xref: /netbsd-src/sys/dev/pci/sv.c (revision e6c7e151de239c49d2e38720a061ed9d1fa99309)
1 /*      $NetBSD: sv.c,v 1.57 2019/10/28 18:38:43 joerg Exp $ */
2 /*      $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
3 
4 /*
5  * Copyright (c) 1999, 2008 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Charles M. Hannum.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1998 Constantine Paul Sapuntzakis
35  * All rights reserved
36  *
37  * Author: Constantine Paul Sapuntzakis (csapuntz@cvs.openbsd.org)
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  * 1. Redistributions of source code must retain the above copyright
43  *    notice, this list of conditions and the following disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  * 3. The author's name or those of the contributors may be used to
48  *    endorse or promote products derived from this software without
49  *    specific prior written permission.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
52  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
53  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
54  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
55  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
56  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
57  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
58  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
59  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61  * POSSIBILITY OF SUCH DAMAGE.
62  */
63 
64 /*
65  * S3 SonicVibes driver
66  *   Heavily based on the eap driver by Lennart Augustsson
67  */
68 
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.57 2019/10/28 18:38:43 joerg Exp $");
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/kmem.h>
76 #include <sys/device.h>
77 
78 #include <dev/pci/pcireg.h>
79 #include <dev/pci/pcivar.h>
80 #include <dev/pci/pcidevs.h>
81 
82 #include <sys/audioio.h>
83 #include <dev/audio/audio_if.h>
84 
85 #include <dev/ic/i8237reg.h>
86 #include <dev/pci/svreg.h>
87 #include <dev/pci/svvar.h>
88 
89 #include <sys/bus.h>
90 
91 /* XXX
92  * The SonicVibes DMA is broken and only works on 24-bit addresses.
93  * As long as bus_dmamem_alloc_range() is missing we use the ISA
94  * DMA tag on i386.
95  */
96 #if defined(amd64) || defined(i386)
97 #include <dev/isa/isavar.h>
98 #endif
99 
100 #ifdef AUDIO_DEBUG
101 #define DPRINTF(x)	if (svdebug) printf x
102 #define DPRINTFN(n,x)	if (svdebug>(n)) printf x
103 int	svdebug = 0;
104 #else
105 #define DPRINTF(x)
106 #define DPRINTFN(n,x)
107 #endif
108 
109 static int	sv_match(device_t, cfdata_t, void *);
110 static void	sv_attach(device_t, device_t, void *);
111 static int	sv_intr(void *);
112 
113 struct sv_dma {
114 	bus_dmamap_t map;
115 	void *addr;
116 	bus_dma_segment_t segs[1];
117 	int nsegs;
118 	size_t size;
119 	struct sv_dma *next;
120 };
121 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
122 #define KERNADDR(p) ((void *)((p)->addr))
123 
124 CFATTACH_DECL_NEW(sv, sizeof(struct sv_softc),
125     sv_match, sv_attach, NULL, NULL);
126 
127 static struct audio_device sv_device = {
128 	"S3 SonicVibes",
129 	"",
130 	"sv"
131 };
132 
133 #define ARRAY_SIZE(foo)  ((sizeof(foo)) / sizeof(foo[0]))
134 
135 static int	sv_allocmem(struct sv_softc *, size_t, size_t, int,
136 			    struct sv_dma *);
137 static int	sv_freemem(struct sv_softc *, struct sv_dma *);
138 
139 static void	sv_init_mixer(struct sv_softc *);
140 
141 static int	sv_open(void *, int);
142 static int	sv_query_format(void *, audio_format_query_t *);
143 static int	sv_set_format(void *, int,
144 			      const audio_params_t *, const audio_params_t *,
145 			      audio_filter_reg_t *, audio_filter_reg_t *);
146 static int	sv_round_blocksize(void *, int, int, const audio_params_t *);
147 static int	sv_trigger_output(void *, void *, void *, int, void (*)(void *),
148 				  void *, const audio_params_t *);
149 static int	sv_trigger_input(void *, void *, void *, int, void (*)(void *),
150 				 void *, const audio_params_t *);
151 static int	sv_halt_output(void *);
152 static int	sv_halt_input(void *);
153 static int	sv_getdev(void *, struct audio_device *);
154 static int	sv_mixer_set_port(void *, mixer_ctrl_t *);
155 static int	sv_mixer_get_port(void *, mixer_ctrl_t *);
156 static int	sv_query_devinfo(void *, mixer_devinfo_t *);
157 static void *	sv_malloc(void *, int, size_t);
158 static void	sv_free(void *, void *, size_t);
159 static int	sv_get_props(void *);
160 static void	sv_get_locks(void *, kmutex_t **, kmutex_t **);
161 
162 #ifdef AUDIO_DEBUG
163 void    sv_dumpregs(struct sv_softc *sc);
164 #endif
165 
166 static const struct audio_hw_if sv_hw_if = {
167 	.open			= sv_open,
168 	.query_format		= sv_query_format,
169 	.set_format		= sv_set_format,
170 	.round_blocksize	= sv_round_blocksize,
171 	.halt_output		= sv_halt_output,
172 	.halt_input		= sv_halt_input,
173 	.getdev			= sv_getdev,
174 	.set_port		= sv_mixer_set_port,
175 	.get_port		= sv_mixer_get_port,
176 	.query_devinfo		= sv_query_devinfo,
177 	.allocm			= sv_malloc,
178 	.freem			= sv_free,
179 	.get_props		= sv_get_props,
180 	.trigger_output		= sv_trigger_output,
181 	.trigger_input		= sv_trigger_input,
182 	.get_locks		= sv_get_locks,
183 };
184 
185 static const struct audio_format sv_formats[] = {
186 	{
187 		.mode		= AUMODE_PLAY | AUMODE_RECORD,
188 		.encoding	= AUDIO_ENCODING_SLINEAR_LE,
189 		.validbits	= 16,
190 		.precision	= 16,
191 		.channels	= 2,
192 		.channel_mask	= AUFMT_STEREO,
193 		.frequency_type	= 0,
194 		.frequency	= { 2000, 48000 },
195 	},
196 };
197 #define SV_NFORMATS	__arraycount(sv_formats)
198 
199 
200 static void
201 sv_write(struct sv_softc *sc, uint8_t reg, uint8_t val)
202 {
203 
204 	DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
205 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
206 }
207 
208 static uint8_t
209 sv_read(struct sv_softc *sc, uint8_t reg)
210 {
211 	uint8_t val;
212 
213 	val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
214 	DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
215 	return val;
216 }
217 
218 static uint8_t
219 sv_read_indirect(struct sv_softc *sc, uint8_t reg)
220 {
221 	uint8_t val;
222 
223 	sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
224 	val = sv_read(sc, SV_CODEC_IDATA);
225 	return val;
226 }
227 
228 static void
229 sv_write_indirect(struct sv_softc *sc, uint8_t reg, uint8_t val)
230 {
231 	uint8_t iaddr;
232 
233 	iaddr = reg & SV_IADDR_MASK;
234 	if (reg == SV_DMA_DATA_FORMAT)
235 		iaddr |= SV_IADDR_MCE;
236 
237 	sv_write(sc, SV_CODEC_IADDR, iaddr);
238 	sv_write(sc, SV_CODEC_IDATA, val);
239 }
240 
241 static int
242 sv_match(device_t parent, cfdata_t match, void *aux)
243 {
244 	struct pci_attach_args *pa;
245 
246 	pa = aux;
247 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
248 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
249 		return 1;
250 
251 	return 0;
252 }
253 
254 static pcireg_t pci_io_alloc_low, pci_io_alloc_high;
255 
256 static int
257 pci_alloc_io(pci_chipset_tag_t pc, pcitag_t pt, int pcioffs,
258     bus_space_tag_t iot, bus_size_t size, bus_size_t align,
259     bus_size_t bound, int flags, bus_space_handle_t *ioh)
260 {
261 	bus_addr_t addr;
262 	int error;
263 
264 	error = bus_space_alloc(iot, pci_io_alloc_low, pci_io_alloc_high,
265 				size, align, bound, flags, &addr, ioh);
266 	if (error)
267 		return error;
268 
269 	pci_conf_write(pc, pt, pcioffs, addr);
270 	return 0;
271 }
272 
273 /*
274  * Allocate IO addresses when all other configuration is done.
275  */
276 static void
277 sv_defer(device_t self)
278 {
279 	struct sv_softc *sc;
280 	pci_chipset_tag_t pc;
281 	pcitag_t pt;
282 	pcireg_t dmaio;
283 
284 	sc = device_private(self);
285 	pc = sc->sc_pa.pa_pc;
286 	pt = sc->sc_pa.pa_tag;
287 	DPRINTF(("sv_defer: %p\n", sc));
288 
289 	/* XXX
290 	 * Get a reasonable default for the I/O range.
291 	 * Assume the range around SB_PORTBASE is valid on this PCI bus.
292 	 */
293 	pci_io_alloc_low = pci_conf_read(pc, pt, SV_SB_PORTBASE_SLOT);
294 	pci_io_alloc_high = pci_io_alloc_low + 0x1000;
295 
296 	if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
297 			  sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
298 			  0, &sc->sc_dmaa_ioh)) {
299 		printf("sv_attach: cannot allocate DMA A range\n");
300 		return;
301 	}
302 	dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
303 	DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
304 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
305 		       dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
306 
307 	if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
308 			  sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
309 			  0, &sc->sc_dmac_ioh)) {
310 		printf("sv_attach: cannot allocate DMA C range\n");
311 		return;
312 	}
313 	dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
314 	DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
315 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
316 		       dmaio | SV_DMA_CHANNEL_ENABLE);
317 
318 	sc->sc_dmaset = 1;
319 }
320 
321 static void
322 sv_attach(device_t parent, device_t self, void *aux)
323 {
324 	struct sv_softc *sc;
325 	struct pci_attach_args *pa;
326 	pci_chipset_tag_t pc;
327 	pcitag_t pt;
328 	pci_intr_handle_t ih;
329 	pcireg_t csr;
330 	char const *intrstr;
331 	uint8_t reg;
332 	struct audio_attach_args arg;
333 	char intrbuf[PCI_INTRSTR_LEN];
334 
335 	sc = device_private(self);
336 	pa = aux;
337 	pc = pa->pa_pc;
338 	pt = pa->pa_tag;
339 	aprint_naive("\n");
340 	aprint_normal("\n");
341 
342 	/* Map I/O registers */
343 	if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
344 			   PCI_MAPREG_TYPE_IO, 0,
345 			   &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
346 		aprint_error_dev(self, "can't map enhanced i/o space\n");
347 		return;
348 	}
349 	if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
350 			   PCI_MAPREG_TYPE_IO, 0,
351 			   &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
352 		aprint_error_dev(self, "can't map FM i/o space\n");
353 		return;
354 	}
355 	if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
356 			   PCI_MAPREG_TYPE_IO, 0,
357 			   &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
358 		aprint_error_dev(self, "can't map MIDI i/o space\n");
359 		return;
360 	}
361 	DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
362 		 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
363 
364 #if defined(alpha)
365 	/* XXX Force allocation through the SGMAP. */
366 	sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
367 #elif defined(amd64) || defined(i386)
368 /* XXX
369  * The SonicVibes DMA is broken and only works on 24-bit addresses.
370  * As long as bus_dmamem_alloc_range() is missing we use the ISA
371  * DMA tag on i386.
372  */
373 	sc->sc_dmatag = &isa_bus_dma_tag;
374 #else
375 	sc->sc_dmatag = pa->pa_dmat;
376 #endif
377 
378 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
379 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
380 
381 	/* Enable the device. */
382 	csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
383 	pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
384 		       csr | PCI_COMMAND_MASTER_ENABLE);
385 
386 	sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
387 	sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
388 
389 	/* initialize codec registers */
390 	reg = sv_read(sc, SV_CODEC_CONTROL);
391 	reg |= SV_CTL_RESET;
392 	sv_write(sc, SV_CODEC_CONTROL, reg);
393 	delay(50);
394 
395 	reg = sv_read(sc, SV_CODEC_CONTROL);
396 	reg &= ~SV_CTL_RESET;
397 	reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
398 
399 	/* This write clears the reset */
400 	sv_write(sc, SV_CODEC_CONTROL, reg);
401 	delay(50);
402 
403 	/* This write actually shoves the new values in */
404 	sv_write(sc, SV_CODEC_CONTROL, reg);
405 
406 	DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
407 
408 	/* Map and establish the interrupt. */
409 	if (pci_intr_map(pa, &ih)) {
410 		aprint_error_dev(self, "couldn't map interrupt\n");
411 		return;
412 	}
413 
414 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
415 	mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);
416 
417 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
418 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_AUDIO, sv_intr, sc,
419 	    device_xname(self));
420 	if (sc->sc_ih == NULL) {
421 		aprint_error_dev(self, "couldn't establish interrupt");
422 		if (intrstr != NULL)
423 			aprint_error(" at %s", intrstr);
424 		aprint_error("\n");
425 		mutex_destroy(&sc->sc_lock);
426 		mutex_destroy(&sc->sc_intr_lock);
427 		return;
428 	}
429 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
430 	aprint_normal_dev(self, "rev %d",
431 	    sv_read_indirect(sc, SV_REVISION_LEVEL));
432 	if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
433 		aprint_normal(", reverb SRAM present");
434 	if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
435 		aprint_normal(", wavetable ROM present");
436 	aprint_normal("\n");
437 
438 	/* Enable DMA interrupts */
439 	reg = sv_read(sc, SV_CODEC_INTMASK);
440 	reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
441 	reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
442 	sv_write(sc, SV_CODEC_INTMASK, reg);
443 	sv_read(sc, SV_CODEC_STATUS);
444 
445 	sv_init_mixer(sc);
446 
447 	audio_attach_mi(&sv_hw_if, sc, self);
448 
449 	arg.type = AUDIODEV_TYPE_OPL;
450 	arg.hwif = 0;
451 	arg.hdl = 0;
452 	(void)config_found(self, &arg, audioprint);
453 
454 	sc->sc_pa = *pa;	/* for deferred setup */
455 	config_defer(self, sv_defer);
456 }
457 
458 #ifdef AUDIO_DEBUG
459 void
460 sv_dumpregs(struct sv_softc *sc)
461 {
462 	int idx;
463 
464 #if 0
465 	for (idx = 0; idx < 0x50; idx += 4)
466 		printf ("%02x = %x\n", idx,
467 			pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
468 #endif
469 
470 	for (idx = 0; idx < 6; idx++)
471 		printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
472 
473 	for (idx = 0; idx < 0x32; idx++)
474 		printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
475 
476 	for (idx = 0; idx < 0x10; idx++)
477 		printf ("DMA %02x = %02x\n", idx,
478 			bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
479 }
480 #endif
481 
482 static int
483 sv_intr(void *p)
484 {
485 	struct sv_softc *sc;
486 	uint8_t intr;
487 
488 	sc = p;
489 
490 	mutex_spin_enter(&sc->sc_intr_lock);
491 
492 	intr = sv_read(sc, SV_CODEC_STATUS);
493 	DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
494 
495 	if (intr & SV_INTSTATUS_DMAA) {
496 		if (sc->sc_pintr)
497 			sc->sc_pintr(sc->sc_parg);
498 	}
499 
500 	if (intr & SV_INTSTATUS_DMAC) {
501 		if (sc->sc_rintr)
502 			sc->sc_rintr(sc->sc_rarg);
503 	}
504 
505 	mutex_spin_exit(&sc->sc_intr_lock);
506 
507 	return (intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)) != 0;
508 }
509 
510 static int
511 sv_allocmem(struct sv_softc *sc, size_t size, size_t align,
512     int direction, struct sv_dma *p)
513 {
514 	int error;
515 
516 	p->size = size;
517 	error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
518 	    p->segs, ARRAY_SIZE(p->segs), &p->nsegs, BUS_DMA_WAITOK);
519 	if (error)
520 		return error;
521 
522 	error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
523 	    &p->addr, BUS_DMA_WAITOK|BUS_DMA_COHERENT);
524 	if (error)
525 		goto free;
526 
527 	error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
528 	    0, BUS_DMA_WAITOK, &p->map);
529 	if (error)
530 		goto unmap;
531 
532 	error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
533 	    BUS_DMA_WAITOK | ((direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE));
534 	if (error)
535 		goto destroy;
536 	DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
537 	    (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
538 	return 0;
539 
540 destroy:
541 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
542 unmap:
543 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
544 free:
545 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
546 	return error;
547 }
548 
549 static int
550 sv_freemem(struct sv_softc *sc, struct sv_dma *p)
551 {
552 
553 	bus_dmamap_unload(sc->sc_dmatag, p->map);
554 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
555 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
556 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
557 	return 0;
558 }
559 
560 static int
561 sv_open(void *addr, int flags)
562 {
563 	struct sv_softc *sc;
564 
565 	sc = addr;
566 	DPRINTF(("sv_open\n"));
567 	if (!sc->sc_dmaset)
568 		return ENXIO;
569 
570 	return 0;
571 }
572 
573 static int
574 sv_query_format(void *addr, audio_format_query_t *afp)
575 {
576 
577 	return audio_query_format(sv_formats, SV_NFORMATS, afp);
578 }
579 
580 static int
581 sv_set_format(void *addr, int setmode,
582     const audio_params_t *play, const audio_params_t *rec,
583     audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
584 {
585 	struct sv_softc *sc;
586 	uint32_t val;
587 
588 	sc = addr;
589 
590 	/* *play and *rec are the identical because !AUDIO_PROP_INDEPENDENT. */
591 
592 	val = play->sample_rate * 65536 / 48000;
593 	/*
594 	 * If the sample rate is exactly 48 kHz, the fraction would overflow the
595 	 * register, so we have to bias it.  This causes a little clock drift.
596 	 * The drift is below normal crystal tolerance (.0001%), so although
597 	 * this seems a little silly, we can pretty much ignore it.
598 	 * (I tested the output speed with values of 1-20, just to be sure this
599 	 * register isn't *supposed* to have a bias.  It isn't.)
600 	 * - mycroft
601 	 */
602 	if (val > 65535)
603 		val = 65535;
604 
605 	mutex_spin_enter(&sc->sc_intr_lock);
606 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
607 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
608 	mutex_spin_exit(&sc->sc_intr_lock);
609 
610 #define F_REF 24576000
611 
612 #define ABS(x) (((x) < 0) ? (-x) : (x))
613 
614 	if (setmode & AUMODE_RECORD) {
615 		/* The ADC reference frequency (f_out) is 512 * sample rate */
616 
617 		/* f_out is dervied from the 24.576MHz crystal by three values:
618 		   M & N & R. The equation is as follows:
619 
620 		   f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
621 
622 		   with the constraint that:
623 
624 		   80 MHz < (m + 2) / (n + 2) * f_ref <= 150MHz
625 		   and n, m >= 1
626 		*/
627 
628 		int  goal_f_out;
629 		int  a, n, m, best_n, best_m, best_error;
630 		int  pll_sample;
631 		int  error;
632 
633 		goal_f_out = 512 * rec->sample_rate;
634 		best_n = 0;
635 		best_m = 0;
636 		best_error = 10000000;
637 		for (a = 0; a < 8; a++) {
638 			if ((goal_f_out * (1 << a)) >= 80000000)
639 				break;
640 		}
641 
642 		/* a != 8 because sample_rate >= 2000 */
643 
644 		for (n = 33; n > 2; n--) {
645 			m = (goal_f_out * n * (1 << a)) / F_REF;
646 			if ((m > 257) || (m < 3))
647 				continue;
648 
649 			pll_sample = (m * F_REF) / (n * (1 << a));
650 			pll_sample /= 512;
651 
652 			/* Threshold might be good here */
653 			error = pll_sample - rec->sample_rate;
654 			error = ABS(error);
655 
656 			if (error < best_error) {
657 				best_error = error;
658 				best_n = n;
659 				best_m = m;
660 				if (error == 0) break;
661 			}
662 		}
663 
664 		best_n -= 2;
665 		best_m -= 2;
666 
667 		mutex_spin_enter(&sc->sc_intr_lock);
668 		sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
669 		sv_write_indirect(sc, SV_ADC_PLL_N,
670 				  best_n | (a << SV_PLL_R_SHIFT));
671 		mutex_spin_exit(&sc->sc_intr_lock);
672 	}
673 
674 	return 0;
675 }
676 
677 static int
678 sv_round_blocksize(void *addr, int blk, int mode,
679     const audio_params_t *param)
680 {
681 
682 	return blk & -32;	/* keep good alignment */
683 }
684 
685 static int
686 sv_trigger_output(void *addr, void *start, void *end, int blksize,
687     void (*intr)(void *), void *arg, const audio_params_t *param)
688 {
689 	struct sv_softc *sc;
690 	struct sv_dma *p;
691 	uint8_t mode;
692 	int dma_count;
693 
694 	DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d "
695 	    "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
696 	sc = addr;
697 	sc->sc_pintr = intr;
698 	sc->sc_parg = arg;
699 
700 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
701 	mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
702 	if (param->precision == 16)
703 		mode |= SV_DMAA_FORMAT16;
704 	if (param->channels == 2)
705 		mode |= SV_DMAA_STEREO;
706 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
707 
708 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
709 		continue;
710 	if (p == NULL) {
711 		printf("sv_trigger_output: bad addr %p\n", start);
712 		return EINVAL;
713 	}
714 
715 	dma_count = ((char *)end - (char *)start) - 1;
716 	DPRINTF(("sv_trigger_output: DMA start loop input addr=%x cc=%d\n",
717 	    (int)DMAADDR(p), dma_count));
718 
719 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
720 			  DMAADDR(p));
721 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
722 			  dma_count);
723 	bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
724 			  DMA37MD_READ | DMA37MD_LOOP);
725 
726 	DPRINTF(("sv_trigger_output: current addr=%x\n",
727 	    bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
728 
729 	dma_count = blksize - 1;
730 
731 	sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
732 	sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
733 
734 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
735 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
736 
737 	return 0;
738 }
739 
740 static int
741 sv_trigger_input(void *addr, void *start, void *end, int blksize,
742     void (*intr)(void *), void *arg, const audio_params_t *param)
743 {
744 	struct sv_softc *sc;
745 	struct sv_dma *p;
746 	uint8_t mode;
747 	int dma_count;
748 
749 	DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d "
750 	    "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
751 	sc = addr;
752 	sc->sc_rintr = intr;
753 	sc->sc_rarg = arg;
754 
755 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
756 	mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
757 	if (param->precision == 16)
758 		mode |= SV_DMAC_FORMAT16;
759 	if (param->channels == 2)
760 		mode |= SV_DMAC_STEREO;
761 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
762 
763 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
764 		continue;
765 	if (!p) {
766 		printf("sv_trigger_input: bad addr %p\n", start);
767 		return EINVAL;
768 	}
769 
770 	dma_count = (((char *)end - (char *)start) >> 1) - 1;
771 	DPRINTF(("sv_trigger_input: DMA start loop input addr=%x cc=%d\n",
772 	    (int)DMAADDR(p), dma_count));
773 
774 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
775 			  DMAADDR(p));
776 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
777 			  dma_count);
778 	bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
779 			  DMA37MD_WRITE | DMA37MD_LOOP);
780 
781 	DPRINTF(("sv_trigger_input: current addr=%x\n",
782 	    bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
783 
784 	dma_count = (blksize >> 1) - 1;
785 
786 	sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
787 	sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
788 
789 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
790 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
791 
792 	return 0;
793 }
794 
795 static int
796 sv_halt_output(void *addr)
797 {
798 	struct sv_softc *sc;
799 	uint8_t mode;
800 
801 	DPRINTF(("sv: sv_halt_output\n"));
802 	sc = addr;
803 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
804 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
805 	sc->sc_pintr = 0;
806 
807 	return 0;
808 }
809 
810 static int
811 sv_halt_input(void *addr)
812 {
813 	struct sv_softc *sc;
814 	uint8_t mode;
815 
816 	DPRINTF(("sv: sv_halt_input\n"));
817 	sc = addr;
818 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
819 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
820 	sc->sc_rintr = 0;
821 
822 	return 0;
823 }
824 
825 static int
826 sv_getdev(void *addr, struct audio_device *retp)
827 {
828 
829 	*retp = sv_device;
830 	return 0;
831 }
832 
833 
834 /*
835  * Mixer related code is here
836  *
837  */
838 
839 #define SV_INPUT_CLASS 0
840 #define SV_OUTPUT_CLASS 1
841 #define SV_RECORD_CLASS 2
842 
843 #define SV_LAST_CLASS 2
844 
845 static const char *mixer_classes[] =
846 	{ AudioCinputs, AudioCoutputs, AudioCrecord };
847 
848 static const struct {
849 	uint8_t   l_port;
850 	uint8_t   r_port;
851 	uint8_t   mask;
852 	uint8_t   class;
853 	const char *audio;
854 } ports[] = {
855   { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
856     SV_INPUT_CLASS, "aux1" },
857   { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
858     SV_INPUT_CLASS, AudioNcd },
859   { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
860     SV_INPUT_CLASS, AudioNline },
861   { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
862   { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
863     SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
864   { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
865     SV_INPUT_CLASS, "aux2" },
866   { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
867     SV_INPUT_CLASS, AudioNdac },
868   { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
869     SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
870 };
871 
872 
873 static const struct {
874 	int idx;
875 	const char *name;
876 } record_sources[] = {
877 	{ SV_REC_CD, AudioNcd },
878 	{ SV_REC_DAC, AudioNdac },
879 	{ SV_REC_AUX2, "aux2" },
880 	{ SV_REC_LINE, AudioNline },
881 	{ SV_REC_AUX1, "aux1" },
882 	{ SV_REC_MIC, AudioNmicrophone },
883 	{ SV_REC_MIXER, AudioNmixerout }
884 };
885 
886 
887 #define SV_DEVICES_PER_PORT 2
888 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
889 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
890 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
891 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
892 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
893 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
894 
895 static int
896 sv_query_devinfo(void *addr, mixer_devinfo_t *dip)
897 {
898 	int i;
899 
900 	/* It's a class */
901 	if (dip->index <= SV_LAST_CLASS) {
902 		dip->type = AUDIO_MIXER_CLASS;
903 		dip->mixer_class = dip->index;
904 		dip->next = dip->prev = AUDIO_MIXER_LAST;
905 		strcpy(dip->label.name, mixer_classes[dip->index]);
906 		return 0;
907 	}
908 
909 	if (dip->index >= SV_FIRST_MIXER &&
910 	    dip->index <= SV_LAST_MIXER) {
911 		int off, mute ,idx;
912 
913 		off = dip->index - SV_FIRST_MIXER;
914 		mute = (off % SV_DEVICES_PER_PORT);
915 		idx = off / SV_DEVICES_PER_PORT;
916 		dip->mixer_class = ports[idx].class;
917 		strcpy(dip->label.name, ports[idx].audio);
918 
919 		if (!mute) {
920 			dip->type = AUDIO_MIXER_VALUE;
921 			dip->prev = AUDIO_MIXER_LAST;
922 			dip->next = dip->index + 1;
923 
924 			if (ports[idx].r_port != 0)
925 				dip->un.v.num_channels = 2;
926 			else
927 				dip->un.v.num_channels = 1;
928 
929 			strcpy(dip->un.v.units.name, AudioNvolume);
930 		} else {
931 			dip->type = AUDIO_MIXER_ENUM;
932 			dip->prev = dip->index - 1;
933 			dip->next = AUDIO_MIXER_LAST;
934 
935 			strcpy(dip->label.name, AudioNmute);
936 			dip->un.e.num_mem = 2;
937 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
938 			dip->un.e.member[0].ord = 0;
939 			strcpy(dip->un.e.member[1].label.name, AudioNon);
940 			dip->un.e.member[1].ord = 1;
941 		}
942 
943 		return 0;
944 	}
945 
946 	switch (dip->index) {
947 	case SV_RECORD_SOURCE:
948 		dip->mixer_class = SV_RECORD_CLASS;
949 		dip->prev = AUDIO_MIXER_LAST;
950 		dip->next = SV_RECORD_GAIN;
951 		strcpy(dip->label.name, AudioNsource);
952 		dip->type = AUDIO_MIXER_ENUM;
953 
954 		dip->un.e.num_mem = ARRAY_SIZE(record_sources);
955 		for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
956 			strcpy(dip->un.e.member[i].label.name,
957 			       record_sources[i].name);
958 			dip->un.e.member[i].ord = record_sources[i].idx;
959 		}
960 		return 0;
961 
962 	case SV_RECORD_GAIN:
963 		dip->mixer_class = SV_RECORD_CLASS;
964 		dip->prev = SV_RECORD_SOURCE;
965 		dip->next = AUDIO_MIXER_LAST;
966 		strcpy(dip->label.name, "gain");
967 		dip->type = AUDIO_MIXER_VALUE;
968 		dip->un.v.num_channels = 1;
969 		strcpy(dip->un.v.units.name, AudioNvolume);
970 		return 0;
971 
972 	case SV_MIC_BOOST:
973 		dip->mixer_class = SV_RECORD_CLASS;
974 		dip->prev = AUDIO_MIXER_LAST;
975 		dip->next = AUDIO_MIXER_LAST;
976 		strcpy(dip->label.name, "micboost");
977 		goto on_off;
978 
979 	case SV_SRS_MODE:
980 		dip->mixer_class = SV_OUTPUT_CLASS;
981 		dip->prev = dip->next = AUDIO_MIXER_LAST;
982 		strcpy(dip->label.name, AudioNspatial);
983 
984 	on_off:
985 		dip->type = AUDIO_MIXER_ENUM;
986 		dip->un.e.num_mem = 2;
987 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
988 		dip->un.e.member[0].ord = 0;
989 		strcpy(dip->un.e.member[1].label.name, AudioNon);
990 		dip->un.e.member[1].ord = 1;
991 		return 0;
992 	}
993 
994 	return ENXIO;
995 }
996 
997 static int
998 sv_mixer_set_port(void *addr, mixer_ctrl_t *cp)
999 {
1000 	struct sv_softc *sc;
1001 	uint8_t reg;
1002 	int idx;
1003 
1004 	sc = addr;
1005 	if (cp->dev >= SV_FIRST_MIXER &&
1006 	    cp->dev <= SV_LAST_MIXER) {
1007 		int off, mute;
1008 
1009 		off = cp->dev - SV_FIRST_MIXER;
1010 		mute = (off % SV_DEVICES_PER_PORT);
1011 		idx = off / SV_DEVICES_PER_PORT;
1012 
1013 		if (mute) {
1014 			if (cp->type != AUDIO_MIXER_ENUM)
1015 				return EINVAL;
1016 
1017 			mutex_spin_enter(&sc->sc_intr_lock);
1018 			reg = sv_read_indirect(sc, ports[idx].l_port);
1019 			if (cp->un.ord)
1020 				reg |= SV_MUTE_BIT;
1021 			else
1022 				reg &= ~SV_MUTE_BIT;
1023 			sv_write_indirect(sc, ports[idx].l_port, reg);
1024 
1025 			if (ports[idx].r_port) {
1026 				reg = sv_read_indirect(sc, ports[idx].r_port);
1027 				if (cp->un.ord)
1028 					reg |= SV_MUTE_BIT;
1029 				else
1030 					reg &= ~SV_MUTE_BIT;
1031 				sv_write_indirect(sc, ports[idx].r_port, reg);
1032 			}
1033 			mutex_spin_exit(&sc->sc_intr_lock);
1034 		} else {
1035 			int  lval, rval;
1036 
1037 			if (cp->type != AUDIO_MIXER_VALUE)
1038 				return EINVAL;
1039 
1040 			if (cp->un.value.num_channels != 1 &&
1041 			    cp->un.value.num_channels != 2)
1042 				return (EINVAL);
1043 
1044 			if (ports[idx].r_port == 0) {
1045 				if (cp->un.value.num_channels != 1)
1046 					return (EINVAL);
1047 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1048 				rval = 0; /* shut up GCC */
1049 			} else {
1050 				if (cp->un.value.num_channels != 2)
1051 					return (EINVAL);
1052 
1053 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1054 				rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1055 			}
1056 
1057 			mutex_spin_enter(&sc->sc_intr_lock);
1058 			reg = sv_read_indirect(sc, ports[idx].l_port);
1059 			reg &= ~(ports[idx].mask);
1060 			lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
1061 				AUDIO_MAX_GAIN;
1062 			reg |= lval;
1063 			sv_write_indirect(sc, ports[idx].l_port, reg);
1064 
1065 			if (ports[idx].r_port != 0) {
1066 				reg = sv_read_indirect(sc, ports[idx].r_port);
1067 				reg &= ~(ports[idx].mask);
1068 
1069 				rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
1070 					AUDIO_MAX_GAIN;
1071 				reg |= rval;
1072 
1073 				sv_write_indirect(sc, ports[idx].r_port, reg);
1074 			}
1075 
1076 			sv_read_indirect(sc, ports[idx].l_port);
1077 			mutex_spin_exit(&sc->sc_intr_lock);
1078 		}
1079 
1080 		return 0;
1081 	}
1082 
1083 
1084 	switch (cp->dev) {
1085 	case SV_RECORD_SOURCE:
1086 		if (cp->type != AUDIO_MIXER_ENUM)
1087 			return EINVAL;
1088 
1089 		for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
1090 			if (record_sources[idx].idx == cp->un.ord)
1091 				goto found;
1092 		}
1093 
1094 		return EINVAL;
1095 
1096 	found:
1097 		mutex_spin_enter(&sc->sc_intr_lock);
1098 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1099 		reg &= ~SV_REC_SOURCE_MASK;
1100 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1101 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1102 
1103 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1104 		reg &= ~SV_REC_SOURCE_MASK;
1105 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1106 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1107 		mutex_spin_exit(&sc->sc_intr_lock);
1108 		return 0;
1109 
1110 	case SV_RECORD_GAIN:
1111 	{
1112 		int val;
1113 
1114 		if (cp->type != AUDIO_MIXER_VALUE)
1115 			return EINVAL;
1116 
1117 		if (cp->un.value.num_channels != 1)
1118 			return EINVAL;
1119 
1120 		val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]
1121 		    * SV_REC_GAIN_MASK) / AUDIO_MAX_GAIN;
1122 
1123 		mutex_spin_enter(&sc->sc_intr_lock);
1124 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1125 		reg &= ~SV_REC_GAIN_MASK;
1126 		reg |= val;
1127 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1128 
1129 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1130 		reg &= ~SV_REC_GAIN_MASK;
1131 		reg |= val;
1132 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1133 		mutex_spin_exit(&sc->sc_intr_lock);
1134 	}
1135 	return (0);
1136 
1137 	case SV_MIC_BOOST:
1138 		if (cp->type != AUDIO_MIXER_ENUM)
1139 			return EINVAL;
1140 
1141 		mutex_spin_enter(&sc->sc_intr_lock);
1142 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1143 		if (cp->un.ord) {
1144 			reg |= SV_MIC_BOOST_BIT;
1145 		} else {
1146 			reg &= ~SV_MIC_BOOST_BIT;
1147 		}
1148 
1149 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1150 		mutex_spin_exit(&sc->sc_intr_lock);
1151 		return 0;
1152 
1153 	case SV_SRS_MODE:
1154 		if (cp->type != AUDIO_MIXER_ENUM)
1155 			return EINVAL;
1156 
1157 		mutex_spin_enter(&sc->sc_intr_lock);
1158 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1159 		if (cp->un.ord) {
1160 			reg &= ~SV_SRS_SPACE_ONOFF;
1161 		} else {
1162 			reg |= SV_SRS_SPACE_ONOFF;
1163 		}
1164 
1165 		sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
1166 		mutex_spin_exit(&sc->sc_intr_lock);
1167 		return 0;
1168 	}
1169 
1170 	return EINVAL;
1171 }
1172 
1173 static int
1174 sv_mixer_get_port(void *addr, mixer_ctrl_t *cp)
1175 {
1176 	struct sv_softc *sc;
1177 	int val, error;
1178 	uint8_t reg;
1179 
1180 	sc = addr;
1181 	error = 0;
1182 
1183 	mutex_spin_enter(&sc->sc_intr_lock);
1184 
1185 	if (cp->dev >= SV_FIRST_MIXER &&
1186 	    cp->dev <= SV_LAST_MIXER) {
1187 		int off = cp->dev - SV_FIRST_MIXER;
1188 		int mute = (off % 2);
1189 		int idx = off / 2;
1190 
1191 		off = cp->dev - SV_FIRST_MIXER;
1192 		mute = (off % 2);
1193 		idx = off / 2;
1194 		if (mute) {
1195 			if (cp->type != AUDIO_MIXER_ENUM)
1196 				error = EINVAL;
1197 			else {
1198 				reg = sv_read_indirect(sc, ports[idx].l_port);
1199 				cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
1200 			}
1201 		} else {
1202 			if (cp->type != AUDIO_MIXER_VALUE ||
1203 			    (cp->un.value.num_channels != 1 &&
1204 			    cp->un.value.num_channels != 2) ||
1205 			   ((ports[idx].r_port == 0 &&
1206 			     cp->un.value.num_channels != 1) ||
1207 			    (ports[idx].r_port != 0 &&
1208 			     cp->un.value.num_channels != 2)))
1209 				error = EINVAL;
1210 			else {
1211 				reg = sv_read_indirect(sc, ports[idx].l_port);
1212 				reg &= ports[idx].mask;
1213 
1214 				val = AUDIO_MAX_GAIN -
1215 				    ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1216 
1217 				if (ports[idx].r_port != 0) {
1218 					cp->un.value.level
1219 					    [AUDIO_MIXER_LEVEL_LEFT] = val;
1220 
1221 					reg = sv_read_indirect(sc,
1222 					    ports[idx].r_port);
1223 					reg &= ports[idx].mask;
1224 
1225 					val = AUDIO_MAX_GAIN -
1226 					    ((reg * AUDIO_MAX_GAIN)
1227 					    / ports[idx].mask);
1228 					cp->un.value.level
1229 					    [AUDIO_MIXER_LEVEL_RIGHT] = val;
1230 				} else
1231 					cp->un.value.level
1232 					    [AUDIO_MIXER_LEVEL_MONO] = val;
1233 			}
1234 		}
1235 
1236 		return error;
1237 	}
1238 
1239 	switch (cp->dev) {
1240 	case SV_RECORD_SOURCE:
1241 		if (cp->type != AUDIO_MIXER_ENUM) {
1242 			error = EINVAL;
1243 			break;
1244 		}
1245 
1246 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1247 		cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
1248 
1249 		break;
1250 
1251 	case SV_RECORD_GAIN:
1252 		if (cp->type != AUDIO_MIXER_VALUE) {
1253 			error = EINVAL;
1254 			break;
1255 		}
1256 		if (cp->un.value.num_channels != 1) {
1257 			error = EINVAL;
1258 			break;
1259 		}
1260 
1261 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
1262 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1263 			(((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
1264 
1265 		break;
1266 
1267 	case SV_MIC_BOOST:
1268 		if (cp->type != AUDIO_MIXER_ENUM) {
1269 			error = EINVAL;
1270 			break;
1271 		}
1272 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1273 		cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
1274 		break;
1275 
1276 	case SV_SRS_MODE:
1277 		if (cp->type != AUDIO_MIXER_ENUM) {
1278 			error = EINVAL;
1279 			break;
1280 		}
1281 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1282 		cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
1283 		break;
1284 	default:
1285 		error = EINVAL;
1286 		break;
1287 	}
1288 
1289 	mutex_spin_exit(&sc->sc_intr_lock);
1290 	return error;
1291 }
1292 
1293 static void
1294 sv_init_mixer(struct sv_softc *sc)
1295 {
1296 	mixer_ctrl_t cp;
1297 	int i;
1298 
1299 	cp.type = AUDIO_MIXER_ENUM;
1300 	cp.dev = SV_SRS_MODE;
1301 	cp.un.ord = 0;
1302 
1303 	sv_mixer_set_port(sc, &cp);
1304 
1305 	for (i = 0; i < ARRAY_SIZE(ports); i++) {
1306 		if (!strcmp(ports[i].audio, AudioNdac)) {
1307 			cp.type = AUDIO_MIXER_ENUM;
1308 			cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
1309 			cp.un.ord = 0;
1310 			sv_mixer_set_port(sc, &cp);
1311 			break;
1312 		}
1313 	}
1314 }
1315 
1316 static void *
1317 sv_malloc(void *addr, int direction, size_t size)
1318 {
1319 	struct sv_softc *sc;
1320 	struct sv_dma *p;
1321 	int error;
1322 
1323 	sc = addr;
1324 	p = kmem_alloc(sizeof(*p), KM_SLEEP);
1325 	error = sv_allocmem(sc, size, 16, direction, p);
1326 	if (error) {
1327 		kmem_free(p, sizeof(*p));
1328 		return 0;
1329 	}
1330 	p->next = sc->sc_dmas;
1331 	sc->sc_dmas = p;
1332 	return KERNADDR(p);
1333 }
1334 
1335 static void
1336 sv_free(void *addr, void *ptr, size_t size)
1337 {
1338 	struct sv_softc *sc;
1339 	struct sv_dma **pp, *p;
1340 
1341 	sc = addr;
1342 	for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1343 		if (KERNADDR(p) == ptr) {
1344 			sv_freemem(sc, p);
1345 			*pp = p->next;
1346 			kmem_free(p, sizeof(*p));
1347 			return;
1348 		}
1349 	}
1350 }
1351 
1352 static int
1353 sv_get_props(void *addr)
1354 {
1355 
1356 	return AUDIO_PROP_PLAYBACK | AUDIO_PROP_CAPTURE |
1357 	    AUDIO_PROP_FULLDUPLEX;
1358 }
1359 
1360 static void
1361 sv_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
1362 {
1363 	struct sv_softc *sc;
1364 
1365 	sc = addr;
1366 	*intr = &sc->sc_intr_lock;
1367 	*thread = &sc->sc_lock;
1368 }
1369