1 /* $NetBSD: sv.c,v 1.31 2005/12/11 12:22:50 christos Exp $ */ 2 /* $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */ 3 4 /* 5 * Copyright (c) 1999 The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Charles M. Hannum. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * Copyright (c) 1998 Constantine Paul Sapuntzakis 42 * All rights reserved 43 * 44 * Author: Constantine Paul Sapuntzakis (csapuntz@cvs.openbsd.org) 45 * 46 * Redistribution and use in source and binary forms, with or without 47 * modification, are permitted provided that the following conditions 48 * are met: 49 * 1. Redistributions of source code must retain the above copyright 50 * notice, this list of conditions and the following disclaimer. 51 * 2. Redistributions in binary form must reproduce the above copyright 52 * notice, this list of conditions and the following disclaimer in the 53 * documentation and/or other materials provided with the distribution. 54 * 3. The author's name or those of the contributors may be used to 55 * endorse or promote products derived from this software without 56 * specific prior written permission. 57 * 58 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS 59 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 60 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 61 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 68 * POSSIBILITY OF SUCH DAMAGE. 69 */ 70 71 /* 72 * S3 SonicVibes driver 73 * Heavily based on the eap driver by Lennart Augustsson 74 */ 75 76 #include <sys/cdefs.h> 77 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.31 2005/12/11 12:22:50 christos Exp $"); 78 79 #include <sys/param.h> 80 #include <sys/systm.h> 81 #include <sys/kernel.h> 82 #include <sys/malloc.h> 83 #include <sys/device.h> 84 85 #include <dev/pci/pcireg.h> 86 #include <dev/pci/pcivar.h> 87 #include <dev/pci/pcidevs.h> 88 89 #include <sys/audioio.h> 90 #include <dev/audio_if.h> 91 #include <dev/mulaw.h> 92 #include <dev/auconv.h> 93 94 #include <dev/ic/i8237reg.h> 95 #include <dev/pci/svreg.h> 96 #include <dev/pci/svvar.h> 97 98 #include <machine/bus.h> 99 100 /* XXX 101 * The SonicVibes DMA is broken and only works on 24-bit addresses. 102 * As long as bus_dmamem_alloc_range() is missing we use the ISA 103 * DMA tag on i386. 104 */ 105 #if defined(i386) 106 #include "isa.h" 107 #if NISA > 0 108 #include <dev/isa/isavar.h> 109 #endif 110 #endif 111 112 #ifdef AUDIO_DEBUG 113 #define DPRINTF(x) if (svdebug) printf x 114 #define DPRINTFN(n,x) if (svdebug>(n)) printf x 115 int svdebug = 0; 116 #else 117 #define DPRINTF(x) 118 #define DPRINTFN(n,x) 119 #endif 120 121 static int sv_match(struct device *, struct cfdata *, void *); 122 static void sv_attach(struct device *, struct device *, void *); 123 static int sv_intr(void *); 124 125 struct sv_dma { 126 bus_dmamap_t map; 127 caddr_t addr; 128 bus_dma_segment_t segs[1]; 129 int nsegs; 130 size_t size; 131 struct sv_dma *next; 132 }; 133 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr) 134 #define KERNADDR(p) ((void *)((p)->addr)) 135 136 CFATTACH_DECL(sv, sizeof(struct sv_softc), 137 sv_match, sv_attach, NULL, NULL); 138 139 static struct audio_device sv_device = { 140 "S3 SonicVibes", 141 "", 142 "sv" 143 }; 144 145 #define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0])) 146 147 static int sv_allocmem(struct sv_softc *, size_t, size_t, int, 148 struct sv_dma *); 149 static int sv_freemem(struct sv_softc *, struct sv_dma *); 150 151 static void sv_init_mixer(struct sv_softc *); 152 153 static int sv_open(void *, int); 154 static int sv_query_encoding(void *, struct audio_encoding *); 155 static int sv_set_params(void *, int, int, audio_params_t *, 156 audio_params_t *, stream_filter_list_t *, 157 stream_filter_list_t *); 158 static int sv_round_blocksize(void *, int, int, const audio_params_t *); 159 static int sv_trigger_output(void *, void *, void *, int, void (*)(void *), 160 void *, const audio_params_t *); 161 static int sv_trigger_input(void *, void *, void *, int, void (*)(void *), 162 void *, const audio_params_t *); 163 static int sv_halt_output(void *); 164 static int sv_halt_input(void *); 165 static int sv_getdev(void *, struct audio_device *); 166 static int sv_mixer_set_port(void *, mixer_ctrl_t *); 167 static int sv_mixer_get_port(void *, mixer_ctrl_t *); 168 static int sv_query_devinfo(void *, mixer_devinfo_t *); 169 static void * sv_malloc(void *, int, size_t, struct malloc_type *, int); 170 static void sv_free(void *, void *, struct malloc_type *); 171 static size_t sv_round_buffersize(void *, int, size_t); 172 static paddr_t sv_mappage(void *, void *, off_t, int); 173 static int sv_get_props(void *); 174 175 #ifdef AUDIO_DEBUG 176 void sv_dumpregs(struct sv_softc *sc); 177 #endif 178 179 static const struct audio_hw_if sv_hw_if = { 180 sv_open, 181 NULL, /* close */ 182 NULL, 183 sv_query_encoding, 184 sv_set_params, 185 sv_round_blocksize, 186 NULL, 187 NULL, 188 NULL, 189 NULL, 190 NULL, 191 sv_halt_output, 192 sv_halt_input, 193 NULL, 194 sv_getdev, 195 NULL, 196 sv_mixer_set_port, 197 sv_mixer_get_port, 198 sv_query_devinfo, 199 sv_malloc, 200 sv_free, 201 sv_round_buffersize, 202 sv_mappage, 203 sv_get_props, 204 sv_trigger_output, 205 sv_trigger_input, 206 NULL, 207 }; 208 209 #define SV_NFORMATS 4 210 static const struct audio_format sv_formats[SV_NFORMATS] = { 211 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16, 212 2, AUFMT_STEREO, 0, {2000, 48000}}, 213 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16, 214 1, AUFMT_MONAURAL, 0, {2000, 48000}}, 215 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8, 216 2, AUFMT_STEREO, 0, {2000, 48000}}, 217 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8, 218 1, AUFMT_MONAURAL, 0, {2000, 48000}}, 219 }; 220 221 222 static void 223 sv_write(struct sv_softc *sc, uint8_t reg, uint8_t val) 224 { 225 226 DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val)); 227 bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val); 228 } 229 230 static uint8_t 231 sv_read(struct sv_softc *sc, uint8_t reg) 232 { 233 uint8_t val; 234 235 val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg); 236 DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val)); 237 return val; 238 } 239 240 static uint8_t 241 sv_read_indirect(struct sv_softc *sc, uint8_t reg) 242 { 243 uint8_t val; 244 int s; 245 246 s = splaudio(); 247 sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK); 248 val = sv_read(sc, SV_CODEC_IDATA); 249 splx(s); 250 return val; 251 } 252 253 static void 254 sv_write_indirect(struct sv_softc *sc, uint8_t reg, uint8_t val) 255 { 256 uint8_t iaddr; 257 int s; 258 259 iaddr = reg & SV_IADDR_MASK; 260 s = splaudio(); 261 if (reg == SV_DMA_DATA_FORMAT) 262 iaddr |= SV_IADDR_MCE; 263 264 sv_write(sc, SV_CODEC_IADDR, iaddr); 265 sv_write(sc, SV_CODEC_IDATA, val); 266 splx(s); 267 } 268 269 static int 270 sv_match(struct device *parent, struct cfdata *match, void *aux) 271 { 272 struct pci_attach_args *pa; 273 274 pa = aux; 275 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 && 276 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES) 277 return 1; 278 279 return 0; 280 } 281 282 static pcireg_t pci_io_alloc_low, pci_io_alloc_high; 283 284 static int 285 pci_alloc_io(pci_chipset_tag_t pc, pcitag_t pt, int pcioffs, 286 bus_space_tag_t iot, bus_size_t size, bus_size_t align, 287 bus_size_t bound, int flags, bus_space_handle_t *ioh) 288 { 289 bus_addr_t addr; 290 int error; 291 292 error = bus_space_alloc(iot, pci_io_alloc_low, pci_io_alloc_high, 293 size, align, bound, flags, &addr, ioh); 294 if (error) 295 return error; 296 297 pci_conf_write(pc, pt, pcioffs, addr); 298 return 0; 299 } 300 301 /* 302 * Allocate IO addresses when all other configuration is done. 303 */ 304 static void 305 sv_defer(struct device *self) 306 { 307 struct sv_softc *sc; 308 pci_chipset_tag_t pc; 309 pcitag_t pt; 310 pcireg_t dmaio; 311 312 sc = (struct sv_softc *)self; 313 pc = sc->sc_pa.pa_pc; 314 pt = sc->sc_pa.pa_tag; 315 DPRINTF(("sv_defer: %p\n", sc)); 316 317 /* XXX 318 * Get a reasonable default for the I/O range. 319 * Assume the range around SB_PORTBASE is valid on this PCI bus. 320 */ 321 pci_io_alloc_low = pci_conf_read(pc, pt, SV_SB_PORTBASE_SLOT); 322 pci_io_alloc_high = pci_io_alloc_low + 0x1000; 323 324 if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF, 325 sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0, 326 0, &sc->sc_dmaa_ioh)) { 327 printf("sv_attach: cannot allocate DMA A range\n"); 328 return; 329 } 330 dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF); 331 DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio)); 332 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, 333 dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR); 334 335 if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF, 336 sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0, 337 0, &sc->sc_dmac_ioh)) { 338 printf("sv_attach: cannot allocate DMA C range\n"); 339 return; 340 } 341 dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF); 342 DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio)); 343 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 344 dmaio | SV_DMA_CHANNEL_ENABLE); 345 346 sc->sc_dmaset = 1; 347 } 348 349 static void 350 sv_attach(struct device *parent, struct device *self, void *aux) 351 { 352 struct sv_softc *sc; 353 struct pci_attach_args *pa; 354 pci_chipset_tag_t pc; 355 pcitag_t pt; 356 pci_intr_handle_t ih; 357 pcireg_t csr; 358 char const *intrstr; 359 uint8_t reg; 360 struct audio_attach_args arg; 361 362 sc = (struct sv_softc *)self; 363 pa = aux; 364 pc = pa->pa_pc; 365 pt = pa->pa_tag; 366 printf ("\n"); 367 368 /* Map I/O registers */ 369 if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT, 370 PCI_MAPREG_TYPE_IO, 0, 371 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) { 372 printf("%s: can't map enhanced i/o space\n", 373 sc->sc_dev.dv_xname); 374 return; 375 } 376 if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT, 377 PCI_MAPREG_TYPE_IO, 0, 378 &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) { 379 printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname); 380 return; 381 } 382 if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT, 383 PCI_MAPREG_TYPE_IO, 0, 384 &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) { 385 printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname); 386 return; 387 } 388 DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n", 389 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh)); 390 391 #if defined(alpha) 392 /* XXX Force allocation through the SGMAP. */ 393 sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA); 394 #elif defined(i386) && NISA > 0 395 /* XXX 396 * The SonicVibes DMA is broken and only works on 24-bit addresses. 397 * As long as bus_dmamem_alloc_range() is missing we use the ISA 398 * DMA tag on i386. 399 */ 400 sc->sc_dmatag = &isa_bus_dma_tag; 401 #else 402 sc->sc_dmatag = pa->pa_dmat; 403 #endif 404 405 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR); 406 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0); 407 408 /* Enable the device. */ 409 csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG); 410 pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG, 411 csr | PCI_COMMAND_MASTER_ENABLE); 412 413 sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0); 414 sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0); 415 416 /* initialize codec registers */ 417 reg = sv_read(sc, SV_CODEC_CONTROL); 418 reg |= SV_CTL_RESET; 419 sv_write(sc, SV_CODEC_CONTROL, reg); 420 delay(50); 421 422 reg = sv_read(sc, SV_CODEC_CONTROL); 423 reg &= ~SV_CTL_RESET; 424 reg |= SV_CTL_INTA | SV_CTL_ENHANCED; 425 426 /* This write clears the reset */ 427 sv_write(sc, SV_CODEC_CONTROL, reg); 428 delay(50); 429 430 /* This write actually shoves the new values in */ 431 sv_write(sc, SV_CODEC_CONTROL, reg); 432 433 DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL))); 434 435 /* Enable DMA interrupts */ 436 reg = sv_read(sc, SV_CODEC_INTMASK); 437 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC); 438 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI; 439 sv_write(sc, SV_CODEC_INTMASK, reg); 440 441 sv_read(sc, SV_CODEC_STATUS); 442 443 /* Map and establish the interrupt. */ 444 if (pci_intr_map(pa, &ih)) { 445 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname); 446 return; 447 } 448 intrstr = pci_intr_string(pc, ih); 449 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc); 450 if (sc->sc_ih == NULL) { 451 printf("%s: couldn't establish interrupt", 452 sc->sc_dev.dv_xname); 453 if (intrstr != NULL) 454 printf(" at %s", intrstr); 455 printf("\n"); 456 return; 457 } 458 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); 459 printf("%s: rev %d", sc->sc_dev.dv_xname, 460 sv_read_indirect(sc, SV_REVISION_LEVEL)); 461 if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1) 462 printf(", reverb SRAM present"); 463 if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0)) 464 printf(", wavetable ROM present"); 465 printf("\n"); 466 467 sv_init_mixer(sc); 468 469 audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev); 470 471 arg.type = AUDIODEV_TYPE_OPL; 472 arg.hwif = 0; 473 arg.hdl = 0; 474 (void)config_found(&sc->sc_dev, &arg, audioprint); 475 476 sc->sc_pa = *pa; /* for deferred setup */ 477 config_defer(self, sv_defer); 478 } 479 480 #ifdef AUDIO_DEBUG 481 void 482 sv_dumpregs(struct sv_softc *sc) 483 { 484 int idx; 485 486 #if 0 487 for (idx = 0; idx < 0x50; idx += 4) 488 printf ("%02x = %x\n", idx, 489 pci_conf_read(pa->pa_pc, pa->pa_tag, idx)); 490 #endif 491 492 for (idx = 0; idx < 6; idx++) 493 printf ("REG %02x = %02x\n", idx, sv_read(sc, idx)); 494 495 for (idx = 0; idx < 0x32; idx++) 496 printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx)); 497 498 for (idx = 0; idx < 0x10; idx++) 499 printf ("DMA %02x = %02x\n", idx, 500 bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx)); 501 } 502 #endif 503 504 static int 505 sv_intr(void *p) 506 { 507 struct sv_softc *sc; 508 uint8_t intr; 509 510 sc = p; 511 intr = sv_read(sc, SV_CODEC_STATUS); 512 DPRINTFN(5,("sv_intr: intr=0x%x\n", intr)); 513 514 if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC))) 515 return 0; 516 517 if (intr & SV_INTSTATUS_DMAA) { 518 if (sc->sc_pintr) 519 sc->sc_pintr(sc->sc_parg); 520 } 521 522 if (intr & SV_INTSTATUS_DMAC) { 523 if (sc->sc_rintr) 524 sc->sc_rintr(sc->sc_rarg); 525 } 526 527 return 1; 528 } 529 530 static int 531 sv_allocmem(struct sv_softc *sc, size_t size, size_t align, 532 int direction, struct sv_dma *p) 533 { 534 int error; 535 536 p->size = size; 537 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0, 538 p->segs, ARRAY_SIZE(p->segs), &p->nsegs, BUS_DMA_NOWAIT); 539 if (error) 540 return error; 541 542 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size, 543 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT); 544 if (error) 545 goto free; 546 547 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size, 548 0, BUS_DMA_NOWAIT, &p->map); 549 if (error) 550 goto unmap; 551 552 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL, 553 BUS_DMA_NOWAIT | (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE); 554 if (error) 555 goto destroy; 556 DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n", 557 (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p))); 558 return 0; 559 560 destroy: 561 bus_dmamap_destroy(sc->sc_dmatag, p->map); 562 unmap: 563 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); 564 free: 565 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); 566 return error; 567 } 568 569 static int 570 sv_freemem(struct sv_softc *sc, struct sv_dma *p) 571 { 572 573 bus_dmamap_unload(sc->sc_dmatag, p->map); 574 bus_dmamap_destroy(sc->sc_dmatag, p->map); 575 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); 576 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); 577 return 0; 578 } 579 580 static int 581 sv_open(void *addr, int flags) 582 { 583 struct sv_softc *sc; 584 585 sc = addr; 586 DPRINTF(("sv_open\n")); 587 if (!sc->sc_dmaset) 588 return ENXIO; 589 590 return 0; 591 } 592 593 static int 594 sv_query_encoding(void *addr, struct audio_encoding *fp) 595 { 596 597 switch (fp->index) { 598 case 0: 599 strcpy(fp->name, AudioEulinear); 600 fp->encoding = AUDIO_ENCODING_ULINEAR; 601 fp->precision = 8; 602 fp->flags = 0; 603 return 0; 604 case 1: 605 strcpy(fp->name, AudioEmulaw); 606 fp->encoding = AUDIO_ENCODING_ULAW; 607 fp->precision = 8; 608 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 609 return 0; 610 case 2: 611 strcpy(fp->name, AudioEalaw); 612 fp->encoding = AUDIO_ENCODING_ALAW; 613 fp->precision = 8; 614 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 615 return 0; 616 case 3: 617 strcpy(fp->name, AudioEslinear); 618 fp->encoding = AUDIO_ENCODING_SLINEAR; 619 fp->precision = 8; 620 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 621 return 0; 622 case 4: 623 strcpy(fp->name, AudioEslinear_le); 624 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 625 fp->precision = 16; 626 fp->flags = 0; 627 return 0; 628 case 5: 629 strcpy(fp->name, AudioEulinear_le); 630 fp->encoding = AUDIO_ENCODING_ULINEAR_LE; 631 fp->precision = 16; 632 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 633 return 0; 634 case 6: 635 strcpy(fp->name, AudioEslinear_be); 636 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 637 fp->precision = 16; 638 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 639 return 0; 640 case 7: 641 strcpy(fp->name, AudioEulinear_be); 642 fp->encoding = AUDIO_ENCODING_ULINEAR_BE; 643 fp->precision = 16; 644 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 645 return 0; 646 default: 647 return EINVAL; 648 } 649 } 650 651 static int 652 sv_set_params(void *addr, int setmode, int usemode, audio_params_t *play, 653 audio_params_t *rec, stream_filter_list_t *pfil, stream_filter_list_t *rfil) 654 { 655 struct sv_softc *sc; 656 audio_params_t *p; 657 uint32_t val; 658 659 sc = addr; 660 p = NULL; 661 /* 662 * This device only has one clock, so make the sample rates match. 663 */ 664 if (play->sample_rate != rec->sample_rate && 665 usemode == (AUMODE_PLAY | AUMODE_RECORD)) { 666 if (setmode == AUMODE_PLAY) { 667 rec->sample_rate = play->sample_rate; 668 setmode |= AUMODE_RECORD; 669 } else if (setmode == AUMODE_RECORD) { 670 play->sample_rate = rec->sample_rate; 671 setmode |= AUMODE_PLAY; 672 } else 673 return EINVAL; 674 } 675 676 if (setmode & AUMODE_RECORD) { 677 p = rec; 678 if (auconv_set_converter(sv_formats, SV_NFORMATS, 679 AUMODE_RECORD, rec, FALSE, rfil) < 0) 680 return EINVAL; 681 } 682 if (setmode & AUMODE_PLAY) { 683 p = play; 684 if (auconv_set_converter(sv_formats, SV_NFORMATS, 685 AUMODE_PLAY, play, FALSE, pfil) < 0) 686 return EINVAL; 687 } 688 689 if (p == NULL) 690 return 0; 691 692 val = p->sample_rate * 65536 / 48000; 693 /* 694 * If the sample rate is exactly 48KHz, the fraction would overflow the 695 * register, so we have to bias it. This causes a little clock drift. 696 * The drift is below normal crystal tolerance (.0001%), so although 697 * this seems a little silly, we can pretty much ignore it. 698 * (I tested the output speed with values of 1-20, just to be sure this 699 * register isn't *supposed* to have a bias. It isn't.) 700 * - mycroft 701 */ 702 if (val > 65535) 703 val = 65535; 704 705 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff); 706 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8); 707 708 #define F_REF 24576000 709 710 #define ABS(x) (((x) < 0) ? (-x) : (x)) 711 712 if (setmode & AUMODE_RECORD) { 713 /* The ADC reference frequency (f_out) is 512 * sample rate */ 714 715 /* f_out is dervied from the 24.576MHz crystal by three values: 716 M & N & R. The equation is as follows: 717 718 f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a)) 719 720 with the constraint that: 721 722 80 MHz < (m + 2) / (n + 2) * f_ref <= 150MHz 723 and n, m >= 1 724 */ 725 726 int goal_f_out; 727 int a, n, m, best_n, best_m, best_error; 728 int pll_sample; 729 int error; 730 731 goal_f_out = 512 * rec->sample_rate; 732 best_n = 0; 733 best_m = 0; 734 best_error = 10000000; 735 for (a = 0; a < 8; a++) { 736 if ((goal_f_out * (1 << a)) >= 80000000) 737 break; 738 } 739 740 /* a != 8 because sample_rate >= 2000 */ 741 742 for (n = 33; n > 2; n--) { 743 m = (goal_f_out * n * (1 << a)) / F_REF; 744 if ((m > 257) || (m < 3)) 745 continue; 746 747 pll_sample = (m * F_REF) / (n * (1 << a)); 748 pll_sample /= 512; 749 750 /* Threshold might be good here */ 751 error = pll_sample - rec->sample_rate; 752 error = ABS(error); 753 754 if (error < best_error) { 755 best_error = error; 756 best_n = n; 757 best_m = m; 758 if (error == 0) break; 759 } 760 } 761 762 best_n -= 2; 763 best_m -= 2; 764 765 sv_write_indirect(sc, SV_ADC_PLL_M, best_m); 766 sv_write_indirect(sc, SV_ADC_PLL_N, 767 best_n | (a << SV_PLL_R_SHIFT)); 768 } 769 770 return 0; 771 } 772 773 static int 774 sv_round_blocksize(void *addr, int blk, int mode, const audio_params_t *param) 775 { 776 777 return blk & -32; /* keep good alignment */ 778 } 779 780 static int 781 sv_trigger_output(void *addr, void *start, void *end, int blksize, 782 void (*intr)(void *), void *arg, const audio_params_t *param) 783 { 784 struct sv_softc *sc; 785 struct sv_dma *p; 786 uint8_t mode; 787 int dma_count; 788 789 DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d " 790 "intr=%p(%p)\n", addr, start, end, blksize, intr, arg)); 791 sc = addr; 792 sc->sc_pintr = intr; 793 sc->sc_parg = arg; 794 795 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT); 796 mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO); 797 if (param->precision == 16) 798 mode |= SV_DMAA_FORMAT16; 799 if (param->channels == 2) 800 mode |= SV_DMAA_STEREO; 801 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode); 802 803 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next) 804 continue; 805 if (p == NULL) { 806 printf("sv_trigger_output: bad addr %p\n", start); 807 return EINVAL; 808 } 809 810 dma_count = ((char *)end - (char *)start) - 1; 811 DPRINTF(("sv_trigger_output: DMA start loop input addr=%x cc=%d\n", 812 (int)DMAADDR(p), dma_count)); 813 814 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0, 815 DMAADDR(p)); 816 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0, 817 dma_count); 818 bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE, 819 DMA37MD_READ | DMA37MD_LOOP); 820 821 DPRINTF(("sv_trigger_output: current addr=%x\n", 822 bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0))); 823 824 dma_count = blksize - 1; 825 826 sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8); 827 sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF); 828 829 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 830 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE); 831 832 return 0; 833 } 834 835 static int 836 sv_trigger_input(void *addr, void *start, void *end, int blksize, 837 void (*intr)(void *), void *arg, const audio_params_t *param) 838 { 839 struct sv_softc *sc; 840 struct sv_dma *p; 841 uint8_t mode; 842 int dma_count; 843 844 DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d " 845 "intr=%p(%p)\n", addr, start, end, blksize, intr, arg)); 846 sc = addr; 847 sc->sc_rintr = intr; 848 sc->sc_rarg = arg; 849 850 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT); 851 mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO); 852 if (param->precision == 16) 853 mode |= SV_DMAC_FORMAT16; 854 if (param->channels == 2) 855 mode |= SV_DMAC_STEREO; 856 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode); 857 858 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next) 859 continue; 860 if (!p) { 861 printf("sv_trigger_input: bad addr %p\n", start); 862 return EINVAL; 863 } 864 865 dma_count = (((char *)end - (char *)start) >> 1) - 1; 866 DPRINTF(("sv_trigger_input: DMA start loop input addr=%x cc=%d\n", 867 (int)DMAADDR(p), dma_count)); 868 869 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0, 870 DMAADDR(p)); 871 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0, 872 dma_count); 873 bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE, 874 DMA37MD_WRITE | DMA37MD_LOOP); 875 876 DPRINTF(("sv_trigger_input: current addr=%x\n", 877 bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0))); 878 879 dma_count = (blksize >> 1) - 1; 880 881 sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8); 882 sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF); 883 884 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 885 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE); 886 887 return 0; 888 } 889 890 static int 891 sv_halt_output(void *addr) 892 { 893 struct sv_softc *sc; 894 uint8_t mode; 895 896 DPRINTF(("sv: sv_halt_output\n")); 897 sc = addr; 898 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 899 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE); 900 sc->sc_pintr = 0; 901 902 return 0; 903 } 904 905 static int 906 sv_halt_input(void *addr) 907 { 908 struct sv_softc *sc; 909 uint8_t mode; 910 911 DPRINTF(("sv: sv_halt_input\n")); 912 sc = addr; 913 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 914 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE); 915 sc->sc_rintr = 0; 916 917 return 0; 918 } 919 920 static int 921 sv_getdev(void *addr, struct audio_device *retp) 922 { 923 924 *retp = sv_device; 925 return 0; 926 } 927 928 929 /* 930 * Mixer related code is here 931 * 932 */ 933 934 #define SV_INPUT_CLASS 0 935 #define SV_OUTPUT_CLASS 1 936 #define SV_RECORD_CLASS 2 937 938 #define SV_LAST_CLASS 2 939 940 static const char *mixer_classes[] = 941 { AudioCinputs, AudioCoutputs, AudioCrecord }; 942 943 static const struct { 944 uint8_t l_port; 945 uint8_t r_port; 946 uint8_t mask; 947 uint8_t class; 948 const char *audio; 949 } ports[] = { 950 { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK, 951 SV_INPUT_CLASS, "aux1" }, 952 { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK, 953 SV_INPUT_CLASS, AudioNcd }, 954 { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK, 955 SV_INPUT_CLASS, AudioNline }, 956 { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone }, 957 { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL, 958 SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth }, 959 { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK, 960 SV_INPUT_CLASS, "aux2" }, 961 { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK, 962 SV_INPUT_CLASS, AudioNdac }, 963 { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL, 964 SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster } 965 }; 966 967 968 static const struct { 969 int idx; 970 const char *name; 971 } record_sources[] = { 972 { SV_REC_CD, AudioNcd }, 973 { SV_REC_DAC, AudioNdac }, 974 { SV_REC_AUX2, "aux2" }, 975 { SV_REC_LINE, AudioNline }, 976 { SV_REC_AUX1, "aux1" }, 977 { SV_REC_MIC, AudioNmicrophone }, 978 { SV_REC_MIXER, AudioNmixerout } 979 }; 980 981 982 #define SV_DEVICES_PER_PORT 2 983 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1) 984 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS) 985 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1) 986 #define SV_MIC_BOOST (SV_LAST_MIXER + 2) 987 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3) 988 #define SV_SRS_MODE (SV_LAST_MIXER + 4) 989 990 static int 991 sv_query_devinfo(void *addr, mixer_devinfo_t *dip) 992 { 993 int i; 994 995 /* It's a class */ 996 if (dip->index <= SV_LAST_CLASS) { 997 dip->type = AUDIO_MIXER_CLASS; 998 dip->mixer_class = dip->index; 999 dip->next = dip->prev = AUDIO_MIXER_LAST; 1000 strcpy(dip->label.name, mixer_classes[dip->index]); 1001 return 0; 1002 } 1003 1004 if (dip->index >= SV_FIRST_MIXER && 1005 dip->index <= SV_LAST_MIXER) { 1006 int off, mute ,idx; 1007 1008 off = dip->index - SV_FIRST_MIXER; 1009 mute = (off % SV_DEVICES_PER_PORT); 1010 idx = off / SV_DEVICES_PER_PORT; 1011 dip->mixer_class = ports[idx].class; 1012 strcpy(dip->label.name, ports[idx].audio); 1013 1014 if (!mute) { 1015 dip->type = AUDIO_MIXER_VALUE; 1016 dip->prev = AUDIO_MIXER_LAST; 1017 dip->next = dip->index + 1; 1018 1019 if (ports[idx].r_port != 0) 1020 dip->un.v.num_channels = 2; 1021 else 1022 dip->un.v.num_channels = 1; 1023 1024 strcpy(dip->un.v.units.name, AudioNvolume); 1025 } else { 1026 dip->type = AUDIO_MIXER_ENUM; 1027 dip->prev = dip->index - 1; 1028 dip->next = AUDIO_MIXER_LAST; 1029 1030 strcpy(dip->label.name, AudioNmute); 1031 dip->un.e.num_mem = 2; 1032 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1033 dip->un.e.member[0].ord = 0; 1034 strcpy(dip->un.e.member[1].label.name, AudioNon); 1035 dip->un.e.member[1].ord = 1; 1036 } 1037 1038 return 0; 1039 } 1040 1041 switch (dip->index) { 1042 case SV_RECORD_SOURCE: 1043 dip->mixer_class = SV_RECORD_CLASS; 1044 dip->prev = AUDIO_MIXER_LAST; 1045 dip->next = SV_RECORD_GAIN; 1046 strcpy(dip->label.name, AudioNsource); 1047 dip->type = AUDIO_MIXER_ENUM; 1048 1049 dip->un.e.num_mem = ARRAY_SIZE(record_sources); 1050 for (i = 0; i < ARRAY_SIZE(record_sources); i++) { 1051 strcpy(dip->un.e.member[i].label.name, 1052 record_sources[i].name); 1053 dip->un.e.member[i].ord = record_sources[i].idx; 1054 } 1055 return 0; 1056 1057 case SV_RECORD_GAIN: 1058 dip->mixer_class = SV_RECORD_CLASS; 1059 dip->prev = SV_RECORD_SOURCE; 1060 dip->next = AUDIO_MIXER_LAST; 1061 strcpy(dip->label.name, "gain"); 1062 dip->type = AUDIO_MIXER_VALUE; 1063 dip->un.v.num_channels = 1; 1064 strcpy(dip->un.v.units.name, AudioNvolume); 1065 return 0; 1066 1067 case SV_MIC_BOOST: 1068 dip->mixer_class = SV_RECORD_CLASS; 1069 dip->prev = AUDIO_MIXER_LAST; 1070 dip->next = AUDIO_MIXER_LAST; 1071 strcpy(dip->label.name, "micboost"); 1072 goto on_off; 1073 1074 case SV_SRS_MODE: 1075 dip->mixer_class = SV_OUTPUT_CLASS; 1076 dip->prev = dip->next = AUDIO_MIXER_LAST; 1077 strcpy(dip->label.name, AudioNspatial); 1078 1079 on_off: 1080 dip->type = AUDIO_MIXER_ENUM; 1081 dip->un.e.num_mem = 2; 1082 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1083 dip->un.e.member[0].ord = 0; 1084 strcpy(dip->un.e.member[1].label.name, AudioNon); 1085 dip->un.e.member[1].ord = 1; 1086 return 0; 1087 } 1088 1089 return ENXIO; 1090 } 1091 1092 static int 1093 sv_mixer_set_port(void *addr, mixer_ctrl_t *cp) 1094 { 1095 struct sv_softc *sc; 1096 uint8_t reg; 1097 int idx; 1098 1099 sc = addr; 1100 if (cp->dev >= SV_FIRST_MIXER && 1101 cp->dev <= SV_LAST_MIXER) { 1102 int off, mute; 1103 1104 off = cp->dev - SV_FIRST_MIXER; 1105 mute = (off % SV_DEVICES_PER_PORT); 1106 idx = off / SV_DEVICES_PER_PORT; 1107 1108 if (mute) { 1109 if (cp->type != AUDIO_MIXER_ENUM) 1110 return EINVAL; 1111 1112 reg = sv_read_indirect(sc, ports[idx].l_port); 1113 if (cp->un.ord) 1114 reg |= SV_MUTE_BIT; 1115 else 1116 reg &= ~SV_MUTE_BIT; 1117 sv_write_indirect(sc, ports[idx].l_port, reg); 1118 1119 if (ports[idx].r_port) { 1120 reg = sv_read_indirect(sc, ports[idx].r_port); 1121 if (cp->un.ord) 1122 reg |= SV_MUTE_BIT; 1123 else 1124 reg &= ~SV_MUTE_BIT; 1125 sv_write_indirect(sc, ports[idx].r_port, reg); 1126 } 1127 } else { 1128 int lval, rval; 1129 1130 if (cp->type != AUDIO_MIXER_VALUE) 1131 return EINVAL; 1132 1133 if (cp->un.value.num_channels != 1 && 1134 cp->un.value.num_channels != 2) 1135 return (EINVAL); 1136 1137 if (ports[idx].r_port == 0) { 1138 if (cp->un.value.num_channels != 1) 1139 return (EINVAL); 1140 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; 1141 rval = 0; /* shut up GCC */ 1142 } else { 1143 if (cp->un.value.num_channels != 2) 1144 return (EINVAL); 1145 1146 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]; 1147 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]; 1148 } 1149 1150 1151 reg = sv_read_indirect(sc, ports[idx].l_port); 1152 reg &= ~(ports[idx].mask); 1153 lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask / 1154 AUDIO_MAX_GAIN; 1155 reg |= lval; 1156 sv_write_indirect(sc, ports[idx].l_port, reg); 1157 1158 if (ports[idx].r_port != 0) { 1159 reg = sv_read_indirect(sc, ports[idx].r_port); 1160 reg &= ~(ports[idx].mask); 1161 1162 rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask / 1163 AUDIO_MAX_GAIN; 1164 reg |= rval; 1165 1166 sv_write_indirect(sc, ports[idx].r_port, reg); 1167 } 1168 1169 sv_read_indirect(sc, ports[idx].l_port); 1170 } 1171 1172 return 0; 1173 } 1174 1175 1176 switch (cp->dev) { 1177 case SV_RECORD_SOURCE: 1178 if (cp->type != AUDIO_MIXER_ENUM) 1179 return EINVAL; 1180 1181 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) { 1182 if (record_sources[idx].idx == cp->un.ord) 1183 goto found; 1184 } 1185 1186 return EINVAL; 1187 1188 found: 1189 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1190 reg &= ~SV_REC_SOURCE_MASK; 1191 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK); 1192 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1193 1194 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL); 1195 reg &= ~SV_REC_SOURCE_MASK; 1196 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK); 1197 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg); 1198 return 0; 1199 1200 case SV_RECORD_GAIN: 1201 { 1202 int val; 1203 1204 if (cp->type != AUDIO_MIXER_VALUE) 1205 return EINVAL; 1206 1207 if (cp->un.value.num_channels != 1) 1208 return EINVAL; 1209 1210 val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] 1211 * SV_REC_GAIN_MASK) / AUDIO_MAX_GAIN; 1212 1213 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1214 reg &= ~SV_REC_GAIN_MASK; 1215 reg |= val; 1216 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1217 1218 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL); 1219 reg &= ~SV_REC_GAIN_MASK; 1220 reg |= val; 1221 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg); 1222 } 1223 return (0); 1224 1225 case SV_MIC_BOOST: 1226 if (cp->type != AUDIO_MIXER_ENUM) 1227 return EINVAL; 1228 1229 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1230 if (cp->un.ord) { 1231 reg |= SV_MIC_BOOST_BIT; 1232 } else { 1233 reg &= ~SV_MIC_BOOST_BIT; 1234 } 1235 1236 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1237 return 0; 1238 1239 case SV_SRS_MODE: 1240 if (cp->type != AUDIO_MIXER_ENUM) 1241 return EINVAL; 1242 1243 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL); 1244 if (cp->un.ord) { 1245 reg &= ~SV_SRS_SPACE_ONOFF; 1246 } else { 1247 reg |= SV_SRS_SPACE_ONOFF; 1248 } 1249 1250 sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg); 1251 return 0; 1252 } 1253 1254 return EINVAL; 1255 } 1256 1257 static int 1258 sv_mixer_get_port(void *addr, mixer_ctrl_t *cp) 1259 { 1260 struct sv_softc *sc; 1261 int val; 1262 uint8_t reg; 1263 1264 sc = addr; 1265 if (cp->dev >= SV_FIRST_MIXER && 1266 cp->dev <= SV_LAST_MIXER) { 1267 int off = cp->dev - SV_FIRST_MIXER; 1268 int mute = (off % 2); 1269 int idx = off / 2; 1270 1271 off = cp->dev - SV_FIRST_MIXER; 1272 mute = (off % 2); 1273 idx = off / 2; 1274 if (mute) { 1275 if (cp->type != AUDIO_MIXER_ENUM) 1276 return EINVAL; 1277 1278 reg = sv_read_indirect(sc, ports[idx].l_port); 1279 cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0); 1280 } else { 1281 if (cp->type != AUDIO_MIXER_VALUE) 1282 return EINVAL; 1283 1284 if (cp->un.value.num_channels != 1 && 1285 cp->un.value.num_channels != 2) 1286 return EINVAL; 1287 1288 if ((ports[idx].r_port == 0 && 1289 cp->un.value.num_channels != 1) || 1290 (ports[idx].r_port != 0 && 1291 cp->un.value.num_channels != 2)) 1292 return EINVAL; 1293 1294 reg = sv_read_indirect(sc, ports[idx].l_port); 1295 reg &= ports[idx].mask; 1296 1297 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask); 1298 1299 if (ports[idx].r_port != 0) { 1300 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val; 1301 1302 reg = sv_read_indirect(sc, ports[idx].r_port); 1303 reg &= ports[idx].mask; 1304 1305 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) 1306 / ports[idx].mask); 1307 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val; 1308 } else 1309 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val; 1310 } 1311 1312 return 0; 1313 } 1314 1315 switch (cp->dev) { 1316 case SV_RECORD_SOURCE: 1317 if (cp->type != AUDIO_MIXER_ENUM) 1318 return EINVAL; 1319 1320 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1321 cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT); 1322 1323 return 0; 1324 1325 case SV_RECORD_GAIN: 1326 if (cp->type != AUDIO_MIXER_VALUE) 1327 return EINVAL; 1328 if (cp->un.value.num_channels != 1) 1329 return EINVAL; 1330 1331 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK; 1332 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1333 (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK; 1334 1335 return 0; 1336 1337 case SV_MIC_BOOST: 1338 if (cp->type != AUDIO_MIXER_ENUM) 1339 return EINVAL; 1340 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1341 cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0); 1342 return 0; 1343 1344 case SV_SRS_MODE: 1345 if (cp->type != AUDIO_MIXER_ENUM) 1346 return EINVAL; 1347 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL); 1348 cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1); 1349 return 0; 1350 } 1351 1352 return EINVAL; 1353 } 1354 1355 static void 1356 sv_init_mixer(struct sv_softc *sc) 1357 { 1358 mixer_ctrl_t cp; 1359 int i; 1360 1361 cp.type = AUDIO_MIXER_ENUM; 1362 cp.dev = SV_SRS_MODE; 1363 cp.un.ord = 0; 1364 1365 sv_mixer_set_port(sc, &cp); 1366 1367 for (i = 0; i < ARRAY_SIZE(ports); i++) { 1368 if (ports[i].audio == AudioNdac) { 1369 cp.type = AUDIO_MIXER_ENUM; 1370 cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1; 1371 cp.un.ord = 0; 1372 sv_mixer_set_port(sc, &cp); 1373 break; 1374 } 1375 } 1376 } 1377 1378 static void * 1379 sv_malloc(void *addr, int direction, size_t size, 1380 struct malloc_type *pool, int flags) 1381 { 1382 struct sv_softc *sc; 1383 struct sv_dma *p; 1384 int error; 1385 1386 sc = addr; 1387 p = malloc(sizeof(*p), pool, flags); 1388 if (p == NULL) 1389 return NULL; 1390 error = sv_allocmem(sc, size, 16, direction, p); 1391 if (error) { 1392 free(p, pool); 1393 return 0; 1394 } 1395 p->next = sc->sc_dmas; 1396 sc->sc_dmas = p; 1397 return KERNADDR(p); 1398 } 1399 1400 static void 1401 sv_free(void *addr, void *ptr, struct malloc_type *pool) 1402 { 1403 struct sv_softc *sc; 1404 struct sv_dma **pp, *p; 1405 1406 sc = addr; 1407 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) { 1408 if (KERNADDR(p) == ptr) { 1409 sv_freemem(sc, p); 1410 *pp = p->next; 1411 free(p, pool); 1412 return; 1413 } 1414 } 1415 } 1416 1417 static size_t 1418 sv_round_buffersize(void *addr, int direction, size_t size) 1419 { 1420 1421 return size; 1422 } 1423 1424 static paddr_t 1425 sv_mappage(void *addr, void *mem, off_t off, int prot) 1426 { 1427 struct sv_softc *sc; 1428 struct sv_dma *p; 1429 1430 sc = addr; 1431 if (off < 0) 1432 return -1; 1433 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next) 1434 continue; 1435 if (p == NULL) 1436 return -1; 1437 return bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs, 1438 off, prot, BUS_DMA_WAITOK); 1439 } 1440 1441 static int 1442 sv_get_props(void *addr) 1443 { 1444 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX; 1445 } 1446