xref: /netbsd-src/sys/dev/pci/sv.c (revision d710132b4b8ce7f7cccaaf660cb16aa16b4077a0)
1 /*      $NetBSD: sv.c,v 1.22 2003/05/03 18:11:37 wiz Exp $ */
2 /*      $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
3 
4 /*
5  * Copyright (c) 1999 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Charles M. Hannum.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *        This product includes software developed by the NetBSD
22  *        Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1998 Constantine Paul Sapuntzakis
42  * All rights reserved
43  *
44  * Author: Constantine Paul Sapuntzakis (csapuntz@cvs.openbsd.org)
45  *
46  * Redistribution and use in source and binary forms, with or without
47  * modification, are permitted provided that the following conditions
48  * are met:
49  * 1. Redistributions of source code must retain the above copyright
50  *    notice, this list of conditions and the following disclaimer.
51  * 2. Redistributions in binary form must reproduce the above copyright
52  *    notice, this list of conditions and the following disclaimer in the
53  *    documentation and/or other materials provided with the distribution.
54  * 3. The author's name or those of the contributors may be used to
55  *    endorse or promote products derived from this software without
56  *    specific prior written permission.
57  *
58  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
59  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
60  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
61  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
62  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
63  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
64  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
65  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
66  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
67  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
68  * POSSIBILITY OF SUCH DAMAGE.
69  */
70 
71 /*
72  * S3 SonicVibes driver
73  *   Heavily based on the eap driver by Lennart Augustsson
74  */
75 
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.22 2003/05/03 18:11:37 wiz Exp $");
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/malloc.h>
83 #include <sys/device.h>
84 
85 #include <dev/pci/pcireg.h>
86 #include <dev/pci/pcivar.h>
87 #include <dev/pci/pcidevs.h>
88 
89 #include <sys/audioio.h>
90 #include <dev/audio_if.h>
91 #include <dev/mulaw.h>
92 #include <dev/auconv.h>
93 
94 #include <dev/ic/i8237reg.h>
95 #include <dev/pci/svreg.h>
96 #include <dev/pci/svvar.h>
97 
98 #include <machine/bus.h>
99 
100 /* XXX
101  * The SonicVibes DMA is broken and only works on 24-bit addresses.
102  * As long as bus_dmamem_alloc_range() is missing we use the ISA
103  * DMA tag on i386.
104  */
105 #if defined(i386)
106 #include "isa.h"
107 #if NISA > 0
108 #include <dev/isa/isavar.h>
109 #endif
110 #endif
111 
112 #ifdef AUDIO_DEBUG
113 #define DPRINTF(x)	if (svdebug) printf x
114 #define DPRINTFN(n,x)	if (svdebug>(n)) printf x
115 int	svdebug = 0;
116 #else
117 #define DPRINTF(x)
118 #define DPRINTFN(n,x)
119 #endif
120 
121 int	sv_match __P((struct device *, struct cfdata *, void *));
122 void	sv_attach __P((struct device *, struct device *, void *));
123 int	sv_intr __P((void *));
124 
125 struct sv_dma {
126 	bus_dmamap_t map;
127 	caddr_t addr;
128 	bus_dma_segment_t segs[1];
129 	int nsegs;
130 	size_t size;
131 	struct sv_dma *next;
132 };
133 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
134 #define KERNADDR(p) ((void *)((p)->addr))
135 
136 CFATTACH_DECL(sv, sizeof(struct sv_softc),
137     sv_match, sv_attach, NULL, NULL);
138 
139 struct audio_device sv_device = {
140 	"S3 SonicVibes",
141 	"",
142 	"sv"
143 };
144 
145 #define ARRAY_SIZE(foo)  ((sizeof(foo)) / sizeof(foo[0]))
146 
147 int	sv_allocmem __P((struct sv_softc *, size_t, size_t, int, struct sv_dma *));
148 int	sv_freemem __P((struct sv_softc *, struct sv_dma *));
149 
150 int	sv_open __P((void *, int));
151 void	sv_close __P((void *));
152 int	sv_query_encoding __P((void *, struct audio_encoding *));
153 int	sv_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
154 int	sv_round_blocksize __P((void *, int));
155 int	sv_trigger_output __P((void *, void *, void *, int, void (*)(void *),
156 	    void *, struct audio_params *));
157 int	sv_trigger_input __P((void *, void *, void *, int, void (*)(void *),
158 	    void *, struct audio_params *));
159 int	sv_halt_output __P((void *));
160 int	sv_halt_input __P((void *));
161 int	sv_getdev __P((void *, struct audio_device *));
162 int	sv_mixer_set_port __P((void *, mixer_ctrl_t *));
163 int	sv_mixer_get_port __P((void *, mixer_ctrl_t *));
164 int	sv_query_devinfo __P((void *, mixer_devinfo_t *));
165 void   *sv_malloc __P((void *, int, size_t, struct malloc_type *, int));
166 void	sv_free __P((void *, void *, struct malloc_type *));
167 size_t	sv_round_buffersize __P((void *, int, size_t));
168 paddr_t	sv_mappage __P((void *, void *, off_t, int));
169 int	sv_get_props __P((void *));
170 
171 #ifdef AUDIO_DEBUG
172 void    sv_dumpregs __P((struct sv_softc *sc));
173 #endif
174 
175 struct audio_hw_if sv_hw_if = {
176 	sv_open,
177 	sv_close,
178 	NULL,
179 	sv_query_encoding,
180 	sv_set_params,
181 	sv_round_blocksize,
182 	NULL,
183 	NULL,
184 	NULL,
185 	NULL,
186 	NULL,
187 	sv_halt_output,
188 	sv_halt_input,
189 	NULL,
190 	sv_getdev,
191 	NULL,
192 	sv_mixer_set_port,
193 	sv_mixer_get_port,
194 	sv_query_devinfo,
195 	sv_malloc,
196 	sv_free,
197 	sv_round_buffersize,
198 	sv_mappage,
199 	sv_get_props,
200 	sv_trigger_output,
201 	sv_trigger_input,
202 	NULL,
203 };
204 
205 
206 static u_int8_t sv_read __P((struct sv_softc *, u_int8_t));
207 static u_int8_t sv_read_indirect __P((struct sv_softc *, u_int8_t));
208 static void sv_write __P((struct sv_softc *, u_int8_t, u_int8_t ));
209 static void sv_write_indirect __P((struct sv_softc *, u_int8_t, u_int8_t ));
210 static void sv_init_mixer __P((struct sv_softc *));
211 
212 static void sv_defer __P((struct device *self));
213 
214 static void
215 sv_write (sc, reg, val)
216 	struct sv_softc *sc;
217 	u_int8_t reg, val;
218 
219 {
220 	DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
221 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
222 }
223 
224 static u_int8_t
225 sv_read(sc, reg)
226 	struct sv_softc *sc;
227 	u_int8_t reg;
228 
229 {
230 	u_int8_t val;
231 
232 	val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
233 	DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
234 	return val;
235 }
236 
237 static u_int8_t
238 sv_read_indirect(sc, reg)
239 	struct sv_softc *sc;
240 	u_int8_t reg;
241 {
242 	u_int8_t val;
243 	int s = splaudio();
244 
245 	sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
246 	val = sv_read(sc, SV_CODEC_IDATA);
247 	splx(s);
248 	return (val);
249 }
250 
251 static void
252 sv_write_indirect(sc, reg, val)
253 	struct sv_softc *sc;
254 	u_int8_t reg, val;
255 {
256 	u_int8_t iaddr = reg & SV_IADDR_MASK;
257 	int s = splaudio();
258 
259 	if (reg == SV_DMA_DATA_FORMAT)
260 		iaddr |= SV_IADDR_MCE;
261 
262 	sv_write(sc, SV_CODEC_IADDR, iaddr);
263 	sv_write(sc, SV_CODEC_IDATA, val);
264 	splx(s);
265 }
266 
267 int
268 sv_match(parent, match, aux)
269 	struct device *parent;
270 	struct cfdata *match;
271 	void *aux;
272 {
273 	struct pci_attach_args *pa = aux;
274 
275 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
276 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
277 		return (1);
278 
279 	return (0);
280 }
281 
282 int pci_alloc_io __P((pci_chipset_tag_t pc, pcitag_t pt,
283 		      int pcioffs,
284 		      bus_space_tag_t iot, bus_size_t size,
285 		      bus_size_t align, bus_size_t bound, int flags,
286 		      bus_space_handle_t *ioh));
287 
288 static pcireg_t pci_io_alloc_low, pci_io_alloc_high;
289 
290 int
291 pci_alloc_io(pc, pt, pcioffs, iot, size, align, bound, flags, ioh)
292 	pci_chipset_tag_t pc;
293 	pcitag_t pt;
294 	int pcioffs;
295 	bus_space_tag_t iot;
296 	bus_size_t size;
297 	bus_size_t align;
298 	bus_size_t bound;
299 	int flags;
300 	bus_space_handle_t *ioh;
301 {
302 	bus_addr_t addr;
303 	int error;
304 
305 	error = bus_space_alloc(iot, pci_io_alloc_low, pci_io_alloc_high,
306 				size, align, bound, flags, &addr, ioh);
307 	if (error)
308 		return(error);
309 
310 	pci_conf_write(pc, pt, pcioffs, addr);
311 	return (0);
312 }
313 
314 /*
315  * Allocate IO addresses when all other configuration is done.
316  */
317 void
318 sv_defer(self)
319 	struct device *self;
320 {
321 	struct sv_softc *sc = (struct sv_softc *)self;
322 	pci_chipset_tag_t pc = sc->sc_pa.pa_pc;
323 	pcitag_t pt = sc->sc_pa.pa_tag;
324 	pcireg_t dmaio;
325 
326 	DPRINTF(("sv_defer: %p\n", sc));
327 
328 	/* XXX
329 	 * Get a reasonable default for the I/O range.
330 	 * Assume the range around SB_PORTBASE is valid on this PCI bus.
331 	 */
332 	pci_io_alloc_low = pci_conf_read(pc, pt, SV_SB_PORTBASE_SLOT);
333 	pci_io_alloc_high = pci_io_alloc_low + 0x1000;
334 
335 	if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
336 			  sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
337 			  0, &sc->sc_dmaa_ioh)) {
338 		printf("sv_attach: cannot allocate DMA A range\n");
339 		return;
340 	}
341 	dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
342 	DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
343 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
344 		       dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
345 
346 	if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
347 			  sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
348 			  0, &sc->sc_dmac_ioh)) {
349 		printf("sv_attach: cannot allocate DMA C range\n");
350 		return;
351 	}
352 	dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
353 	DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
354 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
355 		       dmaio | SV_DMA_CHANNEL_ENABLE);
356 
357 	sc->sc_dmaset = 1;
358 }
359 
360 void
361 sv_attach(parent, self, aux)
362 	struct device *parent, *self;
363 	void *aux;
364 {
365 	struct sv_softc *sc = (struct sv_softc *)self;
366 	struct pci_attach_args *pa = aux;
367 	pci_chipset_tag_t pc = pa->pa_pc;
368 	pcitag_t pt = pa->pa_tag;
369 	pci_intr_handle_t ih;
370 	pcireg_t csr;
371 	char const *intrstr;
372 	u_int8_t reg;
373 	struct audio_attach_args arg;
374 
375 	printf ("\n");
376 
377 	/* Map I/O registers */
378 	if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
379 			   PCI_MAPREG_TYPE_IO, 0,
380 			   &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
381 		printf("%s: can't map enhanced i/o space\n",
382 		       sc->sc_dev.dv_xname);
383 		return;
384 	}
385 	if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
386 			   PCI_MAPREG_TYPE_IO, 0,
387 			   &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
388 		printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname);
389 		return;
390 	}
391 	if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
392 			   PCI_MAPREG_TYPE_IO, 0,
393 			   &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
394 		printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname);
395 		return;
396 	}
397 	DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
398 		 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
399 
400 #if defined(alpha)
401 	/* XXX Force allocation through the SGMAP. */
402 	sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
403 #elif defined(i386) && NISA > 0
404 /* XXX
405  * The SonicVibes DMA is broken and only works on 24-bit addresses.
406  * As long as bus_dmamem_alloc_range() is missing we use the ISA
407  * DMA tag on i386.
408  */
409 	sc->sc_dmatag = &isa_bus_dma_tag;
410 #else
411 	sc->sc_dmatag = pa->pa_dmat;
412 #endif
413 
414 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
415 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
416 
417 	/* Enable the device. */
418 	csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
419 	pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
420 		       csr | PCI_COMMAND_MASTER_ENABLE);
421 
422 	sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
423 	sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
424 
425 	/* initialize codec registers */
426 	reg = sv_read(sc, SV_CODEC_CONTROL);
427 	reg |= SV_CTL_RESET;
428 	sv_write(sc, SV_CODEC_CONTROL, reg);
429 	delay(50);
430 
431 	reg = sv_read(sc, SV_CODEC_CONTROL);
432 	reg &= ~SV_CTL_RESET;
433 	reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
434 
435 	/* This write clears the reset */
436 	sv_write(sc, SV_CODEC_CONTROL, reg);
437 	delay(50);
438 
439 	/* This write actually shoves the new values in */
440 	sv_write(sc, SV_CODEC_CONTROL, reg);
441 
442 	DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
443 
444 	/* Enable DMA interrupts */
445 	reg = sv_read(sc, SV_CODEC_INTMASK);
446 	reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
447 	reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
448 	sv_write(sc, SV_CODEC_INTMASK, reg);
449 
450 	sv_read(sc, SV_CODEC_STATUS);
451 
452 	/* Map and establish the interrupt. */
453 	if (pci_intr_map(pa, &ih)) {
454 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
455 		return;
456 	}
457 	intrstr = pci_intr_string(pc, ih);
458 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
459 	if (sc->sc_ih == NULL) {
460 		printf("%s: couldn't establish interrupt",
461 		       sc->sc_dev.dv_xname);
462 		if (intrstr != NULL)
463 			printf(" at %s", intrstr);
464 		printf("\n");
465 		return;
466 	}
467 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
468 	printf("%s: rev %d", sc->sc_dev.dv_xname,
469 	       sv_read_indirect(sc, SV_REVISION_LEVEL));
470 	if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
471 		printf(", reverb SRAM present");
472 	if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
473 		printf(", wavetable ROM present");
474 	printf("\n");
475 
476 	sv_init_mixer(sc);
477 
478 	audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
479 
480 	arg.type = AUDIODEV_TYPE_OPL;
481 	arg.hwif = 0;
482 	arg.hdl = 0;
483 	(void)config_found(&sc->sc_dev, &arg, audioprint);
484 
485 	sc->sc_pa = *pa;	/* for deferred setup */
486 	config_defer(self, sv_defer);
487 }
488 
489 #ifdef AUDIO_DEBUG
490 void
491 sv_dumpregs(sc)
492 	struct sv_softc *sc;
493 {
494 	int idx;
495 
496 #if 0
497 	for (idx = 0; idx < 0x50; idx += 4)
498 		printf ("%02x = %x\n", idx,
499 			pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
500 #endif
501 
502 	for (idx = 0; idx < 6; idx++)
503 		printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
504 
505 	for (idx = 0; idx < 0x32; idx++)
506 		printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
507 
508 	for (idx = 0; idx < 0x10; idx++)
509 		printf ("DMA %02x = %02x\n", idx,
510 			bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
511 }
512 #endif
513 
514 int
515 sv_intr(p)
516 	void *p;
517 {
518 	struct sv_softc *sc = p;
519 	u_int8_t intr;
520 
521 	intr = sv_read(sc, SV_CODEC_STATUS);
522 	DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
523 
524 	if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)))
525 		return (0);
526 
527 	if (intr & SV_INTSTATUS_DMAA) {
528 		if (sc->sc_pintr)
529 			sc->sc_pintr(sc->sc_parg);
530 	}
531 
532 	if (intr & SV_INTSTATUS_DMAC) {
533 		if (sc->sc_rintr)
534 			sc->sc_rintr(sc->sc_rarg);
535 	}
536 
537 	return (1);
538 }
539 
540 int
541 sv_allocmem(sc, size, align, direction, p)
542 	struct sv_softc *sc;
543 	size_t size;
544 	size_t align;
545 	int direction;
546 	struct sv_dma *p;
547 {
548 	int error;
549 
550 	p->size = size;
551 	error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
552 				 p->segs, ARRAY_SIZE(p->segs),
553 				 &p->nsegs, BUS_DMA_NOWAIT);
554 	if (error)
555 		return (error);
556 
557 	error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
558 			       &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
559 	if (error)
560 		goto free;
561 
562 	error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
563 				  0, BUS_DMA_NOWAIT, &p->map);
564 	if (error)
565 		goto unmap;
566 
567 	error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
568 				BUS_DMA_NOWAIT |
569                                 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
570 	if (error)
571 		goto destroy;
572 	DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
573 	    (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
574 	return (0);
575 
576 destroy:
577 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
578 unmap:
579 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
580 free:
581 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
582 	return (error);
583 }
584 
585 int
586 sv_freemem(sc, p)
587 	struct sv_softc *sc;
588 	struct sv_dma *p;
589 {
590 	bus_dmamap_unload(sc->sc_dmatag, p->map);
591 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
592 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
593 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
594 	return (0);
595 }
596 
597 int
598 sv_open(addr, flags)
599 	void *addr;
600 	int flags;
601 {
602 	struct sv_softc *sc = addr;
603 
604 	DPRINTF(("sv_open\n"));
605 	if (!sc->sc_dmaset)
606 		return (ENXIO);
607 	sc->sc_pintr = 0;
608 	sc->sc_rintr = 0;
609 
610 	return (0);
611 }
612 
613 /*
614  * Close function is called at splaudio().
615  */
616 void
617 sv_close(addr)
618 	void *addr;
619 {
620 	struct sv_softc *sc = addr;
621 
622 	DPRINTF(("sv_close\n"));
623 	sv_halt_output(sc);
624 	sv_halt_input(sc);
625 
626 	sc->sc_pintr = 0;
627 	sc->sc_rintr = 0;
628 }
629 
630 int
631 sv_query_encoding(addr, fp)
632 	void *addr;
633 	struct audio_encoding *fp;
634 {
635 	switch (fp->index) {
636 	case 0:
637 		strcpy(fp->name, AudioEulinear);
638 		fp->encoding = AUDIO_ENCODING_ULINEAR;
639 		fp->precision = 8;
640 		fp->flags = 0;
641 		return (0);
642 	case 1:
643 		strcpy(fp->name, AudioEmulaw);
644 		fp->encoding = AUDIO_ENCODING_ULAW;
645 		fp->precision = 8;
646 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
647 		return (0);
648 	case 2:
649 		strcpy(fp->name, AudioEalaw);
650 		fp->encoding = AUDIO_ENCODING_ALAW;
651 		fp->precision = 8;
652 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
653 		return (0);
654 	case 3:
655 		strcpy(fp->name, AudioEslinear);
656 		fp->encoding = AUDIO_ENCODING_SLINEAR;
657 		fp->precision = 8;
658 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
659 		return (0);
660 	case 4:
661 		strcpy(fp->name, AudioEslinear_le);
662 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
663 		fp->precision = 16;
664 		fp->flags = 0;
665 		return (0);
666 	case 5:
667 		strcpy(fp->name, AudioEulinear_le);
668 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
669 		fp->precision = 16;
670 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
671 		return (0);
672 	case 6:
673 		strcpy(fp->name, AudioEslinear_be);
674 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
675 		fp->precision = 16;
676 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
677 		return (0);
678 	case 7:
679 		strcpy(fp->name, AudioEulinear_be);
680 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
681 		fp->precision = 16;
682 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
683 		return (0);
684 	default:
685 		return (EINVAL);
686 	}
687 }
688 
689 int
690 sv_set_params(addr, setmode, usemode, play, rec)
691 	void *addr;
692 	int setmode, usemode;
693 	struct audio_params *play, *rec;
694 {
695 	struct sv_softc *sc = addr;
696 	struct audio_params *p = NULL;
697 	int mode;
698 	u_int32_t val;
699 
700 	/*
701 	 * This device only has one clock, so make the sample rates match.
702 	 */
703 	if (play->sample_rate != rec->sample_rate &&
704 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
705 		if (setmode == AUMODE_PLAY) {
706 			rec->sample_rate = play->sample_rate;
707 			setmode |= AUMODE_RECORD;
708 		} else if (setmode == AUMODE_RECORD) {
709 			play->sample_rate = rec->sample_rate;
710 			setmode |= AUMODE_PLAY;
711 		} else
712 			return (EINVAL);
713 	}
714 
715 	for (mode = AUMODE_RECORD; mode != -1;
716 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
717 		if ((setmode & mode) == 0)
718 			continue;
719 
720 		p = mode == AUMODE_PLAY ? play : rec;
721 
722 		if (p->sample_rate < 2000 || p->sample_rate > 48000 ||
723 		    (p->precision != 8 && p->precision != 16) ||
724 		    (p->channels != 1 && p->channels != 2))
725 			return (EINVAL);
726 
727 		p->factor = 1;
728 		p->sw_code = 0;
729 		switch (p->encoding) {
730 		case AUDIO_ENCODING_SLINEAR_BE:
731 			if (p->precision == 16)
732 				p->sw_code = swap_bytes;
733 			else
734 				p->sw_code = change_sign8;
735 			break;
736 		case AUDIO_ENCODING_SLINEAR_LE:
737 			if (p->precision != 16)
738 				p->sw_code = change_sign8;
739 			break;
740 		case AUDIO_ENCODING_ULINEAR_BE:
741 			if (p->precision == 16) {
742 				if (mode == AUMODE_PLAY)
743 					p->sw_code = swap_bytes_change_sign16_le;
744 				else
745 					p->sw_code = change_sign16_swap_bytes_le;
746 			}
747 			break;
748 		case AUDIO_ENCODING_ULINEAR_LE:
749 			if (p->precision == 16)
750 				p->sw_code = change_sign16_le;
751 			break;
752 		case AUDIO_ENCODING_ULAW:
753 			if (mode == AUMODE_PLAY) {
754 				p->factor = 2;
755 				p->sw_code = mulaw_to_slinear16_le;
756 			} else
757 				p->sw_code = ulinear8_to_mulaw;
758 			break;
759 		case AUDIO_ENCODING_ALAW:
760 			if (mode == AUMODE_PLAY) {
761 				p->factor = 2;
762 				p->sw_code = alaw_to_slinear16_le;
763 			} else
764 				p->sw_code = ulinear8_to_alaw;
765 			break;
766 		default:
767 			return (EINVAL);
768 		}
769 	}
770 
771 	val = p->sample_rate * 65536 / 48000;
772 	/*
773 	 * If the sample rate is exactly 48KHz, the fraction would overflow the
774 	 * register, so we have to bias it.  This causes a little clock drift.
775 	 * The drift is below normal crystal tolerance (.0001%), so although
776 	 * this seems a little silly, we can pretty much ignore it.
777 	 * (I tested the output speed with values of 1-20, just to be sure this
778 	 * register isn't *supposed* to have a bias.  It isn't.)
779 	 * - mycroft
780 	 */
781 	if (val > 65535)
782 		val = 65535;
783 
784 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
785 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
786 
787 #define F_REF 24576000
788 
789 #define ABS(x) (((x) < 0) ? (-x) : (x))
790 
791 	if (setmode & AUMODE_RECORD) {
792 		/* The ADC reference frequency (f_out) is 512 * sample rate */
793 
794 		/* f_out is dervied from the 24.576MHz crystal by three values:
795 		   M & N & R. The equation is as follows:
796 
797 		   f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
798 
799 		   with the constraint that:
800 
801 		   80 MHz < (m + 2) / (n + 2) * f_ref <= 150MHz
802 		   and n, m >= 1
803 		*/
804 
805 		int  goal_f_out = 512 * rec->sample_rate;
806 		int  a, n, m, best_n = 0, best_m = 0, best_error = 10000000;
807 		int  pll_sample;
808 		int  error;
809 
810 		for (a = 0; a < 8; a++) {
811 			if ((goal_f_out * (1 << a)) >= 80000000)
812 				break;
813 		}
814 
815 		/* a != 8 because sample_rate >= 2000 */
816 
817 		for (n = 33; n > 2; n--) {
818 			m = (goal_f_out * n * (1 << a)) / F_REF;
819 			if ((m > 257) || (m < 3))
820 				continue;
821 
822 			pll_sample = (m * F_REF) / (n * (1 << a));
823 			pll_sample /= 512;
824 
825 			/* Threshold might be good here */
826 			error = pll_sample - rec->sample_rate;
827 			error = ABS(error);
828 
829 			if (error < best_error) {
830 				best_error = error;
831 				best_n = n;
832 				best_m = m;
833 				if (error == 0) break;
834 			}
835 		}
836 
837 		best_n -= 2;
838 		best_m -= 2;
839 
840 		sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
841 		sv_write_indirect(sc, SV_ADC_PLL_N,
842 				  best_n | (a << SV_PLL_R_SHIFT));
843 	}
844 
845 	return (0);
846 }
847 
848 int
849 sv_round_blocksize(addr, blk)
850 	void *addr;
851 	int blk;
852 {
853 	return (blk & -32);	/* keep good alignment */
854 }
855 
856 int
857 sv_trigger_output(addr, start, end, blksize, intr, arg, param)
858 	void *addr;
859 	void *start, *end;
860 	int blksize;
861 	void (*intr) __P((void *));
862 	void *arg;
863 	struct audio_params *param;
864 {
865 	struct sv_softc *sc = addr;
866 	struct sv_dma *p;
867 	u_int8_t mode;
868 	int dma_count;
869 
870 	DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
871 	    addr, start, end, blksize, intr, arg));
872 	sc->sc_pintr = intr;
873 	sc->sc_parg = arg;
874 
875 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
876 	mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
877 	if (param->precision * param->factor == 16)
878 		mode |= SV_DMAA_FORMAT16;
879 	if (param->channels == 2)
880 		mode |= SV_DMAA_STEREO;
881 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
882 
883 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
884 		;
885 	if (!p) {
886 		printf("sv_trigger_output: bad addr %p\n", start);
887 		return (EINVAL);
888 	}
889 
890 	dma_count = ((char *)end - (char *)start) - 1;
891 	DPRINTF(("sv_trigger_output: DMA start loop input addr=%x cc=%d\n",
892 	    (int)DMAADDR(p), dma_count));
893 
894 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
895 			  DMAADDR(p));
896 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
897 			  dma_count);
898 	bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
899 			  DMA37MD_READ | DMA37MD_LOOP);
900 
901 	DPRINTF(("sv_trigger_output: current addr=%x\n",
902 	    bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
903 
904 	dma_count = blksize - 1;
905 
906 	sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
907 	sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
908 
909 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
910 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
911 
912 	return (0);
913 }
914 
915 int
916 sv_trigger_input(addr, start, end, blksize, intr, arg, param)
917 	void *addr;
918 	void *start, *end;
919 	int blksize;
920 	void (*intr) __P((void *));
921 	void *arg;
922 	struct audio_params *param;
923 {
924 	struct sv_softc *sc = addr;
925 	struct sv_dma *p;
926 	u_int8_t mode;
927 	int dma_count;
928 
929 	DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
930 	    addr, start, end, blksize, intr, arg));
931 	sc->sc_rintr = intr;
932 	sc->sc_rarg = arg;
933 
934 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
935 	mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
936 	if (param->precision * param->factor == 16)
937 		mode |= SV_DMAC_FORMAT16;
938 	if (param->channels == 2)
939 		mode |= SV_DMAC_STEREO;
940 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
941 
942 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
943 		;
944 	if (!p) {
945 		printf("sv_trigger_input: bad addr %p\n", start);
946 		return (EINVAL);
947 	}
948 
949 	dma_count = (((char *)end - (char *)start) >> 1) - 1;
950 	DPRINTF(("sv_trigger_input: DMA start loop input addr=%x cc=%d\n",
951 	    (int)DMAADDR(p), dma_count));
952 
953 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
954 			  DMAADDR(p));
955 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
956 			  dma_count);
957 	bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
958 			  DMA37MD_WRITE | DMA37MD_LOOP);
959 
960 	DPRINTF(("sv_trigger_input: current addr=%x\n",
961 	    bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
962 
963 	dma_count = (blksize >> 1) - 1;
964 
965 	sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
966 	sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
967 
968 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
969 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
970 
971 	return (0);
972 }
973 
974 int
975 sv_halt_output(addr)
976 	void *addr;
977 {
978 	struct sv_softc *sc = addr;
979 	u_int8_t mode;
980 
981 	DPRINTF(("sv: sv_halt_output\n"));
982 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
983 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
984 
985 	return (0);
986 }
987 
988 int
989 sv_halt_input(addr)
990 	void *addr;
991 {
992 	struct sv_softc *sc = addr;
993 	u_int8_t mode;
994 
995 	DPRINTF(("sv: sv_halt_input\n"));
996 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
997 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
998 
999 	return (0);
1000 }
1001 
1002 int
1003 sv_getdev(addr, retp)
1004 	void *addr;
1005 	struct audio_device *retp;
1006 {
1007 	*retp = sv_device;
1008 	return (0);
1009 }
1010 
1011 
1012 /*
1013  * Mixer related code is here
1014  *
1015  */
1016 
1017 #define SV_INPUT_CLASS 0
1018 #define SV_OUTPUT_CLASS 1
1019 #define SV_RECORD_CLASS 2
1020 
1021 #define SV_LAST_CLASS 2
1022 
1023 static const char *mixer_classes[] =
1024 	{ AudioCinputs, AudioCoutputs, AudioCrecord };
1025 
1026 static const struct {
1027 	u_int8_t   l_port;
1028 	u_int8_t   r_port;
1029 	u_int8_t   mask;
1030 	u_int8_t   class;
1031 	const char *audio;
1032 } ports[] = {
1033   { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
1034     SV_INPUT_CLASS, "aux1" },
1035   { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
1036     SV_INPUT_CLASS, AudioNcd },
1037   { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
1038     SV_INPUT_CLASS, AudioNline },
1039   { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
1040   { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
1041     SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
1042   { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
1043     SV_INPUT_CLASS, "aux2" },
1044   { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
1045     SV_INPUT_CLASS, AudioNdac },
1046   { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
1047     SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
1048 };
1049 
1050 
1051 static const struct {
1052 	int idx;
1053 	const char *name;
1054 } record_sources[] = {
1055 	{ SV_REC_CD, AudioNcd },
1056 	{ SV_REC_DAC, AudioNdac },
1057 	{ SV_REC_AUX2, "aux2" },
1058 	{ SV_REC_LINE, AudioNline },
1059 	{ SV_REC_AUX1, "aux1" },
1060 	{ SV_REC_MIC, AudioNmicrophone },
1061 	{ SV_REC_MIXER, AudioNmixerout }
1062 };
1063 
1064 
1065 #define SV_DEVICES_PER_PORT 2
1066 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
1067 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
1068 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
1069 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
1070 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
1071 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
1072 
1073 int
1074 sv_query_devinfo(addr, dip)
1075 	void *addr;
1076 	mixer_devinfo_t *dip;
1077 {
1078 	int i;
1079 
1080 	/* It's a class */
1081 	if (dip->index <= SV_LAST_CLASS) {
1082 		dip->type = AUDIO_MIXER_CLASS;
1083 		dip->mixer_class = dip->index;
1084 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1085 		strcpy(dip->label.name,
1086 		       mixer_classes[dip->index]);
1087 		return (0);
1088 	}
1089 
1090 	if (dip->index >= SV_FIRST_MIXER &&
1091 	    dip->index <= SV_LAST_MIXER) {
1092 		int off = dip->index - SV_FIRST_MIXER;
1093 		int mute = (off % SV_DEVICES_PER_PORT);
1094 		int idx = off / SV_DEVICES_PER_PORT;
1095 
1096 		dip->mixer_class = ports[idx].class;
1097 		strcpy(dip->label.name, ports[idx].audio);
1098 
1099 		if (!mute) {
1100 			dip->type = AUDIO_MIXER_VALUE;
1101 			dip->prev = AUDIO_MIXER_LAST;
1102 			dip->next = dip->index + 1;
1103 
1104 			if (ports[idx].r_port != 0)
1105 				dip->un.v.num_channels = 2;
1106 			else
1107 				dip->un.v.num_channels = 1;
1108 
1109 			strcpy(dip->un.v.units.name, AudioNvolume);
1110 		} else {
1111 			dip->type = AUDIO_MIXER_ENUM;
1112 			dip->prev = dip->index - 1;
1113 			dip->next = AUDIO_MIXER_LAST;
1114 
1115 			strcpy(dip->label.name, AudioNmute);
1116 			dip->un.e.num_mem = 2;
1117 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
1118 			dip->un.e.member[0].ord = 0;
1119 			strcpy(dip->un.e.member[1].label.name, AudioNon);
1120 			dip->un.e.member[1].ord = 1;
1121 		}
1122 
1123 		return (0);
1124 	}
1125 
1126 	switch (dip->index) {
1127 	case SV_RECORD_SOURCE:
1128 		dip->mixer_class = SV_RECORD_CLASS;
1129 		dip->prev = AUDIO_MIXER_LAST;
1130 		dip->next = SV_RECORD_GAIN;
1131 		strcpy(dip->label.name, AudioNsource);
1132 		dip->type = AUDIO_MIXER_ENUM;
1133 
1134 		dip->un.e.num_mem = ARRAY_SIZE(record_sources);
1135 		for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
1136 			strcpy(dip->un.e.member[i].label.name,
1137 			       record_sources[i].name);
1138 			dip->un.e.member[i].ord = record_sources[i].idx;
1139 		}
1140 		return (0);
1141 
1142 	case SV_RECORD_GAIN:
1143 		dip->mixer_class = SV_RECORD_CLASS;
1144 		dip->prev = SV_RECORD_SOURCE;
1145 		dip->next = AUDIO_MIXER_LAST;
1146 		strcpy(dip->label.name, "gain");
1147 		dip->type = AUDIO_MIXER_VALUE;
1148 		dip->un.v.num_channels = 1;
1149 		strcpy(dip->un.v.units.name, AudioNvolume);
1150 		return (0);
1151 
1152 	case SV_MIC_BOOST:
1153 		dip->mixer_class = SV_RECORD_CLASS;
1154 		dip->prev = AUDIO_MIXER_LAST;
1155 		dip->next = AUDIO_MIXER_LAST;
1156 		strcpy(dip->label.name, "micboost");
1157 		goto on_off;
1158 
1159 	case SV_SRS_MODE:
1160 		dip->mixer_class = SV_OUTPUT_CLASS;
1161 		dip->prev = dip->next = AUDIO_MIXER_LAST;
1162 		strcpy(dip->label.name, AudioNspatial);
1163 
1164 	on_off:
1165 		dip->type = AUDIO_MIXER_ENUM;
1166 		dip->un.e.num_mem = 2;
1167 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1168 		dip->un.e.member[0].ord = 0;
1169 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1170 		dip->un.e.member[1].ord = 1;
1171 		return (0);
1172 	}
1173 
1174 	return (ENXIO);
1175 }
1176 
1177 int
1178 sv_mixer_set_port(addr, cp)
1179 	void *addr;
1180 	mixer_ctrl_t *cp;
1181 {
1182 	struct sv_softc *sc = addr;
1183 	u_int8_t reg;
1184 	int idx;
1185 
1186 	if (cp->dev >= SV_FIRST_MIXER &&
1187 	    cp->dev <= SV_LAST_MIXER) {
1188 		int off = cp->dev - SV_FIRST_MIXER;
1189 		int mute = (off % SV_DEVICES_PER_PORT);
1190 		idx = off / SV_DEVICES_PER_PORT;
1191 
1192 		if (mute) {
1193 			if (cp->type != AUDIO_MIXER_ENUM)
1194 				return (EINVAL);
1195 
1196 			reg = sv_read_indirect(sc, ports[idx].l_port);
1197 			if (cp->un.ord)
1198 				reg |= SV_MUTE_BIT;
1199 			else
1200 				reg &= ~SV_MUTE_BIT;
1201 			sv_write_indirect(sc, ports[idx].l_port, reg);
1202 
1203 			if (ports[idx].r_port) {
1204 				reg = sv_read_indirect(sc, ports[idx].r_port);
1205 				if (cp->un.ord)
1206 					reg |= SV_MUTE_BIT;
1207 				else
1208 					reg &= ~SV_MUTE_BIT;
1209 				sv_write_indirect(sc, ports[idx].r_port, reg);
1210 			}
1211 		} else {
1212 			int  lval, rval;
1213 
1214 			if (cp->type != AUDIO_MIXER_VALUE)
1215 				return (EINVAL);
1216 
1217 			if (cp->un.value.num_channels != 1 &&
1218 			    cp->un.value.num_channels != 2)
1219 				return (EINVAL);
1220 
1221 			if (ports[idx].r_port == 0) {
1222 				if (cp->un.value.num_channels != 1)
1223 					return (EINVAL);
1224 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1225 				rval = 0; /* shut up GCC */
1226 			} else {
1227 				if (cp->un.value.num_channels != 2)
1228 					return (EINVAL);
1229 
1230 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1231 				rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1232       }
1233 
1234 
1235 			reg = sv_read_indirect(sc, ports[idx].l_port);
1236 			reg &= ~(ports[idx].mask);
1237 			lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
1238 				AUDIO_MAX_GAIN;
1239 			reg |= lval;
1240 			sv_write_indirect(sc, ports[idx].l_port, reg);
1241 
1242 			if (ports[idx].r_port != 0) {
1243 				reg = sv_read_indirect(sc, ports[idx].r_port);
1244 				reg &= ~(ports[idx].mask);
1245 
1246 				rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
1247 					AUDIO_MAX_GAIN;
1248 				reg |= rval;
1249 
1250 				sv_write_indirect(sc, ports[idx].r_port, reg);
1251 			}
1252 
1253 			sv_read_indirect(sc, ports[idx].l_port);
1254 		}
1255 
1256 		return (0);
1257 	}
1258 
1259 
1260 	switch (cp->dev) {
1261 	case SV_RECORD_SOURCE:
1262 		if (cp->type != AUDIO_MIXER_ENUM)
1263 			return (EINVAL);
1264 
1265 		for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
1266 			if (record_sources[idx].idx == cp->un.ord)
1267 				goto found;
1268 		}
1269 
1270 		return (EINVAL);
1271 
1272 	found:
1273 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1274 		reg &= ~SV_REC_SOURCE_MASK;
1275 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1276 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1277 
1278 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1279 		reg &= ~SV_REC_SOURCE_MASK;
1280 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1281 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1282 		return (0);
1283 
1284 	case SV_RECORD_GAIN:
1285 	{
1286 		int val;
1287 
1288 		if (cp->type != AUDIO_MIXER_VALUE)
1289 			return (EINVAL);
1290 
1291 		if (cp->un.value.num_channels != 1)
1292 			return (EINVAL);
1293 
1294 		val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] * SV_REC_GAIN_MASK)
1295 			/ AUDIO_MAX_GAIN;
1296 
1297 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1298 		reg &= ~SV_REC_GAIN_MASK;
1299 		reg |= val;
1300 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1301 
1302 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1303 		reg &= ~SV_REC_GAIN_MASK;
1304 		reg |= val;
1305 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1306 	}
1307 	return (0);
1308 
1309 	case SV_MIC_BOOST:
1310 		if (cp->type != AUDIO_MIXER_ENUM)
1311 			return (EINVAL);
1312 
1313 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1314 		if (cp->un.ord) {
1315 			reg |= SV_MIC_BOOST_BIT;
1316 		} else {
1317 			reg &= ~SV_MIC_BOOST_BIT;
1318 		}
1319 
1320 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1321 		return (0);
1322 
1323 	case SV_SRS_MODE:
1324 		if (cp->type != AUDIO_MIXER_ENUM)
1325 			return (EINVAL);
1326 
1327 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1328 		if (cp->un.ord) {
1329 			reg &= ~SV_SRS_SPACE_ONOFF;
1330 		} else {
1331 			reg |= SV_SRS_SPACE_ONOFF;
1332 		}
1333 
1334 		sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
1335 		return (0);
1336 	}
1337 
1338 	return (EINVAL);
1339 }
1340 
1341 int
1342 sv_mixer_get_port(addr, cp)
1343 	void *addr;
1344 	mixer_ctrl_t *cp;
1345 {
1346 	struct sv_softc *sc = addr;
1347 	int val;
1348 	u_int8_t reg;
1349 
1350 	if (cp->dev >= SV_FIRST_MIXER &&
1351 	    cp->dev <= SV_LAST_MIXER) {
1352 		int off = cp->dev - SV_FIRST_MIXER;
1353 		int mute = (off % 2);
1354 		int idx = off / 2;
1355 
1356 		if (mute) {
1357 			if (cp->type != AUDIO_MIXER_ENUM)
1358 				return (EINVAL);
1359 
1360 			reg = sv_read_indirect(sc, ports[idx].l_port);
1361 			cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
1362 		} else {
1363 			if (cp->type != AUDIO_MIXER_VALUE)
1364 				return (EINVAL);
1365 
1366 			if (cp->un.value.num_channels != 1 &&
1367 			    cp->un.value.num_channels != 2)
1368 				return (EINVAL);
1369 
1370 			if ((ports[idx].r_port == 0 &&
1371 			     cp->un.value.num_channels != 1) ||
1372 			    (ports[idx].r_port != 0 &&
1373 			     cp->un.value.num_channels != 2))
1374 				return (EINVAL);
1375 
1376 			reg = sv_read_indirect(sc, ports[idx].l_port);
1377 			reg &= ports[idx].mask;
1378 
1379 			val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1380 
1381 			if (ports[idx].r_port != 0) {
1382 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val;
1383 
1384 				reg = sv_read_indirect(sc, ports[idx].r_port);
1385 				reg &= ports[idx].mask;
1386 
1387 				val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1388 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val;
1389 			} else
1390 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val;
1391 		}
1392 
1393 		return (0);
1394   }
1395 
1396 	switch (cp->dev) {
1397 	case SV_RECORD_SOURCE:
1398 		if (cp->type != AUDIO_MIXER_ENUM)
1399 			return (EINVAL);
1400 
1401 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1402 		cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
1403 
1404 		return (0);
1405 
1406 	case SV_RECORD_GAIN:
1407 		if (cp->type != AUDIO_MIXER_VALUE)
1408 			return (EINVAL);
1409 		if (cp->un.value.num_channels != 1)
1410 			return (EINVAL);
1411 
1412 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
1413 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1414 			(((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
1415 
1416 		return (0);
1417 
1418 	case SV_MIC_BOOST:
1419 		if (cp->type != AUDIO_MIXER_ENUM)
1420 			return (EINVAL);
1421 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1422 		cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
1423 		return (0);
1424 
1425 
1426 	case SV_SRS_MODE:
1427 		if (cp->type != AUDIO_MIXER_ENUM)
1428 			return (EINVAL);
1429 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1430 		cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
1431 		return (0);
1432 	}
1433 
1434 	return (EINVAL);
1435 }
1436 
1437 
1438 static void
1439 sv_init_mixer(sc)
1440 	struct sv_softc *sc;
1441 {
1442 	mixer_ctrl_t cp;
1443 	int i;
1444 
1445 	cp.type = AUDIO_MIXER_ENUM;
1446 	cp.dev = SV_SRS_MODE;
1447 	cp.un.ord = 0;
1448 
1449 	sv_mixer_set_port(sc, &cp);
1450 
1451 	for (i = 0; i < ARRAY_SIZE(ports); i++) {
1452 		if (ports[i].audio == AudioNdac) {
1453 			cp.type = AUDIO_MIXER_ENUM;
1454 			cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
1455 			cp.un.ord = 0;
1456 			sv_mixer_set_port(sc, &cp);
1457 			break;
1458 		}
1459 	}
1460 }
1461 
1462 void *
1463 sv_malloc(addr, direction, size, pool, flags)
1464 	void *addr;
1465 	int direction;
1466 	size_t size;
1467 	struct malloc_type *pool;
1468 	int flags;
1469 {
1470 	struct sv_softc *sc = addr;
1471 	struct sv_dma *p;
1472 	int error;
1473 
1474 	p = malloc(sizeof(*p), pool, flags);
1475 	if (!p)
1476 		return (0);
1477 	error = sv_allocmem(sc, size, 16, direction, p);
1478 	if (error) {
1479 		free(p, pool);
1480 		return (0);
1481 	}
1482 	p->next = sc->sc_dmas;
1483 	sc->sc_dmas = p;
1484 	return (KERNADDR(p));
1485 }
1486 
1487 void
1488 sv_free(addr, ptr, pool)
1489 	void *addr;
1490 	void *ptr;
1491 	struct malloc_type *pool;
1492 {
1493 	struct sv_softc *sc = addr;
1494 	struct sv_dma **pp, *p;
1495 
1496 	for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1497 		if (KERNADDR(p) == ptr) {
1498 			sv_freemem(sc, p);
1499 			*pp = p->next;
1500 			free(p, pool);
1501 			return;
1502 		}
1503 	}
1504 }
1505 
1506 size_t
1507 sv_round_buffersize(addr, direction, size)
1508 	void *addr;
1509 	int direction;
1510 	size_t size;
1511 {
1512 	return (size);
1513 }
1514 
1515 paddr_t
1516 sv_mappage(addr, mem, off, prot)
1517 	void *addr;
1518 	void *mem;
1519 	off_t off;
1520 	int prot;
1521 {
1522 	struct sv_softc *sc = addr;
1523 	struct sv_dma *p;
1524 
1525 	if (off < 0)
1526 		return (-1);
1527 	for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1528 		;
1529 	if (!p)
1530 		return (-1);
1531 	return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1532 				off, prot, BUS_DMA_WAITOK));
1533 }
1534 
1535 int
1536 sv_get_props(addr)
1537 	void *addr;
1538 {
1539 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
1540 }
1541