 1430 paddr_t 1431 sv_mappage(void *addr, void *mem, off_t off, int prot) 1432 { 1433 struct sv_softc *sc; 1434 struct sv_dma *p; 1435 1436 sc = addr; 1437 if (off < 0) 1438 return -1; 1439 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next) 1440 continue; 1441 if (p == NULL) 1442 return -1; 1443 return bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs, 1444 off, prot, BUS_DMA_WAITOK); 1445 } 1446 1447 int 1448 sv_get_props(void *addr) 1449 { 1450 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX; 1451 } 1452