1 /* $NetBSD: sv.c,v 1.12 2000/12/28 22:59:15 sommerfeld Exp $ */ 2 /* $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */ 3 4 /* 5 * Copyright (c) 1999 The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Charles M. Hannum. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * Copyright (c) 1998 Constantine Paul Sapuntzakis 42 * All rights reserved 43 * 44 * Author: Constantine Paul Sapuntzakis (csapuntz@cvs.openbsd.org) 45 * 46 * Redistribution and use in source and binary forms, with or without 47 * modification, are permitted provided that the following conditions 48 * are met: 49 * 1. Redistributions of source code must retain the above copyright 50 * notice, this list of conditions and the following disclaimer. 51 * 2. Redistributions in binary form must reproduce the above copyright 52 * notice, this list of conditions and the following disclaimer in the 53 * documentation and/or other materials provided with the distribution. 54 * 3. The author's name or those of the contributors may be used to 55 * endorse or promote products derived from this software without 56 * specific prior written permission. 57 * 58 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS 59 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 60 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 61 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 68 * POSSIBILITY OF SUCH DAMAGE. 69 */ 70 71 /* 72 * S3 SonicVibes driver 73 * Heavily based on the eap driver by Lennart Augustsson 74 */ 75 76 #include <sys/param.h> 77 #include <sys/systm.h> 78 #include <sys/kernel.h> 79 #include <sys/malloc.h> 80 #include <sys/device.h> 81 82 #include <dev/pci/pcireg.h> 83 #include <dev/pci/pcivar.h> 84 #include <dev/pci/pcidevs.h> 85 86 #include <sys/audioio.h> 87 #include <dev/audio_if.h> 88 #include <dev/mulaw.h> 89 #include <dev/auconv.h> 90 91 #include <dev/ic/i8237reg.h> 92 #include <dev/pci/svreg.h> 93 #include <dev/pci/svvar.h> 94 95 #include <machine/bus.h> 96 97 #ifdef AUDIO_DEBUG 98 #define DPRINTF(x) if (svdebug) printf x 99 #define DPRINTFN(n,x) if (svdebug>(n)) printf x 100 int svdebug = 0; 101 #else 102 #define DPRINTF(x) 103 #define DPRINTFN(n,x) 104 #endif 105 106 int sv_match __P((struct device *, struct cfdata *, void *)); 107 void sv_attach __P((struct device *, struct device *, void *)); 108 int sv_intr __P((void *)); 109 110 struct sv_dma { 111 bus_dmamap_t map; 112 caddr_t addr; 113 bus_dma_segment_t segs[1]; 114 int nsegs; 115 size_t size; 116 struct sv_dma *next; 117 }; 118 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr) 119 #define KERNADDR(p) ((void *)((p)->addr)) 120 121 struct cfattach sv_ca = { 122 sizeof(struct sv_softc), sv_match, sv_attach 123 }; 124 125 struct audio_device sv_device = { 126 "S3 SonicVibes", 127 "", 128 "sv" 129 }; 130 131 #define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0])) 132 133 int sv_allocmem __P((struct sv_softc *, size_t, size_t, struct sv_dma *)); 134 int sv_freemem __P((struct sv_softc *, struct sv_dma *)); 135 136 int sv_open __P((void *, int)); 137 void sv_close __P((void *)); 138 int sv_query_encoding __P((void *, struct audio_encoding *)); 139 int sv_set_params __P((void *, int, int, struct audio_params *, struct audio_params *)); 140 int sv_round_blocksize __P((void *, int)); 141 int sv_trigger_output __P((void *, void *, void *, int, void (*)(void *), 142 void *, struct audio_params *)); 143 int sv_trigger_input __P((void *, void *, void *, int, void (*)(void *), 144 void *, struct audio_params *)); 145 int sv_halt_output __P((void *)); 146 int sv_halt_input __P((void *)); 147 int sv_getdev __P((void *, struct audio_device *)); 148 int sv_mixer_set_port __P((void *, mixer_ctrl_t *)); 149 int sv_mixer_get_port __P((void *, mixer_ctrl_t *)); 150 int sv_query_devinfo __P((void *, mixer_devinfo_t *)); 151 void *sv_malloc __P((void *, int, size_t, int, int)); 152 void sv_free __P((void *, void *, int)); 153 size_t sv_round_buffersize __P((void *, int, size_t)); 154 paddr_t sv_mappage __P((void *, void *, off_t, int)); 155 int sv_get_props __P((void *)); 156 157 #ifdef AUDIO_DEBUG 158 void sv_dumpregs __P((struct sv_softc *sc)); 159 #endif 160 161 struct audio_hw_if sv_hw_if = { 162 sv_open, 163 sv_close, 164 NULL, 165 sv_query_encoding, 166 sv_set_params, 167 sv_round_blocksize, 168 NULL, 169 NULL, 170 NULL, 171 NULL, 172 NULL, 173 sv_halt_output, 174 sv_halt_input, 175 NULL, 176 sv_getdev, 177 NULL, 178 sv_mixer_set_port, 179 sv_mixer_get_port, 180 sv_query_devinfo, 181 sv_malloc, 182 sv_free, 183 sv_round_buffersize, 184 sv_mappage, 185 sv_get_props, 186 sv_trigger_output, 187 sv_trigger_input, 188 }; 189 190 191 static u_int8_t sv_read __P((struct sv_softc *, u_int8_t)); 192 static u_int8_t sv_read_indirect __P((struct sv_softc *, u_int8_t)); 193 static void sv_write __P((struct sv_softc *, u_int8_t, u_int8_t )); 194 static void sv_write_indirect __P((struct sv_softc *, u_int8_t, u_int8_t )); 195 static void sv_init_mixer __P((struct sv_softc *)); 196 197 static void sv_defer __P((struct device *self)); 198 199 static void 200 sv_write (sc, reg, val) 201 struct sv_softc *sc; 202 u_int8_t reg, val; 203 204 { 205 DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val)); 206 bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val); 207 } 208 209 static u_int8_t 210 sv_read(sc, reg) 211 struct sv_softc *sc; 212 u_int8_t reg; 213 214 { 215 u_int8_t val; 216 217 val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg); 218 DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val)); 219 return val; 220 } 221 222 static u_int8_t 223 sv_read_indirect(sc, reg) 224 struct sv_softc *sc; 225 u_int8_t reg; 226 { 227 u_int8_t val; 228 int s = splaudio(); 229 230 sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK); 231 val = sv_read(sc, SV_CODEC_IDATA); 232 splx(s); 233 return (val); 234 } 235 236 static void 237 sv_write_indirect(sc, reg, val) 238 struct sv_softc *sc; 239 u_int8_t reg, val; 240 { 241 u_int8_t iaddr = reg & SV_IADDR_MASK; 242 int s = splaudio(); 243 244 if (reg == SV_DMA_DATA_FORMAT) 245 iaddr |= SV_IADDR_MCE; 246 247 sv_write(sc, SV_CODEC_IADDR, iaddr); 248 sv_write(sc, SV_CODEC_IDATA, val); 249 splx(s); 250 } 251 252 int 253 sv_match(parent, match, aux) 254 struct device *parent; 255 struct cfdata *match; 256 void *aux; 257 { 258 struct pci_attach_args *pa = aux; 259 260 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 && 261 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES) 262 return (1); 263 264 return (0); 265 } 266 267 int pci_alloc_io __P((pci_chipset_tag_t pc, pcitag_t pt, 268 int pcioffs, 269 bus_space_tag_t iot, bus_size_t size, 270 bus_size_t align, bus_size_t bound, int flags, 271 bus_space_handle_t *ioh)); 272 273 #define PCI_IO_ALLOC_LOW 0xa000 274 #define PCI_IO_ALLOC_HIGH 0xb000 275 int 276 pci_alloc_io(pc, pt, pcioffs, iot, size, align, bound, flags, ioh) 277 pci_chipset_tag_t pc; 278 pcitag_t pt; 279 int pcioffs; 280 bus_space_tag_t iot; 281 bus_size_t size; 282 bus_size_t align; 283 bus_size_t bound; 284 int flags; 285 bus_space_handle_t *ioh; 286 { 287 bus_addr_t addr; 288 int error; 289 290 error = bus_space_alloc(iot, PCI_IO_ALLOC_LOW, PCI_IO_ALLOC_HIGH, 291 size, align, bound, flags, &addr, ioh); 292 if (error) 293 return(error); 294 295 pci_conf_write(pc, pt, pcioffs, addr); 296 return (0); 297 } 298 299 /* 300 * Allocate IO addresses when all other configuration is done. 301 */ 302 void 303 sv_defer(self) 304 struct device *self; 305 { 306 struct sv_softc *sc = (struct sv_softc *)self; 307 pci_chipset_tag_t pc = sc->sc_pa.pa_pc; 308 pcitag_t pt = sc->sc_pa.pa_tag; 309 pcireg_t dmaio; 310 311 DPRINTF(("sv_defer: %p\n", sc)); 312 if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF, 313 sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0, 314 0, &sc->sc_dmaa_ioh)) { 315 printf("sv_attach: cannot allocate DMA A range\n"); 316 return; 317 } 318 dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF); 319 DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio)); 320 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, 321 dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR); 322 323 if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF, 324 sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0, 325 0, &sc->sc_dmac_ioh)) { 326 printf("sv_attach: cannot allocate DMA C range\n"); 327 return; 328 } 329 dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF); 330 DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio)); 331 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 332 dmaio | SV_DMA_CHANNEL_ENABLE); 333 334 sc->sc_dmaset = 1; 335 } 336 337 void 338 sv_attach(parent, self, aux) 339 struct device *parent, *self; 340 void *aux; 341 { 342 struct sv_softc *sc = (struct sv_softc *)self; 343 struct pci_attach_args *pa = aux; 344 pci_chipset_tag_t pc = pa->pa_pc; 345 pcitag_t pt = pa->pa_tag; 346 pci_intr_handle_t ih; 347 pcireg_t csr; 348 char const *intrstr; 349 u_int8_t reg; 350 struct audio_attach_args arg; 351 352 printf ("\n"); 353 354 /* Map I/O registers */ 355 if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT, 356 PCI_MAPREG_TYPE_IO, 0, 357 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) { 358 printf("%s: can't map enhanced i/o space\n", 359 sc->sc_dev.dv_xname); 360 return; 361 } 362 if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT, 363 PCI_MAPREG_TYPE_IO, 0, 364 &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) { 365 printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname); 366 return; 367 } 368 if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT, 369 PCI_MAPREG_TYPE_IO, 0, 370 &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) { 371 printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname); 372 return; 373 } 374 DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n", 375 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh)); 376 377 #ifdef alpha 378 /* XXX Force allocation through the SGMAP. */ 379 sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA); 380 #else 381 sc->sc_dmatag = pa->pa_dmat; 382 #endif 383 384 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR); 385 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0); 386 387 /* Enable the device. */ 388 csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG); 389 pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG, 390 csr | PCI_COMMAND_MASTER_ENABLE); 391 392 sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0); 393 sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0); 394 395 /* initialize codec registers */ 396 reg = sv_read(sc, SV_CODEC_CONTROL); 397 reg |= SV_CTL_RESET; 398 sv_write(sc, SV_CODEC_CONTROL, reg); 399 delay(50); 400 401 reg = sv_read(sc, SV_CODEC_CONTROL); 402 reg &= ~SV_CTL_RESET; 403 reg |= SV_CTL_INTA | SV_CTL_ENHANCED; 404 405 /* This write clears the reset */ 406 sv_write(sc, SV_CODEC_CONTROL, reg); 407 delay(50); 408 409 /* This write actually shoves the new values in */ 410 sv_write(sc, SV_CODEC_CONTROL, reg); 411 412 DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL))); 413 414 /* Enable DMA interrupts */ 415 reg = sv_read(sc, SV_CODEC_INTMASK); 416 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC); 417 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI; 418 sv_write(sc, SV_CODEC_INTMASK, reg); 419 420 sv_read(sc, SV_CODEC_STATUS); 421 422 /* Map and establish the interrupt. */ 423 if (pci_intr_map(pa, &ih)) { 424 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname); 425 return; 426 } 427 intrstr = pci_intr_string(pc, ih); 428 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc); 429 if (sc->sc_ih == NULL) { 430 printf("%s: couldn't establish interrupt", 431 sc->sc_dev.dv_xname); 432 if (intrstr != NULL) 433 printf(" at %s", intrstr); 434 printf("\n"); 435 return; 436 } 437 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); 438 printf("%s: rev %d", sc->sc_dev.dv_xname, 439 sv_read_indirect(sc, SV_REVISION_LEVEL)); 440 if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1) 441 printf(", reverb SRAM present"); 442 if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0)) 443 printf(", wavetable ROM present"); 444 printf("\n"); 445 446 sv_init_mixer(sc); 447 448 audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev); 449 450 arg.type = AUDIODEV_TYPE_OPL; 451 arg.hwif = 0; 452 arg.hdl = 0; 453 (void)config_found(&sc->sc_dev, &arg, audioprint); 454 455 sc->sc_pa = *pa; /* for deferred setup */ 456 config_defer(self, sv_defer); 457 } 458 459 #ifdef AUDIO_DEBUG 460 void 461 sv_dumpregs(sc) 462 struct sv_softc *sc; 463 { 464 int idx; 465 466 #if 0 467 for (idx = 0; idx < 0x50; idx += 4) 468 printf ("%02x = %x\n", idx, 469 pci_conf_read(pa->pa_pc, pa->pa_tag, idx)); 470 #endif 471 472 for (idx = 0; idx < 6; idx++) 473 printf ("REG %02x = %02x\n", idx, sv_read(sc, idx)); 474 475 for (idx = 0; idx < 0x32; idx++) 476 printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx)); 477 478 for (idx = 0; idx < 0x10; idx++) 479 printf ("DMA %02x = %02x\n", idx, 480 bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx)); 481 } 482 #endif 483 484 int 485 sv_intr(p) 486 void *p; 487 { 488 struct sv_softc *sc = p; 489 u_int8_t intr; 490 491 intr = sv_read(sc, SV_CODEC_STATUS); 492 DPRINTFN(5,("sv_intr: intr=0x%x\n", intr)); 493 494 if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC))) 495 return (0); 496 497 if (intr & SV_INTSTATUS_DMAA) { 498 if (sc->sc_pintr) 499 sc->sc_pintr(sc->sc_parg); 500 } 501 502 if (intr & SV_INTSTATUS_DMAC) { 503 if (sc->sc_rintr) 504 sc->sc_rintr(sc->sc_rarg); 505 } 506 507 return (1); 508 } 509 510 int 511 sv_allocmem(sc, size, align, p) 512 struct sv_softc *sc; 513 size_t size; 514 size_t align; 515 struct sv_dma *p; 516 { 517 int error; 518 519 p->size = size; 520 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0, 521 p->segs, ARRAY_SIZE(p->segs), 522 &p->nsegs, BUS_DMA_NOWAIT); 523 if (error) 524 return (error); 525 526 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size, 527 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT); 528 if (error) 529 goto free; 530 531 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size, 532 0, BUS_DMA_NOWAIT, &p->map); 533 if (error) 534 goto unmap; 535 536 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL, 537 BUS_DMA_NOWAIT); 538 if (error) 539 goto destroy; 540 DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n", 541 (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p))); 542 return (0); 543 544 destroy: 545 bus_dmamap_destroy(sc->sc_dmatag, p->map); 546 unmap: 547 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); 548 free: 549 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); 550 return (error); 551 } 552 553 int 554 sv_freemem(sc, p) 555 struct sv_softc *sc; 556 struct sv_dma *p; 557 { 558 bus_dmamap_unload(sc->sc_dmatag, p->map); 559 bus_dmamap_destroy(sc->sc_dmatag, p->map); 560 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); 561 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); 562 return (0); 563 } 564 565 int 566 sv_open(addr, flags) 567 void *addr; 568 int flags; 569 { 570 struct sv_softc *sc = addr; 571 572 DPRINTF(("sv_open\n")); 573 if (!sc->sc_dmaset) 574 return (ENXIO); 575 sc->sc_pintr = 0; 576 sc->sc_rintr = 0; 577 578 return (0); 579 } 580 581 /* 582 * Close function is called at splaudio(). 583 */ 584 void 585 sv_close(addr) 586 void *addr; 587 { 588 struct sv_softc *sc = addr; 589 590 DPRINTF(("sv_close\n")); 591 sv_halt_output(sc); 592 sv_halt_input(sc); 593 594 sc->sc_pintr = 0; 595 sc->sc_rintr = 0; 596 } 597 598 int 599 sv_query_encoding(addr, fp) 600 void *addr; 601 struct audio_encoding *fp; 602 { 603 switch (fp->index) { 604 case 0: 605 strcpy(fp->name, AudioEulinear); 606 fp->encoding = AUDIO_ENCODING_ULINEAR; 607 fp->precision = 8; 608 fp->flags = 0; 609 return (0); 610 case 1: 611 strcpy(fp->name, AudioEmulaw); 612 fp->encoding = AUDIO_ENCODING_ULAW; 613 fp->precision = 8; 614 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 615 return (0); 616 case 2: 617 strcpy(fp->name, AudioEalaw); 618 fp->encoding = AUDIO_ENCODING_ALAW; 619 fp->precision = 8; 620 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 621 return (0); 622 case 3: 623 strcpy(fp->name, AudioEslinear); 624 fp->encoding = AUDIO_ENCODING_SLINEAR; 625 fp->precision = 8; 626 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 627 return (0); 628 case 4: 629 strcpy(fp->name, AudioEslinear_le); 630 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 631 fp->precision = 16; 632 fp->flags = 0; 633 return (0); 634 case 5: 635 strcpy(fp->name, AudioEulinear_le); 636 fp->encoding = AUDIO_ENCODING_ULINEAR_LE; 637 fp->precision = 16; 638 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 639 return (0); 640 case 6: 641 strcpy(fp->name, AudioEslinear_be); 642 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 643 fp->precision = 16; 644 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 645 return (0); 646 case 7: 647 strcpy(fp->name, AudioEulinear_be); 648 fp->encoding = AUDIO_ENCODING_ULINEAR_BE; 649 fp->precision = 16; 650 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 651 return (0); 652 default: 653 return (EINVAL); 654 } 655 } 656 657 int 658 sv_set_params(addr, setmode, usemode, play, rec) 659 void *addr; 660 int setmode, usemode; 661 struct audio_params *play, *rec; 662 { 663 struct sv_softc *sc = addr; 664 struct audio_params *p = NULL; 665 int mode; 666 u_int32_t val; 667 668 /* 669 * This device only has one clock, so make the sample rates match. 670 */ 671 if (play->sample_rate != rec->sample_rate && 672 usemode == (AUMODE_PLAY | AUMODE_RECORD)) { 673 if (setmode == AUMODE_PLAY) { 674 rec->sample_rate = play->sample_rate; 675 setmode |= AUMODE_RECORD; 676 } else if (setmode == AUMODE_RECORD) { 677 play->sample_rate = rec->sample_rate; 678 setmode |= AUMODE_PLAY; 679 } else 680 return (EINVAL); 681 } 682 683 for (mode = AUMODE_RECORD; mode != -1; 684 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { 685 if ((setmode & mode) == 0) 686 continue; 687 688 p = mode == AUMODE_PLAY ? play : rec; 689 690 if (p->sample_rate < 2000 || p->sample_rate > 48000 || 691 (p->precision != 8 && p->precision != 16) || 692 (p->channels != 1 && p->channels != 2)) 693 return (EINVAL); 694 695 p->factor = 1; 696 p->sw_code = 0; 697 switch (p->encoding) { 698 case AUDIO_ENCODING_SLINEAR_BE: 699 if (p->precision == 16) 700 p->sw_code = swap_bytes; 701 else 702 p->sw_code = change_sign8; 703 break; 704 case AUDIO_ENCODING_SLINEAR_LE: 705 if (p->precision != 16) 706 p->sw_code = change_sign8; 707 break; 708 case AUDIO_ENCODING_ULINEAR_BE: 709 if (p->precision == 16) { 710 if (mode == AUMODE_PLAY) 711 p->sw_code = swap_bytes_change_sign16_le; 712 else 713 p->sw_code = change_sign16_swap_bytes_le; 714 } 715 break; 716 case AUDIO_ENCODING_ULINEAR_LE: 717 if (p->precision == 16) 718 p->sw_code = change_sign16_le; 719 break; 720 case AUDIO_ENCODING_ULAW: 721 if (mode == AUMODE_PLAY) { 722 p->factor = 2; 723 p->sw_code = mulaw_to_slinear16_le; 724 } else 725 p->sw_code = ulinear8_to_mulaw; 726 break; 727 case AUDIO_ENCODING_ALAW: 728 if (mode == AUMODE_PLAY) { 729 p->factor = 2; 730 p->sw_code = alaw_to_slinear16_le; 731 } else 732 p->sw_code = ulinear8_to_alaw; 733 break; 734 default: 735 return (EINVAL); 736 } 737 } 738 739 val = p->sample_rate * 65536 / 48000; 740 /* 741 * If the sample rate is exactly 48KHz, the fraction would overflow the 742 * register, so we have to bias it. This causes a little clock drift. 743 * The drift is below normal crystal tolerance (.0001%), so although 744 * this seems a little silly, we can pretty much ignore it. 745 * (I tested the output speed with values of 1-20, just to be sure this 746 * register isn't *supposed* to have a bias. It isn't.) 747 * - mycroft 748 */ 749 if (val > 65535) 750 val = 65535; 751 752 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff); 753 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8); 754 755 #define F_REF 24576000 756 757 #define ABS(x) (((x) < 0) ? (-x) : (x)) 758 759 if (setmode & AUMODE_RECORD) { 760 /* The ADC reference frequency (f_out) is 512 * sample rate */ 761 762 /* f_out is dervied from the 24.576MHZ crystal by three values: 763 M & N & R. The equation is as follows: 764 765 f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a)) 766 767 with the constraint that: 768 769 80 MhZ < (m + 2) / (n + 2) * f_ref <= 150Mhz 770 and n, m >= 1 771 */ 772 773 int goal_f_out = 512 * rec->sample_rate; 774 int a, n, m, best_n = 0, best_m = 0, best_error = 10000000; 775 int pll_sample; 776 int error; 777 778 for (a = 0; a < 8; a++) { 779 if ((goal_f_out * (1 << a)) >= 80000000) 780 break; 781 } 782 783 /* a != 8 because sample_rate >= 2000 */ 784 785 for (n = 33; n > 2; n--) { 786 m = (goal_f_out * n * (1 << a)) / F_REF; 787 if ((m > 257) || (m < 3)) 788 continue; 789 790 pll_sample = (m * F_REF) / (n * (1 << a)); 791 pll_sample /= 512; 792 793 /* Threshold might be good here */ 794 error = pll_sample - rec->sample_rate; 795 error = ABS(error); 796 797 if (error < best_error) { 798 best_error = error; 799 best_n = n; 800 best_m = m; 801 if (error == 0) break; 802 } 803 } 804 805 best_n -= 2; 806 best_m -= 2; 807 808 sv_write_indirect(sc, SV_ADC_PLL_M, best_m); 809 sv_write_indirect(sc, SV_ADC_PLL_N, 810 best_n | (a << SV_PLL_R_SHIFT)); 811 } 812 813 return (0); 814 } 815 816 int 817 sv_round_blocksize(addr, blk) 818 void *addr; 819 int blk; 820 { 821 return (blk & -32); /* keep good alignment */ 822 } 823 824 int 825 sv_trigger_output(addr, start, end, blksize, intr, arg, param) 826 void *addr; 827 void *start, *end; 828 int blksize; 829 void (*intr) __P((void *)); 830 void *arg; 831 struct audio_params *param; 832 { 833 struct sv_softc *sc = addr; 834 struct sv_dma *p; 835 u_int8_t mode; 836 int dma_count; 837 838 DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n", 839 addr, start, end, blksize, intr, arg)); 840 sc->sc_pintr = intr; 841 sc->sc_parg = arg; 842 843 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT); 844 mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO); 845 if (param->precision * param->factor == 16) 846 mode |= SV_DMAA_FORMAT16; 847 if (param->channels == 2) 848 mode |= SV_DMAA_STEREO; 849 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode); 850 851 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next) 852 ; 853 if (!p) { 854 printf("sv_trigger_output: bad addr %p\n", start); 855 return (EINVAL); 856 } 857 858 dma_count = ((char *)end - (char *)start) - 1; 859 DPRINTF(("sv_trigger_output: dma start loop input addr=%x cc=%d\n", 860 (int)DMAADDR(p), dma_count)); 861 862 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0, 863 DMAADDR(p)); 864 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0, 865 dma_count); 866 bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE, 867 DMA37MD_READ | DMA37MD_LOOP); 868 869 DPRINTF(("sv_trigger_output: current addr=%x\n", 870 bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0))); 871 872 dma_count = blksize - 1; 873 874 sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8); 875 sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF); 876 877 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 878 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE); 879 880 return (0); 881 } 882 883 int 884 sv_trigger_input(addr, start, end, blksize, intr, arg, param) 885 void *addr; 886 void *start, *end; 887 int blksize; 888 void (*intr) __P((void *)); 889 void *arg; 890 struct audio_params *param; 891 { 892 struct sv_softc *sc = addr; 893 struct sv_dma *p; 894 u_int8_t mode; 895 int dma_count; 896 897 DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n", 898 addr, start, end, blksize, intr, arg)); 899 sc->sc_rintr = intr; 900 sc->sc_rarg = arg; 901 902 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT); 903 mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO); 904 if (param->precision * param->factor == 16) 905 mode |= SV_DMAC_FORMAT16; 906 if (param->channels == 2) 907 mode |= SV_DMAC_STEREO; 908 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode); 909 910 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next) 911 ; 912 if (!p) { 913 printf("sv_trigger_input: bad addr %p\n", start); 914 return (EINVAL); 915 } 916 917 dma_count = (((char *)end - (char *)start) >> 1) - 1; 918 DPRINTF(("sv_trigger_input: dma start loop input addr=%x cc=%d\n", 919 (int)DMAADDR(p), dma_count)); 920 921 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0, 922 DMAADDR(p)); 923 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0, 924 dma_count); 925 bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE, 926 DMA37MD_WRITE | DMA37MD_LOOP); 927 928 DPRINTF(("sv_trigger_input: current addr=%x\n", 929 bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0))); 930 931 dma_count = (blksize >> 1) - 1; 932 933 sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8); 934 sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF); 935 936 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 937 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE); 938 939 return (0); 940 } 941 942 int 943 sv_halt_output(addr) 944 void *addr; 945 { 946 struct sv_softc *sc = addr; 947 u_int8_t mode; 948 949 DPRINTF(("sv: sv_halt_output\n")); 950 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 951 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE); 952 953 return (0); 954 } 955 956 int 957 sv_halt_input(addr) 958 void *addr; 959 { 960 struct sv_softc *sc = addr; 961 u_int8_t mode; 962 963 DPRINTF(("sv: sv_halt_input\n")); 964 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 965 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE); 966 967 return (0); 968 } 969 970 int 971 sv_getdev(addr, retp) 972 void *addr; 973 struct audio_device *retp; 974 { 975 *retp = sv_device; 976 return (0); 977 } 978 979 980 /* 981 * Mixer related code is here 982 * 983 */ 984 985 #define SV_INPUT_CLASS 0 986 #define SV_OUTPUT_CLASS 1 987 #define SV_RECORD_CLASS 2 988 989 #define SV_LAST_CLASS 2 990 991 static const char *mixer_classes[] = 992 { AudioCinputs, AudioCoutputs, AudioCrecord }; 993 994 static const struct { 995 u_int8_t l_port; 996 u_int8_t r_port; 997 u_int8_t mask; 998 u_int8_t class; 999 const char *audio; 1000 } ports[] = { 1001 { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK, 1002 SV_INPUT_CLASS, "aux1" }, 1003 { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK, 1004 SV_INPUT_CLASS, AudioNcd }, 1005 { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK, 1006 SV_INPUT_CLASS, AudioNline }, 1007 { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone }, 1008 { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL, 1009 SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth }, 1010 { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK, 1011 SV_INPUT_CLASS, "aux2" }, 1012 { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK, 1013 SV_INPUT_CLASS, AudioNdac }, 1014 { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL, 1015 SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster } 1016 }; 1017 1018 1019 static const struct { 1020 int idx; 1021 const char *name; 1022 } record_sources[] = { 1023 { SV_REC_CD, AudioNcd }, 1024 { SV_REC_DAC, AudioNdac }, 1025 { SV_REC_AUX2, "aux2" }, 1026 { SV_REC_LINE, AudioNline }, 1027 { SV_REC_AUX1, "aux1" }, 1028 { SV_REC_MIC, AudioNmicrophone }, 1029 { SV_REC_MIXER, AudioNmixerout } 1030 }; 1031 1032 1033 #define SV_DEVICES_PER_PORT 2 1034 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1) 1035 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS) 1036 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1) 1037 #define SV_MIC_BOOST (SV_LAST_MIXER + 2) 1038 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3) 1039 #define SV_SRS_MODE (SV_LAST_MIXER + 4) 1040 1041 int 1042 sv_query_devinfo(addr, dip) 1043 void *addr; 1044 mixer_devinfo_t *dip; 1045 { 1046 int i; 1047 1048 /* It's a class */ 1049 if (dip->index <= SV_LAST_CLASS) { 1050 dip->type = AUDIO_MIXER_CLASS; 1051 dip->mixer_class = dip->index; 1052 dip->next = dip->prev = AUDIO_MIXER_LAST; 1053 strcpy(dip->label.name, 1054 mixer_classes[dip->index]); 1055 return (0); 1056 } 1057 1058 if (dip->index >= SV_FIRST_MIXER && 1059 dip->index <= SV_LAST_MIXER) { 1060 int off = dip->index - SV_FIRST_MIXER; 1061 int mute = (off % SV_DEVICES_PER_PORT); 1062 int idx = off / SV_DEVICES_PER_PORT; 1063 1064 dip->mixer_class = ports[idx].class; 1065 strcpy(dip->label.name, ports[idx].audio); 1066 1067 if (!mute) { 1068 dip->type = AUDIO_MIXER_VALUE; 1069 dip->prev = AUDIO_MIXER_LAST; 1070 dip->next = dip->index + 1; 1071 1072 if (ports[idx].r_port != 0) 1073 dip->un.v.num_channels = 2; 1074 else 1075 dip->un.v.num_channels = 1; 1076 1077 strcpy(dip->un.v.units.name, AudioNvolume); 1078 } else { 1079 dip->type = AUDIO_MIXER_ENUM; 1080 dip->prev = dip->index - 1; 1081 dip->next = AUDIO_MIXER_LAST; 1082 1083 strcpy(dip->label.name, AudioNmute); 1084 dip->un.e.num_mem = 2; 1085 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1086 dip->un.e.member[0].ord = 0; 1087 strcpy(dip->un.e.member[1].label.name, AudioNon); 1088 dip->un.e.member[1].ord = 1; 1089 } 1090 1091 return (0); 1092 } 1093 1094 switch (dip->index) { 1095 case SV_RECORD_SOURCE: 1096 dip->mixer_class = SV_RECORD_CLASS; 1097 dip->prev = AUDIO_MIXER_LAST; 1098 dip->next = SV_RECORD_GAIN; 1099 strcpy(dip->label.name, AudioNsource); 1100 dip->type = AUDIO_MIXER_ENUM; 1101 1102 dip->un.e.num_mem = ARRAY_SIZE(record_sources); 1103 for (i = 0; i < ARRAY_SIZE(record_sources); i++) { 1104 strcpy(dip->un.e.member[i].label.name, 1105 record_sources[i].name); 1106 dip->un.e.member[i].ord = record_sources[i].idx; 1107 } 1108 return (0); 1109 1110 case SV_RECORD_GAIN: 1111 dip->mixer_class = SV_RECORD_CLASS; 1112 dip->prev = SV_RECORD_SOURCE; 1113 dip->next = AUDIO_MIXER_LAST; 1114 strcpy(dip->label.name, "gain"); 1115 dip->type = AUDIO_MIXER_VALUE; 1116 dip->un.v.num_channels = 1; 1117 strcpy(dip->un.v.units.name, AudioNvolume); 1118 return (0); 1119 1120 case SV_MIC_BOOST: 1121 dip->mixer_class = SV_RECORD_CLASS; 1122 dip->prev = AUDIO_MIXER_LAST; 1123 dip->next = AUDIO_MIXER_LAST; 1124 strcpy(dip->label.name, "micboost"); 1125 goto on_off; 1126 1127 case SV_SRS_MODE: 1128 dip->mixer_class = SV_OUTPUT_CLASS; 1129 dip->prev = dip->next = AUDIO_MIXER_LAST; 1130 strcpy(dip->label.name, AudioNspatial); 1131 1132 on_off: 1133 dip->type = AUDIO_MIXER_ENUM; 1134 dip->un.e.num_mem = 2; 1135 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1136 dip->un.e.member[0].ord = 0; 1137 strcpy(dip->un.e.member[1].label.name, AudioNon); 1138 dip->un.e.member[1].ord = 1; 1139 return (0); 1140 } 1141 1142 return (ENXIO); 1143 } 1144 1145 int 1146 sv_mixer_set_port(addr, cp) 1147 void *addr; 1148 mixer_ctrl_t *cp; 1149 { 1150 struct sv_softc *sc = addr; 1151 u_int8_t reg; 1152 int idx; 1153 1154 if (cp->dev >= SV_FIRST_MIXER && 1155 cp->dev <= SV_LAST_MIXER) { 1156 int off = cp->dev - SV_FIRST_MIXER; 1157 int mute = (off % SV_DEVICES_PER_PORT); 1158 idx = off / SV_DEVICES_PER_PORT; 1159 1160 if (mute) { 1161 if (cp->type != AUDIO_MIXER_ENUM) 1162 return (EINVAL); 1163 1164 reg = sv_read_indirect(sc, ports[idx].l_port); 1165 if (cp->un.ord) 1166 reg |= SV_MUTE_BIT; 1167 else 1168 reg &= ~SV_MUTE_BIT; 1169 sv_write_indirect(sc, ports[idx].l_port, reg); 1170 1171 if (ports[idx].r_port) { 1172 reg = sv_read_indirect(sc, ports[idx].r_port); 1173 if (cp->un.ord) 1174 reg |= SV_MUTE_BIT; 1175 else 1176 reg &= ~SV_MUTE_BIT; 1177 sv_write_indirect(sc, ports[idx].r_port, reg); 1178 } 1179 } else { 1180 int lval, rval; 1181 1182 if (cp->type != AUDIO_MIXER_VALUE) 1183 return (EINVAL); 1184 1185 if (cp->un.value.num_channels != 1 && 1186 cp->un.value.num_channels != 2) 1187 return (EINVAL); 1188 1189 if (ports[idx].r_port == 0) { 1190 if (cp->un.value.num_channels != 1) 1191 return (EINVAL); 1192 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; 1193 rval = 0; /* shut up GCC */ 1194 } else { 1195 if (cp->un.value.num_channels != 2) 1196 return (EINVAL); 1197 1198 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]; 1199 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]; 1200 } 1201 1202 1203 reg = sv_read_indirect(sc, ports[idx].l_port); 1204 reg &= ~(ports[idx].mask); 1205 lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask / 1206 AUDIO_MAX_GAIN; 1207 reg |= lval; 1208 sv_write_indirect(sc, ports[idx].l_port, reg); 1209 1210 if (ports[idx].r_port != 0) { 1211 reg = sv_read_indirect(sc, ports[idx].r_port); 1212 reg &= ~(ports[idx].mask); 1213 1214 rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask / 1215 AUDIO_MAX_GAIN; 1216 reg |= rval; 1217 1218 sv_write_indirect(sc, ports[idx].r_port, reg); 1219 } 1220 1221 sv_read_indirect(sc, ports[idx].l_port); 1222 } 1223 1224 return (0); 1225 } 1226 1227 1228 switch (cp->dev) { 1229 case SV_RECORD_SOURCE: 1230 if (cp->type != AUDIO_MIXER_ENUM) 1231 return (EINVAL); 1232 1233 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) { 1234 if (record_sources[idx].idx == cp->un.ord) 1235 goto found; 1236 } 1237 1238 return (EINVAL); 1239 1240 found: 1241 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1242 reg &= ~SV_REC_SOURCE_MASK; 1243 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK); 1244 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1245 1246 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL); 1247 reg &= ~SV_REC_SOURCE_MASK; 1248 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK); 1249 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg); 1250 return (0); 1251 1252 case SV_RECORD_GAIN: 1253 { 1254 int val; 1255 1256 if (cp->type != AUDIO_MIXER_VALUE) 1257 return (EINVAL); 1258 1259 if (cp->un.value.num_channels != 1) 1260 return (EINVAL); 1261 1262 val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] * SV_REC_GAIN_MASK) 1263 / AUDIO_MAX_GAIN; 1264 1265 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1266 reg &= ~SV_REC_GAIN_MASK; 1267 reg |= val; 1268 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1269 1270 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL); 1271 reg &= ~SV_REC_GAIN_MASK; 1272 reg |= val; 1273 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg); 1274 } 1275 return (0); 1276 1277 case SV_MIC_BOOST: 1278 if (cp->type != AUDIO_MIXER_ENUM) 1279 return (EINVAL); 1280 1281 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1282 if (cp->un.ord) { 1283 reg |= SV_MIC_BOOST_BIT; 1284 } else { 1285 reg &= ~SV_MIC_BOOST_BIT; 1286 } 1287 1288 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1289 return (0); 1290 1291 case SV_SRS_MODE: 1292 if (cp->type != AUDIO_MIXER_ENUM) 1293 return (EINVAL); 1294 1295 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL); 1296 if (cp->un.ord) { 1297 reg &= ~SV_SRS_SPACE_ONOFF; 1298 } else { 1299 reg |= SV_SRS_SPACE_ONOFF; 1300 } 1301 1302 sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg); 1303 return (0); 1304 } 1305 1306 return (EINVAL); 1307 } 1308 1309 int 1310 sv_mixer_get_port(addr, cp) 1311 void *addr; 1312 mixer_ctrl_t *cp; 1313 { 1314 struct sv_softc *sc = addr; 1315 int val; 1316 u_int8_t reg; 1317 1318 if (cp->dev >= SV_FIRST_MIXER && 1319 cp->dev <= SV_LAST_MIXER) { 1320 int off = cp->dev - SV_FIRST_MIXER; 1321 int mute = (off % 2); 1322 int idx = off / 2; 1323 1324 if (mute) { 1325 if (cp->type != AUDIO_MIXER_ENUM) 1326 return (EINVAL); 1327 1328 reg = sv_read_indirect(sc, ports[idx].l_port); 1329 cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0); 1330 } else { 1331 if (cp->type != AUDIO_MIXER_VALUE) 1332 return (EINVAL); 1333 1334 if (cp->un.value.num_channels != 1 && 1335 cp->un.value.num_channels != 2) 1336 return (EINVAL); 1337 1338 if ((ports[idx].r_port == 0 && 1339 cp->un.value.num_channels != 1) || 1340 (ports[idx].r_port != 0 && 1341 cp->un.value.num_channels != 2)) 1342 return (EINVAL); 1343 1344 reg = sv_read_indirect(sc, ports[idx].l_port); 1345 reg &= ports[idx].mask; 1346 1347 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask); 1348 1349 if (ports[idx].r_port != 0) { 1350 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val; 1351 1352 reg = sv_read_indirect(sc, ports[idx].r_port); 1353 reg &= ports[idx].mask; 1354 1355 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask); 1356 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val; 1357 } else 1358 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val; 1359 } 1360 1361 return (0); 1362 } 1363 1364 switch (cp->dev) { 1365 case SV_RECORD_SOURCE: 1366 if (cp->type != AUDIO_MIXER_ENUM) 1367 return (EINVAL); 1368 1369 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1370 cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT); 1371 1372 return (0); 1373 1374 case SV_RECORD_GAIN: 1375 if (cp->type != AUDIO_MIXER_VALUE) 1376 return (EINVAL); 1377 if (cp->un.value.num_channels != 1) 1378 return (EINVAL); 1379 1380 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK; 1381 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1382 (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK; 1383 1384 return (0); 1385 1386 case SV_MIC_BOOST: 1387 if (cp->type != AUDIO_MIXER_ENUM) 1388 return (EINVAL); 1389 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1390 cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0); 1391 return (0); 1392 1393 1394 case SV_SRS_MODE: 1395 if (cp->type != AUDIO_MIXER_ENUM) 1396 return (EINVAL); 1397 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL); 1398 cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1); 1399 return (0); 1400 } 1401 1402 return (EINVAL); 1403 } 1404 1405 1406 static void 1407 sv_init_mixer(sc) 1408 struct sv_softc *sc; 1409 { 1410 mixer_ctrl_t cp; 1411 int i; 1412 1413 cp.type = AUDIO_MIXER_ENUM; 1414 cp.dev = SV_SRS_MODE; 1415 cp.un.ord = 0; 1416 1417 sv_mixer_set_port(sc, &cp); 1418 1419 for (i = 0; i < ARRAY_SIZE(ports); i++) { 1420 if (ports[i].audio == AudioNdac) { 1421 cp.type = AUDIO_MIXER_ENUM; 1422 cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1; 1423 cp.un.ord = 0; 1424 sv_mixer_set_port(sc, &cp); 1425 break; 1426 } 1427 } 1428 } 1429 1430 void * 1431 sv_malloc(addr, direction, size, pool, flags) 1432 void *addr; 1433 int direction; 1434 size_t size; 1435 int pool, flags; 1436 { 1437 struct sv_softc *sc = addr; 1438 struct sv_dma *p; 1439 int error; 1440 1441 p = malloc(sizeof(*p), pool, flags); 1442 if (!p) 1443 return (0); 1444 error = sv_allocmem(sc, size, 16, p); 1445 if (error) { 1446 free(p, pool); 1447 return (0); 1448 } 1449 p->next = sc->sc_dmas; 1450 sc->sc_dmas = p; 1451 return (KERNADDR(p)); 1452 } 1453 1454 void 1455 sv_free(addr, ptr, pool) 1456 void *addr; 1457 void *ptr; 1458 int pool; 1459 { 1460 struct sv_softc *sc = addr; 1461 struct sv_dma **pp, *p; 1462 1463 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) { 1464 if (KERNADDR(p) == ptr) { 1465 sv_freemem(sc, p); 1466 *pp = p->next; 1467 free(p, pool); 1468 return; 1469 } 1470 } 1471 } 1472 1473 size_t 1474 sv_round_buffersize(addr, direction, size) 1475 void *addr; 1476 int direction; 1477 size_t size; 1478 { 1479 return (size); 1480 } 1481 1482 paddr_t 1483 sv_mappage(addr, mem, off, prot) 1484 void *addr; 1485 void *mem; 1486 off_t off; 1487 int prot; 1488 { 1489 struct sv_softc *sc = addr; 1490 struct sv_dma *p; 1491 1492 if (off < 0) 1493 return (-1); 1494 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next) 1495 ; 1496 if (!p) 1497 return (-1); 1498 return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs, 1499 off, prot, BUS_DMA_WAITOK)); 1500 } 1501 1502 int 1503 sv_get_props(addr) 1504 void *addr; 1505 { 1506 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX); 1507 } 1508