1 /* $NetBSD: sv.c,v 1.50 2014/03/29 19:28:25 christos Exp $ */ 2 /* $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */ 3 4 /* 5 * Copyright (c) 1999, 2008 The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Charles M. Hannum. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1998 Constantine Paul Sapuntzakis 35 * All rights reserved 36 * 37 * Author: Constantine Paul Sapuntzakis (csapuntz@cvs.openbsd.org) 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * 2. Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in the 46 * documentation and/or other materials provided with the distribution. 47 * 3. The author's name or those of the contributors may be used to 48 * endorse or promote products derived from this software without 49 * specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS 52 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 53 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 54 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 55 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 56 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 57 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 58 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 59 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 60 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 61 * POSSIBILITY OF SUCH DAMAGE. 62 */ 63 64 /* 65 * S3 SonicVibes driver 66 * Heavily based on the eap driver by Lennart Augustsson 67 */ 68 69 #include <sys/cdefs.h> 70 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.50 2014/03/29 19:28:25 christos Exp $"); 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/kernel.h> 75 #include <sys/kmem.h> 76 #include <sys/device.h> 77 78 #include <dev/pci/pcireg.h> 79 #include <dev/pci/pcivar.h> 80 #include <dev/pci/pcidevs.h> 81 82 #include <sys/audioio.h> 83 #include <dev/audio_if.h> 84 #include <dev/mulaw.h> 85 #include <dev/auconv.h> 86 87 #include <dev/ic/i8237reg.h> 88 #include <dev/pci/svreg.h> 89 #include <dev/pci/svvar.h> 90 91 #include <sys/bus.h> 92 93 /* XXX 94 * The SonicVibes DMA is broken and only works on 24-bit addresses. 95 * As long as bus_dmamem_alloc_range() is missing we use the ISA 96 * DMA tag on i386. 97 */ 98 #if defined(amd64) || defined(i386) 99 #include <dev/isa/isavar.h> 100 #endif 101 102 #ifdef AUDIO_DEBUG 103 #define DPRINTF(x) if (svdebug) printf x 104 #define DPRINTFN(n,x) if (svdebug>(n)) printf x 105 int svdebug = 0; 106 #else 107 #define DPRINTF(x) 108 #define DPRINTFN(n,x) 109 #endif 110 111 static int sv_match(device_t, cfdata_t, void *); 112 static void sv_attach(device_t, device_t, void *); 113 static int sv_intr(void *); 114 115 struct sv_dma { 116 bus_dmamap_t map; 117 void *addr; 118 bus_dma_segment_t segs[1]; 119 int nsegs; 120 size_t size; 121 struct sv_dma *next; 122 }; 123 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr) 124 #define KERNADDR(p) ((void *)((p)->addr)) 125 126 CFATTACH_DECL_NEW(sv, sizeof(struct sv_softc), 127 sv_match, sv_attach, NULL, NULL); 128 129 static struct audio_device sv_device = { 130 "S3 SonicVibes", 131 "", 132 "sv" 133 }; 134 135 #define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0])) 136 137 static int sv_allocmem(struct sv_softc *, size_t, size_t, int, 138 struct sv_dma *); 139 static int sv_freemem(struct sv_softc *, struct sv_dma *); 140 141 static void sv_init_mixer(struct sv_softc *); 142 143 static int sv_open(void *, int); 144 static int sv_query_encoding(void *, struct audio_encoding *); 145 static int sv_set_params(void *, int, int, audio_params_t *, 146 audio_params_t *, stream_filter_list_t *, 147 stream_filter_list_t *); 148 static int sv_round_blocksize(void *, int, int, const audio_params_t *); 149 static int sv_trigger_output(void *, void *, void *, int, void (*)(void *), 150 void *, const audio_params_t *); 151 static int sv_trigger_input(void *, void *, void *, int, void (*)(void *), 152 void *, const audio_params_t *); 153 static int sv_halt_output(void *); 154 static int sv_halt_input(void *); 155 static int sv_getdev(void *, struct audio_device *); 156 static int sv_mixer_set_port(void *, mixer_ctrl_t *); 157 static int sv_mixer_get_port(void *, mixer_ctrl_t *); 158 static int sv_query_devinfo(void *, mixer_devinfo_t *); 159 static void * sv_malloc(void *, int, size_t); 160 static void sv_free(void *, void *, size_t); 161 static size_t sv_round_buffersize(void *, int, size_t); 162 static paddr_t sv_mappage(void *, void *, off_t, int); 163 static int sv_get_props(void *); 164 static void sv_get_locks(void *, kmutex_t **, kmutex_t **); 165 166 #ifdef AUDIO_DEBUG 167 void sv_dumpregs(struct sv_softc *sc); 168 #endif 169 170 static const struct audio_hw_if sv_hw_if = { 171 sv_open, 172 NULL, /* close */ 173 NULL, 174 sv_query_encoding, 175 sv_set_params, 176 sv_round_blocksize, 177 NULL, 178 NULL, 179 NULL, 180 NULL, 181 NULL, 182 sv_halt_output, 183 sv_halt_input, 184 NULL, 185 sv_getdev, 186 NULL, 187 sv_mixer_set_port, 188 sv_mixer_get_port, 189 sv_query_devinfo, 190 sv_malloc, 191 sv_free, 192 sv_round_buffersize, 193 sv_mappage, 194 sv_get_props, 195 sv_trigger_output, 196 sv_trigger_input, 197 NULL, 198 sv_get_locks, 199 }; 200 201 #define SV_NFORMATS 4 202 static const struct audio_format sv_formats[SV_NFORMATS] = { 203 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16, 204 2, AUFMT_STEREO, 0, {2000, 48000}}, 205 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16, 206 1, AUFMT_MONAURAL, 0, {2000, 48000}}, 207 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8, 208 2, AUFMT_STEREO, 0, {2000, 48000}}, 209 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8, 210 1, AUFMT_MONAURAL, 0, {2000, 48000}}, 211 }; 212 213 214 static void 215 sv_write(struct sv_softc *sc, uint8_t reg, uint8_t val) 216 { 217 218 DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val)); 219 bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val); 220 } 221 222 static uint8_t 223 sv_read(struct sv_softc *sc, uint8_t reg) 224 { 225 uint8_t val; 226 227 val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg); 228 DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val)); 229 return val; 230 } 231 232 static uint8_t 233 sv_read_indirect(struct sv_softc *sc, uint8_t reg) 234 { 235 uint8_t val; 236 237 sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK); 238 val = sv_read(sc, SV_CODEC_IDATA); 239 return val; 240 } 241 242 static void 243 sv_write_indirect(struct sv_softc *sc, uint8_t reg, uint8_t val) 244 { 245 uint8_t iaddr; 246 247 iaddr = reg & SV_IADDR_MASK; 248 if (reg == SV_DMA_DATA_FORMAT) 249 iaddr |= SV_IADDR_MCE; 250 251 sv_write(sc, SV_CODEC_IADDR, iaddr); 252 sv_write(sc, SV_CODEC_IDATA, val); 253 } 254 255 static int 256 sv_match(device_t parent, cfdata_t match, void *aux) 257 { 258 struct pci_attach_args *pa; 259 260 pa = aux; 261 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 && 262 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES) 263 return 1; 264 265 return 0; 266 } 267 268 static pcireg_t pci_io_alloc_low, pci_io_alloc_high; 269 270 static int 271 pci_alloc_io(pci_chipset_tag_t pc, pcitag_t pt, int pcioffs, 272 bus_space_tag_t iot, bus_size_t size, bus_size_t align, 273 bus_size_t bound, int flags, bus_space_handle_t *ioh) 274 { 275 bus_addr_t addr; 276 int error; 277 278 error = bus_space_alloc(iot, pci_io_alloc_low, pci_io_alloc_high, 279 size, align, bound, flags, &addr, ioh); 280 if (error) 281 return error; 282 283 pci_conf_write(pc, pt, pcioffs, addr); 284 return 0; 285 } 286 287 /* 288 * Allocate IO addresses when all other configuration is done. 289 */ 290 static void 291 sv_defer(device_t self) 292 { 293 struct sv_softc *sc; 294 pci_chipset_tag_t pc; 295 pcitag_t pt; 296 pcireg_t dmaio; 297 298 sc = device_private(self); 299 pc = sc->sc_pa.pa_pc; 300 pt = sc->sc_pa.pa_tag; 301 DPRINTF(("sv_defer: %p\n", sc)); 302 303 /* XXX 304 * Get a reasonable default for the I/O range. 305 * Assume the range around SB_PORTBASE is valid on this PCI bus. 306 */ 307 pci_io_alloc_low = pci_conf_read(pc, pt, SV_SB_PORTBASE_SLOT); 308 pci_io_alloc_high = pci_io_alloc_low + 0x1000; 309 310 if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF, 311 sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0, 312 0, &sc->sc_dmaa_ioh)) { 313 printf("sv_attach: cannot allocate DMA A range\n"); 314 return; 315 } 316 dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF); 317 DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio)); 318 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, 319 dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR); 320 321 if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF, 322 sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0, 323 0, &sc->sc_dmac_ioh)) { 324 printf("sv_attach: cannot allocate DMA C range\n"); 325 return; 326 } 327 dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF); 328 DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio)); 329 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 330 dmaio | SV_DMA_CHANNEL_ENABLE); 331 332 sc->sc_dmaset = 1; 333 } 334 335 static void 336 sv_attach(device_t parent, device_t self, void *aux) 337 { 338 struct sv_softc *sc; 339 struct pci_attach_args *pa; 340 pci_chipset_tag_t pc; 341 pcitag_t pt; 342 pci_intr_handle_t ih; 343 pcireg_t csr; 344 char const *intrstr; 345 uint8_t reg; 346 struct audio_attach_args arg; 347 char intrbuf[PCI_INTRSTR_LEN]; 348 349 sc = device_private(self); 350 pa = aux; 351 pc = pa->pa_pc; 352 pt = pa->pa_tag; 353 printf ("\n"); 354 355 /* Map I/O registers */ 356 if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT, 357 PCI_MAPREG_TYPE_IO, 0, 358 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) { 359 aprint_error_dev(self, "can't map enhanced i/o space\n"); 360 return; 361 } 362 if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT, 363 PCI_MAPREG_TYPE_IO, 0, 364 &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) { 365 aprint_error_dev(self, "can't map FM i/o space\n"); 366 return; 367 } 368 if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT, 369 PCI_MAPREG_TYPE_IO, 0, 370 &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) { 371 aprint_error_dev(self, "can't map MIDI i/o space\n"); 372 return; 373 } 374 DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n", 375 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh)); 376 377 #if defined(alpha) 378 /* XXX Force allocation through the SGMAP. */ 379 sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA); 380 #elif defined(amd64) || defined(i386) 381 /* XXX 382 * The SonicVibes DMA is broken and only works on 24-bit addresses. 383 * As long as bus_dmamem_alloc_range() is missing we use the ISA 384 * DMA tag on i386. 385 */ 386 sc->sc_dmatag = &isa_bus_dma_tag; 387 #else 388 sc->sc_dmatag = pa->pa_dmat; 389 #endif 390 391 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR); 392 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0); 393 394 /* Enable the device. */ 395 csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG); 396 pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG, 397 csr | PCI_COMMAND_MASTER_ENABLE); 398 399 sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0); 400 sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0); 401 402 /* initialize codec registers */ 403 reg = sv_read(sc, SV_CODEC_CONTROL); 404 reg |= SV_CTL_RESET; 405 sv_write(sc, SV_CODEC_CONTROL, reg); 406 delay(50); 407 408 reg = sv_read(sc, SV_CODEC_CONTROL); 409 reg &= ~SV_CTL_RESET; 410 reg |= SV_CTL_INTA | SV_CTL_ENHANCED; 411 412 /* This write clears the reset */ 413 sv_write(sc, SV_CODEC_CONTROL, reg); 414 delay(50); 415 416 /* This write actually shoves the new values in */ 417 sv_write(sc, SV_CODEC_CONTROL, reg); 418 419 DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL))); 420 421 /* Map and establish the interrupt. */ 422 if (pci_intr_map(pa, &ih)) { 423 aprint_error_dev(self, "couldn't map interrupt\n"); 424 return; 425 } 426 427 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE); 428 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO); 429 430 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf)); 431 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc); 432 if (sc->sc_ih == NULL) { 433 aprint_error_dev(self, "couldn't establish interrupt"); 434 if (intrstr != NULL) 435 aprint_error(" at %s", intrstr); 436 aprint_error("\n"); 437 mutex_destroy(&sc->sc_lock); 438 mutex_destroy(&sc->sc_intr_lock); 439 return; 440 } 441 printf("%s: interrupting at %s\n", device_xname(self), intrstr); 442 printf("%s: rev %d", device_xname(self), 443 sv_read_indirect(sc, SV_REVISION_LEVEL)); 444 if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1) 445 printf(", reverb SRAM present"); 446 if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0)) 447 printf(", wavetable ROM present"); 448 printf("\n"); 449 450 /* Enable DMA interrupts */ 451 reg = sv_read(sc, SV_CODEC_INTMASK); 452 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC); 453 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI; 454 sv_write(sc, SV_CODEC_INTMASK, reg); 455 sv_read(sc, SV_CODEC_STATUS); 456 457 sv_init_mixer(sc); 458 459 audio_attach_mi(&sv_hw_if, sc, self); 460 461 arg.type = AUDIODEV_TYPE_OPL; 462 arg.hwif = 0; 463 arg.hdl = 0; 464 (void)config_found(self, &arg, audioprint); 465 466 sc->sc_pa = *pa; /* for deferred setup */ 467 config_defer(self, sv_defer); 468 } 469 470 #ifdef AUDIO_DEBUG 471 void 472 sv_dumpregs(struct sv_softc *sc) 473 { 474 int idx; 475 476 #if 0 477 for (idx = 0; idx < 0x50; idx += 4) 478 printf ("%02x = %x\n", idx, 479 pci_conf_read(pa->pa_pc, pa->pa_tag, idx)); 480 #endif 481 482 for (idx = 0; idx < 6; idx++) 483 printf ("REG %02x = %02x\n", idx, sv_read(sc, idx)); 484 485 for (idx = 0; idx < 0x32; idx++) 486 printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx)); 487 488 for (idx = 0; idx < 0x10; idx++) 489 printf ("DMA %02x = %02x\n", idx, 490 bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx)); 491 } 492 #endif 493 494 static int 495 sv_intr(void *p) 496 { 497 struct sv_softc *sc; 498 uint8_t intr; 499 500 sc = p; 501 502 mutex_spin_enter(&sc->sc_intr_lock); 503 504 intr = sv_read(sc, SV_CODEC_STATUS); 505 DPRINTFN(5,("sv_intr: intr=0x%x\n", intr)); 506 507 if (intr & SV_INTSTATUS_DMAA) { 508 if (sc->sc_pintr) 509 sc->sc_pintr(sc->sc_parg); 510 } 511 512 if (intr & SV_INTSTATUS_DMAC) { 513 if (sc->sc_rintr) 514 sc->sc_rintr(sc->sc_rarg); 515 } 516 517 mutex_spin_exit(&sc->sc_intr_lock); 518 519 return (intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)) != 0; 520 } 521 522 static int 523 sv_allocmem(struct sv_softc *sc, size_t size, size_t align, 524 int direction, struct sv_dma *p) 525 { 526 int error; 527 528 p->size = size; 529 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0, 530 p->segs, ARRAY_SIZE(p->segs), &p->nsegs, BUS_DMA_WAITOK); 531 if (error) 532 return error; 533 534 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size, 535 &p->addr, BUS_DMA_WAITOK|BUS_DMA_COHERENT); 536 if (error) 537 goto free; 538 539 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size, 540 0, BUS_DMA_WAITOK, &p->map); 541 if (error) 542 goto unmap; 543 544 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL, 545 BUS_DMA_WAITOK | (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE); 546 if (error) 547 goto destroy; 548 DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n", 549 (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p))); 550 return 0; 551 552 destroy: 553 bus_dmamap_destroy(sc->sc_dmatag, p->map); 554 unmap: 555 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); 556 free: 557 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); 558 return error; 559 } 560 561 static int 562 sv_freemem(struct sv_softc *sc, struct sv_dma *p) 563 { 564 565 bus_dmamap_unload(sc->sc_dmatag, p->map); 566 bus_dmamap_destroy(sc->sc_dmatag, p->map); 567 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); 568 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); 569 return 0; 570 } 571 572 static int 573 sv_open(void *addr, int flags) 574 { 575 struct sv_softc *sc; 576 577 sc = addr; 578 DPRINTF(("sv_open\n")); 579 if (!sc->sc_dmaset) 580 return ENXIO; 581 582 return 0; 583 } 584 585 static int 586 sv_query_encoding(void *addr, struct audio_encoding *fp) 587 { 588 589 switch (fp->index) { 590 case 0: 591 strcpy(fp->name, AudioEulinear); 592 fp->encoding = AUDIO_ENCODING_ULINEAR; 593 fp->precision = 8; 594 fp->flags = 0; 595 return 0; 596 case 1: 597 strcpy(fp->name, AudioEmulaw); 598 fp->encoding = AUDIO_ENCODING_ULAW; 599 fp->precision = 8; 600 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 601 return 0; 602 case 2: 603 strcpy(fp->name, AudioEalaw); 604 fp->encoding = AUDIO_ENCODING_ALAW; 605 fp->precision = 8; 606 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 607 return 0; 608 case 3: 609 strcpy(fp->name, AudioEslinear); 610 fp->encoding = AUDIO_ENCODING_SLINEAR; 611 fp->precision = 8; 612 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 613 return 0; 614 case 4: 615 strcpy(fp->name, AudioEslinear_le); 616 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 617 fp->precision = 16; 618 fp->flags = 0; 619 return 0; 620 case 5: 621 strcpy(fp->name, AudioEulinear_le); 622 fp->encoding = AUDIO_ENCODING_ULINEAR_LE; 623 fp->precision = 16; 624 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 625 return 0; 626 case 6: 627 strcpy(fp->name, AudioEslinear_be); 628 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 629 fp->precision = 16; 630 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 631 return 0; 632 case 7: 633 strcpy(fp->name, AudioEulinear_be); 634 fp->encoding = AUDIO_ENCODING_ULINEAR_BE; 635 fp->precision = 16; 636 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 637 return 0; 638 default: 639 return EINVAL; 640 } 641 } 642 643 static int 644 sv_set_params(void *addr, int setmode, int usemode, audio_params_t *play, 645 audio_params_t *rec, stream_filter_list_t *pfil, stream_filter_list_t *rfil) 646 { 647 struct sv_softc *sc; 648 audio_params_t *p; 649 uint32_t val; 650 651 sc = addr; 652 p = NULL; 653 /* 654 * This device only has one clock, so make the sample rates match. 655 */ 656 if (play->sample_rate != rec->sample_rate && 657 usemode == (AUMODE_PLAY | AUMODE_RECORD)) { 658 if (setmode == AUMODE_PLAY) { 659 rec->sample_rate = play->sample_rate; 660 setmode |= AUMODE_RECORD; 661 } else if (setmode == AUMODE_RECORD) { 662 play->sample_rate = rec->sample_rate; 663 setmode |= AUMODE_PLAY; 664 } else 665 return EINVAL; 666 } 667 668 if (setmode & AUMODE_RECORD) { 669 p = rec; 670 if (auconv_set_converter(sv_formats, SV_NFORMATS, 671 AUMODE_RECORD, rec, FALSE, rfil) < 0) 672 return EINVAL; 673 } 674 if (setmode & AUMODE_PLAY) { 675 p = play; 676 if (auconv_set_converter(sv_formats, SV_NFORMATS, 677 AUMODE_PLAY, play, FALSE, pfil) < 0) 678 return EINVAL; 679 } 680 681 if (p == NULL) 682 return 0; 683 684 val = p->sample_rate * 65536 / 48000; 685 /* 686 * If the sample rate is exactly 48 kHz, the fraction would overflow the 687 * register, so we have to bias it. This causes a little clock drift. 688 * The drift is below normal crystal tolerance (.0001%), so although 689 * this seems a little silly, we can pretty much ignore it. 690 * (I tested the output speed with values of 1-20, just to be sure this 691 * register isn't *supposed* to have a bias. It isn't.) 692 * - mycroft 693 */ 694 if (val > 65535) 695 val = 65535; 696 697 mutex_spin_enter(&sc->sc_intr_lock); 698 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff); 699 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8); 700 mutex_spin_exit(&sc->sc_intr_lock); 701 702 #define F_REF 24576000 703 704 #define ABS(x) (((x) < 0) ? (-x) : (x)) 705 706 if (setmode & AUMODE_RECORD) { 707 /* The ADC reference frequency (f_out) is 512 * sample rate */ 708 709 /* f_out is dervied from the 24.576MHz crystal by three values: 710 M & N & R. The equation is as follows: 711 712 f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a)) 713 714 with the constraint that: 715 716 80 MHz < (m + 2) / (n + 2) * f_ref <= 150MHz 717 and n, m >= 1 718 */ 719 720 int goal_f_out; 721 int a, n, m, best_n, best_m, best_error; 722 int pll_sample; 723 int error; 724 725 goal_f_out = 512 * rec->sample_rate; 726 best_n = 0; 727 best_m = 0; 728 best_error = 10000000; 729 for (a = 0; a < 8; a++) { 730 if ((goal_f_out * (1 << a)) >= 80000000) 731 break; 732 } 733 734 /* a != 8 because sample_rate >= 2000 */ 735 736 for (n = 33; n > 2; n--) { 737 m = (goal_f_out * n * (1 << a)) / F_REF; 738 if ((m > 257) || (m < 3)) 739 continue; 740 741 pll_sample = (m * F_REF) / (n * (1 << a)); 742 pll_sample /= 512; 743 744 /* Threshold might be good here */ 745 error = pll_sample - rec->sample_rate; 746 error = ABS(error); 747 748 if (error < best_error) { 749 best_error = error; 750 best_n = n; 751 best_m = m; 752 if (error == 0) break; 753 } 754 } 755 756 best_n -= 2; 757 best_m -= 2; 758 759 mutex_spin_enter(&sc->sc_intr_lock); 760 sv_write_indirect(sc, SV_ADC_PLL_M, best_m); 761 sv_write_indirect(sc, SV_ADC_PLL_N, 762 best_n | (a << SV_PLL_R_SHIFT)); 763 mutex_spin_exit(&sc->sc_intr_lock); 764 } 765 766 return 0; 767 } 768 769 static int 770 sv_round_blocksize(void *addr, int blk, int mode, 771 const audio_params_t *param) 772 { 773 774 return blk & -32; /* keep good alignment */ 775 } 776 777 static int 778 sv_trigger_output(void *addr, void *start, void *end, int blksize, 779 void (*intr)(void *), void *arg, const audio_params_t *param) 780 { 781 struct sv_softc *sc; 782 struct sv_dma *p; 783 uint8_t mode; 784 int dma_count; 785 786 DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d " 787 "intr=%p(%p)\n", addr, start, end, blksize, intr, arg)); 788 sc = addr; 789 sc->sc_pintr = intr; 790 sc->sc_parg = arg; 791 792 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT); 793 mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO); 794 if (param->precision == 16) 795 mode |= SV_DMAA_FORMAT16; 796 if (param->channels == 2) 797 mode |= SV_DMAA_STEREO; 798 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode); 799 800 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next) 801 continue; 802 if (p == NULL) { 803 printf("sv_trigger_output: bad addr %p\n", start); 804 return EINVAL; 805 } 806 807 dma_count = ((char *)end - (char *)start) - 1; 808 DPRINTF(("sv_trigger_output: DMA start loop input addr=%x cc=%d\n", 809 (int)DMAADDR(p), dma_count)); 810 811 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0, 812 DMAADDR(p)); 813 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0, 814 dma_count); 815 bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE, 816 DMA37MD_READ | DMA37MD_LOOP); 817 818 DPRINTF(("sv_trigger_output: current addr=%x\n", 819 bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0))); 820 821 dma_count = blksize - 1; 822 823 sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8); 824 sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF); 825 826 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 827 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE); 828 829 return 0; 830 } 831 832 static int 833 sv_trigger_input(void *addr, void *start, void *end, int blksize, 834 void (*intr)(void *), void *arg, const audio_params_t *param) 835 { 836 struct sv_softc *sc; 837 struct sv_dma *p; 838 uint8_t mode; 839 int dma_count; 840 841 DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d " 842 "intr=%p(%p)\n", addr, start, end, blksize, intr, arg)); 843 sc = addr; 844 sc->sc_rintr = intr; 845 sc->sc_rarg = arg; 846 847 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT); 848 mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO); 849 if (param->precision == 16) 850 mode |= SV_DMAC_FORMAT16; 851 if (param->channels == 2) 852 mode |= SV_DMAC_STEREO; 853 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode); 854 855 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next) 856 continue; 857 if (!p) { 858 printf("sv_trigger_input: bad addr %p\n", start); 859 return EINVAL; 860 } 861 862 dma_count = (((char *)end - (char *)start) >> 1) - 1; 863 DPRINTF(("sv_trigger_input: DMA start loop input addr=%x cc=%d\n", 864 (int)DMAADDR(p), dma_count)); 865 866 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0, 867 DMAADDR(p)); 868 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0, 869 dma_count); 870 bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE, 871 DMA37MD_WRITE | DMA37MD_LOOP); 872 873 DPRINTF(("sv_trigger_input: current addr=%x\n", 874 bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0))); 875 876 dma_count = (blksize >> 1) - 1; 877 878 sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8); 879 sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF); 880 881 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 882 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE); 883 884 return 0; 885 } 886 887 static int 888 sv_halt_output(void *addr) 889 { 890 struct sv_softc *sc; 891 uint8_t mode; 892 893 DPRINTF(("sv: sv_halt_output\n")); 894 sc = addr; 895 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 896 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE); 897 sc->sc_pintr = 0; 898 899 return 0; 900 } 901 902 static int 903 sv_halt_input(void *addr) 904 { 905 struct sv_softc *sc; 906 uint8_t mode; 907 908 DPRINTF(("sv: sv_halt_input\n")); 909 sc = addr; 910 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 911 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE); 912 sc->sc_rintr = 0; 913 914 return 0; 915 } 916 917 static int 918 sv_getdev(void *addr, struct audio_device *retp) 919 { 920 921 *retp = sv_device; 922 return 0; 923 } 924 925 926 /* 927 * Mixer related code is here 928 * 929 */ 930 931 #define SV_INPUT_CLASS 0 932 #define SV_OUTPUT_CLASS 1 933 #define SV_RECORD_CLASS 2 934 935 #define SV_LAST_CLASS 2 936 937 static const char *mixer_classes[] = 938 { AudioCinputs, AudioCoutputs, AudioCrecord }; 939 940 static const struct { 941 uint8_t l_port; 942 uint8_t r_port; 943 uint8_t mask; 944 uint8_t class; 945 const char *audio; 946 } ports[] = { 947 { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK, 948 SV_INPUT_CLASS, "aux1" }, 949 { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK, 950 SV_INPUT_CLASS, AudioNcd }, 951 { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK, 952 SV_INPUT_CLASS, AudioNline }, 953 { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone }, 954 { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL, 955 SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth }, 956 { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK, 957 SV_INPUT_CLASS, "aux2" }, 958 { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK, 959 SV_INPUT_CLASS, AudioNdac }, 960 { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL, 961 SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster } 962 }; 963 964 965 static const struct { 966 int idx; 967 const char *name; 968 } record_sources[] = { 969 { SV_REC_CD, AudioNcd }, 970 { SV_REC_DAC, AudioNdac }, 971 { SV_REC_AUX2, "aux2" }, 972 { SV_REC_LINE, AudioNline }, 973 { SV_REC_AUX1, "aux1" }, 974 { SV_REC_MIC, AudioNmicrophone }, 975 { SV_REC_MIXER, AudioNmixerout } 976 }; 977 978 979 #define SV_DEVICES_PER_PORT 2 980 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1) 981 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS) 982 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1) 983 #define SV_MIC_BOOST (SV_LAST_MIXER + 2) 984 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3) 985 #define SV_SRS_MODE (SV_LAST_MIXER + 4) 986 987 static int 988 sv_query_devinfo(void *addr, mixer_devinfo_t *dip) 989 { 990 int i; 991 992 /* It's a class */ 993 if (dip->index <= SV_LAST_CLASS) { 994 dip->type = AUDIO_MIXER_CLASS; 995 dip->mixer_class = dip->index; 996 dip->next = dip->prev = AUDIO_MIXER_LAST; 997 strcpy(dip->label.name, mixer_classes[dip->index]); 998 return 0; 999 } 1000 1001 if (dip->index >= SV_FIRST_MIXER && 1002 dip->index <= SV_LAST_MIXER) { 1003 int off, mute ,idx; 1004 1005 off = dip->index - SV_FIRST_MIXER; 1006 mute = (off % SV_DEVICES_PER_PORT); 1007 idx = off / SV_DEVICES_PER_PORT; 1008 dip->mixer_class = ports[idx].class; 1009 strcpy(dip->label.name, ports[idx].audio); 1010 1011 if (!mute) { 1012 dip->type = AUDIO_MIXER_VALUE; 1013 dip->prev = AUDIO_MIXER_LAST; 1014 dip->next = dip->index + 1; 1015 1016 if (ports[idx].r_port != 0) 1017 dip->un.v.num_channels = 2; 1018 else 1019 dip->un.v.num_channels = 1; 1020 1021 strcpy(dip->un.v.units.name, AudioNvolume); 1022 } else { 1023 dip->type = AUDIO_MIXER_ENUM; 1024 dip->prev = dip->index - 1; 1025 dip->next = AUDIO_MIXER_LAST; 1026 1027 strcpy(dip->label.name, AudioNmute); 1028 dip->un.e.num_mem = 2; 1029 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1030 dip->un.e.member[0].ord = 0; 1031 strcpy(dip->un.e.member[1].label.name, AudioNon); 1032 dip->un.e.member[1].ord = 1; 1033 } 1034 1035 return 0; 1036 } 1037 1038 switch (dip->index) { 1039 case SV_RECORD_SOURCE: 1040 dip->mixer_class = SV_RECORD_CLASS; 1041 dip->prev = AUDIO_MIXER_LAST; 1042 dip->next = SV_RECORD_GAIN; 1043 strcpy(dip->label.name, AudioNsource); 1044 dip->type = AUDIO_MIXER_ENUM; 1045 1046 dip->un.e.num_mem = ARRAY_SIZE(record_sources); 1047 for (i = 0; i < ARRAY_SIZE(record_sources); i++) { 1048 strcpy(dip->un.e.member[i].label.name, 1049 record_sources[i].name); 1050 dip->un.e.member[i].ord = record_sources[i].idx; 1051 } 1052 return 0; 1053 1054 case SV_RECORD_GAIN: 1055 dip->mixer_class = SV_RECORD_CLASS; 1056 dip->prev = SV_RECORD_SOURCE; 1057 dip->next = AUDIO_MIXER_LAST; 1058 strcpy(dip->label.name, "gain"); 1059 dip->type = AUDIO_MIXER_VALUE; 1060 dip->un.v.num_channels = 1; 1061 strcpy(dip->un.v.units.name, AudioNvolume); 1062 return 0; 1063 1064 case SV_MIC_BOOST: 1065 dip->mixer_class = SV_RECORD_CLASS; 1066 dip->prev = AUDIO_MIXER_LAST; 1067 dip->next = AUDIO_MIXER_LAST; 1068 strcpy(dip->label.name, "micboost"); 1069 goto on_off; 1070 1071 case SV_SRS_MODE: 1072 dip->mixer_class = SV_OUTPUT_CLASS; 1073 dip->prev = dip->next = AUDIO_MIXER_LAST; 1074 strcpy(dip->label.name, AudioNspatial); 1075 1076 on_off: 1077 dip->type = AUDIO_MIXER_ENUM; 1078 dip->un.e.num_mem = 2; 1079 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1080 dip->un.e.member[0].ord = 0; 1081 strcpy(dip->un.e.member[1].label.name, AudioNon); 1082 dip->un.e.member[1].ord = 1; 1083 return 0; 1084 } 1085 1086 return ENXIO; 1087 } 1088 1089 static int 1090 sv_mixer_set_port(void *addr, mixer_ctrl_t *cp) 1091 { 1092 struct sv_softc *sc; 1093 uint8_t reg; 1094 int idx; 1095 1096 sc = addr; 1097 if (cp->dev >= SV_FIRST_MIXER && 1098 cp->dev <= SV_LAST_MIXER) { 1099 int off, mute; 1100 1101 off = cp->dev - SV_FIRST_MIXER; 1102 mute = (off % SV_DEVICES_PER_PORT); 1103 idx = off / SV_DEVICES_PER_PORT; 1104 1105 if (mute) { 1106 if (cp->type != AUDIO_MIXER_ENUM) 1107 return EINVAL; 1108 1109 mutex_spin_enter(&sc->sc_intr_lock); 1110 reg = sv_read_indirect(sc, ports[idx].l_port); 1111 if (cp->un.ord) 1112 reg |= SV_MUTE_BIT; 1113 else 1114 reg &= ~SV_MUTE_BIT; 1115 sv_write_indirect(sc, ports[idx].l_port, reg); 1116 1117 if (ports[idx].r_port) { 1118 reg = sv_read_indirect(sc, ports[idx].r_port); 1119 if (cp->un.ord) 1120 reg |= SV_MUTE_BIT; 1121 else 1122 reg &= ~SV_MUTE_BIT; 1123 sv_write_indirect(sc, ports[idx].r_port, reg); 1124 } 1125 mutex_spin_exit(&sc->sc_intr_lock); 1126 } else { 1127 int lval, rval; 1128 1129 if (cp->type != AUDIO_MIXER_VALUE) 1130 return EINVAL; 1131 1132 if (cp->un.value.num_channels != 1 && 1133 cp->un.value.num_channels != 2) 1134 return (EINVAL); 1135 1136 if (ports[idx].r_port == 0) { 1137 if (cp->un.value.num_channels != 1) 1138 return (EINVAL); 1139 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; 1140 rval = 0; /* shut up GCC */ 1141 } else { 1142 if (cp->un.value.num_channels != 2) 1143 return (EINVAL); 1144 1145 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]; 1146 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]; 1147 } 1148 1149 mutex_spin_enter(&sc->sc_intr_lock); 1150 reg = sv_read_indirect(sc, ports[idx].l_port); 1151 reg &= ~(ports[idx].mask); 1152 lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask / 1153 AUDIO_MAX_GAIN; 1154 reg |= lval; 1155 sv_write_indirect(sc, ports[idx].l_port, reg); 1156 1157 if (ports[idx].r_port != 0) { 1158 reg = sv_read_indirect(sc, ports[idx].r_port); 1159 reg &= ~(ports[idx].mask); 1160 1161 rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask / 1162 AUDIO_MAX_GAIN; 1163 reg |= rval; 1164 1165 sv_write_indirect(sc, ports[idx].r_port, reg); 1166 } 1167 1168 sv_read_indirect(sc, ports[idx].l_port); 1169 mutex_spin_exit(&sc->sc_intr_lock); 1170 } 1171 1172 return 0; 1173 } 1174 1175 1176 switch (cp->dev) { 1177 case SV_RECORD_SOURCE: 1178 if (cp->type != AUDIO_MIXER_ENUM) 1179 return EINVAL; 1180 1181 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) { 1182 if (record_sources[idx].idx == cp->un.ord) 1183 goto found; 1184 } 1185 1186 return EINVAL; 1187 1188 found: 1189 mutex_spin_enter(&sc->sc_intr_lock); 1190 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1191 reg &= ~SV_REC_SOURCE_MASK; 1192 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK); 1193 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1194 1195 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL); 1196 reg &= ~SV_REC_SOURCE_MASK; 1197 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK); 1198 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg); 1199 mutex_spin_exit(&sc->sc_intr_lock); 1200 return 0; 1201 1202 case SV_RECORD_GAIN: 1203 { 1204 int val; 1205 1206 if (cp->type != AUDIO_MIXER_VALUE) 1207 return EINVAL; 1208 1209 if (cp->un.value.num_channels != 1) 1210 return EINVAL; 1211 1212 val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] 1213 * SV_REC_GAIN_MASK) / AUDIO_MAX_GAIN; 1214 1215 mutex_spin_enter(&sc->sc_intr_lock); 1216 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1217 reg &= ~SV_REC_GAIN_MASK; 1218 reg |= val; 1219 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1220 1221 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL); 1222 reg &= ~SV_REC_GAIN_MASK; 1223 reg |= val; 1224 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg); 1225 mutex_spin_exit(&sc->sc_intr_lock); 1226 } 1227 return (0); 1228 1229 case SV_MIC_BOOST: 1230 if (cp->type != AUDIO_MIXER_ENUM) 1231 return EINVAL; 1232 1233 mutex_spin_enter(&sc->sc_intr_lock); 1234 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1235 if (cp->un.ord) { 1236 reg |= SV_MIC_BOOST_BIT; 1237 } else { 1238 reg &= ~SV_MIC_BOOST_BIT; 1239 } 1240 1241 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1242 mutex_spin_exit(&sc->sc_intr_lock); 1243 return 0; 1244 1245 case SV_SRS_MODE: 1246 if (cp->type != AUDIO_MIXER_ENUM) 1247 return EINVAL; 1248 1249 mutex_spin_enter(&sc->sc_intr_lock); 1250 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL); 1251 if (cp->un.ord) { 1252 reg &= ~SV_SRS_SPACE_ONOFF; 1253 } else { 1254 reg |= SV_SRS_SPACE_ONOFF; 1255 } 1256 1257 sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg); 1258 mutex_spin_exit(&sc->sc_intr_lock); 1259 return 0; 1260 } 1261 1262 return EINVAL; 1263 } 1264 1265 static int 1266 sv_mixer_get_port(void *addr, mixer_ctrl_t *cp) 1267 { 1268 struct sv_softc *sc; 1269 int val, error; 1270 uint8_t reg; 1271 1272 sc = addr; 1273 error = 0; 1274 1275 mutex_spin_enter(&sc->sc_intr_lock); 1276 1277 if (cp->dev >= SV_FIRST_MIXER && 1278 cp->dev <= SV_LAST_MIXER) { 1279 int off = cp->dev - SV_FIRST_MIXER; 1280 int mute = (off % 2); 1281 int idx = off / 2; 1282 1283 off = cp->dev - SV_FIRST_MIXER; 1284 mute = (off % 2); 1285 idx = off / 2; 1286 if (mute) { 1287 if (cp->type != AUDIO_MIXER_ENUM) 1288 error = EINVAL; 1289 else { 1290 reg = sv_read_indirect(sc, ports[idx].l_port); 1291 cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0); 1292 } 1293 } else { 1294 if (cp->type != AUDIO_MIXER_VALUE || 1295 (cp->un.value.num_channels != 1 && 1296 cp->un.value.num_channels != 2) || 1297 ((ports[idx].r_port == 0 && 1298 cp->un.value.num_channels != 1) || 1299 (ports[idx].r_port != 0 && 1300 cp->un.value.num_channels != 2))) 1301 error = EINVAL; 1302 else { 1303 reg = sv_read_indirect(sc, ports[idx].l_port); 1304 reg &= ports[idx].mask; 1305 1306 val = AUDIO_MAX_GAIN - 1307 ((reg * AUDIO_MAX_GAIN) / ports[idx].mask); 1308 1309 if (ports[idx].r_port != 0) { 1310 cp->un.value.level 1311 [AUDIO_MIXER_LEVEL_LEFT] = val; 1312 1313 reg = sv_read_indirect(sc, 1314 ports[idx].r_port); 1315 reg &= ports[idx].mask; 1316 1317 val = AUDIO_MAX_GAIN - 1318 ((reg * AUDIO_MAX_GAIN) 1319 / ports[idx].mask); 1320 cp->un.value.level 1321 [AUDIO_MIXER_LEVEL_RIGHT] = val; 1322 } else 1323 cp->un.value.level 1324 [AUDIO_MIXER_LEVEL_MONO] = val; 1325 } 1326 } 1327 1328 return error; 1329 } 1330 1331 switch (cp->dev) { 1332 case SV_RECORD_SOURCE: 1333 if (cp->type != AUDIO_MIXER_ENUM) { 1334 error = EINVAL; 1335 break; 1336 } 1337 1338 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1339 cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT); 1340 1341 break; 1342 1343 case SV_RECORD_GAIN: 1344 if (cp->type != AUDIO_MIXER_VALUE) { 1345 error = EINVAL; 1346 break; 1347 } 1348 if (cp->un.value.num_channels != 1) { 1349 error = EINVAL; 1350 break; 1351 } 1352 1353 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK; 1354 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1355 (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK; 1356 1357 break; 1358 1359 case SV_MIC_BOOST: 1360 if (cp->type != AUDIO_MIXER_ENUM) { 1361 error = EINVAL; 1362 break; 1363 } 1364 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1365 cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0); 1366 break; 1367 1368 case SV_SRS_MODE: 1369 if (cp->type != AUDIO_MIXER_ENUM) { 1370 error = EINVAL; 1371 break; 1372 } 1373 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL); 1374 cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1); 1375 break; 1376 default: 1377 error = EINVAL; 1378 break; 1379 } 1380 1381 mutex_spin_exit(&sc->sc_intr_lock); 1382 return error; 1383 } 1384 1385 static void 1386 sv_init_mixer(struct sv_softc *sc) 1387 { 1388 mixer_ctrl_t cp; 1389 int i; 1390 1391 cp.type = AUDIO_MIXER_ENUM; 1392 cp.dev = SV_SRS_MODE; 1393 cp.un.ord = 0; 1394 1395 sv_mixer_set_port(sc, &cp); 1396 1397 for (i = 0; i < ARRAY_SIZE(ports); i++) { 1398 if (!strcmp(ports[i].audio, AudioNdac)) { 1399 cp.type = AUDIO_MIXER_ENUM; 1400 cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1; 1401 cp.un.ord = 0; 1402 sv_mixer_set_port(sc, &cp); 1403 break; 1404 } 1405 } 1406 } 1407 1408 static void * 1409 sv_malloc(void *addr, int direction, size_t size) 1410 { 1411 struct sv_softc *sc; 1412 struct sv_dma *p; 1413 int error; 1414 1415 sc = addr; 1416 p = kmem_alloc(sizeof(*p), KM_SLEEP); 1417 if (p == NULL) 1418 return NULL; 1419 error = sv_allocmem(sc, size, 16, direction, p); 1420 if (error) { 1421 kmem_free(p, sizeof(*p)); 1422 return 0; 1423 } 1424 p->next = sc->sc_dmas; 1425 sc->sc_dmas = p; 1426 return KERNADDR(p); 1427 } 1428 1429 static void 1430 sv_free(void *addr, void *ptr, size_t size) 1431 { 1432 struct sv_softc *sc; 1433 struct sv_dma **pp, *p; 1434 1435 sc = addr; 1436 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) { 1437 if (KERNADDR(p) == ptr) { 1438 sv_freemem(sc, p); 1439 *pp = p->next; 1440 kmem_free(p, sizeof(*p)); 1441 return; 1442 } 1443 } 1444 } 1445 1446 static size_t 1447 sv_round_buffersize(void *addr, int direction, size_t size) 1448 { 1449 1450 return size; 1451 } 1452 1453 static paddr_t 1454 sv_mappage(void *addr, void *mem, off_t off, int prot) 1455 { 1456 struct sv_softc *sc; 1457 struct sv_dma *p; 1458 1459 sc = addr; 1460 if (off < 0) 1461 return -1; 1462 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next) 1463 continue; 1464 if (p == NULL) 1465 return -1; 1466 return bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs, 1467 off, prot, BUS_DMA_WAITOK); 1468 } 1469 1470 static int 1471 sv_get_props(void *addr) 1472 { 1473 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX; 1474 } 1475 1476 static void 1477 sv_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread) 1478 { 1479 struct sv_softc *sc; 1480 1481 sc = addr; 1482 *intr = &sc->sc_intr_lock; 1483 *thread = &sc->sc_lock; 1484 } 1485