1 /* $NetBSD: sv.c,v 1.37 2007/10/19 12:00:55 ad Exp $ */ 2 /* $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */ 3 4 /* 5 * Copyright (c) 1999 The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Charles M. Hannum. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * Copyright (c) 1998 Constantine Paul Sapuntzakis 42 * All rights reserved 43 * 44 * Author: Constantine Paul Sapuntzakis (csapuntz@cvs.openbsd.org) 45 * 46 * Redistribution and use in source and binary forms, with or without 47 * modification, are permitted provided that the following conditions 48 * are met: 49 * 1. Redistributions of source code must retain the above copyright 50 * notice, this list of conditions and the following disclaimer. 51 * 2. Redistributions in binary form must reproduce the above copyright 52 * notice, this list of conditions and the following disclaimer in the 53 * documentation and/or other materials provided with the distribution. 54 * 3. The author's name or those of the contributors may be used to 55 * endorse or promote products derived from this software without 56 * specific prior written permission. 57 * 58 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS 59 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 60 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 61 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 68 * POSSIBILITY OF SUCH DAMAGE. 69 */ 70 71 /* 72 * S3 SonicVibes driver 73 * Heavily based on the eap driver by Lennart Augustsson 74 */ 75 76 #include <sys/cdefs.h> 77 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.37 2007/10/19 12:00:55 ad Exp $"); 78 79 #include <sys/param.h> 80 #include <sys/systm.h> 81 #include <sys/kernel.h> 82 #include <sys/malloc.h> 83 #include <sys/device.h> 84 85 #include <dev/pci/pcireg.h> 86 #include <dev/pci/pcivar.h> 87 #include <dev/pci/pcidevs.h> 88 89 #include <sys/audioio.h> 90 #include <dev/audio_if.h> 91 #include <dev/mulaw.h> 92 #include <dev/auconv.h> 93 94 #include <dev/ic/i8237reg.h> 95 #include <dev/pci/svreg.h> 96 #include <dev/pci/svvar.h> 97 98 #include <sys/bus.h> 99 100 /* XXX 101 * The SonicVibes DMA is broken and only works on 24-bit addresses. 102 * As long as bus_dmamem_alloc_range() is missing we use the ISA 103 * DMA tag on i386. 104 */ 105 #if defined(i386) 106 #include "isa.h" 107 #if NISA > 0 108 #include <dev/isa/isavar.h> 109 #endif 110 #endif 111 112 #ifdef AUDIO_DEBUG 113 #define DPRINTF(x) if (svdebug) printf x 114 #define DPRINTFN(n,x) if (svdebug>(n)) printf x 115 int svdebug = 0; 116 #else 117 #define DPRINTF(x) 118 #define DPRINTFN(n,x) 119 #endif 120 121 static int sv_match(struct device *, struct cfdata *, void *); 122 static void sv_attach(struct device *, struct device *, void *); 123 static int sv_intr(void *); 124 125 struct sv_dma { 126 bus_dmamap_t map; 127 void *addr; 128 bus_dma_segment_t segs[1]; 129 int nsegs; 130 size_t size; 131 struct sv_dma *next; 132 }; 133 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr) 134 #define KERNADDR(p) ((void *)((p)->addr)) 135 136 CFATTACH_DECL(sv, sizeof(struct sv_softc), 137 sv_match, sv_attach, NULL, NULL); 138 139 static struct audio_device sv_device = { 140 "S3 SonicVibes", 141 "", 142 "sv" 143 }; 144 145 #define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0])) 146 147 static int sv_allocmem(struct sv_softc *, size_t, size_t, int, 148 struct sv_dma *); 149 static int sv_freemem(struct sv_softc *, struct sv_dma *); 150 151 static void sv_init_mixer(struct sv_softc *); 152 153 static int sv_open(void *, int); 154 static int sv_query_encoding(void *, struct audio_encoding *); 155 static int sv_set_params(void *, int, int, audio_params_t *, 156 audio_params_t *, stream_filter_list_t *, 157 stream_filter_list_t *); 158 static int sv_round_blocksize(void *, int, int, const audio_params_t *); 159 static int sv_trigger_output(void *, void *, void *, int, void (*)(void *), 160 void *, const audio_params_t *); 161 static int sv_trigger_input(void *, void *, void *, int, void (*)(void *), 162 void *, const audio_params_t *); 163 static int sv_halt_output(void *); 164 static int sv_halt_input(void *); 165 static int sv_getdev(void *, struct audio_device *); 166 static int sv_mixer_set_port(void *, mixer_ctrl_t *); 167 static int sv_mixer_get_port(void *, mixer_ctrl_t *); 168 static int sv_query_devinfo(void *, mixer_devinfo_t *); 169 static void * sv_malloc(void *, int, size_t, struct malloc_type *, int); 170 static void sv_free(void *, void *, struct malloc_type *); 171 static size_t sv_round_buffersize(void *, int, size_t); 172 static paddr_t sv_mappage(void *, void *, off_t, int); 173 static int sv_get_props(void *); 174 175 #ifdef AUDIO_DEBUG 176 void sv_dumpregs(struct sv_softc *sc); 177 #endif 178 179 static const struct audio_hw_if sv_hw_if = { 180 sv_open, 181 NULL, /* close */ 182 NULL, 183 sv_query_encoding, 184 sv_set_params, 185 sv_round_blocksize, 186 NULL, 187 NULL, 188 NULL, 189 NULL, 190 NULL, 191 sv_halt_output, 192 sv_halt_input, 193 NULL, 194 sv_getdev, 195 NULL, 196 sv_mixer_set_port, 197 sv_mixer_get_port, 198 sv_query_devinfo, 199 sv_malloc, 200 sv_free, 201 sv_round_buffersize, 202 sv_mappage, 203 sv_get_props, 204 sv_trigger_output, 205 sv_trigger_input, 206 NULL, 207 NULL, 208 }; 209 210 #define SV_NFORMATS 4 211 static const struct audio_format sv_formats[SV_NFORMATS] = { 212 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16, 213 2, AUFMT_STEREO, 0, {2000, 48000}}, 214 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16, 215 1, AUFMT_MONAURAL, 0, {2000, 48000}}, 216 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8, 217 2, AUFMT_STEREO, 0, {2000, 48000}}, 218 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8, 219 1, AUFMT_MONAURAL, 0, {2000, 48000}}, 220 }; 221 222 223 static void 224 sv_write(struct sv_softc *sc, uint8_t reg, uint8_t val) 225 { 226 227 DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val)); 228 bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val); 229 } 230 231 static uint8_t 232 sv_read(struct sv_softc *sc, uint8_t reg) 233 { 234 uint8_t val; 235 236 val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg); 237 DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val)); 238 return val; 239 } 240 241 static uint8_t 242 sv_read_indirect(struct sv_softc *sc, uint8_t reg) 243 { 244 uint8_t val; 245 int s; 246 247 s = splaudio(); 248 sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK); 249 val = sv_read(sc, SV_CODEC_IDATA); 250 splx(s); 251 return val; 252 } 253 254 static void 255 sv_write_indirect(struct sv_softc *sc, uint8_t reg, uint8_t val) 256 { 257 uint8_t iaddr; 258 int s; 259 260 iaddr = reg & SV_IADDR_MASK; 261 s = splaudio(); 262 if (reg == SV_DMA_DATA_FORMAT) 263 iaddr |= SV_IADDR_MCE; 264 265 sv_write(sc, SV_CODEC_IADDR, iaddr); 266 sv_write(sc, SV_CODEC_IDATA, val); 267 splx(s); 268 } 269 270 static int 271 sv_match(struct device *parent, struct cfdata *match, 272 void *aux) 273 { 274 struct pci_attach_args *pa; 275 276 pa = aux; 277 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 && 278 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES) 279 return 1; 280 281 return 0; 282 } 283 284 static pcireg_t pci_io_alloc_low, pci_io_alloc_high; 285 286 static int 287 pci_alloc_io(pci_chipset_tag_t pc, pcitag_t pt, int pcioffs, 288 bus_space_tag_t iot, bus_size_t size, bus_size_t align, 289 bus_size_t bound, int flags, bus_space_handle_t *ioh) 290 { 291 bus_addr_t addr; 292 int error; 293 294 error = bus_space_alloc(iot, pci_io_alloc_low, pci_io_alloc_high, 295 size, align, bound, flags, &addr, ioh); 296 if (error) 297 return error; 298 299 pci_conf_write(pc, pt, pcioffs, addr); 300 return 0; 301 } 302 303 /* 304 * Allocate IO addresses when all other configuration is done. 305 */ 306 static void 307 sv_defer(struct device *self) 308 { 309 struct sv_softc *sc; 310 pci_chipset_tag_t pc; 311 pcitag_t pt; 312 pcireg_t dmaio; 313 314 sc = (struct sv_softc *)self; 315 pc = sc->sc_pa.pa_pc; 316 pt = sc->sc_pa.pa_tag; 317 DPRINTF(("sv_defer: %p\n", sc)); 318 319 /* XXX 320 * Get a reasonable default for the I/O range. 321 * Assume the range around SB_PORTBASE is valid on this PCI bus. 322 */ 323 pci_io_alloc_low = pci_conf_read(pc, pt, SV_SB_PORTBASE_SLOT); 324 pci_io_alloc_high = pci_io_alloc_low + 0x1000; 325 326 if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF, 327 sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0, 328 0, &sc->sc_dmaa_ioh)) { 329 printf("sv_attach: cannot allocate DMA A range\n"); 330 return; 331 } 332 dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF); 333 DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio)); 334 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, 335 dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR); 336 337 if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF, 338 sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0, 339 0, &sc->sc_dmac_ioh)) { 340 printf("sv_attach: cannot allocate DMA C range\n"); 341 return; 342 } 343 dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF); 344 DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio)); 345 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 346 dmaio | SV_DMA_CHANNEL_ENABLE); 347 348 sc->sc_dmaset = 1; 349 } 350 351 static void 352 sv_attach(struct device *parent, struct device *self, void *aux) 353 { 354 struct sv_softc *sc; 355 struct pci_attach_args *pa; 356 pci_chipset_tag_t pc; 357 pcitag_t pt; 358 pci_intr_handle_t ih; 359 pcireg_t csr; 360 char const *intrstr; 361 uint8_t reg; 362 struct audio_attach_args arg; 363 364 sc = (struct sv_softc *)self; 365 pa = aux; 366 pc = pa->pa_pc; 367 pt = pa->pa_tag; 368 printf ("\n"); 369 370 /* Map I/O registers */ 371 if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT, 372 PCI_MAPREG_TYPE_IO, 0, 373 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) { 374 printf("%s: can't map enhanced i/o space\n", 375 sc->sc_dev.dv_xname); 376 return; 377 } 378 if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT, 379 PCI_MAPREG_TYPE_IO, 0, 380 &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) { 381 printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname); 382 return; 383 } 384 if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT, 385 PCI_MAPREG_TYPE_IO, 0, 386 &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) { 387 printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname); 388 return; 389 } 390 DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n", 391 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh)); 392 393 #if defined(alpha) 394 /* XXX Force allocation through the SGMAP. */ 395 sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA); 396 #elif defined(i386) && NISA > 0 397 /* XXX 398 * The SonicVibes DMA is broken and only works on 24-bit addresses. 399 * As long as bus_dmamem_alloc_range() is missing we use the ISA 400 * DMA tag on i386. 401 */ 402 sc->sc_dmatag = &isa_bus_dma_tag; 403 #else 404 sc->sc_dmatag = pa->pa_dmat; 405 #endif 406 407 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR); 408 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0); 409 410 /* Enable the device. */ 411 csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG); 412 pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG, 413 csr | PCI_COMMAND_MASTER_ENABLE); 414 415 sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0); 416 sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0); 417 418 /* initialize codec registers */ 419 reg = sv_read(sc, SV_CODEC_CONTROL); 420 reg |= SV_CTL_RESET; 421 sv_write(sc, SV_CODEC_CONTROL, reg); 422 delay(50); 423 424 reg = sv_read(sc, SV_CODEC_CONTROL); 425 reg &= ~SV_CTL_RESET; 426 reg |= SV_CTL_INTA | SV_CTL_ENHANCED; 427 428 /* This write clears the reset */ 429 sv_write(sc, SV_CODEC_CONTROL, reg); 430 delay(50); 431 432 /* This write actually shoves the new values in */ 433 sv_write(sc, SV_CODEC_CONTROL, reg); 434 435 DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL))); 436 437 /* Enable DMA interrupts */ 438 reg = sv_read(sc, SV_CODEC_INTMASK); 439 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC); 440 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI; 441 sv_write(sc, SV_CODEC_INTMASK, reg); 442 443 sv_read(sc, SV_CODEC_STATUS); 444 445 /* Map and establish the interrupt. */ 446 if (pci_intr_map(pa, &ih)) { 447 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname); 448 return; 449 } 450 intrstr = pci_intr_string(pc, ih); 451 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc); 452 if (sc->sc_ih == NULL) { 453 printf("%s: couldn't establish interrupt", 454 sc->sc_dev.dv_xname); 455 if (intrstr != NULL) 456 printf(" at %s", intrstr); 457 printf("\n"); 458 return; 459 } 460 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); 461 printf("%s: rev %d", sc->sc_dev.dv_xname, 462 sv_read_indirect(sc, SV_REVISION_LEVEL)); 463 if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1) 464 printf(", reverb SRAM present"); 465 if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0)) 466 printf(", wavetable ROM present"); 467 printf("\n"); 468 469 sv_init_mixer(sc); 470 471 audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev); 472 473 arg.type = AUDIODEV_TYPE_OPL; 474 arg.hwif = 0; 475 arg.hdl = 0; 476 (void)config_found(&sc->sc_dev, &arg, audioprint); 477 478 sc->sc_pa = *pa; /* for deferred setup */ 479 config_defer(self, sv_defer); 480 } 481 482 #ifdef AUDIO_DEBUG 483 void 484 sv_dumpregs(struct sv_softc *sc) 485 { 486 int idx; 487 488 #if 0 489 for (idx = 0; idx < 0x50; idx += 4) 490 printf ("%02x = %x\n", idx, 491 pci_conf_read(pa->pa_pc, pa->pa_tag, idx)); 492 #endif 493 494 for (idx = 0; idx < 6; idx++) 495 printf ("REG %02x = %02x\n", idx, sv_read(sc, idx)); 496 497 for (idx = 0; idx < 0x32; idx++) 498 printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx)); 499 500 for (idx = 0; idx < 0x10; idx++) 501 printf ("DMA %02x = %02x\n", idx, 502 bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx)); 503 } 504 #endif 505 506 static int 507 sv_intr(void *p) 508 { 509 struct sv_softc *sc; 510 uint8_t intr; 511 512 sc = p; 513 intr = sv_read(sc, SV_CODEC_STATUS); 514 DPRINTFN(5,("sv_intr: intr=0x%x\n", intr)); 515 516 if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC))) 517 return 0; 518 519 if (intr & SV_INTSTATUS_DMAA) { 520 if (sc->sc_pintr) 521 sc->sc_pintr(sc->sc_parg); 522 } 523 524 if (intr & SV_INTSTATUS_DMAC) { 525 if (sc->sc_rintr) 526 sc->sc_rintr(sc->sc_rarg); 527 } 528 529 return 1; 530 } 531 532 static int 533 sv_allocmem(struct sv_softc *sc, size_t size, size_t align, 534 int direction, struct sv_dma *p) 535 { 536 int error; 537 538 p->size = size; 539 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0, 540 p->segs, ARRAY_SIZE(p->segs), &p->nsegs, BUS_DMA_NOWAIT); 541 if (error) 542 return error; 543 544 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size, 545 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT); 546 if (error) 547 goto free; 548 549 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size, 550 0, BUS_DMA_NOWAIT, &p->map); 551 if (error) 552 goto unmap; 553 554 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL, 555 BUS_DMA_NOWAIT | (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE); 556 if (error) 557 goto destroy; 558 DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n", 559 (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p))); 560 return 0; 561 562 destroy: 563 bus_dmamap_destroy(sc->sc_dmatag, p->map); 564 unmap: 565 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); 566 free: 567 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); 568 return error; 569 } 570 571 static int 572 sv_freemem(struct sv_softc *sc, struct sv_dma *p) 573 { 574 575 bus_dmamap_unload(sc->sc_dmatag, p->map); 576 bus_dmamap_destroy(sc->sc_dmatag, p->map); 577 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); 578 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); 579 return 0; 580 } 581 582 static int 583 sv_open(void *addr, int flags) 584 { 585 struct sv_softc *sc; 586 587 sc = addr; 588 DPRINTF(("sv_open\n")); 589 if (!sc->sc_dmaset) 590 return ENXIO; 591 592 return 0; 593 } 594 595 static int 596 sv_query_encoding(void *addr, struct audio_encoding *fp) 597 { 598 599 switch (fp->index) { 600 case 0: 601 strcpy(fp->name, AudioEulinear); 602 fp->encoding = AUDIO_ENCODING_ULINEAR; 603 fp->precision = 8; 604 fp->flags = 0; 605 return 0; 606 case 1: 607 strcpy(fp->name, AudioEmulaw); 608 fp->encoding = AUDIO_ENCODING_ULAW; 609 fp->precision = 8; 610 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 611 return 0; 612 case 2: 613 strcpy(fp->name, AudioEalaw); 614 fp->encoding = AUDIO_ENCODING_ALAW; 615 fp->precision = 8; 616 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 617 return 0; 618 case 3: 619 strcpy(fp->name, AudioEslinear); 620 fp->encoding = AUDIO_ENCODING_SLINEAR; 621 fp->precision = 8; 622 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 623 return 0; 624 case 4: 625 strcpy(fp->name, AudioEslinear_le); 626 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 627 fp->precision = 16; 628 fp->flags = 0; 629 return 0; 630 case 5: 631 strcpy(fp->name, AudioEulinear_le); 632 fp->encoding = AUDIO_ENCODING_ULINEAR_LE; 633 fp->precision = 16; 634 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 635 return 0; 636 case 6: 637 strcpy(fp->name, AudioEslinear_be); 638 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 639 fp->precision = 16; 640 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 641 return 0; 642 case 7: 643 strcpy(fp->name, AudioEulinear_be); 644 fp->encoding = AUDIO_ENCODING_ULINEAR_BE; 645 fp->precision = 16; 646 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 647 return 0; 648 default: 649 return EINVAL; 650 } 651 } 652 653 static int 654 sv_set_params(void *addr, int setmode, int usemode, audio_params_t *play, 655 audio_params_t *rec, stream_filter_list_t *pfil, stream_filter_list_t *rfil) 656 { 657 struct sv_softc *sc; 658 audio_params_t *p; 659 uint32_t val; 660 661 sc = addr; 662 p = NULL; 663 /* 664 * This device only has one clock, so make the sample rates match. 665 */ 666 if (play->sample_rate != rec->sample_rate && 667 usemode == (AUMODE_PLAY | AUMODE_RECORD)) { 668 if (setmode == AUMODE_PLAY) { 669 rec->sample_rate = play->sample_rate; 670 setmode |= AUMODE_RECORD; 671 } else if (setmode == AUMODE_RECORD) { 672 play->sample_rate = rec->sample_rate; 673 setmode |= AUMODE_PLAY; 674 } else 675 return EINVAL; 676 } 677 678 if (setmode & AUMODE_RECORD) { 679 p = rec; 680 if (auconv_set_converter(sv_formats, SV_NFORMATS, 681 AUMODE_RECORD, rec, FALSE, rfil) < 0) 682 return EINVAL; 683 } 684 if (setmode & AUMODE_PLAY) { 685 p = play; 686 if (auconv_set_converter(sv_formats, SV_NFORMATS, 687 AUMODE_PLAY, play, FALSE, pfil) < 0) 688 return EINVAL; 689 } 690 691 if (p == NULL) 692 return 0; 693 694 val = p->sample_rate * 65536 / 48000; 695 /* 696 * If the sample rate is exactly 48 kHz, the fraction would overflow the 697 * register, so we have to bias it. This causes a little clock drift. 698 * The drift is below normal crystal tolerance (.0001%), so although 699 * this seems a little silly, we can pretty much ignore it. 700 * (I tested the output speed with values of 1-20, just to be sure this 701 * register isn't *supposed* to have a bias. It isn't.) 702 * - mycroft 703 */ 704 if (val > 65535) 705 val = 65535; 706 707 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff); 708 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8); 709 710 #define F_REF 24576000 711 712 #define ABS(x) (((x) < 0) ? (-x) : (x)) 713 714 if (setmode & AUMODE_RECORD) { 715 /* The ADC reference frequency (f_out) is 512 * sample rate */ 716 717 /* f_out is dervied from the 24.576MHz crystal by three values: 718 M & N & R. The equation is as follows: 719 720 f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a)) 721 722 with the constraint that: 723 724 80 MHz < (m + 2) / (n + 2) * f_ref <= 150MHz 725 and n, m >= 1 726 */ 727 728 int goal_f_out; 729 int a, n, m, best_n, best_m, best_error; 730 int pll_sample; 731 int error; 732 733 goal_f_out = 512 * rec->sample_rate; 734 best_n = 0; 735 best_m = 0; 736 best_error = 10000000; 737 for (a = 0; a < 8; a++) { 738 if ((goal_f_out * (1 << a)) >= 80000000) 739 break; 740 } 741 742 /* a != 8 because sample_rate >= 2000 */ 743 744 for (n = 33; n > 2; n--) { 745 m = (goal_f_out * n * (1 << a)) / F_REF; 746 if ((m > 257) || (m < 3)) 747 continue; 748 749 pll_sample = (m * F_REF) / (n * (1 << a)); 750 pll_sample /= 512; 751 752 /* Threshold might be good here */ 753 error = pll_sample - rec->sample_rate; 754 error = ABS(error); 755 756 if (error < best_error) { 757 best_error = error; 758 best_n = n; 759 best_m = m; 760 if (error == 0) break; 761 } 762 } 763 764 best_n -= 2; 765 best_m -= 2; 766 767 sv_write_indirect(sc, SV_ADC_PLL_M, best_m); 768 sv_write_indirect(sc, SV_ADC_PLL_N, 769 best_n | (a << SV_PLL_R_SHIFT)); 770 } 771 772 return 0; 773 } 774 775 static int 776 sv_round_blocksize(void *addr, int blk, int mode, 777 const audio_params_t *param) 778 { 779 780 return blk & -32; /* keep good alignment */ 781 } 782 783 static int 784 sv_trigger_output(void *addr, void *start, void *end, int blksize, 785 void (*intr)(void *), void *arg, const audio_params_t *param) 786 { 787 struct sv_softc *sc; 788 struct sv_dma *p; 789 uint8_t mode; 790 int dma_count; 791 792 DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d " 793 "intr=%p(%p)\n", addr, start, end, blksize, intr, arg)); 794 sc = addr; 795 sc->sc_pintr = intr; 796 sc->sc_parg = arg; 797 798 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT); 799 mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO); 800 if (param->precision == 16) 801 mode |= SV_DMAA_FORMAT16; 802 if (param->channels == 2) 803 mode |= SV_DMAA_STEREO; 804 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode); 805 806 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next) 807 continue; 808 if (p == NULL) { 809 printf("sv_trigger_output: bad addr %p\n", start); 810 return EINVAL; 811 } 812 813 dma_count = ((char *)end - (char *)start) - 1; 814 DPRINTF(("sv_trigger_output: DMA start loop input addr=%x cc=%d\n", 815 (int)DMAADDR(p), dma_count)); 816 817 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0, 818 DMAADDR(p)); 819 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0, 820 dma_count); 821 bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE, 822 DMA37MD_READ | DMA37MD_LOOP); 823 824 DPRINTF(("sv_trigger_output: current addr=%x\n", 825 bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0))); 826 827 dma_count = blksize - 1; 828 829 sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8); 830 sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF); 831 832 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 833 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE); 834 835 return 0; 836 } 837 838 static int 839 sv_trigger_input(void *addr, void *start, void *end, int blksize, 840 void (*intr)(void *), void *arg, const audio_params_t *param) 841 { 842 struct sv_softc *sc; 843 struct sv_dma *p; 844 uint8_t mode; 845 int dma_count; 846 847 DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d " 848 "intr=%p(%p)\n", addr, start, end, blksize, intr, arg)); 849 sc = addr; 850 sc->sc_rintr = intr; 851 sc->sc_rarg = arg; 852 853 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT); 854 mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO); 855 if (param->precision == 16) 856 mode |= SV_DMAC_FORMAT16; 857 if (param->channels == 2) 858 mode |= SV_DMAC_STEREO; 859 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode); 860 861 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next) 862 continue; 863 if (!p) { 864 printf("sv_trigger_input: bad addr %p\n", start); 865 return EINVAL; 866 } 867 868 dma_count = (((char *)end - (char *)start) >> 1) - 1; 869 DPRINTF(("sv_trigger_input: DMA start loop input addr=%x cc=%d\n", 870 (int)DMAADDR(p), dma_count)); 871 872 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0, 873 DMAADDR(p)); 874 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0, 875 dma_count); 876 bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE, 877 DMA37MD_WRITE | DMA37MD_LOOP); 878 879 DPRINTF(("sv_trigger_input: current addr=%x\n", 880 bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0))); 881 882 dma_count = (blksize >> 1) - 1; 883 884 sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8); 885 sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF); 886 887 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 888 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE); 889 890 return 0; 891 } 892 893 static int 894 sv_halt_output(void *addr) 895 { 896 struct sv_softc *sc; 897 uint8_t mode; 898 899 DPRINTF(("sv: sv_halt_output\n")); 900 sc = addr; 901 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 902 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE); 903 sc->sc_pintr = 0; 904 905 return 0; 906 } 907 908 static int 909 sv_halt_input(void *addr) 910 { 911 struct sv_softc *sc; 912 uint8_t mode; 913 914 DPRINTF(("sv: sv_halt_input\n")); 915 sc = addr; 916 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 917 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE); 918 sc->sc_rintr = 0; 919 920 return 0; 921 } 922 923 static int 924 sv_getdev(void *addr, struct audio_device *retp) 925 { 926 927 *retp = sv_device; 928 return 0; 929 } 930 931 932 /* 933 * Mixer related code is here 934 * 935 */ 936 937 #define SV_INPUT_CLASS 0 938 #define SV_OUTPUT_CLASS 1 939 #define SV_RECORD_CLASS 2 940 941 #define SV_LAST_CLASS 2 942 943 static const char *mixer_classes[] = 944 { AudioCinputs, AudioCoutputs, AudioCrecord }; 945 946 static const struct { 947 uint8_t l_port; 948 uint8_t r_port; 949 uint8_t mask; 950 uint8_t class; 951 const char *audio; 952 } ports[] = { 953 { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK, 954 SV_INPUT_CLASS, "aux1" }, 955 { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK, 956 SV_INPUT_CLASS, AudioNcd }, 957 { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK, 958 SV_INPUT_CLASS, AudioNline }, 959 { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone }, 960 { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL, 961 SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth }, 962 { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK, 963 SV_INPUT_CLASS, "aux2" }, 964 { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK, 965 SV_INPUT_CLASS, AudioNdac }, 966 { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL, 967 SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster } 968 }; 969 970 971 static const struct { 972 int idx; 973 const char *name; 974 } record_sources[] = { 975 { SV_REC_CD, AudioNcd }, 976 { SV_REC_DAC, AudioNdac }, 977 { SV_REC_AUX2, "aux2" }, 978 { SV_REC_LINE, AudioNline }, 979 { SV_REC_AUX1, "aux1" }, 980 { SV_REC_MIC, AudioNmicrophone }, 981 { SV_REC_MIXER, AudioNmixerout } 982 }; 983 984 985 #define SV_DEVICES_PER_PORT 2 986 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1) 987 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS) 988 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1) 989 #define SV_MIC_BOOST (SV_LAST_MIXER + 2) 990 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3) 991 #define SV_SRS_MODE (SV_LAST_MIXER + 4) 992 993 static int 994 sv_query_devinfo(void *addr, mixer_devinfo_t *dip) 995 { 996 int i; 997 998 /* It's a class */ 999 if (dip->index <= SV_LAST_CLASS) { 1000 dip->type = AUDIO_MIXER_CLASS; 1001 dip->mixer_class = dip->index; 1002 dip->next = dip->prev = AUDIO_MIXER_LAST; 1003 strcpy(dip->label.name, mixer_classes[dip->index]); 1004 return 0; 1005 } 1006 1007 if (dip->index >= SV_FIRST_MIXER && 1008 dip->index <= SV_LAST_MIXER) { 1009 int off, mute ,idx; 1010 1011 off = dip->index - SV_FIRST_MIXER; 1012 mute = (off % SV_DEVICES_PER_PORT); 1013 idx = off / SV_DEVICES_PER_PORT; 1014 dip->mixer_class = ports[idx].class; 1015 strcpy(dip->label.name, ports[idx].audio); 1016 1017 if (!mute) { 1018 dip->type = AUDIO_MIXER_VALUE; 1019 dip->prev = AUDIO_MIXER_LAST; 1020 dip->next = dip->index + 1; 1021 1022 if (ports[idx].r_port != 0) 1023 dip->un.v.num_channels = 2; 1024 else 1025 dip->un.v.num_channels = 1; 1026 1027 strcpy(dip->un.v.units.name, AudioNvolume); 1028 } else { 1029 dip->type = AUDIO_MIXER_ENUM; 1030 dip->prev = dip->index - 1; 1031 dip->next = AUDIO_MIXER_LAST; 1032 1033 strcpy(dip->label.name, AudioNmute); 1034 dip->un.e.num_mem = 2; 1035 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1036 dip->un.e.member[0].ord = 0; 1037 strcpy(dip->un.e.member[1].label.name, AudioNon); 1038 dip->un.e.member[1].ord = 1; 1039 } 1040 1041 return 0; 1042 } 1043 1044 switch (dip->index) { 1045 case SV_RECORD_SOURCE: 1046 dip->mixer_class = SV_RECORD_CLASS; 1047 dip->prev = AUDIO_MIXER_LAST; 1048 dip->next = SV_RECORD_GAIN; 1049 strcpy(dip->label.name, AudioNsource); 1050 dip->type = AUDIO_MIXER_ENUM; 1051 1052 dip->un.e.num_mem = ARRAY_SIZE(record_sources); 1053 for (i = 0; i < ARRAY_SIZE(record_sources); i++) { 1054 strcpy(dip->un.e.member[i].label.name, 1055 record_sources[i].name); 1056 dip->un.e.member[i].ord = record_sources[i].idx; 1057 } 1058 return 0; 1059 1060 case SV_RECORD_GAIN: 1061 dip->mixer_class = SV_RECORD_CLASS; 1062 dip->prev = SV_RECORD_SOURCE; 1063 dip->next = AUDIO_MIXER_LAST; 1064 strcpy(dip->label.name, "gain"); 1065 dip->type = AUDIO_MIXER_VALUE; 1066 dip->un.v.num_channels = 1; 1067 strcpy(dip->un.v.units.name, AudioNvolume); 1068 return 0; 1069 1070 case SV_MIC_BOOST: 1071 dip->mixer_class = SV_RECORD_CLASS; 1072 dip->prev = AUDIO_MIXER_LAST; 1073 dip->next = AUDIO_MIXER_LAST; 1074 strcpy(dip->label.name, "micboost"); 1075 goto on_off; 1076 1077 case SV_SRS_MODE: 1078 dip->mixer_class = SV_OUTPUT_CLASS; 1079 dip->prev = dip->next = AUDIO_MIXER_LAST; 1080 strcpy(dip->label.name, AudioNspatial); 1081 1082 on_off: 1083 dip->type = AUDIO_MIXER_ENUM; 1084 dip->un.e.num_mem = 2; 1085 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1086 dip->un.e.member[0].ord = 0; 1087 strcpy(dip->un.e.member[1].label.name, AudioNon); 1088 dip->un.e.member[1].ord = 1; 1089 return 0; 1090 } 1091 1092 return ENXIO; 1093 } 1094 1095 static int 1096 sv_mixer_set_port(void *addr, mixer_ctrl_t *cp) 1097 { 1098 struct sv_softc *sc; 1099 uint8_t reg; 1100 int idx; 1101 1102 sc = addr; 1103 if (cp->dev >= SV_FIRST_MIXER && 1104 cp->dev <= SV_LAST_MIXER) { 1105 int off, mute; 1106 1107 off = cp->dev - SV_FIRST_MIXER; 1108 mute = (off % SV_DEVICES_PER_PORT); 1109 idx = off / SV_DEVICES_PER_PORT; 1110 1111 if (mute) { 1112 if (cp->type != AUDIO_MIXER_ENUM) 1113 return EINVAL; 1114 1115 reg = sv_read_indirect(sc, ports[idx].l_port); 1116 if (cp->un.ord) 1117 reg |= SV_MUTE_BIT; 1118 else 1119 reg &= ~SV_MUTE_BIT; 1120 sv_write_indirect(sc, ports[idx].l_port, reg); 1121 1122 if (ports[idx].r_port) { 1123 reg = sv_read_indirect(sc, ports[idx].r_port); 1124 if (cp->un.ord) 1125 reg |= SV_MUTE_BIT; 1126 else 1127 reg &= ~SV_MUTE_BIT; 1128 sv_write_indirect(sc, ports[idx].r_port, reg); 1129 } 1130 } else { 1131 int lval, rval; 1132 1133 if (cp->type != AUDIO_MIXER_VALUE) 1134 return EINVAL; 1135 1136 if (cp->un.value.num_channels != 1 && 1137 cp->un.value.num_channels != 2) 1138 return (EINVAL); 1139 1140 if (ports[idx].r_port == 0) { 1141 if (cp->un.value.num_channels != 1) 1142 return (EINVAL); 1143 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; 1144 rval = 0; /* shut up GCC */ 1145 } else { 1146 if (cp->un.value.num_channels != 2) 1147 return (EINVAL); 1148 1149 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]; 1150 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]; 1151 } 1152 1153 1154 reg = sv_read_indirect(sc, ports[idx].l_port); 1155 reg &= ~(ports[idx].mask); 1156 lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask / 1157 AUDIO_MAX_GAIN; 1158 reg |= lval; 1159 sv_write_indirect(sc, ports[idx].l_port, reg); 1160 1161 if (ports[idx].r_port != 0) { 1162 reg = sv_read_indirect(sc, ports[idx].r_port); 1163 reg &= ~(ports[idx].mask); 1164 1165 rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask / 1166 AUDIO_MAX_GAIN; 1167 reg |= rval; 1168 1169 sv_write_indirect(sc, ports[idx].r_port, reg); 1170 } 1171 1172 sv_read_indirect(sc, ports[idx].l_port); 1173 } 1174 1175 return 0; 1176 } 1177 1178 1179 switch (cp->dev) { 1180 case SV_RECORD_SOURCE: 1181 if (cp->type != AUDIO_MIXER_ENUM) 1182 return EINVAL; 1183 1184 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) { 1185 if (record_sources[idx].idx == cp->un.ord) 1186 goto found; 1187 } 1188 1189 return EINVAL; 1190 1191 found: 1192 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1193 reg &= ~SV_REC_SOURCE_MASK; 1194 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK); 1195 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1196 1197 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL); 1198 reg &= ~SV_REC_SOURCE_MASK; 1199 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK); 1200 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg); 1201 return 0; 1202 1203 case SV_RECORD_GAIN: 1204 { 1205 int val; 1206 1207 if (cp->type != AUDIO_MIXER_VALUE) 1208 return EINVAL; 1209 1210 if (cp->un.value.num_channels != 1) 1211 return EINVAL; 1212 1213 val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] 1214 * SV_REC_GAIN_MASK) / AUDIO_MAX_GAIN; 1215 1216 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1217 reg &= ~SV_REC_GAIN_MASK; 1218 reg |= val; 1219 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1220 1221 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL); 1222 reg &= ~SV_REC_GAIN_MASK; 1223 reg |= val; 1224 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg); 1225 } 1226 return (0); 1227 1228 case SV_MIC_BOOST: 1229 if (cp->type != AUDIO_MIXER_ENUM) 1230 return EINVAL; 1231 1232 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1233 if (cp->un.ord) { 1234 reg |= SV_MIC_BOOST_BIT; 1235 } else { 1236 reg &= ~SV_MIC_BOOST_BIT; 1237 } 1238 1239 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1240 return 0; 1241 1242 case SV_SRS_MODE: 1243 if (cp->type != AUDIO_MIXER_ENUM) 1244 return EINVAL; 1245 1246 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL); 1247 if (cp->un.ord) { 1248 reg &= ~SV_SRS_SPACE_ONOFF; 1249 } else { 1250 reg |= SV_SRS_SPACE_ONOFF; 1251 } 1252 1253 sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg); 1254 return 0; 1255 } 1256 1257 return EINVAL; 1258 } 1259 1260 static int 1261 sv_mixer_get_port(void *addr, mixer_ctrl_t *cp) 1262 { 1263 struct sv_softc *sc; 1264 int val; 1265 uint8_t reg; 1266 1267 sc = addr; 1268 if (cp->dev >= SV_FIRST_MIXER && 1269 cp->dev <= SV_LAST_MIXER) { 1270 int off = cp->dev - SV_FIRST_MIXER; 1271 int mute = (off % 2); 1272 int idx = off / 2; 1273 1274 off = cp->dev - SV_FIRST_MIXER; 1275 mute = (off % 2); 1276 idx = off / 2; 1277 if (mute) { 1278 if (cp->type != AUDIO_MIXER_ENUM) 1279 return EINVAL; 1280 1281 reg = sv_read_indirect(sc, ports[idx].l_port); 1282 cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0); 1283 } else { 1284 if (cp->type != AUDIO_MIXER_VALUE) 1285 return EINVAL; 1286 1287 if (cp->un.value.num_channels != 1 && 1288 cp->un.value.num_channels != 2) 1289 return EINVAL; 1290 1291 if ((ports[idx].r_port == 0 && 1292 cp->un.value.num_channels != 1) || 1293 (ports[idx].r_port != 0 && 1294 cp->un.value.num_channels != 2)) 1295 return EINVAL; 1296 1297 reg = sv_read_indirect(sc, ports[idx].l_port); 1298 reg &= ports[idx].mask; 1299 1300 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask); 1301 1302 if (ports[idx].r_port != 0) { 1303 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val; 1304 1305 reg = sv_read_indirect(sc, ports[idx].r_port); 1306 reg &= ports[idx].mask; 1307 1308 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) 1309 / ports[idx].mask); 1310 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val; 1311 } else 1312 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val; 1313 } 1314 1315 return 0; 1316 } 1317 1318 switch (cp->dev) { 1319 case SV_RECORD_SOURCE: 1320 if (cp->type != AUDIO_MIXER_ENUM) 1321 return EINVAL; 1322 1323 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1324 cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT); 1325 1326 return 0; 1327 1328 case SV_RECORD_GAIN: 1329 if (cp->type != AUDIO_MIXER_VALUE) 1330 return EINVAL; 1331 if (cp->un.value.num_channels != 1) 1332 return EINVAL; 1333 1334 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK; 1335 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1336 (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK; 1337 1338 return 0; 1339 1340 case SV_MIC_BOOST: 1341 if (cp->type != AUDIO_MIXER_ENUM) 1342 return EINVAL; 1343 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1344 cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0); 1345 return 0; 1346 1347 case SV_SRS_MODE: 1348 if (cp->type != AUDIO_MIXER_ENUM) 1349 return EINVAL; 1350 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL); 1351 cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1); 1352 return 0; 1353 } 1354 1355 return EINVAL; 1356 } 1357 1358 static void 1359 sv_init_mixer(struct sv_softc *sc) 1360 { 1361 mixer_ctrl_t cp; 1362 int i; 1363 1364 cp.type = AUDIO_MIXER_ENUM; 1365 cp.dev = SV_SRS_MODE; 1366 cp.un.ord = 0; 1367 1368 sv_mixer_set_port(sc, &cp); 1369 1370 for (i = 0; i < ARRAY_SIZE(ports); i++) { 1371 if (ports[i].audio == AudioNdac) { 1372 cp.type = AUDIO_MIXER_ENUM; 1373 cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1; 1374 cp.un.ord = 0; 1375 sv_mixer_set_port(sc, &cp); 1376 break; 1377 } 1378 } 1379 } 1380 1381 static void * 1382 sv_malloc(void *addr, int direction, size_t size, 1383 struct malloc_type *pool, int flags) 1384 { 1385 struct sv_softc *sc; 1386 struct sv_dma *p; 1387 int error; 1388 1389 sc = addr; 1390 p = malloc(sizeof(*p), pool, flags); 1391 if (p == NULL) 1392 return NULL; 1393 error = sv_allocmem(sc, size, 16, direction, p); 1394 if (error) { 1395 free(p, pool); 1396 return 0; 1397 } 1398 p->next = sc->sc_dmas; 1399 sc->sc_dmas = p; 1400 return KERNADDR(p); 1401 } 1402 1403 static void 1404 sv_free(void *addr, void *ptr, struct malloc_type *pool) 1405 { 1406 struct sv_softc *sc; 1407 struct sv_dma **pp, *p; 1408 1409 sc = addr; 1410 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) { 1411 if (KERNADDR(p) == ptr) { 1412 sv_freemem(sc, p); 1413 *pp = p->next; 1414 free(p, pool); 1415 return; 1416 } 1417 } 1418 } 1419 1420 static size_t 1421 sv_round_buffersize(void *addr, int direction, size_t size) 1422 { 1423 1424 return size; 1425 } 1426 1427 static paddr_t 1428 sv_mappage(void *addr, void *mem, off_t off, int prot) 1429 { 1430 struct sv_softc *sc; 1431 struct sv_dma *p; 1432 1433 sc = addr; 1434 if (off < 0) 1435 return -1; 1436 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next) 1437 continue; 1438 if (p == NULL) 1439 return -1; 1440 return bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs, 1441 off, prot, BUS_DMA_WAITOK); 1442 } 1443 1444 static int 1445 sv_get_props(void *addr) 1446 { 1447 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX; 1448 } 1449