xref: /netbsd-src/sys/dev/pci/sv.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*      $NetBSD: sv.c,v 1.52 2017/06/01 02:45:11 chs Exp $ */
2 /*      $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
3 
4 /*
5  * Copyright (c) 1999, 2008 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Charles M. Hannum.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1998 Constantine Paul Sapuntzakis
35  * All rights reserved
36  *
37  * Author: Constantine Paul Sapuntzakis (csapuntz@cvs.openbsd.org)
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  * 1. Redistributions of source code must retain the above copyright
43  *    notice, this list of conditions and the following disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  * 3. The author's name or those of the contributors may be used to
48  *    endorse or promote products derived from this software without
49  *    specific prior written permission.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
52  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
53  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
54  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
55  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
56  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
57  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
58  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
59  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61  * POSSIBILITY OF SUCH DAMAGE.
62  */
63 
64 /*
65  * S3 SonicVibes driver
66  *   Heavily based on the eap driver by Lennart Augustsson
67  */
68 
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.52 2017/06/01 02:45:11 chs Exp $");
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/kmem.h>
76 #include <sys/device.h>
77 
78 #include <dev/pci/pcireg.h>
79 #include <dev/pci/pcivar.h>
80 #include <dev/pci/pcidevs.h>
81 
82 #include <sys/audioio.h>
83 #include <dev/audio_if.h>
84 #include <dev/mulaw.h>
85 #include <dev/auconv.h>
86 
87 #include <dev/ic/i8237reg.h>
88 #include <dev/pci/svreg.h>
89 #include <dev/pci/svvar.h>
90 
91 #include <sys/bus.h>
92 
93 /* XXX
94  * The SonicVibes DMA is broken and only works on 24-bit addresses.
95  * As long as bus_dmamem_alloc_range() is missing we use the ISA
96  * DMA tag on i386.
97  */
98 #if defined(amd64) || defined(i386)
99 #include <dev/isa/isavar.h>
100 #endif
101 
102 #ifdef AUDIO_DEBUG
103 #define DPRINTF(x)	if (svdebug) printf x
104 #define DPRINTFN(n,x)	if (svdebug>(n)) printf x
105 int	svdebug = 0;
106 #else
107 #define DPRINTF(x)
108 #define DPRINTFN(n,x)
109 #endif
110 
111 static int	sv_match(device_t, cfdata_t, void *);
112 static void	sv_attach(device_t, device_t, void *);
113 static int	sv_intr(void *);
114 
115 struct sv_dma {
116 	bus_dmamap_t map;
117 	void *addr;
118 	bus_dma_segment_t segs[1];
119 	int nsegs;
120 	size_t size;
121 	struct sv_dma *next;
122 };
123 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
124 #define KERNADDR(p) ((void *)((p)->addr))
125 
126 CFATTACH_DECL_NEW(sv, sizeof(struct sv_softc),
127     sv_match, sv_attach, NULL, NULL);
128 
129 static struct audio_device sv_device = {
130 	"S3 SonicVibes",
131 	"",
132 	"sv"
133 };
134 
135 #define ARRAY_SIZE(foo)  ((sizeof(foo)) / sizeof(foo[0]))
136 
137 static int	sv_allocmem(struct sv_softc *, size_t, size_t, int,
138 			    struct sv_dma *);
139 static int	sv_freemem(struct sv_softc *, struct sv_dma *);
140 
141 static void	sv_init_mixer(struct sv_softc *);
142 
143 static int	sv_open(void *, int);
144 static int	sv_query_encoding(void *, struct audio_encoding *);
145 static int	sv_set_params(void *, int, int, audio_params_t *,
146 			      audio_params_t *, stream_filter_list_t *,
147 			      stream_filter_list_t *);
148 static int	sv_round_blocksize(void *, int, int, const audio_params_t *);
149 static int	sv_trigger_output(void *, void *, void *, int, void (*)(void *),
150 				  void *, const audio_params_t *);
151 static int	sv_trigger_input(void *, void *, void *, int, void (*)(void *),
152 				 void *, const audio_params_t *);
153 static int	sv_halt_output(void *);
154 static int	sv_halt_input(void *);
155 static int	sv_getdev(void *, struct audio_device *);
156 static int	sv_mixer_set_port(void *, mixer_ctrl_t *);
157 static int	sv_mixer_get_port(void *, mixer_ctrl_t *);
158 static int	sv_query_devinfo(void *, mixer_devinfo_t *);
159 static void *	sv_malloc(void *, int, size_t);
160 static void	sv_free(void *, void *, size_t);
161 static size_t	sv_round_buffersize(void *, int, size_t);
162 static paddr_t	sv_mappage(void *, void *, off_t, int);
163 static int	sv_get_props(void *);
164 static void	sv_get_locks(void *, kmutex_t **, kmutex_t **);
165 
166 #ifdef AUDIO_DEBUG
167 void    sv_dumpregs(struct sv_softc *sc);
168 #endif
169 
170 static const struct audio_hw_if sv_hw_if = {
171 	sv_open,
172 	NULL,			/* close */
173 	NULL,
174 	sv_query_encoding,
175 	sv_set_params,
176 	sv_round_blocksize,
177 	NULL,
178 	NULL,
179 	NULL,
180 	NULL,
181 	NULL,
182 	sv_halt_output,
183 	sv_halt_input,
184 	NULL,
185 	sv_getdev,
186 	NULL,
187 	sv_mixer_set_port,
188 	sv_mixer_get_port,
189 	sv_query_devinfo,
190 	sv_malloc,
191 	sv_free,
192 	sv_round_buffersize,
193 	sv_mappage,
194 	sv_get_props,
195 	sv_trigger_output,
196 	sv_trigger_input,
197 	NULL,
198 	sv_get_locks,
199 };
200 
201 #define SV_NFORMATS	4
202 static const struct audio_format sv_formats[SV_NFORMATS] = {
203 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
204 	 2, AUFMT_STEREO, 0, {2000, 48000}},
205 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
206 	 1, AUFMT_MONAURAL, 0, {2000, 48000}},
207 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
208 	 2, AUFMT_STEREO, 0, {2000, 48000}},
209 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
210 	 1, AUFMT_MONAURAL, 0, {2000, 48000}},
211 };
212 
213 
214 static void
215 sv_write(struct sv_softc *sc, uint8_t reg, uint8_t val)
216 {
217 
218 	DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
219 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
220 }
221 
222 static uint8_t
223 sv_read(struct sv_softc *sc, uint8_t reg)
224 {
225 	uint8_t val;
226 
227 	val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
228 	DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
229 	return val;
230 }
231 
232 static uint8_t
233 sv_read_indirect(struct sv_softc *sc, uint8_t reg)
234 {
235 	uint8_t val;
236 
237 	sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
238 	val = sv_read(sc, SV_CODEC_IDATA);
239 	return val;
240 }
241 
242 static void
243 sv_write_indirect(struct sv_softc *sc, uint8_t reg, uint8_t val)
244 {
245 	uint8_t iaddr;
246 
247 	iaddr = reg & SV_IADDR_MASK;
248 	if (reg == SV_DMA_DATA_FORMAT)
249 		iaddr |= SV_IADDR_MCE;
250 
251 	sv_write(sc, SV_CODEC_IADDR, iaddr);
252 	sv_write(sc, SV_CODEC_IDATA, val);
253 }
254 
255 static int
256 sv_match(device_t parent, cfdata_t match, void *aux)
257 {
258 	struct pci_attach_args *pa;
259 
260 	pa = aux;
261 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
262 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
263 		return 1;
264 
265 	return 0;
266 }
267 
268 static pcireg_t pci_io_alloc_low, pci_io_alloc_high;
269 
270 static int
271 pci_alloc_io(pci_chipset_tag_t pc, pcitag_t pt, int pcioffs,
272     bus_space_tag_t iot, bus_size_t size, bus_size_t align,
273     bus_size_t bound, int flags, bus_space_handle_t *ioh)
274 {
275 	bus_addr_t addr;
276 	int error;
277 
278 	error = bus_space_alloc(iot, pci_io_alloc_low, pci_io_alloc_high,
279 				size, align, bound, flags, &addr, ioh);
280 	if (error)
281 		return error;
282 
283 	pci_conf_write(pc, pt, pcioffs, addr);
284 	return 0;
285 }
286 
287 /*
288  * Allocate IO addresses when all other configuration is done.
289  */
290 static void
291 sv_defer(device_t self)
292 {
293 	struct sv_softc *sc;
294 	pci_chipset_tag_t pc;
295 	pcitag_t pt;
296 	pcireg_t dmaio;
297 
298 	sc = device_private(self);
299 	pc = sc->sc_pa.pa_pc;
300 	pt = sc->sc_pa.pa_tag;
301 	DPRINTF(("sv_defer: %p\n", sc));
302 
303 	/* XXX
304 	 * Get a reasonable default for the I/O range.
305 	 * Assume the range around SB_PORTBASE is valid on this PCI bus.
306 	 */
307 	pci_io_alloc_low = pci_conf_read(pc, pt, SV_SB_PORTBASE_SLOT);
308 	pci_io_alloc_high = pci_io_alloc_low + 0x1000;
309 
310 	if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
311 			  sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
312 			  0, &sc->sc_dmaa_ioh)) {
313 		printf("sv_attach: cannot allocate DMA A range\n");
314 		return;
315 	}
316 	dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
317 	DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
318 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
319 		       dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
320 
321 	if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
322 			  sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
323 			  0, &sc->sc_dmac_ioh)) {
324 		printf("sv_attach: cannot allocate DMA C range\n");
325 		return;
326 	}
327 	dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
328 	DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
329 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
330 		       dmaio | SV_DMA_CHANNEL_ENABLE);
331 
332 	sc->sc_dmaset = 1;
333 }
334 
335 static void
336 sv_attach(device_t parent, device_t self, void *aux)
337 {
338 	struct sv_softc *sc;
339 	struct pci_attach_args *pa;
340 	pci_chipset_tag_t pc;
341 	pcitag_t pt;
342 	pci_intr_handle_t ih;
343 	pcireg_t csr;
344 	char const *intrstr;
345 	uint8_t reg;
346 	struct audio_attach_args arg;
347 	char intrbuf[PCI_INTRSTR_LEN];
348 
349 	sc = device_private(self);
350 	pa = aux;
351 	pc = pa->pa_pc;
352 	pt = pa->pa_tag;
353 	aprint_naive("\n");
354 	aprint_normal("\n");
355 
356 	/* Map I/O registers */
357 	if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
358 			   PCI_MAPREG_TYPE_IO, 0,
359 			   &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
360 		aprint_error_dev(self, "can't map enhanced i/o space\n");
361 		return;
362 	}
363 	if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
364 			   PCI_MAPREG_TYPE_IO, 0,
365 			   &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
366 		aprint_error_dev(self, "can't map FM i/o space\n");
367 		return;
368 	}
369 	if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
370 			   PCI_MAPREG_TYPE_IO, 0,
371 			   &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
372 		aprint_error_dev(self, "can't map MIDI i/o space\n");
373 		return;
374 	}
375 	DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
376 		 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
377 
378 #if defined(alpha)
379 	/* XXX Force allocation through the SGMAP. */
380 	sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
381 #elif defined(amd64) || defined(i386)
382 /* XXX
383  * The SonicVibes DMA is broken and only works on 24-bit addresses.
384  * As long as bus_dmamem_alloc_range() is missing we use the ISA
385  * DMA tag on i386.
386  */
387 	sc->sc_dmatag = &isa_bus_dma_tag;
388 #else
389 	sc->sc_dmatag = pa->pa_dmat;
390 #endif
391 
392 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
393 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
394 
395 	/* Enable the device. */
396 	csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
397 	pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
398 		       csr | PCI_COMMAND_MASTER_ENABLE);
399 
400 	sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
401 	sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
402 
403 	/* initialize codec registers */
404 	reg = sv_read(sc, SV_CODEC_CONTROL);
405 	reg |= SV_CTL_RESET;
406 	sv_write(sc, SV_CODEC_CONTROL, reg);
407 	delay(50);
408 
409 	reg = sv_read(sc, SV_CODEC_CONTROL);
410 	reg &= ~SV_CTL_RESET;
411 	reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
412 
413 	/* This write clears the reset */
414 	sv_write(sc, SV_CODEC_CONTROL, reg);
415 	delay(50);
416 
417 	/* This write actually shoves the new values in */
418 	sv_write(sc, SV_CODEC_CONTROL, reg);
419 
420 	DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
421 
422 	/* Map and establish the interrupt. */
423 	if (pci_intr_map(pa, &ih)) {
424 		aprint_error_dev(self, "couldn't map interrupt\n");
425 		return;
426 	}
427 
428 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
429 	mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);
430 
431 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
432 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
433 	if (sc->sc_ih == NULL) {
434 		aprint_error_dev(self, "couldn't establish interrupt");
435 		if (intrstr != NULL)
436 			aprint_error(" at %s", intrstr);
437 		aprint_error("\n");
438 		mutex_destroy(&sc->sc_lock);
439 		mutex_destroy(&sc->sc_intr_lock);
440 		return;
441 	}
442 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
443 	aprint_normal_dev(self, "rev %d",
444 	    sv_read_indirect(sc, SV_REVISION_LEVEL));
445 	if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
446 		aprint_normal(", reverb SRAM present");
447 	if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
448 		aprint_normal(", wavetable ROM present");
449 	aprint_normal("\n");
450 
451 	/* Enable DMA interrupts */
452 	reg = sv_read(sc, SV_CODEC_INTMASK);
453 	reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
454 	reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
455 	sv_write(sc, SV_CODEC_INTMASK, reg);
456 	sv_read(sc, SV_CODEC_STATUS);
457 
458 	sv_init_mixer(sc);
459 
460 	audio_attach_mi(&sv_hw_if, sc, self);
461 
462 	arg.type = AUDIODEV_TYPE_OPL;
463 	arg.hwif = 0;
464 	arg.hdl = 0;
465 	(void)config_found(self, &arg, audioprint);
466 
467 	sc->sc_pa = *pa;	/* for deferred setup */
468 	config_defer(self, sv_defer);
469 }
470 
471 #ifdef AUDIO_DEBUG
472 void
473 sv_dumpregs(struct sv_softc *sc)
474 {
475 	int idx;
476 
477 #if 0
478 	for (idx = 0; idx < 0x50; idx += 4)
479 		printf ("%02x = %x\n", idx,
480 			pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
481 #endif
482 
483 	for (idx = 0; idx < 6; idx++)
484 		printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
485 
486 	for (idx = 0; idx < 0x32; idx++)
487 		printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
488 
489 	for (idx = 0; idx < 0x10; idx++)
490 		printf ("DMA %02x = %02x\n", idx,
491 			bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
492 }
493 #endif
494 
495 static int
496 sv_intr(void *p)
497 {
498 	struct sv_softc *sc;
499 	uint8_t intr;
500 
501 	sc = p;
502 
503 	mutex_spin_enter(&sc->sc_intr_lock);
504 
505 	intr = sv_read(sc, SV_CODEC_STATUS);
506 	DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
507 
508 	if (intr & SV_INTSTATUS_DMAA) {
509 		if (sc->sc_pintr)
510 			sc->sc_pintr(sc->sc_parg);
511 	}
512 
513 	if (intr & SV_INTSTATUS_DMAC) {
514 		if (sc->sc_rintr)
515 			sc->sc_rintr(sc->sc_rarg);
516 	}
517 
518 	mutex_spin_exit(&sc->sc_intr_lock);
519 
520 	return (intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)) != 0;
521 }
522 
523 static int
524 sv_allocmem(struct sv_softc *sc, size_t size, size_t align,
525     int direction, struct sv_dma *p)
526 {
527 	int error;
528 
529 	p->size = size;
530 	error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
531 	    p->segs, ARRAY_SIZE(p->segs), &p->nsegs, BUS_DMA_WAITOK);
532 	if (error)
533 		return error;
534 
535 	error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
536 	    &p->addr, BUS_DMA_WAITOK|BUS_DMA_COHERENT);
537 	if (error)
538 		goto free;
539 
540 	error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
541 	    0, BUS_DMA_WAITOK, &p->map);
542 	if (error)
543 		goto unmap;
544 
545 	error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
546 	    BUS_DMA_WAITOK | (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
547 	if (error)
548 		goto destroy;
549 	DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
550 	    (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
551 	return 0;
552 
553 destroy:
554 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
555 unmap:
556 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
557 free:
558 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
559 	return error;
560 }
561 
562 static int
563 sv_freemem(struct sv_softc *sc, struct sv_dma *p)
564 {
565 
566 	bus_dmamap_unload(sc->sc_dmatag, p->map);
567 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
568 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
569 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
570 	return 0;
571 }
572 
573 static int
574 sv_open(void *addr, int flags)
575 {
576 	struct sv_softc *sc;
577 
578 	sc = addr;
579 	DPRINTF(("sv_open\n"));
580 	if (!sc->sc_dmaset)
581 		return ENXIO;
582 
583 	return 0;
584 }
585 
586 static int
587 sv_query_encoding(void *addr, struct audio_encoding *fp)
588 {
589 
590 	switch (fp->index) {
591 	case 0:
592 		strcpy(fp->name, AudioEulinear);
593 		fp->encoding = AUDIO_ENCODING_ULINEAR;
594 		fp->precision = 8;
595 		fp->flags = 0;
596 		return 0;
597 	case 1:
598 		strcpy(fp->name, AudioEmulaw);
599 		fp->encoding = AUDIO_ENCODING_ULAW;
600 		fp->precision = 8;
601 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
602 		return 0;
603 	case 2:
604 		strcpy(fp->name, AudioEalaw);
605 		fp->encoding = AUDIO_ENCODING_ALAW;
606 		fp->precision = 8;
607 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
608 		return 0;
609 	case 3:
610 		strcpy(fp->name, AudioEslinear);
611 		fp->encoding = AUDIO_ENCODING_SLINEAR;
612 		fp->precision = 8;
613 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
614 		return 0;
615 	case 4:
616 		strcpy(fp->name, AudioEslinear_le);
617 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
618 		fp->precision = 16;
619 		fp->flags = 0;
620 		return 0;
621 	case 5:
622 		strcpy(fp->name, AudioEulinear_le);
623 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
624 		fp->precision = 16;
625 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
626 		return 0;
627 	case 6:
628 		strcpy(fp->name, AudioEslinear_be);
629 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
630 		fp->precision = 16;
631 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
632 		return 0;
633 	case 7:
634 		strcpy(fp->name, AudioEulinear_be);
635 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
636 		fp->precision = 16;
637 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
638 		return 0;
639 	default:
640 		return EINVAL;
641 	}
642 }
643 
644 static int
645 sv_set_params(void *addr, int setmode, int usemode, audio_params_t *play,
646     audio_params_t *rec, stream_filter_list_t *pfil, stream_filter_list_t *rfil)
647 {
648 	struct sv_softc *sc;
649 	audio_params_t *p;
650 	uint32_t val;
651 
652 	sc = addr;
653 	p = NULL;
654 	/*
655 	 * This device only has one clock, so make the sample rates match.
656 	 */
657 	if (play->sample_rate != rec->sample_rate &&
658 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
659 		if (setmode == AUMODE_PLAY) {
660 			rec->sample_rate = play->sample_rate;
661 			setmode |= AUMODE_RECORD;
662 		} else if (setmode == AUMODE_RECORD) {
663 			play->sample_rate = rec->sample_rate;
664 			setmode |= AUMODE_PLAY;
665 		} else
666 			return EINVAL;
667 	}
668 
669 	if (setmode & AUMODE_RECORD) {
670 		p = rec;
671 		if (auconv_set_converter(sv_formats, SV_NFORMATS,
672 					 AUMODE_RECORD, rec, FALSE, rfil) < 0)
673 			return EINVAL;
674 	}
675 	if (setmode & AUMODE_PLAY) {
676 		p = play;
677 		if (auconv_set_converter(sv_formats, SV_NFORMATS,
678 					 AUMODE_PLAY, play, FALSE, pfil) < 0)
679 			return EINVAL;
680 	}
681 
682 	if (p == NULL)
683 		return 0;
684 
685 	val = p->sample_rate * 65536 / 48000;
686 	/*
687 	 * If the sample rate is exactly 48 kHz, the fraction would overflow the
688 	 * register, so we have to bias it.  This causes a little clock drift.
689 	 * The drift is below normal crystal tolerance (.0001%), so although
690 	 * this seems a little silly, we can pretty much ignore it.
691 	 * (I tested the output speed with values of 1-20, just to be sure this
692 	 * register isn't *supposed* to have a bias.  It isn't.)
693 	 * - mycroft
694 	 */
695 	if (val > 65535)
696 		val = 65535;
697 
698 	mutex_spin_enter(&sc->sc_intr_lock);
699 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
700 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
701 	mutex_spin_exit(&sc->sc_intr_lock);
702 
703 #define F_REF 24576000
704 
705 #define ABS(x) (((x) < 0) ? (-x) : (x))
706 
707 	if (setmode & AUMODE_RECORD) {
708 		/* The ADC reference frequency (f_out) is 512 * sample rate */
709 
710 		/* f_out is dervied from the 24.576MHz crystal by three values:
711 		   M & N & R. The equation is as follows:
712 
713 		   f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
714 
715 		   with the constraint that:
716 
717 		   80 MHz < (m + 2) / (n + 2) * f_ref <= 150MHz
718 		   and n, m >= 1
719 		*/
720 
721 		int  goal_f_out;
722 		int  a, n, m, best_n, best_m, best_error;
723 		int  pll_sample;
724 		int  error;
725 
726 		goal_f_out = 512 * rec->sample_rate;
727 		best_n = 0;
728 		best_m = 0;
729 		best_error = 10000000;
730 		for (a = 0; a < 8; a++) {
731 			if ((goal_f_out * (1 << a)) >= 80000000)
732 				break;
733 		}
734 
735 		/* a != 8 because sample_rate >= 2000 */
736 
737 		for (n = 33; n > 2; n--) {
738 			m = (goal_f_out * n * (1 << a)) / F_REF;
739 			if ((m > 257) || (m < 3))
740 				continue;
741 
742 			pll_sample = (m * F_REF) / (n * (1 << a));
743 			pll_sample /= 512;
744 
745 			/* Threshold might be good here */
746 			error = pll_sample - rec->sample_rate;
747 			error = ABS(error);
748 
749 			if (error < best_error) {
750 				best_error = error;
751 				best_n = n;
752 				best_m = m;
753 				if (error == 0) break;
754 			}
755 		}
756 
757 		best_n -= 2;
758 		best_m -= 2;
759 
760 		mutex_spin_enter(&sc->sc_intr_lock);
761 		sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
762 		sv_write_indirect(sc, SV_ADC_PLL_N,
763 				  best_n | (a << SV_PLL_R_SHIFT));
764 		mutex_spin_exit(&sc->sc_intr_lock);
765 	}
766 
767 	return 0;
768 }
769 
770 static int
771 sv_round_blocksize(void *addr, int blk, int mode,
772     const audio_params_t *param)
773 {
774 
775 	return blk & -32;	/* keep good alignment */
776 }
777 
778 static int
779 sv_trigger_output(void *addr, void *start, void *end, int blksize,
780     void (*intr)(void *), void *arg, const audio_params_t *param)
781 {
782 	struct sv_softc *sc;
783 	struct sv_dma *p;
784 	uint8_t mode;
785 	int dma_count;
786 
787 	DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d "
788 	    "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
789 	sc = addr;
790 	sc->sc_pintr = intr;
791 	sc->sc_parg = arg;
792 
793 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
794 	mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
795 	if (param->precision == 16)
796 		mode |= SV_DMAA_FORMAT16;
797 	if (param->channels == 2)
798 		mode |= SV_DMAA_STEREO;
799 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
800 
801 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
802 		continue;
803 	if (p == NULL) {
804 		printf("sv_trigger_output: bad addr %p\n", start);
805 		return EINVAL;
806 	}
807 
808 	dma_count = ((char *)end - (char *)start) - 1;
809 	DPRINTF(("sv_trigger_output: DMA start loop input addr=%x cc=%d\n",
810 	    (int)DMAADDR(p), dma_count));
811 
812 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
813 			  DMAADDR(p));
814 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
815 			  dma_count);
816 	bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
817 			  DMA37MD_READ | DMA37MD_LOOP);
818 
819 	DPRINTF(("sv_trigger_output: current addr=%x\n",
820 	    bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
821 
822 	dma_count = blksize - 1;
823 
824 	sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
825 	sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
826 
827 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
828 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
829 
830 	return 0;
831 }
832 
833 static int
834 sv_trigger_input(void *addr, void *start, void *end, int blksize,
835     void (*intr)(void *), void *arg, const audio_params_t *param)
836 {
837 	struct sv_softc *sc;
838 	struct sv_dma *p;
839 	uint8_t mode;
840 	int dma_count;
841 
842 	DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d "
843 	    "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
844 	sc = addr;
845 	sc->sc_rintr = intr;
846 	sc->sc_rarg = arg;
847 
848 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
849 	mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
850 	if (param->precision == 16)
851 		mode |= SV_DMAC_FORMAT16;
852 	if (param->channels == 2)
853 		mode |= SV_DMAC_STEREO;
854 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
855 
856 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
857 		continue;
858 	if (!p) {
859 		printf("sv_trigger_input: bad addr %p\n", start);
860 		return EINVAL;
861 	}
862 
863 	dma_count = (((char *)end - (char *)start) >> 1) - 1;
864 	DPRINTF(("sv_trigger_input: DMA start loop input addr=%x cc=%d\n",
865 	    (int)DMAADDR(p), dma_count));
866 
867 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
868 			  DMAADDR(p));
869 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
870 			  dma_count);
871 	bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
872 			  DMA37MD_WRITE | DMA37MD_LOOP);
873 
874 	DPRINTF(("sv_trigger_input: current addr=%x\n",
875 	    bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
876 
877 	dma_count = (blksize >> 1) - 1;
878 
879 	sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
880 	sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
881 
882 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
883 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
884 
885 	return 0;
886 }
887 
888 static int
889 sv_halt_output(void *addr)
890 {
891 	struct sv_softc *sc;
892 	uint8_t mode;
893 
894 	DPRINTF(("sv: sv_halt_output\n"));
895 	sc = addr;
896 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
897 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
898 	sc->sc_pintr = 0;
899 
900 	return 0;
901 }
902 
903 static int
904 sv_halt_input(void *addr)
905 {
906 	struct sv_softc *sc;
907 	uint8_t mode;
908 
909 	DPRINTF(("sv: sv_halt_input\n"));
910 	sc = addr;
911 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
912 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
913 	sc->sc_rintr = 0;
914 
915 	return 0;
916 }
917 
918 static int
919 sv_getdev(void *addr, struct audio_device *retp)
920 {
921 
922 	*retp = sv_device;
923 	return 0;
924 }
925 
926 
927 /*
928  * Mixer related code is here
929  *
930  */
931 
932 #define SV_INPUT_CLASS 0
933 #define SV_OUTPUT_CLASS 1
934 #define SV_RECORD_CLASS 2
935 
936 #define SV_LAST_CLASS 2
937 
938 static const char *mixer_classes[] =
939 	{ AudioCinputs, AudioCoutputs, AudioCrecord };
940 
941 static const struct {
942 	uint8_t   l_port;
943 	uint8_t   r_port;
944 	uint8_t   mask;
945 	uint8_t   class;
946 	const char *audio;
947 } ports[] = {
948   { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
949     SV_INPUT_CLASS, "aux1" },
950   { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
951     SV_INPUT_CLASS, AudioNcd },
952   { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
953     SV_INPUT_CLASS, AudioNline },
954   { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
955   { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
956     SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
957   { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
958     SV_INPUT_CLASS, "aux2" },
959   { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
960     SV_INPUT_CLASS, AudioNdac },
961   { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
962     SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
963 };
964 
965 
966 static const struct {
967 	int idx;
968 	const char *name;
969 } record_sources[] = {
970 	{ SV_REC_CD, AudioNcd },
971 	{ SV_REC_DAC, AudioNdac },
972 	{ SV_REC_AUX2, "aux2" },
973 	{ SV_REC_LINE, AudioNline },
974 	{ SV_REC_AUX1, "aux1" },
975 	{ SV_REC_MIC, AudioNmicrophone },
976 	{ SV_REC_MIXER, AudioNmixerout }
977 };
978 
979 
980 #define SV_DEVICES_PER_PORT 2
981 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
982 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
983 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
984 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
985 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
986 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
987 
988 static int
989 sv_query_devinfo(void *addr, mixer_devinfo_t *dip)
990 {
991 	int i;
992 
993 	/* It's a class */
994 	if (dip->index <= SV_LAST_CLASS) {
995 		dip->type = AUDIO_MIXER_CLASS;
996 		dip->mixer_class = dip->index;
997 		dip->next = dip->prev = AUDIO_MIXER_LAST;
998 		strcpy(dip->label.name, mixer_classes[dip->index]);
999 		return 0;
1000 	}
1001 
1002 	if (dip->index >= SV_FIRST_MIXER &&
1003 	    dip->index <= SV_LAST_MIXER) {
1004 		int off, mute ,idx;
1005 
1006 		off = dip->index - SV_FIRST_MIXER;
1007 		mute = (off % SV_DEVICES_PER_PORT);
1008 		idx = off / SV_DEVICES_PER_PORT;
1009 		dip->mixer_class = ports[idx].class;
1010 		strcpy(dip->label.name, ports[idx].audio);
1011 
1012 		if (!mute) {
1013 			dip->type = AUDIO_MIXER_VALUE;
1014 			dip->prev = AUDIO_MIXER_LAST;
1015 			dip->next = dip->index + 1;
1016 
1017 			if (ports[idx].r_port != 0)
1018 				dip->un.v.num_channels = 2;
1019 			else
1020 				dip->un.v.num_channels = 1;
1021 
1022 			strcpy(dip->un.v.units.name, AudioNvolume);
1023 		} else {
1024 			dip->type = AUDIO_MIXER_ENUM;
1025 			dip->prev = dip->index - 1;
1026 			dip->next = AUDIO_MIXER_LAST;
1027 
1028 			strcpy(dip->label.name, AudioNmute);
1029 			dip->un.e.num_mem = 2;
1030 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
1031 			dip->un.e.member[0].ord = 0;
1032 			strcpy(dip->un.e.member[1].label.name, AudioNon);
1033 			dip->un.e.member[1].ord = 1;
1034 		}
1035 
1036 		return 0;
1037 	}
1038 
1039 	switch (dip->index) {
1040 	case SV_RECORD_SOURCE:
1041 		dip->mixer_class = SV_RECORD_CLASS;
1042 		dip->prev = AUDIO_MIXER_LAST;
1043 		dip->next = SV_RECORD_GAIN;
1044 		strcpy(dip->label.name, AudioNsource);
1045 		dip->type = AUDIO_MIXER_ENUM;
1046 
1047 		dip->un.e.num_mem = ARRAY_SIZE(record_sources);
1048 		for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
1049 			strcpy(dip->un.e.member[i].label.name,
1050 			       record_sources[i].name);
1051 			dip->un.e.member[i].ord = record_sources[i].idx;
1052 		}
1053 		return 0;
1054 
1055 	case SV_RECORD_GAIN:
1056 		dip->mixer_class = SV_RECORD_CLASS;
1057 		dip->prev = SV_RECORD_SOURCE;
1058 		dip->next = AUDIO_MIXER_LAST;
1059 		strcpy(dip->label.name, "gain");
1060 		dip->type = AUDIO_MIXER_VALUE;
1061 		dip->un.v.num_channels = 1;
1062 		strcpy(dip->un.v.units.name, AudioNvolume);
1063 		return 0;
1064 
1065 	case SV_MIC_BOOST:
1066 		dip->mixer_class = SV_RECORD_CLASS;
1067 		dip->prev = AUDIO_MIXER_LAST;
1068 		dip->next = AUDIO_MIXER_LAST;
1069 		strcpy(dip->label.name, "micboost");
1070 		goto on_off;
1071 
1072 	case SV_SRS_MODE:
1073 		dip->mixer_class = SV_OUTPUT_CLASS;
1074 		dip->prev = dip->next = AUDIO_MIXER_LAST;
1075 		strcpy(dip->label.name, AudioNspatial);
1076 
1077 	on_off:
1078 		dip->type = AUDIO_MIXER_ENUM;
1079 		dip->un.e.num_mem = 2;
1080 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1081 		dip->un.e.member[0].ord = 0;
1082 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1083 		dip->un.e.member[1].ord = 1;
1084 		return 0;
1085 	}
1086 
1087 	return ENXIO;
1088 }
1089 
1090 static int
1091 sv_mixer_set_port(void *addr, mixer_ctrl_t *cp)
1092 {
1093 	struct sv_softc *sc;
1094 	uint8_t reg;
1095 	int idx;
1096 
1097 	sc = addr;
1098 	if (cp->dev >= SV_FIRST_MIXER &&
1099 	    cp->dev <= SV_LAST_MIXER) {
1100 		int off, mute;
1101 
1102 		off = cp->dev - SV_FIRST_MIXER;
1103 		mute = (off % SV_DEVICES_PER_PORT);
1104 		idx = off / SV_DEVICES_PER_PORT;
1105 
1106 		if (mute) {
1107 			if (cp->type != AUDIO_MIXER_ENUM)
1108 				return EINVAL;
1109 
1110 			mutex_spin_enter(&sc->sc_intr_lock);
1111 			reg = sv_read_indirect(sc, ports[idx].l_port);
1112 			if (cp->un.ord)
1113 				reg |= SV_MUTE_BIT;
1114 			else
1115 				reg &= ~SV_MUTE_BIT;
1116 			sv_write_indirect(sc, ports[idx].l_port, reg);
1117 
1118 			if (ports[idx].r_port) {
1119 				reg = sv_read_indirect(sc, ports[idx].r_port);
1120 				if (cp->un.ord)
1121 					reg |= SV_MUTE_BIT;
1122 				else
1123 					reg &= ~SV_MUTE_BIT;
1124 				sv_write_indirect(sc, ports[idx].r_port, reg);
1125 			}
1126 			mutex_spin_exit(&sc->sc_intr_lock);
1127 		} else {
1128 			int  lval, rval;
1129 
1130 			if (cp->type != AUDIO_MIXER_VALUE)
1131 				return EINVAL;
1132 
1133 			if (cp->un.value.num_channels != 1 &&
1134 			    cp->un.value.num_channels != 2)
1135 				return (EINVAL);
1136 
1137 			if (ports[idx].r_port == 0) {
1138 				if (cp->un.value.num_channels != 1)
1139 					return (EINVAL);
1140 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1141 				rval = 0; /* shut up GCC */
1142 			} else {
1143 				if (cp->un.value.num_channels != 2)
1144 					return (EINVAL);
1145 
1146 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1147 				rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1148 			}
1149 
1150 			mutex_spin_enter(&sc->sc_intr_lock);
1151 			reg = sv_read_indirect(sc, ports[idx].l_port);
1152 			reg &= ~(ports[idx].mask);
1153 			lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
1154 				AUDIO_MAX_GAIN;
1155 			reg |= lval;
1156 			sv_write_indirect(sc, ports[idx].l_port, reg);
1157 
1158 			if (ports[idx].r_port != 0) {
1159 				reg = sv_read_indirect(sc, ports[idx].r_port);
1160 				reg &= ~(ports[idx].mask);
1161 
1162 				rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
1163 					AUDIO_MAX_GAIN;
1164 				reg |= rval;
1165 
1166 				sv_write_indirect(sc, ports[idx].r_port, reg);
1167 			}
1168 
1169 			sv_read_indirect(sc, ports[idx].l_port);
1170 			mutex_spin_exit(&sc->sc_intr_lock);
1171 		}
1172 
1173 		return 0;
1174 	}
1175 
1176 
1177 	switch (cp->dev) {
1178 	case SV_RECORD_SOURCE:
1179 		if (cp->type != AUDIO_MIXER_ENUM)
1180 			return EINVAL;
1181 
1182 		for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
1183 			if (record_sources[idx].idx == cp->un.ord)
1184 				goto found;
1185 		}
1186 
1187 		return EINVAL;
1188 
1189 	found:
1190 		mutex_spin_enter(&sc->sc_intr_lock);
1191 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1192 		reg &= ~SV_REC_SOURCE_MASK;
1193 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1194 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1195 
1196 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1197 		reg &= ~SV_REC_SOURCE_MASK;
1198 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1199 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1200 		mutex_spin_exit(&sc->sc_intr_lock);
1201 		return 0;
1202 
1203 	case SV_RECORD_GAIN:
1204 	{
1205 		int val;
1206 
1207 		if (cp->type != AUDIO_MIXER_VALUE)
1208 			return EINVAL;
1209 
1210 		if (cp->un.value.num_channels != 1)
1211 			return EINVAL;
1212 
1213 		val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]
1214 		    * SV_REC_GAIN_MASK) / AUDIO_MAX_GAIN;
1215 
1216 		mutex_spin_enter(&sc->sc_intr_lock);
1217 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1218 		reg &= ~SV_REC_GAIN_MASK;
1219 		reg |= val;
1220 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1221 
1222 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1223 		reg &= ~SV_REC_GAIN_MASK;
1224 		reg |= val;
1225 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1226 		mutex_spin_exit(&sc->sc_intr_lock);
1227 	}
1228 	return (0);
1229 
1230 	case SV_MIC_BOOST:
1231 		if (cp->type != AUDIO_MIXER_ENUM)
1232 			return EINVAL;
1233 
1234 		mutex_spin_enter(&sc->sc_intr_lock);
1235 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1236 		if (cp->un.ord) {
1237 			reg |= SV_MIC_BOOST_BIT;
1238 		} else {
1239 			reg &= ~SV_MIC_BOOST_BIT;
1240 		}
1241 
1242 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1243 		mutex_spin_exit(&sc->sc_intr_lock);
1244 		return 0;
1245 
1246 	case SV_SRS_MODE:
1247 		if (cp->type != AUDIO_MIXER_ENUM)
1248 			return EINVAL;
1249 
1250 		mutex_spin_enter(&sc->sc_intr_lock);
1251 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1252 		if (cp->un.ord) {
1253 			reg &= ~SV_SRS_SPACE_ONOFF;
1254 		} else {
1255 			reg |= SV_SRS_SPACE_ONOFF;
1256 		}
1257 
1258 		sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
1259 		mutex_spin_exit(&sc->sc_intr_lock);
1260 		return 0;
1261 	}
1262 
1263 	return EINVAL;
1264 }
1265 
1266 static int
1267 sv_mixer_get_port(void *addr, mixer_ctrl_t *cp)
1268 {
1269 	struct sv_softc *sc;
1270 	int val, error;
1271 	uint8_t reg;
1272 
1273 	sc = addr;
1274 	error = 0;
1275 
1276 	mutex_spin_enter(&sc->sc_intr_lock);
1277 
1278 	if (cp->dev >= SV_FIRST_MIXER &&
1279 	    cp->dev <= SV_LAST_MIXER) {
1280 		int off = cp->dev - SV_FIRST_MIXER;
1281 		int mute = (off % 2);
1282 		int idx = off / 2;
1283 
1284 		off = cp->dev - SV_FIRST_MIXER;
1285 		mute = (off % 2);
1286 		idx = off / 2;
1287 		if (mute) {
1288 			if (cp->type != AUDIO_MIXER_ENUM)
1289 				error = EINVAL;
1290 			else {
1291 				reg = sv_read_indirect(sc, ports[idx].l_port);
1292 				cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
1293 			}
1294 		} else {
1295 			if (cp->type != AUDIO_MIXER_VALUE ||
1296 			    (cp->un.value.num_channels != 1 &&
1297 			    cp->un.value.num_channels != 2) ||
1298 			   ((ports[idx].r_port == 0 &&
1299 			     cp->un.value.num_channels != 1) ||
1300 			    (ports[idx].r_port != 0 &&
1301 			     cp->un.value.num_channels != 2)))
1302 				error = EINVAL;
1303 			else {
1304 				reg = sv_read_indirect(sc, ports[idx].l_port);
1305 				reg &= ports[idx].mask;
1306 
1307 				val = AUDIO_MAX_GAIN -
1308 				    ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1309 
1310 				if (ports[idx].r_port != 0) {
1311 					cp->un.value.level
1312 					    [AUDIO_MIXER_LEVEL_LEFT] = val;
1313 
1314 					reg = sv_read_indirect(sc,
1315 					    ports[idx].r_port);
1316 					reg &= ports[idx].mask;
1317 
1318 					val = AUDIO_MAX_GAIN -
1319 					    ((reg * AUDIO_MAX_GAIN)
1320 					    / ports[idx].mask);
1321 					cp->un.value.level
1322 					    [AUDIO_MIXER_LEVEL_RIGHT] = val;
1323 				} else
1324 					cp->un.value.level
1325 					    [AUDIO_MIXER_LEVEL_MONO] = val;
1326 			}
1327 		}
1328 
1329 		return error;
1330 	}
1331 
1332 	switch (cp->dev) {
1333 	case SV_RECORD_SOURCE:
1334 		if (cp->type != AUDIO_MIXER_ENUM) {
1335 			error = EINVAL;
1336 			break;
1337 		}
1338 
1339 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1340 		cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
1341 
1342 		break;
1343 
1344 	case SV_RECORD_GAIN:
1345 		if (cp->type != AUDIO_MIXER_VALUE) {
1346 			error = EINVAL;
1347 			break;
1348 		}
1349 		if (cp->un.value.num_channels != 1) {
1350 			error = EINVAL;
1351 			break;
1352 		}
1353 
1354 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
1355 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1356 			(((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
1357 
1358 		break;
1359 
1360 	case SV_MIC_BOOST:
1361 		if (cp->type != AUDIO_MIXER_ENUM) {
1362 			error = EINVAL;
1363 			break;
1364 		}
1365 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1366 		cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
1367 		break;
1368 
1369 	case SV_SRS_MODE:
1370 		if (cp->type != AUDIO_MIXER_ENUM) {
1371 			error = EINVAL;
1372 			break;
1373 		}
1374 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1375 		cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
1376 		break;
1377 	default:
1378 		error = EINVAL;
1379 		break;
1380 	}
1381 
1382 	mutex_spin_exit(&sc->sc_intr_lock);
1383 	return error;
1384 }
1385 
1386 static void
1387 sv_init_mixer(struct sv_softc *sc)
1388 {
1389 	mixer_ctrl_t cp;
1390 	int i;
1391 
1392 	cp.type = AUDIO_MIXER_ENUM;
1393 	cp.dev = SV_SRS_MODE;
1394 	cp.un.ord = 0;
1395 
1396 	sv_mixer_set_port(sc, &cp);
1397 
1398 	for (i = 0; i < ARRAY_SIZE(ports); i++) {
1399 		if (!strcmp(ports[i].audio, AudioNdac)) {
1400 			cp.type = AUDIO_MIXER_ENUM;
1401 			cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
1402 			cp.un.ord = 0;
1403 			sv_mixer_set_port(sc, &cp);
1404 			break;
1405 		}
1406 	}
1407 }
1408 
1409 static void *
1410 sv_malloc(void *addr, int direction, size_t size)
1411 {
1412 	struct sv_softc *sc;
1413 	struct sv_dma *p;
1414 	int error;
1415 
1416 	sc = addr;
1417 	p = kmem_alloc(sizeof(*p), KM_SLEEP);
1418 	error = sv_allocmem(sc, size, 16, direction, p);
1419 	if (error) {
1420 		kmem_free(p, sizeof(*p));
1421 		return 0;
1422 	}
1423 	p->next = sc->sc_dmas;
1424 	sc->sc_dmas = p;
1425 	return KERNADDR(p);
1426 }
1427 
1428 static void
1429 sv_free(void *addr, void *ptr, size_t size)
1430 {
1431 	struct sv_softc *sc;
1432 	struct sv_dma **pp, *p;
1433 
1434 	sc = addr;
1435 	for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1436 		if (KERNADDR(p) == ptr) {
1437 			sv_freemem(sc, p);
1438 			*pp = p->next;
1439 			kmem_free(p, sizeof(*p));
1440 			return;
1441 		}
1442 	}
1443 }
1444 
1445 static size_t
1446 sv_round_buffersize(void *addr, int direction, size_t size)
1447 {
1448 
1449 	return size;
1450 }
1451 
1452 static paddr_t
1453 sv_mappage(void *addr, void *mem, off_t off, int prot)
1454 {
1455 	struct sv_softc *sc;
1456 	struct sv_dma *p;
1457 
1458 	sc = addr;
1459 	if (off < 0)
1460 		return -1;
1461 	for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1462 		continue;
1463 	if (p == NULL)
1464 		return -1;
1465 	return bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1466 			       off, prot, BUS_DMA_WAITOK);
1467 }
1468 
1469 static int
1470 sv_get_props(void *addr)
1471 {
1472 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
1473 }
1474 
1475 static void
1476 sv_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
1477 {
1478 	struct sv_softc *sc;
1479 
1480 	sc = addr;
1481 	*intr = &sc->sc_intr_lock;
1482 	*thread = &sc->sc_lock;
1483 }
1484