1 /* $NetBSD: sv.c,v 1.57 2019/10/28 18:38:43 joerg Exp $ */ 2 /* $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */ 3 4 /* 5 * Copyright (c) 1999, 2008 The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Charles M. Hannum. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1998 Constantine Paul Sapuntzakis 35 * All rights reserved 36 * 37 * Author: Constantine Paul Sapuntzakis (csapuntz@cvs.openbsd.org) 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * 2. Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in the 46 * documentation and/or other materials provided with the distribution. 47 * 3. The author's name or those of the contributors may be used to 48 * endorse or promote products derived from this software without 49 * specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS 52 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 53 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 54 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 55 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 56 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 57 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 58 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 59 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 60 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 61 * POSSIBILITY OF SUCH DAMAGE. 62 */ 63 64 /* 65 * S3 SonicVibes driver 66 * Heavily based on the eap driver by Lennart Augustsson 67 */ 68 69 #include <sys/cdefs.h> 70 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.57 2019/10/28 18:38:43 joerg Exp $"); 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/kernel.h> 75 #include <sys/kmem.h> 76 #include <sys/device.h> 77 78 #include <dev/pci/pcireg.h> 79 #include <dev/pci/pcivar.h> 80 #include <dev/pci/pcidevs.h> 81 82 #include <sys/audioio.h> 83 #include <dev/audio/audio_if.h> 84 85 #include <dev/ic/i8237reg.h> 86 #include <dev/pci/svreg.h> 87 #include <dev/pci/svvar.h> 88 89 #include <sys/bus.h> 90 91 /* XXX 92 * The SonicVibes DMA is broken and only works on 24-bit addresses. 93 * As long as bus_dmamem_alloc_range() is missing we use the ISA 94 * DMA tag on i386. 95 */ 96 #if defined(amd64) || defined(i386) 97 #include <dev/isa/isavar.h> 98 #endif 99 100 #ifdef AUDIO_DEBUG 101 #define DPRINTF(x) if (svdebug) printf x 102 #define DPRINTFN(n,x) if (svdebug>(n)) printf x 103 int svdebug = 0; 104 #else 105 #define DPRINTF(x) 106 #define DPRINTFN(n,x) 107 #endif 108 109 static int sv_match(device_t, cfdata_t, void *); 110 static void sv_attach(device_t, device_t, void *); 111 static int sv_intr(void *); 112 113 struct sv_dma { 114 bus_dmamap_t map; 115 void *addr; 116 bus_dma_segment_t segs[1]; 117 int nsegs; 118 size_t size; 119 struct sv_dma *next; 120 }; 121 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr) 122 #define KERNADDR(p) ((void *)((p)->addr)) 123 124 CFATTACH_DECL_NEW(sv, sizeof(struct sv_softc), 125 sv_match, sv_attach, NULL, NULL); 126 127 static struct audio_device sv_device = { 128 "S3 SonicVibes", 129 "", 130 "sv" 131 }; 132 133 #define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0])) 134 135 static int sv_allocmem(struct sv_softc *, size_t, size_t, int, 136 struct sv_dma *); 137 static int sv_freemem(struct sv_softc *, struct sv_dma *); 138 139 static void sv_init_mixer(struct sv_softc *); 140 141 static int sv_open(void *, int); 142 static int sv_query_format(void *, audio_format_query_t *); 143 static int sv_set_format(void *, int, 144 const audio_params_t *, const audio_params_t *, 145 audio_filter_reg_t *, audio_filter_reg_t *); 146 static int sv_round_blocksize(void *, int, int, const audio_params_t *); 147 static int sv_trigger_output(void *, void *, void *, int, void (*)(void *), 148 void *, const audio_params_t *); 149 static int sv_trigger_input(void *, void *, void *, int, void (*)(void *), 150 void *, const audio_params_t *); 151 static int sv_halt_output(void *); 152 static int sv_halt_input(void *); 153 static int sv_getdev(void *, struct audio_device *); 154 static int sv_mixer_set_port(void *, mixer_ctrl_t *); 155 static int sv_mixer_get_port(void *, mixer_ctrl_t *); 156 static int sv_query_devinfo(void *, mixer_devinfo_t *); 157 static void * sv_malloc(void *, int, size_t); 158 static void sv_free(void *, void *, size_t); 159 static int sv_get_props(void *); 160 static void sv_get_locks(void *, kmutex_t **, kmutex_t **); 161 162 #ifdef AUDIO_DEBUG 163 void sv_dumpregs(struct sv_softc *sc); 164 #endif 165 166 static const struct audio_hw_if sv_hw_if = { 167 .open = sv_open, 168 .query_format = sv_query_format, 169 .set_format = sv_set_format, 170 .round_blocksize = sv_round_blocksize, 171 .halt_output = sv_halt_output, 172 .halt_input = sv_halt_input, 173 .getdev = sv_getdev, 174 .set_port = sv_mixer_set_port, 175 .get_port = sv_mixer_get_port, 176 .query_devinfo = sv_query_devinfo, 177 .allocm = sv_malloc, 178 .freem = sv_free, 179 .get_props = sv_get_props, 180 .trigger_output = sv_trigger_output, 181 .trigger_input = sv_trigger_input, 182 .get_locks = sv_get_locks, 183 }; 184 185 static const struct audio_format sv_formats[] = { 186 { 187 .mode = AUMODE_PLAY | AUMODE_RECORD, 188 .encoding = AUDIO_ENCODING_SLINEAR_LE, 189 .validbits = 16, 190 .precision = 16, 191 .channels = 2, 192 .channel_mask = AUFMT_STEREO, 193 .frequency_type = 0, 194 .frequency = { 2000, 48000 }, 195 }, 196 }; 197 #define SV_NFORMATS __arraycount(sv_formats) 198 199 200 static void 201 sv_write(struct sv_softc *sc, uint8_t reg, uint8_t val) 202 { 203 204 DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val)); 205 bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val); 206 } 207 208 static uint8_t 209 sv_read(struct sv_softc *sc, uint8_t reg) 210 { 211 uint8_t val; 212 213 val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg); 214 DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val)); 215 return val; 216 } 217 218 static uint8_t 219 sv_read_indirect(struct sv_softc *sc, uint8_t reg) 220 { 221 uint8_t val; 222 223 sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK); 224 val = sv_read(sc, SV_CODEC_IDATA); 225 return val; 226 } 227 228 static void 229 sv_write_indirect(struct sv_softc *sc, uint8_t reg, uint8_t val) 230 { 231 uint8_t iaddr; 232 233 iaddr = reg & SV_IADDR_MASK; 234 if (reg == SV_DMA_DATA_FORMAT) 235 iaddr |= SV_IADDR_MCE; 236 237 sv_write(sc, SV_CODEC_IADDR, iaddr); 238 sv_write(sc, SV_CODEC_IDATA, val); 239 } 240 241 static int 242 sv_match(device_t parent, cfdata_t match, void *aux) 243 { 244 struct pci_attach_args *pa; 245 246 pa = aux; 247 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 && 248 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES) 249 return 1; 250 251 return 0; 252 } 253 254 static pcireg_t pci_io_alloc_low, pci_io_alloc_high; 255 256 static int 257 pci_alloc_io(pci_chipset_tag_t pc, pcitag_t pt, int pcioffs, 258 bus_space_tag_t iot, bus_size_t size, bus_size_t align, 259 bus_size_t bound, int flags, bus_space_handle_t *ioh) 260 { 261 bus_addr_t addr; 262 int error; 263 264 error = bus_space_alloc(iot, pci_io_alloc_low, pci_io_alloc_high, 265 size, align, bound, flags, &addr, ioh); 266 if (error) 267 return error; 268 269 pci_conf_write(pc, pt, pcioffs, addr); 270 return 0; 271 } 272 273 /* 274 * Allocate IO addresses when all other configuration is done. 275 */ 276 static void 277 sv_defer(device_t self) 278 { 279 struct sv_softc *sc; 280 pci_chipset_tag_t pc; 281 pcitag_t pt; 282 pcireg_t dmaio; 283 284 sc = device_private(self); 285 pc = sc->sc_pa.pa_pc; 286 pt = sc->sc_pa.pa_tag; 287 DPRINTF(("sv_defer: %p\n", sc)); 288 289 /* XXX 290 * Get a reasonable default for the I/O range. 291 * Assume the range around SB_PORTBASE is valid on this PCI bus. 292 */ 293 pci_io_alloc_low = pci_conf_read(pc, pt, SV_SB_PORTBASE_SLOT); 294 pci_io_alloc_high = pci_io_alloc_low + 0x1000; 295 296 if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF, 297 sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0, 298 0, &sc->sc_dmaa_ioh)) { 299 printf("sv_attach: cannot allocate DMA A range\n"); 300 return; 301 } 302 dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF); 303 DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio)); 304 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, 305 dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR); 306 307 if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF, 308 sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0, 309 0, &sc->sc_dmac_ioh)) { 310 printf("sv_attach: cannot allocate DMA C range\n"); 311 return; 312 } 313 dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF); 314 DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio)); 315 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 316 dmaio | SV_DMA_CHANNEL_ENABLE); 317 318 sc->sc_dmaset = 1; 319 } 320 321 static void 322 sv_attach(device_t parent, device_t self, void *aux) 323 { 324 struct sv_softc *sc; 325 struct pci_attach_args *pa; 326 pci_chipset_tag_t pc; 327 pcitag_t pt; 328 pci_intr_handle_t ih; 329 pcireg_t csr; 330 char const *intrstr; 331 uint8_t reg; 332 struct audio_attach_args arg; 333 char intrbuf[PCI_INTRSTR_LEN]; 334 335 sc = device_private(self); 336 pa = aux; 337 pc = pa->pa_pc; 338 pt = pa->pa_tag; 339 aprint_naive("\n"); 340 aprint_normal("\n"); 341 342 /* Map I/O registers */ 343 if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT, 344 PCI_MAPREG_TYPE_IO, 0, 345 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) { 346 aprint_error_dev(self, "can't map enhanced i/o space\n"); 347 return; 348 } 349 if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT, 350 PCI_MAPREG_TYPE_IO, 0, 351 &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) { 352 aprint_error_dev(self, "can't map FM i/o space\n"); 353 return; 354 } 355 if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT, 356 PCI_MAPREG_TYPE_IO, 0, 357 &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) { 358 aprint_error_dev(self, "can't map MIDI i/o space\n"); 359 return; 360 } 361 DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n", 362 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh)); 363 364 #if defined(alpha) 365 /* XXX Force allocation through the SGMAP. */ 366 sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA); 367 #elif defined(amd64) || defined(i386) 368 /* XXX 369 * The SonicVibes DMA is broken and only works on 24-bit addresses. 370 * As long as bus_dmamem_alloc_range() is missing we use the ISA 371 * DMA tag on i386. 372 */ 373 sc->sc_dmatag = &isa_bus_dma_tag; 374 #else 375 sc->sc_dmatag = pa->pa_dmat; 376 #endif 377 378 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR); 379 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0); 380 381 /* Enable the device. */ 382 csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG); 383 pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG, 384 csr | PCI_COMMAND_MASTER_ENABLE); 385 386 sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0); 387 sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0); 388 389 /* initialize codec registers */ 390 reg = sv_read(sc, SV_CODEC_CONTROL); 391 reg |= SV_CTL_RESET; 392 sv_write(sc, SV_CODEC_CONTROL, reg); 393 delay(50); 394 395 reg = sv_read(sc, SV_CODEC_CONTROL); 396 reg &= ~SV_CTL_RESET; 397 reg |= SV_CTL_INTA | SV_CTL_ENHANCED; 398 399 /* This write clears the reset */ 400 sv_write(sc, SV_CODEC_CONTROL, reg); 401 delay(50); 402 403 /* This write actually shoves the new values in */ 404 sv_write(sc, SV_CODEC_CONTROL, reg); 405 406 DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL))); 407 408 /* Map and establish the interrupt. */ 409 if (pci_intr_map(pa, &ih)) { 410 aprint_error_dev(self, "couldn't map interrupt\n"); 411 return; 412 } 413 414 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE); 415 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO); 416 417 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf)); 418 sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_AUDIO, sv_intr, sc, 419 device_xname(self)); 420 if (sc->sc_ih == NULL) { 421 aprint_error_dev(self, "couldn't establish interrupt"); 422 if (intrstr != NULL) 423 aprint_error(" at %s", intrstr); 424 aprint_error("\n"); 425 mutex_destroy(&sc->sc_lock); 426 mutex_destroy(&sc->sc_intr_lock); 427 return; 428 } 429 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 430 aprint_normal_dev(self, "rev %d", 431 sv_read_indirect(sc, SV_REVISION_LEVEL)); 432 if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1) 433 aprint_normal(", reverb SRAM present"); 434 if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0)) 435 aprint_normal(", wavetable ROM present"); 436 aprint_normal("\n"); 437 438 /* Enable DMA interrupts */ 439 reg = sv_read(sc, SV_CODEC_INTMASK); 440 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC); 441 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI; 442 sv_write(sc, SV_CODEC_INTMASK, reg); 443 sv_read(sc, SV_CODEC_STATUS); 444 445 sv_init_mixer(sc); 446 447 audio_attach_mi(&sv_hw_if, sc, self); 448 449 arg.type = AUDIODEV_TYPE_OPL; 450 arg.hwif = 0; 451 arg.hdl = 0; 452 (void)config_found(self, &arg, audioprint); 453 454 sc->sc_pa = *pa; /* for deferred setup */ 455 config_defer(self, sv_defer); 456 } 457 458 #ifdef AUDIO_DEBUG 459 void 460 sv_dumpregs(struct sv_softc *sc) 461 { 462 int idx; 463 464 #if 0 465 for (idx = 0; idx < 0x50; idx += 4) 466 printf ("%02x = %x\n", idx, 467 pci_conf_read(pa->pa_pc, pa->pa_tag, idx)); 468 #endif 469 470 for (idx = 0; idx < 6; idx++) 471 printf ("REG %02x = %02x\n", idx, sv_read(sc, idx)); 472 473 for (idx = 0; idx < 0x32; idx++) 474 printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx)); 475 476 for (idx = 0; idx < 0x10; idx++) 477 printf ("DMA %02x = %02x\n", idx, 478 bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx)); 479 } 480 #endif 481 482 static int 483 sv_intr(void *p) 484 { 485 struct sv_softc *sc; 486 uint8_t intr; 487 488 sc = p; 489 490 mutex_spin_enter(&sc->sc_intr_lock); 491 492 intr = sv_read(sc, SV_CODEC_STATUS); 493 DPRINTFN(5,("sv_intr: intr=0x%x\n", intr)); 494 495 if (intr & SV_INTSTATUS_DMAA) { 496 if (sc->sc_pintr) 497 sc->sc_pintr(sc->sc_parg); 498 } 499 500 if (intr & SV_INTSTATUS_DMAC) { 501 if (sc->sc_rintr) 502 sc->sc_rintr(sc->sc_rarg); 503 } 504 505 mutex_spin_exit(&sc->sc_intr_lock); 506 507 return (intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)) != 0; 508 } 509 510 static int 511 sv_allocmem(struct sv_softc *sc, size_t size, size_t align, 512 int direction, struct sv_dma *p) 513 { 514 int error; 515 516 p->size = size; 517 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0, 518 p->segs, ARRAY_SIZE(p->segs), &p->nsegs, BUS_DMA_WAITOK); 519 if (error) 520 return error; 521 522 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size, 523 &p->addr, BUS_DMA_WAITOK|BUS_DMA_COHERENT); 524 if (error) 525 goto free; 526 527 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size, 528 0, BUS_DMA_WAITOK, &p->map); 529 if (error) 530 goto unmap; 531 532 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL, 533 BUS_DMA_WAITOK | ((direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE)); 534 if (error) 535 goto destroy; 536 DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n", 537 (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p))); 538 return 0; 539 540 destroy: 541 bus_dmamap_destroy(sc->sc_dmatag, p->map); 542 unmap: 543 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); 544 free: 545 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); 546 return error; 547 } 548 549 static int 550 sv_freemem(struct sv_softc *sc, struct sv_dma *p) 551 { 552 553 bus_dmamap_unload(sc->sc_dmatag, p->map); 554 bus_dmamap_destroy(sc->sc_dmatag, p->map); 555 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); 556 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); 557 return 0; 558 } 559 560 static int 561 sv_open(void *addr, int flags) 562 { 563 struct sv_softc *sc; 564 565 sc = addr; 566 DPRINTF(("sv_open\n")); 567 if (!sc->sc_dmaset) 568 return ENXIO; 569 570 return 0; 571 } 572 573 static int 574 sv_query_format(void *addr, audio_format_query_t *afp) 575 { 576 577 return audio_query_format(sv_formats, SV_NFORMATS, afp); 578 } 579 580 static int 581 sv_set_format(void *addr, int setmode, 582 const audio_params_t *play, const audio_params_t *rec, 583 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil) 584 { 585 struct sv_softc *sc; 586 uint32_t val; 587 588 sc = addr; 589 590 /* *play and *rec are the identical because !AUDIO_PROP_INDEPENDENT. */ 591 592 val = play->sample_rate * 65536 / 48000; 593 /* 594 * If the sample rate is exactly 48 kHz, the fraction would overflow the 595 * register, so we have to bias it. This causes a little clock drift. 596 * The drift is below normal crystal tolerance (.0001%), so although 597 * this seems a little silly, we can pretty much ignore it. 598 * (I tested the output speed with values of 1-20, just to be sure this 599 * register isn't *supposed* to have a bias. It isn't.) 600 * - mycroft 601 */ 602 if (val > 65535) 603 val = 65535; 604 605 mutex_spin_enter(&sc->sc_intr_lock); 606 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff); 607 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8); 608 mutex_spin_exit(&sc->sc_intr_lock); 609 610 #define F_REF 24576000 611 612 #define ABS(x) (((x) < 0) ? (-x) : (x)) 613 614 if (setmode & AUMODE_RECORD) { 615 /* The ADC reference frequency (f_out) is 512 * sample rate */ 616 617 /* f_out is dervied from the 24.576MHz crystal by three values: 618 M & N & R. The equation is as follows: 619 620 f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a)) 621 622 with the constraint that: 623 624 80 MHz < (m + 2) / (n + 2) * f_ref <= 150MHz 625 and n, m >= 1 626 */ 627 628 int goal_f_out; 629 int a, n, m, best_n, best_m, best_error; 630 int pll_sample; 631 int error; 632 633 goal_f_out = 512 * rec->sample_rate; 634 best_n = 0; 635 best_m = 0; 636 best_error = 10000000; 637 for (a = 0; a < 8; a++) { 638 if ((goal_f_out * (1 << a)) >= 80000000) 639 break; 640 } 641 642 /* a != 8 because sample_rate >= 2000 */ 643 644 for (n = 33; n > 2; n--) { 645 m = (goal_f_out * n * (1 << a)) / F_REF; 646 if ((m > 257) || (m < 3)) 647 continue; 648 649 pll_sample = (m * F_REF) / (n * (1 << a)); 650 pll_sample /= 512; 651 652 /* Threshold might be good here */ 653 error = pll_sample - rec->sample_rate; 654 error = ABS(error); 655 656 if (error < best_error) { 657 best_error = error; 658 best_n = n; 659 best_m = m; 660 if (error == 0) break; 661 } 662 } 663 664 best_n -= 2; 665 best_m -= 2; 666 667 mutex_spin_enter(&sc->sc_intr_lock); 668 sv_write_indirect(sc, SV_ADC_PLL_M, best_m); 669 sv_write_indirect(sc, SV_ADC_PLL_N, 670 best_n | (a << SV_PLL_R_SHIFT)); 671 mutex_spin_exit(&sc->sc_intr_lock); 672 } 673 674 return 0; 675 } 676 677 static int 678 sv_round_blocksize(void *addr, int blk, int mode, 679 const audio_params_t *param) 680 { 681 682 return blk & -32; /* keep good alignment */ 683 } 684 685 static int 686 sv_trigger_output(void *addr, void *start, void *end, int blksize, 687 void (*intr)(void *), void *arg, const audio_params_t *param) 688 { 689 struct sv_softc *sc; 690 struct sv_dma *p; 691 uint8_t mode; 692 int dma_count; 693 694 DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d " 695 "intr=%p(%p)\n", addr, start, end, blksize, intr, arg)); 696 sc = addr; 697 sc->sc_pintr = intr; 698 sc->sc_parg = arg; 699 700 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT); 701 mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO); 702 if (param->precision == 16) 703 mode |= SV_DMAA_FORMAT16; 704 if (param->channels == 2) 705 mode |= SV_DMAA_STEREO; 706 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode); 707 708 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next) 709 continue; 710 if (p == NULL) { 711 printf("sv_trigger_output: bad addr %p\n", start); 712 return EINVAL; 713 } 714 715 dma_count = ((char *)end - (char *)start) - 1; 716 DPRINTF(("sv_trigger_output: DMA start loop input addr=%x cc=%d\n", 717 (int)DMAADDR(p), dma_count)); 718 719 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0, 720 DMAADDR(p)); 721 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0, 722 dma_count); 723 bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE, 724 DMA37MD_READ | DMA37MD_LOOP); 725 726 DPRINTF(("sv_trigger_output: current addr=%x\n", 727 bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0))); 728 729 dma_count = blksize - 1; 730 731 sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8); 732 sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF); 733 734 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 735 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE); 736 737 return 0; 738 } 739 740 static int 741 sv_trigger_input(void *addr, void *start, void *end, int blksize, 742 void (*intr)(void *), void *arg, const audio_params_t *param) 743 { 744 struct sv_softc *sc; 745 struct sv_dma *p; 746 uint8_t mode; 747 int dma_count; 748 749 DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d " 750 "intr=%p(%p)\n", addr, start, end, blksize, intr, arg)); 751 sc = addr; 752 sc->sc_rintr = intr; 753 sc->sc_rarg = arg; 754 755 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT); 756 mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO); 757 if (param->precision == 16) 758 mode |= SV_DMAC_FORMAT16; 759 if (param->channels == 2) 760 mode |= SV_DMAC_STEREO; 761 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode); 762 763 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next) 764 continue; 765 if (!p) { 766 printf("sv_trigger_input: bad addr %p\n", start); 767 return EINVAL; 768 } 769 770 dma_count = (((char *)end - (char *)start) >> 1) - 1; 771 DPRINTF(("sv_trigger_input: DMA start loop input addr=%x cc=%d\n", 772 (int)DMAADDR(p), dma_count)); 773 774 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0, 775 DMAADDR(p)); 776 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0, 777 dma_count); 778 bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE, 779 DMA37MD_WRITE | DMA37MD_LOOP); 780 781 DPRINTF(("sv_trigger_input: current addr=%x\n", 782 bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0))); 783 784 dma_count = (blksize >> 1) - 1; 785 786 sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8); 787 sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF); 788 789 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 790 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE); 791 792 return 0; 793 } 794 795 static int 796 sv_halt_output(void *addr) 797 { 798 struct sv_softc *sc; 799 uint8_t mode; 800 801 DPRINTF(("sv: sv_halt_output\n")); 802 sc = addr; 803 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 804 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE); 805 sc->sc_pintr = 0; 806 807 return 0; 808 } 809 810 static int 811 sv_halt_input(void *addr) 812 { 813 struct sv_softc *sc; 814 uint8_t mode; 815 816 DPRINTF(("sv: sv_halt_input\n")); 817 sc = addr; 818 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 819 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE); 820 sc->sc_rintr = 0; 821 822 return 0; 823 } 824 825 static int 826 sv_getdev(void *addr, struct audio_device *retp) 827 { 828 829 *retp = sv_device; 830 return 0; 831 } 832 833 834 /* 835 * Mixer related code is here 836 * 837 */ 838 839 #define SV_INPUT_CLASS 0 840 #define SV_OUTPUT_CLASS 1 841 #define SV_RECORD_CLASS 2 842 843 #define SV_LAST_CLASS 2 844 845 static const char *mixer_classes[] = 846 { AudioCinputs, AudioCoutputs, AudioCrecord }; 847 848 static const struct { 849 uint8_t l_port; 850 uint8_t r_port; 851 uint8_t mask; 852 uint8_t class; 853 const char *audio; 854 } ports[] = { 855 { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK, 856 SV_INPUT_CLASS, "aux1" }, 857 { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK, 858 SV_INPUT_CLASS, AudioNcd }, 859 { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK, 860 SV_INPUT_CLASS, AudioNline }, 861 { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone }, 862 { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL, 863 SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth }, 864 { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK, 865 SV_INPUT_CLASS, "aux2" }, 866 { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK, 867 SV_INPUT_CLASS, AudioNdac }, 868 { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL, 869 SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster } 870 }; 871 872 873 static const struct { 874 int idx; 875 const char *name; 876 } record_sources[] = { 877 { SV_REC_CD, AudioNcd }, 878 { SV_REC_DAC, AudioNdac }, 879 { SV_REC_AUX2, "aux2" }, 880 { SV_REC_LINE, AudioNline }, 881 { SV_REC_AUX1, "aux1" }, 882 { SV_REC_MIC, AudioNmicrophone }, 883 { SV_REC_MIXER, AudioNmixerout } 884 }; 885 886 887 #define SV_DEVICES_PER_PORT 2 888 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1) 889 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS) 890 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1) 891 #define SV_MIC_BOOST (SV_LAST_MIXER + 2) 892 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3) 893 #define SV_SRS_MODE (SV_LAST_MIXER + 4) 894 895 static int 896 sv_query_devinfo(void *addr, mixer_devinfo_t *dip) 897 { 898 int i; 899 900 /* It's a class */ 901 if (dip->index <= SV_LAST_CLASS) { 902 dip->type = AUDIO_MIXER_CLASS; 903 dip->mixer_class = dip->index; 904 dip->next = dip->prev = AUDIO_MIXER_LAST; 905 strcpy(dip->label.name, mixer_classes[dip->index]); 906 return 0; 907 } 908 909 if (dip->index >= SV_FIRST_MIXER && 910 dip->index <= SV_LAST_MIXER) { 911 int off, mute ,idx; 912 913 off = dip->index - SV_FIRST_MIXER; 914 mute = (off % SV_DEVICES_PER_PORT); 915 idx = off / SV_DEVICES_PER_PORT; 916 dip->mixer_class = ports[idx].class; 917 strcpy(dip->label.name, ports[idx].audio); 918 919 if (!mute) { 920 dip->type = AUDIO_MIXER_VALUE; 921 dip->prev = AUDIO_MIXER_LAST; 922 dip->next = dip->index + 1; 923 924 if (ports[idx].r_port != 0) 925 dip->un.v.num_channels = 2; 926 else 927 dip->un.v.num_channels = 1; 928 929 strcpy(dip->un.v.units.name, AudioNvolume); 930 } else { 931 dip->type = AUDIO_MIXER_ENUM; 932 dip->prev = dip->index - 1; 933 dip->next = AUDIO_MIXER_LAST; 934 935 strcpy(dip->label.name, AudioNmute); 936 dip->un.e.num_mem = 2; 937 strcpy(dip->un.e.member[0].label.name, AudioNoff); 938 dip->un.e.member[0].ord = 0; 939 strcpy(dip->un.e.member[1].label.name, AudioNon); 940 dip->un.e.member[1].ord = 1; 941 } 942 943 return 0; 944 } 945 946 switch (dip->index) { 947 case SV_RECORD_SOURCE: 948 dip->mixer_class = SV_RECORD_CLASS; 949 dip->prev = AUDIO_MIXER_LAST; 950 dip->next = SV_RECORD_GAIN; 951 strcpy(dip->label.name, AudioNsource); 952 dip->type = AUDIO_MIXER_ENUM; 953 954 dip->un.e.num_mem = ARRAY_SIZE(record_sources); 955 for (i = 0; i < ARRAY_SIZE(record_sources); i++) { 956 strcpy(dip->un.e.member[i].label.name, 957 record_sources[i].name); 958 dip->un.e.member[i].ord = record_sources[i].idx; 959 } 960 return 0; 961 962 case SV_RECORD_GAIN: 963 dip->mixer_class = SV_RECORD_CLASS; 964 dip->prev = SV_RECORD_SOURCE; 965 dip->next = AUDIO_MIXER_LAST; 966 strcpy(dip->label.name, "gain"); 967 dip->type = AUDIO_MIXER_VALUE; 968 dip->un.v.num_channels = 1; 969 strcpy(dip->un.v.units.name, AudioNvolume); 970 return 0; 971 972 case SV_MIC_BOOST: 973 dip->mixer_class = SV_RECORD_CLASS; 974 dip->prev = AUDIO_MIXER_LAST; 975 dip->next = AUDIO_MIXER_LAST; 976 strcpy(dip->label.name, "micboost"); 977 goto on_off; 978 979 case SV_SRS_MODE: 980 dip->mixer_class = SV_OUTPUT_CLASS; 981 dip->prev = dip->next = AUDIO_MIXER_LAST; 982 strcpy(dip->label.name, AudioNspatial); 983 984 on_off: 985 dip->type = AUDIO_MIXER_ENUM; 986 dip->un.e.num_mem = 2; 987 strcpy(dip->un.e.member[0].label.name, AudioNoff); 988 dip->un.e.member[0].ord = 0; 989 strcpy(dip->un.e.member[1].label.name, AudioNon); 990 dip->un.e.member[1].ord = 1; 991 return 0; 992 } 993 994 return ENXIO; 995 } 996 997 static int 998 sv_mixer_set_port(void *addr, mixer_ctrl_t *cp) 999 { 1000 struct sv_softc *sc; 1001 uint8_t reg; 1002 int idx; 1003 1004 sc = addr; 1005 if (cp->dev >= SV_FIRST_MIXER && 1006 cp->dev <= SV_LAST_MIXER) { 1007 int off, mute; 1008 1009 off = cp->dev - SV_FIRST_MIXER; 1010 mute = (off % SV_DEVICES_PER_PORT); 1011 idx = off / SV_DEVICES_PER_PORT; 1012 1013 if (mute) { 1014 if (cp->type != AUDIO_MIXER_ENUM) 1015 return EINVAL; 1016 1017 mutex_spin_enter(&sc->sc_intr_lock); 1018 reg = sv_read_indirect(sc, ports[idx].l_port); 1019 if (cp->un.ord) 1020 reg |= SV_MUTE_BIT; 1021 else 1022 reg &= ~SV_MUTE_BIT; 1023 sv_write_indirect(sc, ports[idx].l_port, reg); 1024 1025 if (ports[idx].r_port) { 1026 reg = sv_read_indirect(sc, ports[idx].r_port); 1027 if (cp->un.ord) 1028 reg |= SV_MUTE_BIT; 1029 else 1030 reg &= ~SV_MUTE_BIT; 1031 sv_write_indirect(sc, ports[idx].r_port, reg); 1032 } 1033 mutex_spin_exit(&sc->sc_intr_lock); 1034 } else { 1035 int lval, rval; 1036 1037 if (cp->type != AUDIO_MIXER_VALUE) 1038 return EINVAL; 1039 1040 if (cp->un.value.num_channels != 1 && 1041 cp->un.value.num_channels != 2) 1042 return (EINVAL); 1043 1044 if (ports[idx].r_port == 0) { 1045 if (cp->un.value.num_channels != 1) 1046 return (EINVAL); 1047 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; 1048 rval = 0; /* shut up GCC */ 1049 } else { 1050 if (cp->un.value.num_channels != 2) 1051 return (EINVAL); 1052 1053 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]; 1054 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]; 1055 } 1056 1057 mutex_spin_enter(&sc->sc_intr_lock); 1058 reg = sv_read_indirect(sc, ports[idx].l_port); 1059 reg &= ~(ports[idx].mask); 1060 lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask / 1061 AUDIO_MAX_GAIN; 1062 reg |= lval; 1063 sv_write_indirect(sc, ports[idx].l_port, reg); 1064 1065 if (ports[idx].r_port != 0) { 1066 reg = sv_read_indirect(sc, ports[idx].r_port); 1067 reg &= ~(ports[idx].mask); 1068 1069 rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask / 1070 AUDIO_MAX_GAIN; 1071 reg |= rval; 1072 1073 sv_write_indirect(sc, ports[idx].r_port, reg); 1074 } 1075 1076 sv_read_indirect(sc, ports[idx].l_port); 1077 mutex_spin_exit(&sc->sc_intr_lock); 1078 } 1079 1080 return 0; 1081 } 1082 1083 1084 switch (cp->dev) { 1085 case SV_RECORD_SOURCE: 1086 if (cp->type != AUDIO_MIXER_ENUM) 1087 return EINVAL; 1088 1089 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) { 1090 if (record_sources[idx].idx == cp->un.ord) 1091 goto found; 1092 } 1093 1094 return EINVAL; 1095 1096 found: 1097 mutex_spin_enter(&sc->sc_intr_lock); 1098 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1099 reg &= ~SV_REC_SOURCE_MASK; 1100 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK); 1101 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1102 1103 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL); 1104 reg &= ~SV_REC_SOURCE_MASK; 1105 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK); 1106 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg); 1107 mutex_spin_exit(&sc->sc_intr_lock); 1108 return 0; 1109 1110 case SV_RECORD_GAIN: 1111 { 1112 int val; 1113 1114 if (cp->type != AUDIO_MIXER_VALUE) 1115 return EINVAL; 1116 1117 if (cp->un.value.num_channels != 1) 1118 return EINVAL; 1119 1120 val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] 1121 * SV_REC_GAIN_MASK) / AUDIO_MAX_GAIN; 1122 1123 mutex_spin_enter(&sc->sc_intr_lock); 1124 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1125 reg &= ~SV_REC_GAIN_MASK; 1126 reg |= val; 1127 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1128 1129 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL); 1130 reg &= ~SV_REC_GAIN_MASK; 1131 reg |= val; 1132 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg); 1133 mutex_spin_exit(&sc->sc_intr_lock); 1134 } 1135 return (0); 1136 1137 case SV_MIC_BOOST: 1138 if (cp->type != AUDIO_MIXER_ENUM) 1139 return EINVAL; 1140 1141 mutex_spin_enter(&sc->sc_intr_lock); 1142 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1143 if (cp->un.ord) { 1144 reg |= SV_MIC_BOOST_BIT; 1145 } else { 1146 reg &= ~SV_MIC_BOOST_BIT; 1147 } 1148 1149 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1150 mutex_spin_exit(&sc->sc_intr_lock); 1151 return 0; 1152 1153 case SV_SRS_MODE: 1154 if (cp->type != AUDIO_MIXER_ENUM) 1155 return EINVAL; 1156 1157 mutex_spin_enter(&sc->sc_intr_lock); 1158 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL); 1159 if (cp->un.ord) { 1160 reg &= ~SV_SRS_SPACE_ONOFF; 1161 } else { 1162 reg |= SV_SRS_SPACE_ONOFF; 1163 } 1164 1165 sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg); 1166 mutex_spin_exit(&sc->sc_intr_lock); 1167 return 0; 1168 } 1169 1170 return EINVAL; 1171 } 1172 1173 static int 1174 sv_mixer_get_port(void *addr, mixer_ctrl_t *cp) 1175 { 1176 struct sv_softc *sc; 1177 int val, error; 1178 uint8_t reg; 1179 1180 sc = addr; 1181 error = 0; 1182 1183 mutex_spin_enter(&sc->sc_intr_lock); 1184 1185 if (cp->dev >= SV_FIRST_MIXER && 1186 cp->dev <= SV_LAST_MIXER) { 1187 int off = cp->dev - SV_FIRST_MIXER; 1188 int mute = (off % 2); 1189 int idx = off / 2; 1190 1191 off = cp->dev - SV_FIRST_MIXER; 1192 mute = (off % 2); 1193 idx = off / 2; 1194 if (mute) { 1195 if (cp->type != AUDIO_MIXER_ENUM) 1196 error = EINVAL; 1197 else { 1198 reg = sv_read_indirect(sc, ports[idx].l_port); 1199 cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0); 1200 } 1201 } else { 1202 if (cp->type != AUDIO_MIXER_VALUE || 1203 (cp->un.value.num_channels != 1 && 1204 cp->un.value.num_channels != 2) || 1205 ((ports[idx].r_port == 0 && 1206 cp->un.value.num_channels != 1) || 1207 (ports[idx].r_port != 0 && 1208 cp->un.value.num_channels != 2))) 1209 error = EINVAL; 1210 else { 1211 reg = sv_read_indirect(sc, ports[idx].l_port); 1212 reg &= ports[idx].mask; 1213 1214 val = AUDIO_MAX_GAIN - 1215 ((reg * AUDIO_MAX_GAIN) / ports[idx].mask); 1216 1217 if (ports[idx].r_port != 0) { 1218 cp->un.value.level 1219 [AUDIO_MIXER_LEVEL_LEFT] = val; 1220 1221 reg = sv_read_indirect(sc, 1222 ports[idx].r_port); 1223 reg &= ports[idx].mask; 1224 1225 val = AUDIO_MAX_GAIN - 1226 ((reg * AUDIO_MAX_GAIN) 1227 / ports[idx].mask); 1228 cp->un.value.level 1229 [AUDIO_MIXER_LEVEL_RIGHT] = val; 1230 } else 1231 cp->un.value.level 1232 [AUDIO_MIXER_LEVEL_MONO] = val; 1233 } 1234 } 1235 1236 return error; 1237 } 1238 1239 switch (cp->dev) { 1240 case SV_RECORD_SOURCE: 1241 if (cp->type != AUDIO_MIXER_ENUM) { 1242 error = EINVAL; 1243 break; 1244 } 1245 1246 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1247 cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT); 1248 1249 break; 1250 1251 case SV_RECORD_GAIN: 1252 if (cp->type != AUDIO_MIXER_VALUE) { 1253 error = EINVAL; 1254 break; 1255 } 1256 if (cp->un.value.num_channels != 1) { 1257 error = EINVAL; 1258 break; 1259 } 1260 1261 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK; 1262 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1263 (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK; 1264 1265 break; 1266 1267 case SV_MIC_BOOST: 1268 if (cp->type != AUDIO_MIXER_ENUM) { 1269 error = EINVAL; 1270 break; 1271 } 1272 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1273 cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0); 1274 break; 1275 1276 case SV_SRS_MODE: 1277 if (cp->type != AUDIO_MIXER_ENUM) { 1278 error = EINVAL; 1279 break; 1280 } 1281 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL); 1282 cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1); 1283 break; 1284 default: 1285 error = EINVAL; 1286 break; 1287 } 1288 1289 mutex_spin_exit(&sc->sc_intr_lock); 1290 return error; 1291 } 1292 1293 static void 1294 sv_init_mixer(struct sv_softc *sc) 1295 { 1296 mixer_ctrl_t cp; 1297 int i; 1298 1299 cp.type = AUDIO_MIXER_ENUM; 1300 cp.dev = SV_SRS_MODE; 1301 cp.un.ord = 0; 1302 1303 sv_mixer_set_port(sc, &cp); 1304 1305 for (i = 0; i < ARRAY_SIZE(ports); i++) { 1306 if (!strcmp(ports[i].audio, AudioNdac)) { 1307 cp.type = AUDIO_MIXER_ENUM; 1308 cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1; 1309 cp.un.ord = 0; 1310 sv_mixer_set_port(sc, &cp); 1311 break; 1312 } 1313 } 1314 } 1315 1316 static void * 1317 sv_malloc(void *addr, int direction, size_t size) 1318 { 1319 struct sv_softc *sc; 1320 struct sv_dma *p; 1321 int error; 1322 1323 sc = addr; 1324 p = kmem_alloc(sizeof(*p), KM_SLEEP); 1325 error = sv_allocmem(sc, size, 16, direction, p); 1326 if (error) { 1327 kmem_free(p, sizeof(*p)); 1328 return 0; 1329 } 1330 p->next = sc->sc_dmas; 1331 sc->sc_dmas = p; 1332 return KERNADDR(p); 1333 } 1334 1335 static void 1336 sv_free(void *addr, void *ptr, size_t size) 1337 { 1338 struct sv_softc *sc; 1339 struct sv_dma **pp, *p; 1340 1341 sc = addr; 1342 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) { 1343 if (KERNADDR(p) == ptr) { 1344 sv_freemem(sc, p); 1345 *pp = p->next; 1346 kmem_free(p, sizeof(*p)); 1347 return; 1348 } 1349 } 1350 } 1351 1352 static int 1353 sv_get_props(void *addr) 1354 { 1355 1356 return AUDIO_PROP_PLAYBACK | AUDIO_PROP_CAPTURE | 1357 AUDIO_PROP_FULLDUPLEX; 1358 } 1359 1360 static void 1361 sv_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread) 1362 { 1363 struct sv_softc *sc; 1364 1365 sc = addr; 1366 *intr = &sc->sc_intr_lock; 1367 *thread = &sc->sc_lock; 1368 } 1369