xref: /netbsd-src/sys/dev/pci/sv.c (revision bcc8ec9959e7b01e313d813067bfb43a3ad70551)
1 /*      $NetBSD: sv.c,v 1.12 2000/12/28 22:59:15 sommerfeld Exp $ */
2 /*      $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
3 
4 /*
5  * Copyright (c) 1999 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Charles M. Hannum.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *        This product includes software developed by the NetBSD
22  *        Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1998 Constantine Paul Sapuntzakis
42  * All rights reserved
43  *
44  * Author: Constantine Paul Sapuntzakis (csapuntz@cvs.openbsd.org)
45  *
46  * Redistribution and use in source and binary forms, with or without
47  * modification, are permitted provided that the following conditions
48  * are met:
49  * 1. Redistributions of source code must retain the above copyright
50  *    notice, this list of conditions and the following disclaimer.
51  * 2. Redistributions in binary form must reproduce the above copyright
52  *    notice, this list of conditions and the following disclaimer in the
53  *    documentation and/or other materials provided with the distribution.
54  * 3. The author's name or those of the contributors may be used to
55  *    endorse or promote products derived from this software without
56  *    specific prior written permission.
57  *
58  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
59  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
60  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
61  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
62  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
63  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
64  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
65  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
66  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
67  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
68  * POSSIBILITY OF SUCH DAMAGE.
69  */
70 
71 /*
72  * S3 SonicVibes driver
73  *   Heavily based on the eap driver by Lennart Augustsson
74  */
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/malloc.h>
80 #include <sys/device.h>
81 
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 #include <dev/pci/pcidevs.h>
85 
86 #include <sys/audioio.h>
87 #include <dev/audio_if.h>
88 #include <dev/mulaw.h>
89 #include <dev/auconv.h>
90 
91 #include <dev/ic/i8237reg.h>
92 #include <dev/pci/svreg.h>
93 #include <dev/pci/svvar.h>
94 
95 #include <machine/bus.h>
96 
97 #ifdef AUDIO_DEBUG
98 #define DPRINTF(x)	if (svdebug) printf x
99 #define DPRINTFN(n,x)	if (svdebug>(n)) printf x
100 int	svdebug = 0;
101 #else
102 #define DPRINTF(x)
103 #define DPRINTFN(n,x)
104 #endif
105 
106 int	sv_match __P((struct device *, struct cfdata *, void *));
107 void	sv_attach __P((struct device *, struct device *, void *));
108 int	sv_intr __P((void *));
109 
110 struct sv_dma {
111 	bus_dmamap_t map;
112 	caddr_t addr;
113 	bus_dma_segment_t segs[1];
114 	int nsegs;
115 	size_t size;
116 	struct sv_dma *next;
117 };
118 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
119 #define KERNADDR(p) ((void *)((p)->addr))
120 
121 struct cfattach sv_ca = {
122 	sizeof(struct sv_softc), sv_match, sv_attach
123 };
124 
125 struct audio_device sv_device = {
126 	"S3 SonicVibes",
127 	"",
128 	"sv"
129 };
130 
131 #define ARRAY_SIZE(foo)  ((sizeof(foo)) / sizeof(foo[0]))
132 
133 int	sv_allocmem __P((struct sv_softc *, size_t, size_t, struct sv_dma *));
134 int	sv_freemem __P((struct sv_softc *, struct sv_dma *));
135 
136 int	sv_open __P((void *, int));
137 void	sv_close __P((void *));
138 int	sv_query_encoding __P((void *, struct audio_encoding *));
139 int	sv_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
140 int	sv_round_blocksize __P((void *, int));
141 int	sv_trigger_output __P((void *, void *, void *, int, void (*)(void *),
142 	    void *, struct audio_params *));
143 int	sv_trigger_input __P((void *, void *, void *, int, void (*)(void *),
144 	    void *, struct audio_params *));
145 int	sv_halt_output __P((void *));
146 int	sv_halt_input __P((void *));
147 int	sv_getdev __P((void *, struct audio_device *));
148 int	sv_mixer_set_port __P((void *, mixer_ctrl_t *));
149 int	sv_mixer_get_port __P((void *, mixer_ctrl_t *));
150 int	sv_query_devinfo __P((void *, mixer_devinfo_t *));
151 void   *sv_malloc __P((void *, int, size_t, int, int));
152 void	sv_free __P((void *, void *, int));
153 size_t	sv_round_buffersize __P((void *, int, size_t));
154 paddr_t	sv_mappage __P((void *, void *, off_t, int));
155 int	sv_get_props __P((void *));
156 
157 #ifdef AUDIO_DEBUG
158 void    sv_dumpregs __P((struct sv_softc *sc));
159 #endif
160 
161 struct audio_hw_if sv_hw_if = {
162 	sv_open,
163 	sv_close,
164 	NULL,
165 	sv_query_encoding,
166 	sv_set_params,
167 	sv_round_blocksize,
168 	NULL,
169 	NULL,
170 	NULL,
171 	NULL,
172 	NULL,
173 	sv_halt_output,
174 	sv_halt_input,
175 	NULL,
176 	sv_getdev,
177 	NULL,
178 	sv_mixer_set_port,
179 	sv_mixer_get_port,
180 	sv_query_devinfo,
181 	sv_malloc,
182 	sv_free,
183 	sv_round_buffersize,
184 	sv_mappage,
185 	sv_get_props,
186 	sv_trigger_output,
187 	sv_trigger_input,
188 };
189 
190 
191 static u_int8_t sv_read __P((struct sv_softc *, u_int8_t));
192 static u_int8_t sv_read_indirect __P((struct sv_softc *, u_int8_t));
193 static void sv_write __P((struct sv_softc *, u_int8_t, u_int8_t ));
194 static void sv_write_indirect __P((struct sv_softc *, u_int8_t, u_int8_t ));
195 static void sv_init_mixer __P((struct sv_softc *));
196 
197 static void sv_defer __P((struct device *self));
198 
199 static void
200 sv_write (sc, reg, val)
201 	struct sv_softc *sc;
202 	u_int8_t reg, val;
203 
204 {
205 	DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
206 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
207 }
208 
209 static u_int8_t
210 sv_read(sc, reg)
211 	struct sv_softc *sc;
212 	u_int8_t reg;
213 
214 {
215 	u_int8_t val;
216 
217 	val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
218 	DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
219 	return val;
220 }
221 
222 static u_int8_t
223 sv_read_indirect(sc, reg)
224 	struct sv_softc *sc;
225 	u_int8_t reg;
226 {
227 	u_int8_t val;
228 	int s = splaudio();
229 
230 	sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
231 	val = sv_read(sc, SV_CODEC_IDATA);
232 	splx(s);
233 	return (val);
234 }
235 
236 static void
237 sv_write_indirect(sc, reg, val)
238 	struct sv_softc *sc;
239 	u_int8_t reg, val;
240 {
241 	u_int8_t iaddr = reg & SV_IADDR_MASK;
242 	int s = splaudio();
243 
244 	if (reg == SV_DMA_DATA_FORMAT)
245 		iaddr |= SV_IADDR_MCE;
246 
247 	sv_write(sc, SV_CODEC_IADDR, iaddr);
248 	sv_write(sc, SV_CODEC_IDATA, val);
249 	splx(s);
250 }
251 
252 int
253 sv_match(parent, match, aux)
254 	struct device *parent;
255 	struct cfdata *match;
256 	void *aux;
257 {
258 	struct pci_attach_args *pa = aux;
259 
260 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
261 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
262 		return (1);
263 
264 	return (0);
265 }
266 
267 int pci_alloc_io __P((pci_chipset_tag_t pc, pcitag_t pt,
268 		      int pcioffs,
269 		      bus_space_tag_t iot, bus_size_t size,
270 		      bus_size_t align, bus_size_t bound, int flags,
271 		      bus_space_handle_t *ioh));
272 
273 #define PCI_IO_ALLOC_LOW 0xa000
274 #define PCI_IO_ALLOC_HIGH 0xb000
275 int
276 pci_alloc_io(pc, pt, pcioffs, iot, size, align, bound, flags, ioh)
277 	pci_chipset_tag_t pc;
278 	pcitag_t pt;
279 	int pcioffs;
280 	bus_space_tag_t iot;
281 	bus_size_t size;
282 	bus_size_t align;
283 	bus_size_t bound;
284 	int flags;
285 	bus_space_handle_t *ioh;
286 {
287 	bus_addr_t addr;
288 	int error;
289 
290 	error = bus_space_alloc(iot, PCI_IO_ALLOC_LOW, PCI_IO_ALLOC_HIGH,
291 				size, align, bound, flags, &addr, ioh);
292 	if (error)
293 		return(error);
294 
295 	pci_conf_write(pc, pt, pcioffs, addr);
296 	return (0);
297 }
298 
299 /*
300  * Allocate IO addresses when all other configuration is done.
301  */
302 void
303 sv_defer(self)
304 	struct device *self;
305 {
306 	struct sv_softc *sc = (struct sv_softc *)self;
307 	pci_chipset_tag_t pc = sc->sc_pa.pa_pc;
308 	pcitag_t pt = sc->sc_pa.pa_tag;
309 	pcireg_t dmaio;
310 
311 	DPRINTF(("sv_defer: %p\n", sc));
312 	if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
313 			  sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
314 			  0, &sc->sc_dmaa_ioh)) {
315 		printf("sv_attach: cannot allocate DMA A range\n");
316 		return;
317 	}
318 	dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
319 	DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
320 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
321 		       dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
322 
323 	if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
324 			  sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
325 			  0, &sc->sc_dmac_ioh)) {
326 		printf("sv_attach: cannot allocate DMA C range\n");
327 		return;
328 	}
329 	dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
330 	DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
331 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
332 		       dmaio | SV_DMA_CHANNEL_ENABLE);
333 
334 	sc->sc_dmaset = 1;
335 }
336 
337 void
338 sv_attach(parent, self, aux)
339 	struct device *parent, *self;
340 	void *aux;
341 {
342 	struct sv_softc *sc = (struct sv_softc *)self;
343 	struct pci_attach_args *pa = aux;
344 	pci_chipset_tag_t pc = pa->pa_pc;
345 	pcitag_t pt = pa->pa_tag;
346 	pci_intr_handle_t ih;
347 	pcireg_t csr;
348 	char const *intrstr;
349 	u_int8_t reg;
350 	struct audio_attach_args arg;
351 
352 	printf ("\n");
353 
354 	/* Map I/O registers */
355 	if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
356 			   PCI_MAPREG_TYPE_IO, 0,
357 			   &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
358 		printf("%s: can't map enhanced i/o space\n",
359 		       sc->sc_dev.dv_xname);
360 		return;
361 	}
362 	if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
363 			   PCI_MAPREG_TYPE_IO, 0,
364 			   &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
365 		printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname);
366 		return;
367 	}
368 	if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
369 			   PCI_MAPREG_TYPE_IO, 0,
370 			   &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
371 		printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname);
372 		return;
373 	}
374 	DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
375 		 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
376 
377 #ifdef alpha
378 	/* XXX Force allocation through the SGMAP. */
379 	sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
380 #else
381 	sc->sc_dmatag = pa->pa_dmat;
382 #endif
383 
384 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
385 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
386 
387 	/* Enable the device. */
388 	csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
389 	pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
390 		       csr | PCI_COMMAND_MASTER_ENABLE);
391 
392 	sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
393 	sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
394 
395 	/* initialize codec registers */
396 	reg = sv_read(sc, SV_CODEC_CONTROL);
397 	reg |= SV_CTL_RESET;
398 	sv_write(sc, SV_CODEC_CONTROL, reg);
399 	delay(50);
400 
401 	reg = sv_read(sc, SV_CODEC_CONTROL);
402 	reg &= ~SV_CTL_RESET;
403 	reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
404 
405 	/* This write clears the reset */
406 	sv_write(sc, SV_CODEC_CONTROL, reg);
407 	delay(50);
408 
409 	/* This write actually shoves the new values in */
410 	sv_write(sc, SV_CODEC_CONTROL, reg);
411 
412 	DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
413 
414 	/* Enable DMA interrupts */
415 	reg = sv_read(sc, SV_CODEC_INTMASK);
416 	reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
417 	reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
418 	sv_write(sc, SV_CODEC_INTMASK, reg);
419 
420 	sv_read(sc, SV_CODEC_STATUS);
421 
422 	/* Map and establish the interrupt. */
423 	if (pci_intr_map(pa, &ih)) {
424 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
425 		return;
426 	}
427 	intrstr = pci_intr_string(pc, ih);
428 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
429 	if (sc->sc_ih == NULL) {
430 		printf("%s: couldn't establish interrupt",
431 		       sc->sc_dev.dv_xname);
432 		if (intrstr != NULL)
433 			printf(" at %s", intrstr);
434 		printf("\n");
435 		return;
436 	}
437 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
438 	printf("%s: rev %d", sc->sc_dev.dv_xname,
439 	       sv_read_indirect(sc, SV_REVISION_LEVEL));
440 	if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
441 		printf(", reverb SRAM present");
442 	if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
443 		printf(", wavetable ROM present");
444 	printf("\n");
445 
446 	sv_init_mixer(sc);
447 
448 	audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
449 
450 	arg.type = AUDIODEV_TYPE_OPL;
451 	arg.hwif = 0;
452 	arg.hdl = 0;
453 	(void)config_found(&sc->sc_dev, &arg, audioprint);
454 
455 	sc->sc_pa = *pa;	/* for deferred setup */
456 	config_defer(self, sv_defer);
457 }
458 
459 #ifdef AUDIO_DEBUG
460 void
461 sv_dumpregs(sc)
462 	struct sv_softc *sc;
463 {
464 	int idx;
465 
466 #if 0
467 	for (idx = 0; idx < 0x50; idx += 4)
468 		printf ("%02x = %x\n", idx,
469 			pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
470 #endif
471 
472 	for (idx = 0; idx < 6; idx++)
473 		printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
474 
475 	for (idx = 0; idx < 0x32; idx++)
476 		printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
477 
478 	for (idx = 0; idx < 0x10; idx++)
479 		printf ("DMA %02x = %02x\n", idx,
480 			bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
481 }
482 #endif
483 
484 int
485 sv_intr(p)
486 	void *p;
487 {
488 	struct sv_softc *sc = p;
489 	u_int8_t intr;
490 
491 	intr = sv_read(sc, SV_CODEC_STATUS);
492 	DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
493 
494 	if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)))
495 		return (0);
496 
497 	if (intr & SV_INTSTATUS_DMAA) {
498 		if (sc->sc_pintr)
499 			sc->sc_pintr(sc->sc_parg);
500 	}
501 
502 	if (intr & SV_INTSTATUS_DMAC) {
503 		if (sc->sc_rintr)
504 			sc->sc_rintr(sc->sc_rarg);
505 	}
506 
507 	return (1);
508 }
509 
510 int
511 sv_allocmem(sc, size, align, p)
512 	struct sv_softc *sc;
513 	size_t size;
514 	size_t align;
515 	struct sv_dma *p;
516 {
517 	int error;
518 
519 	p->size = size;
520 	error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
521 				 p->segs, ARRAY_SIZE(p->segs),
522 				 &p->nsegs, BUS_DMA_NOWAIT);
523 	if (error)
524 		return (error);
525 
526 	error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
527 			       &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
528 	if (error)
529 		goto free;
530 
531 	error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
532 				  0, BUS_DMA_NOWAIT, &p->map);
533 	if (error)
534 		goto unmap;
535 
536 	error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
537 				BUS_DMA_NOWAIT);
538 	if (error)
539 		goto destroy;
540 	DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
541 	    (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
542 	return (0);
543 
544 destroy:
545 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
546 unmap:
547 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
548 free:
549 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
550 	return (error);
551 }
552 
553 int
554 sv_freemem(sc, p)
555 	struct sv_softc *sc;
556 	struct sv_dma *p;
557 {
558 	bus_dmamap_unload(sc->sc_dmatag, p->map);
559 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
560 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
561 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
562 	return (0);
563 }
564 
565 int
566 sv_open(addr, flags)
567 	void *addr;
568 	int flags;
569 {
570 	struct sv_softc *sc = addr;
571 
572 	DPRINTF(("sv_open\n"));
573 	if (!sc->sc_dmaset)
574 		return (ENXIO);
575 	sc->sc_pintr = 0;
576 	sc->sc_rintr = 0;
577 
578 	return (0);
579 }
580 
581 /*
582  * Close function is called at splaudio().
583  */
584 void
585 sv_close(addr)
586 	void *addr;
587 {
588 	struct sv_softc *sc = addr;
589 
590 	DPRINTF(("sv_close\n"));
591 	sv_halt_output(sc);
592 	sv_halt_input(sc);
593 
594 	sc->sc_pintr = 0;
595 	sc->sc_rintr = 0;
596 }
597 
598 int
599 sv_query_encoding(addr, fp)
600 	void *addr;
601 	struct audio_encoding *fp;
602 {
603 	switch (fp->index) {
604 	case 0:
605 		strcpy(fp->name, AudioEulinear);
606 		fp->encoding = AUDIO_ENCODING_ULINEAR;
607 		fp->precision = 8;
608 		fp->flags = 0;
609 		return (0);
610 	case 1:
611 		strcpy(fp->name, AudioEmulaw);
612 		fp->encoding = AUDIO_ENCODING_ULAW;
613 		fp->precision = 8;
614 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
615 		return (0);
616 	case 2:
617 		strcpy(fp->name, AudioEalaw);
618 		fp->encoding = AUDIO_ENCODING_ALAW;
619 		fp->precision = 8;
620 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
621 		return (0);
622 	case 3:
623 		strcpy(fp->name, AudioEslinear);
624 		fp->encoding = AUDIO_ENCODING_SLINEAR;
625 		fp->precision = 8;
626 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
627 		return (0);
628 	case 4:
629 		strcpy(fp->name, AudioEslinear_le);
630 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
631 		fp->precision = 16;
632 		fp->flags = 0;
633 		return (0);
634 	case 5:
635 		strcpy(fp->name, AudioEulinear_le);
636 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
637 		fp->precision = 16;
638 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
639 		return (0);
640 	case 6:
641 		strcpy(fp->name, AudioEslinear_be);
642 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
643 		fp->precision = 16;
644 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
645 		return (0);
646 	case 7:
647 		strcpy(fp->name, AudioEulinear_be);
648 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
649 		fp->precision = 16;
650 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
651 		return (0);
652 	default:
653 		return (EINVAL);
654 	}
655 }
656 
657 int
658 sv_set_params(addr, setmode, usemode, play, rec)
659 	void *addr;
660 	int setmode, usemode;
661 	struct audio_params *play, *rec;
662 {
663 	struct sv_softc *sc = addr;
664 	struct audio_params *p = NULL;
665 	int mode;
666 	u_int32_t val;
667 
668 	/*
669 	 * This device only has one clock, so make the sample rates match.
670 	 */
671 	if (play->sample_rate != rec->sample_rate &&
672 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
673 		if (setmode == AUMODE_PLAY) {
674 			rec->sample_rate = play->sample_rate;
675 			setmode |= AUMODE_RECORD;
676 		} else if (setmode == AUMODE_RECORD) {
677 			play->sample_rate = rec->sample_rate;
678 			setmode |= AUMODE_PLAY;
679 		} else
680 			return (EINVAL);
681 	}
682 
683 	for (mode = AUMODE_RECORD; mode != -1;
684 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
685 		if ((setmode & mode) == 0)
686 			continue;
687 
688 		p = mode == AUMODE_PLAY ? play : rec;
689 
690 		if (p->sample_rate < 2000 || p->sample_rate > 48000 ||
691 		    (p->precision != 8 && p->precision != 16) ||
692 		    (p->channels != 1 && p->channels != 2))
693 			return (EINVAL);
694 
695 		p->factor = 1;
696 		p->sw_code = 0;
697 		switch (p->encoding) {
698 		case AUDIO_ENCODING_SLINEAR_BE:
699 			if (p->precision == 16)
700 				p->sw_code = swap_bytes;
701 			else
702 				p->sw_code = change_sign8;
703 			break;
704 		case AUDIO_ENCODING_SLINEAR_LE:
705 			if (p->precision != 16)
706 				p->sw_code = change_sign8;
707 			break;
708 		case AUDIO_ENCODING_ULINEAR_BE:
709 			if (p->precision == 16) {
710 				if (mode == AUMODE_PLAY)
711 					p->sw_code = swap_bytes_change_sign16_le;
712 				else
713 					p->sw_code = change_sign16_swap_bytes_le;
714 			}
715 			break;
716 		case AUDIO_ENCODING_ULINEAR_LE:
717 			if (p->precision == 16)
718 				p->sw_code = change_sign16_le;
719 			break;
720 		case AUDIO_ENCODING_ULAW:
721 			if (mode == AUMODE_PLAY) {
722 				p->factor = 2;
723 				p->sw_code = mulaw_to_slinear16_le;
724 			} else
725 				p->sw_code = ulinear8_to_mulaw;
726 			break;
727 		case AUDIO_ENCODING_ALAW:
728 			if (mode == AUMODE_PLAY) {
729 				p->factor = 2;
730 				p->sw_code = alaw_to_slinear16_le;
731 			} else
732 				p->sw_code = ulinear8_to_alaw;
733 			break;
734 		default:
735 			return (EINVAL);
736 		}
737 	}
738 
739 	val = p->sample_rate * 65536 / 48000;
740 	/*
741 	 * If the sample rate is exactly 48KHz, the fraction would overflow the
742 	 * register, so we have to bias it.  This causes a little clock drift.
743 	 * The drift is below normal crystal tolerance (.0001%), so although
744 	 * this seems a little silly, we can pretty much ignore it.
745 	 * (I tested the output speed with values of 1-20, just to be sure this
746 	 * register isn't *supposed* to have a bias.  It isn't.)
747 	 * - mycroft
748 	 */
749 	if (val > 65535)
750 		val = 65535;
751 
752 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
753 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
754 
755 #define F_REF 24576000
756 
757 #define ABS(x) (((x) < 0) ? (-x) : (x))
758 
759 	if (setmode & AUMODE_RECORD) {
760 		/* The ADC reference frequency (f_out) is 512 * sample rate */
761 
762 		/* f_out is dervied from the 24.576MHZ crystal by three values:
763 		   M & N & R. The equation is as follows:
764 
765 		   f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
766 
767 		   with the constraint that:
768 
769 		   80 MhZ < (m + 2) / (n + 2) * f_ref <= 150Mhz
770 		   and n, m >= 1
771 		*/
772 
773 		int  goal_f_out = 512 * rec->sample_rate;
774 		int  a, n, m, best_n = 0, best_m = 0, best_error = 10000000;
775 		int  pll_sample;
776 		int  error;
777 
778 		for (a = 0; a < 8; a++) {
779 			if ((goal_f_out * (1 << a)) >= 80000000)
780 				break;
781 		}
782 
783 		/* a != 8 because sample_rate >= 2000 */
784 
785 		for (n = 33; n > 2; n--) {
786 			m = (goal_f_out * n * (1 << a)) / F_REF;
787 			if ((m > 257) || (m < 3))
788 				continue;
789 
790 			pll_sample = (m * F_REF) / (n * (1 << a));
791 			pll_sample /= 512;
792 
793 			/* Threshold might be good here */
794 			error = pll_sample - rec->sample_rate;
795 			error = ABS(error);
796 
797 			if (error < best_error) {
798 				best_error = error;
799 				best_n = n;
800 				best_m = m;
801 				if (error == 0) break;
802 			}
803 		}
804 
805 		best_n -= 2;
806 		best_m -= 2;
807 
808 		sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
809 		sv_write_indirect(sc, SV_ADC_PLL_N,
810 				  best_n | (a << SV_PLL_R_SHIFT));
811 	}
812 
813 	return (0);
814 }
815 
816 int
817 sv_round_blocksize(addr, blk)
818 	void *addr;
819 	int blk;
820 {
821 	return (blk & -32);	/* keep good alignment */
822 }
823 
824 int
825 sv_trigger_output(addr, start, end, blksize, intr, arg, param)
826 	void *addr;
827 	void *start, *end;
828 	int blksize;
829 	void (*intr) __P((void *));
830 	void *arg;
831 	struct audio_params *param;
832 {
833 	struct sv_softc *sc = addr;
834 	struct sv_dma *p;
835 	u_int8_t mode;
836 	int dma_count;
837 
838 	DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
839 	    addr, start, end, blksize, intr, arg));
840 	sc->sc_pintr = intr;
841 	sc->sc_parg = arg;
842 
843 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
844 	mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
845 	if (param->precision * param->factor == 16)
846 		mode |= SV_DMAA_FORMAT16;
847 	if (param->channels == 2)
848 		mode |= SV_DMAA_STEREO;
849 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
850 
851 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
852 		;
853 	if (!p) {
854 		printf("sv_trigger_output: bad addr %p\n", start);
855 		return (EINVAL);
856 	}
857 
858 	dma_count = ((char *)end - (char *)start) - 1;
859 	DPRINTF(("sv_trigger_output: dma start loop input addr=%x cc=%d\n",
860 	    (int)DMAADDR(p), dma_count));
861 
862 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
863 			  DMAADDR(p));
864 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
865 			  dma_count);
866 	bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
867 			  DMA37MD_READ | DMA37MD_LOOP);
868 
869 	DPRINTF(("sv_trigger_output: current addr=%x\n",
870 	    bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
871 
872 	dma_count = blksize - 1;
873 
874 	sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
875 	sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
876 
877 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
878 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
879 
880 	return (0);
881 }
882 
883 int
884 sv_trigger_input(addr, start, end, blksize, intr, arg, param)
885 	void *addr;
886 	void *start, *end;
887 	int blksize;
888 	void (*intr) __P((void *));
889 	void *arg;
890 	struct audio_params *param;
891 {
892 	struct sv_softc *sc = addr;
893 	struct sv_dma *p;
894 	u_int8_t mode;
895 	int dma_count;
896 
897 	DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
898 	    addr, start, end, blksize, intr, arg));
899 	sc->sc_rintr = intr;
900 	sc->sc_rarg = arg;
901 
902 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
903 	mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
904 	if (param->precision * param->factor == 16)
905 		mode |= SV_DMAC_FORMAT16;
906 	if (param->channels == 2)
907 		mode |= SV_DMAC_STEREO;
908 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
909 
910 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
911 		;
912 	if (!p) {
913 		printf("sv_trigger_input: bad addr %p\n", start);
914 		return (EINVAL);
915 	}
916 
917 	dma_count = (((char *)end - (char *)start) >> 1) - 1;
918 	DPRINTF(("sv_trigger_input: dma start loop input addr=%x cc=%d\n",
919 	    (int)DMAADDR(p), dma_count));
920 
921 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
922 			  DMAADDR(p));
923 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
924 			  dma_count);
925 	bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
926 			  DMA37MD_WRITE | DMA37MD_LOOP);
927 
928 	DPRINTF(("sv_trigger_input: current addr=%x\n",
929 	    bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
930 
931 	dma_count = (blksize >> 1) - 1;
932 
933 	sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
934 	sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
935 
936 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
937 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
938 
939 	return (0);
940 }
941 
942 int
943 sv_halt_output(addr)
944 	void *addr;
945 {
946 	struct sv_softc *sc = addr;
947 	u_int8_t mode;
948 
949 	DPRINTF(("sv: sv_halt_output\n"));
950 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
951 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
952 
953 	return (0);
954 }
955 
956 int
957 sv_halt_input(addr)
958 	void *addr;
959 {
960 	struct sv_softc *sc = addr;
961 	u_int8_t mode;
962 
963 	DPRINTF(("sv: sv_halt_input\n"));
964 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
965 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
966 
967 	return (0);
968 }
969 
970 int
971 sv_getdev(addr, retp)
972 	void *addr;
973 	struct audio_device *retp;
974 {
975 	*retp = sv_device;
976 	return (0);
977 }
978 
979 
980 /*
981  * Mixer related code is here
982  *
983  */
984 
985 #define SV_INPUT_CLASS 0
986 #define SV_OUTPUT_CLASS 1
987 #define SV_RECORD_CLASS 2
988 
989 #define SV_LAST_CLASS 2
990 
991 static const char *mixer_classes[] =
992 	{ AudioCinputs, AudioCoutputs, AudioCrecord };
993 
994 static const struct {
995 	u_int8_t   l_port;
996 	u_int8_t   r_port;
997 	u_int8_t   mask;
998 	u_int8_t   class;
999 	const char *audio;
1000 } ports[] = {
1001   { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
1002     SV_INPUT_CLASS, "aux1" },
1003   { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
1004     SV_INPUT_CLASS, AudioNcd },
1005   { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
1006     SV_INPUT_CLASS, AudioNline },
1007   { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
1008   { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
1009     SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
1010   { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
1011     SV_INPUT_CLASS, "aux2" },
1012   { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
1013     SV_INPUT_CLASS, AudioNdac },
1014   { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
1015     SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
1016 };
1017 
1018 
1019 static const struct {
1020 	int idx;
1021 	const char *name;
1022 } record_sources[] = {
1023 	{ SV_REC_CD, AudioNcd },
1024 	{ SV_REC_DAC, AudioNdac },
1025 	{ SV_REC_AUX2, "aux2" },
1026 	{ SV_REC_LINE, AudioNline },
1027 	{ SV_REC_AUX1, "aux1" },
1028 	{ SV_REC_MIC, AudioNmicrophone },
1029 	{ SV_REC_MIXER, AudioNmixerout }
1030 };
1031 
1032 
1033 #define SV_DEVICES_PER_PORT 2
1034 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
1035 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
1036 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
1037 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
1038 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
1039 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
1040 
1041 int
1042 sv_query_devinfo(addr, dip)
1043 	void *addr;
1044 	mixer_devinfo_t *dip;
1045 {
1046 	int i;
1047 
1048 	/* It's a class */
1049 	if (dip->index <= SV_LAST_CLASS) {
1050 		dip->type = AUDIO_MIXER_CLASS;
1051 		dip->mixer_class = dip->index;
1052 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1053 		strcpy(dip->label.name,
1054 		       mixer_classes[dip->index]);
1055 		return (0);
1056 	}
1057 
1058 	if (dip->index >= SV_FIRST_MIXER &&
1059 	    dip->index <= SV_LAST_MIXER) {
1060 		int off = dip->index - SV_FIRST_MIXER;
1061 		int mute = (off % SV_DEVICES_PER_PORT);
1062 		int idx = off / SV_DEVICES_PER_PORT;
1063 
1064 		dip->mixer_class = ports[idx].class;
1065 		strcpy(dip->label.name, ports[idx].audio);
1066 
1067 		if (!mute) {
1068 			dip->type = AUDIO_MIXER_VALUE;
1069 			dip->prev = AUDIO_MIXER_LAST;
1070 			dip->next = dip->index + 1;
1071 
1072 			if (ports[idx].r_port != 0)
1073 				dip->un.v.num_channels = 2;
1074 			else
1075 				dip->un.v.num_channels = 1;
1076 
1077 			strcpy(dip->un.v.units.name, AudioNvolume);
1078 		} else {
1079 			dip->type = AUDIO_MIXER_ENUM;
1080 			dip->prev = dip->index - 1;
1081 			dip->next = AUDIO_MIXER_LAST;
1082 
1083 			strcpy(dip->label.name, AudioNmute);
1084 			dip->un.e.num_mem = 2;
1085 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
1086 			dip->un.e.member[0].ord = 0;
1087 			strcpy(dip->un.e.member[1].label.name, AudioNon);
1088 			dip->un.e.member[1].ord = 1;
1089 		}
1090 
1091 		return (0);
1092 	}
1093 
1094 	switch (dip->index) {
1095 	case SV_RECORD_SOURCE:
1096 		dip->mixer_class = SV_RECORD_CLASS;
1097 		dip->prev = AUDIO_MIXER_LAST;
1098 		dip->next = SV_RECORD_GAIN;
1099 		strcpy(dip->label.name, AudioNsource);
1100 		dip->type = AUDIO_MIXER_ENUM;
1101 
1102 		dip->un.e.num_mem = ARRAY_SIZE(record_sources);
1103 		for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
1104 			strcpy(dip->un.e.member[i].label.name,
1105 			       record_sources[i].name);
1106 			dip->un.e.member[i].ord = record_sources[i].idx;
1107 		}
1108 		return (0);
1109 
1110 	case SV_RECORD_GAIN:
1111 		dip->mixer_class = SV_RECORD_CLASS;
1112 		dip->prev = SV_RECORD_SOURCE;
1113 		dip->next = AUDIO_MIXER_LAST;
1114 		strcpy(dip->label.name, "gain");
1115 		dip->type = AUDIO_MIXER_VALUE;
1116 		dip->un.v.num_channels = 1;
1117 		strcpy(dip->un.v.units.name, AudioNvolume);
1118 		return (0);
1119 
1120 	case SV_MIC_BOOST:
1121 		dip->mixer_class = SV_RECORD_CLASS;
1122 		dip->prev = AUDIO_MIXER_LAST;
1123 		dip->next = AUDIO_MIXER_LAST;
1124 		strcpy(dip->label.name, "micboost");
1125 		goto on_off;
1126 
1127 	case SV_SRS_MODE:
1128 		dip->mixer_class = SV_OUTPUT_CLASS;
1129 		dip->prev = dip->next = AUDIO_MIXER_LAST;
1130 		strcpy(dip->label.name, AudioNspatial);
1131 
1132 	on_off:
1133 		dip->type = AUDIO_MIXER_ENUM;
1134 		dip->un.e.num_mem = 2;
1135 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1136 		dip->un.e.member[0].ord = 0;
1137 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1138 		dip->un.e.member[1].ord = 1;
1139 		return (0);
1140 	}
1141 
1142 	return (ENXIO);
1143 }
1144 
1145 int
1146 sv_mixer_set_port(addr, cp)
1147 	void *addr;
1148 	mixer_ctrl_t *cp;
1149 {
1150 	struct sv_softc *sc = addr;
1151 	u_int8_t reg;
1152 	int idx;
1153 
1154 	if (cp->dev >= SV_FIRST_MIXER &&
1155 	    cp->dev <= SV_LAST_MIXER) {
1156 		int off = cp->dev - SV_FIRST_MIXER;
1157 		int mute = (off % SV_DEVICES_PER_PORT);
1158 		idx = off / SV_DEVICES_PER_PORT;
1159 
1160 		if (mute) {
1161 			if (cp->type != AUDIO_MIXER_ENUM)
1162 				return (EINVAL);
1163 
1164 			reg = sv_read_indirect(sc, ports[idx].l_port);
1165 			if (cp->un.ord)
1166 				reg |= SV_MUTE_BIT;
1167 			else
1168 				reg &= ~SV_MUTE_BIT;
1169 			sv_write_indirect(sc, ports[idx].l_port, reg);
1170 
1171 			if (ports[idx].r_port) {
1172 				reg = sv_read_indirect(sc, ports[idx].r_port);
1173 				if (cp->un.ord)
1174 					reg |= SV_MUTE_BIT;
1175 				else
1176 					reg &= ~SV_MUTE_BIT;
1177 				sv_write_indirect(sc, ports[idx].r_port, reg);
1178 			}
1179 		} else {
1180 			int  lval, rval;
1181 
1182 			if (cp->type != AUDIO_MIXER_VALUE)
1183 				return (EINVAL);
1184 
1185 			if (cp->un.value.num_channels != 1 &&
1186 			    cp->un.value.num_channels != 2)
1187 				return (EINVAL);
1188 
1189 			if (ports[idx].r_port == 0) {
1190 				if (cp->un.value.num_channels != 1)
1191 					return (EINVAL);
1192 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1193 				rval = 0; /* shut up GCC */
1194 			} else {
1195 				if (cp->un.value.num_channels != 2)
1196 					return (EINVAL);
1197 
1198 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1199 				rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1200       }
1201 
1202 
1203 			reg = sv_read_indirect(sc, ports[idx].l_port);
1204 			reg &= ~(ports[idx].mask);
1205 			lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
1206 				AUDIO_MAX_GAIN;
1207 			reg |= lval;
1208 			sv_write_indirect(sc, ports[idx].l_port, reg);
1209 
1210 			if (ports[idx].r_port != 0) {
1211 				reg = sv_read_indirect(sc, ports[idx].r_port);
1212 				reg &= ~(ports[idx].mask);
1213 
1214 				rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
1215 					AUDIO_MAX_GAIN;
1216 				reg |= rval;
1217 
1218 				sv_write_indirect(sc, ports[idx].r_port, reg);
1219 			}
1220 
1221 			sv_read_indirect(sc, ports[idx].l_port);
1222 		}
1223 
1224 		return (0);
1225 	}
1226 
1227 
1228 	switch (cp->dev) {
1229 	case SV_RECORD_SOURCE:
1230 		if (cp->type != AUDIO_MIXER_ENUM)
1231 			return (EINVAL);
1232 
1233 		for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
1234 			if (record_sources[idx].idx == cp->un.ord)
1235 				goto found;
1236 		}
1237 
1238 		return (EINVAL);
1239 
1240 	found:
1241 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1242 		reg &= ~SV_REC_SOURCE_MASK;
1243 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1244 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1245 
1246 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1247 		reg &= ~SV_REC_SOURCE_MASK;
1248 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1249 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1250 		return (0);
1251 
1252 	case SV_RECORD_GAIN:
1253 	{
1254 		int val;
1255 
1256 		if (cp->type != AUDIO_MIXER_VALUE)
1257 			return (EINVAL);
1258 
1259 		if (cp->un.value.num_channels != 1)
1260 			return (EINVAL);
1261 
1262 		val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] * SV_REC_GAIN_MASK)
1263 			/ AUDIO_MAX_GAIN;
1264 
1265 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1266 		reg &= ~SV_REC_GAIN_MASK;
1267 		reg |= val;
1268 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1269 
1270 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1271 		reg &= ~SV_REC_GAIN_MASK;
1272 		reg |= val;
1273 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1274 	}
1275 	return (0);
1276 
1277 	case SV_MIC_BOOST:
1278 		if (cp->type != AUDIO_MIXER_ENUM)
1279 			return (EINVAL);
1280 
1281 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1282 		if (cp->un.ord) {
1283 			reg |= SV_MIC_BOOST_BIT;
1284 		} else {
1285 			reg &= ~SV_MIC_BOOST_BIT;
1286 		}
1287 
1288 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1289 		return (0);
1290 
1291 	case SV_SRS_MODE:
1292 		if (cp->type != AUDIO_MIXER_ENUM)
1293 			return (EINVAL);
1294 
1295 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1296 		if (cp->un.ord) {
1297 			reg &= ~SV_SRS_SPACE_ONOFF;
1298 		} else {
1299 			reg |= SV_SRS_SPACE_ONOFF;
1300 		}
1301 
1302 		sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
1303 		return (0);
1304 	}
1305 
1306 	return (EINVAL);
1307 }
1308 
1309 int
1310 sv_mixer_get_port(addr, cp)
1311 	void *addr;
1312 	mixer_ctrl_t *cp;
1313 {
1314 	struct sv_softc *sc = addr;
1315 	int val;
1316 	u_int8_t reg;
1317 
1318 	if (cp->dev >= SV_FIRST_MIXER &&
1319 	    cp->dev <= SV_LAST_MIXER) {
1320 		int off = cp->dev - SV_FIRST_MIXER;
1321 		int mute = (off % 2);
1322 		int idx = off / 2;
1323 
1324 		if (mute) {
1325 			if (cp->type != AUDIO_MIXER_ENUM)
1326 				return (EINVAL);
1327 
1328 			reg = sv_read_indirect(sc, ports[idx].l_port);
1329 			cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
1330 		} else {
1331 			if (cp->type != AUDIO_MIXER_VALUE)
1332 				return (EINVAL);
1333 
1334 			if (cp->un.value.num_channels != 1 &&
1335 			    cp->un.value.num_channels != 2)
1336 				return (EINVAL);
1337 
1338 			if ((ports[idx].r_port == 0 &&
1339 			     cp->un.value.num_channels != 1) ||
1340 			    (ports[idx].r_port != 0 &&
1341 			     cp->un.value.num_channels != 2))
1342 				return (EINVAL);
1343 
1344 			reg = sv_read_indirect(sc, ports[idx].l_port);
1345 			reg &= ports[idx].mask;
1346 
1347 			val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1348 
1349 			if (ports[idx].r_port != 0) {
1350 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val;
1351 
1352 				reg = sv_read_indirect(sc, ports[idx].r_port);
1353 				reg &= ports[idx].mask;
1354 
1355 				val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1356 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val;
1357 			} else
1358 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val;
1359 		}
1360 
1361 		return (0);
1362   }
1363 
1364 	switch (cp->dev) {
1365 	case SV_RECORD_SOURCE:
1366 		if (cp->type != AUDIO_MIXER_ENUM)
1367 			return (EINVAL);
1368 
1369 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1370 		cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
1371 
1372 		return (0);
1373 
1374 	case SV_RECORD_GAIN:
1375 		if (cp->type != AUDIO_MIXER_VALUE)
1376 			return (EINVAL);
1377 		if (cp->un.value.num_channels != 1)
1378 			return (EINVAL);
1379 
1380 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
1381 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1382 			(((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
1383 
1384 		return (0);
1385 
1386 	case SV_MIC_BOOST:
1387 		if (cp->type != AUDIO_MIXER_ENUM)
1388 			return (EINVAL);
1389 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1390 		cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
1391 		return (0);
1392 
1393 
1394 	case SV_SRS_MODE:
1395 		if (cp->type != AUDIO_MIXER_ENUM)
1396 			return (EINVAL);
1397 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1398 		cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
1399 		return (0);
1400 	}
1401 
1402 	return (EINVAL);
1403 }
1404 
1405 
1406 static void
1407 sv_init_mixer(sc)
1408 	struct sv_softc *sc;
1409 {
1410 	mixer_ctrl_t cp;
1411 	int i;
1412 
1413 	cp.type = AUDIO_MIXER_ENUM;
1414 	cp.dev = SV_SRS_MODE;
1415 	cp.un.ord = 0;
1416 
1417 	sv_mixer_set_port(sc, &cp);
1418 
1419 	for (i = 0; i < ARRAY_SIZE(ports); i++) {
1420 		if (ports[i].audio == AudioNdac) {
1421 			cp.type = AUDIO_MIXER_ENUM;
1422 			cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
1423 			cp.un.ord = 0;
1424 			sv_mixer_set_port(sc, &cp);
1425 			break;
1426 		}
1427 	}
1428 }
1429 
1430 void *
1431 sv_malloc(addr, direction, size, pool, flags)
1432 	void *addr;
1433 	int direction;
1434 	size_t size;
1435 	int pool, flags;
1436 {
1437 	struct sv_softc *sc = addr;
1438 	struct sv_dma *p;
1439 	int error;
1440 
1441 	p = malloc(sizeof(*p), pool, flags);
1442 	if (!p)
1443 		return (0);
1444 	error = sv_allocmem(sc, size, 16, p);
1445 	if (error) {
1446 		free(p, pool);
1447 		return (0);
1448 	}
1449 	p->next = sc->sc_dmas;
1450 	sc->sc_dmas = p;
1451 	return (KERNADDR(p));
1452 }
1453 
1454 void
1455 sv_free(addr, ptr, pool)
1456 	void *addr;
1457 	void *ptr;
1458 	int pool;
1459 {
1460 	struct sv_softc *sc = addr;
1461 	struct sv_dma **pp, *p;
1462 
1463 	for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1464 		if (KERNADDR(p) == ptr) {
1465 			sv_freemem(sc, p);
1466 			*pp = p->next;
1467 			free(p, pool);
1468 			return;
1469 		}
1470 	}
1471 }
1472 
1473 size_t
1474 sv_round_buffersize(addr, direction, size)
1475 	void *addr;
1476 	int direction;
1477 	size_t size;
1478 {
1479 	return (size);
1480 }
1481 
1482 paddr_t
1483 sv_mappage(addr, mem, off, prot)
1484 	void *addr;
1485 	void *mem;
1486 	off_t off;
1487 	int prot;
1488 {
1489 	struct sv_softc *sc = addr;
1490 	struct sv_dma *p;
1491 
1492 	if (off < 0)
1493 		return (-1);
1494 	for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1495 		;
1496 	if (!p)
1497 		return (-1);
1498 	return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1499 				off, prot, BUS_DMA_WAITOK));
1500 }
1501 
1502 int
1503 sv_get_props(addr)
1504 	void *addr;
1505 {
1506 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
1507 }
1508