xref: /netbsd-src/sys/dev/pci/sv.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*      $NetBSD: sv.c,v 1.37 2007/10/19 12:00:55 ad Exp $ */
2 /*      $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
3 
4 /*
5  * Copyright (c) 1999 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Charles M. Hannum.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *        This product includes software developed by the NetBSD
22  *        Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1998 Constantine Paul Sapuntzakis
42  * All rights reserved
43  *
44  * Author: Constantine Paul Sapuntzakis (csapuntz@cvs.openbsd.org)
45  *
46  * Redistribution and use in source and binary forms, with or without
47  * modification, are permitted provided that the following conditions
48  * are met:
49  * 1. Redistributions of source code must retain the above copyright
50  *    notice, this list of conditions and the following disclaimer.
51  * 2. Redistributions in binary form must reproduce the above copyright
52  *    notice, this list of conditions and the following disclaimer in the
53  *    documentation and/or other materials provided with the distribution.
54  * 3. The author's name or those of the contributors may be used to
55  *    endorse or promote products derived from this software without
56  *    specific prior written permission.
57  *
58  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
59  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
60  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
61  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
62  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
63  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
64  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
65  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
66  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
67  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
68  * POSSIBILITY OF SUCH DAMAGE.
69  */
70 
71 /*
72  * S3 SonicVibes driver
73  *   Heavily based on the eap driver by Lennart Augustsson
74  */
75 
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.37 2007/10/19 12:00:55 ad Exp $");
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/malloc.h>
83 #include <sys/device.h>
84 
85 #include <dev/pci/pcireg.h>
86 #include <dev/pci/pcivar.h>
87 #include <dev/pci/pcidevs.h>
88 
89 #include <sys/audioio.h>
90 #include <dev/audio_if.h>
91 #include <dev/mulaw.h>
92 #include <dev/auconv.h>
93 
94 #include <dev/ic/i8237reg.h>
95 #include <dev/pci/svreg.h>
96 #include <dev/pci/svvar.h>
97 
98 #include <sys/bus.h>
99 
100 /* XXX
101  * The SonicVibes DMA is broken and only works on 24-bit addresses.
102  * As long as bus_dmamem_alloc_range() is missing we use the ISA
103  * DMA tag on i386.
104  */
105 #if defined(i386)
106 #include "isa.h"
107 #if NISA > 0
108 #include <dev/isa/isavar.h>
109 #endif
110 #endif
111 
112 #ifdef AUDIO_DEBUG
113 #define DPRINTF(x)	if (svdebug) printf x
114 #define DPRINTFN(n,x)	if (svdebug>(n)) printf x
115 int	svdebug = 0;
116 #else
117 #define DPRINTF(x)
118 #define DPRINTFN(n,x)
119 #endif
120 
121 static int	sv_match(struct device *, struct cfdata *, void *);
122 static void	sv_attach(struct device *, struct device *, void *);
123 static int	sv_intr(void *);
124 
125 struct sv_dma {
126 	bus_dmamap_t map;
127 	void *addr;
128 	bus_dma_segment_t segs[1];
129 	int nsegs;
130 	size_t size;
131 	struct sv_dma *next;
132 };
133 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
134 #define KERNADDR(p) ((void *)((p)->addr))
135 
136 CFATTACH_DECL(sv, sizeof(struct sv_softc),
137     sv_match, sv_attach, NULL, NULL);
138 
139 static struct audio_device sv_device = {
140 	"S3 SonicVibes",
141 	"",
142 	"sv"
143 };
144 
145 #define ARRAY_SIZE(foo)  ((sizeof(foo)) / sizeof(foo[0]))
146 
147 static int	sv_allocmem(struct sv_softc *, size_t, size_t, int,
148 			    struct sv_dma *);
149 static int	sv_freemem(struct sv_softc *, struct sv_dma *);
150 
151 static void	sv_init_mixer(struct sv_softc *);
152 
153 static int	sv_open(void *, int);
154 static int	sv_query_encoding(void *, struct audio_encoding *);
155 static int	sv_set_params(void *, int, int, audio_params_t *,
156 			      audio_params_t *, stream_filter_list_t *,
157 			      stream_filter_list_t *);
158 static int	sv_round_blocksize(void *, int, int, const audio_params_t *);
159 static int	sv_trigger_output(void *, void *, void *, int, void (*)(void *),
160 				  void *, const audio_params_t *);
161 static int	sv_trigger_input(void *, void *, void *, int, void (*)(void *),
162 				 void *, const audio_params_t *);
163 static int	sv_halt_output(void *);
164 static int	sv_halt_input(void *);
165 static int	sv_getdev(void *, struct audio_device *);
166 static int	sv_mixer_set_port(void *, mixer_ctrl_t *);
167 static int	sv_mixer_get_port(void *, mixer_ctrl_t *);
168 static int	sv_query_devinfo(void *, mixer_devinfo_t *);
169 static void *	sv_malloc(void *, int, size_t, struct malloc_type *, int);
170 static void	sv_free(void *, void *, struct malloc_type *);
171 static size_t	sv_round_buffersize(void *, int, size_t);
172 static paddr_t	sv_mappage(void *, void *, off_t, int);
173 static int	sv_get_props(void *);
174 
175 #ifdef AUDIO_DEBUG
176 void    sv_dumpregs(struct sv_softc *sc);
177 #endif
178 
179 static const struct audio_hw_if sv_hw_if = {
180 	sv_open,
181 	NULL,			/* close */
182 	NULL,
183 	sv_query_encoding,
184 	sv_set_params,
185 	sv_round_blocksize,
186 	NULL,
187 	NULL,
188 	NULL,
189 	NULL,
190 	NULL,
191 	sv_halt_output,
192 	sv_halt_input,
193 	NULL,
194 	sv_getdev,
195 	NULL,
196 	sv_mixer_set_port,
197 	sv_mixer_get_port,
198 	sv_query_devinfo,
199 	sv_malloc,
200 	sv_free,
201 	sv_round_buffersize,
202 	sv_mappage,
203 	sv_get_props,
204 	sv_trigger_output,
205 	sv_trigger_input,
206 	NULL,
207 	NULL,
208 };
209 
210 #define SV_NFORMATS	4
211 static const struct audio_format sv_formats[SV_NFORMATS] = {
212 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
213 	 2, AUFMT_STEREO, 0, {2000, 48000}},
214 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
215 	 1, AUFMT_MONAURAL, 0, {2000, 48000}},
216 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
217 	 2, AUFMT_STEREO, 0, {2000, 48000}},
218 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
219 	 1, AUFMT_MONAURAL, 0, {2000, 48000}},
220 };
221 
222 
223 static void
224 sv_write(struct sv_softc *sc, uint8_t reg, uint8_t val)
225 {
226 
227 	DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
228 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
229 }
230 
231 static uint8_t
232 sv_read(struct sv_softc *sc, uint8_t reg)
233 {
234 	uint8_t val;
235 
236 	val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
237 	DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
238 	return val;
239 }
240 
241 static uint8_t
242 sv_read_indirect(struct sv_softc *sc, uint8_t reg)
243 {
244 	uint8_t val;
245 	int s;
246 
247 	s = splaudio();
248 	sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
249 	val = sv_read(sc, SV_CODEC_IDATA);
250 	splx(s);
251 	return val;
252 }
253 
254 static void
255 sv_write_indirect(struct sv_softc *sc, uint8_t reg, uint8_t val)
256 {
257 	uint8_t iaddr;
258 	int s;
259 
260 	iaddr = reg & SV_IADDR_MASK;
261 	s = splaudio();
262 	if (reg == SV_DMA_DATA_FORMAT)
263 		iaddr |= SV_IADDR_MCE;
264 
265 	sv_write(sc, SV_CODEC_IADDR, iaddr);
266 	sv_write(sc, SV_CODEC_IDATA, val);
267 	splx(s);
268 }
269 
270 static int
271 sv_match(struct device *parent, struct cfdata *match,
272     void *aux)
273 {
274 	struct pci_attach_args *pa;
275 
276 	pa = aux;
277 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
278 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
279 		return 1;
280 
281 	return 0;
282 }
283 
284 static pcireg_t pci_io_alloc_low, pci_io_alloc_high;
285 
286 static int
287 pci_alloc_io(pci_chipset_tag_t pc, pcitag_t pt, int pcioffs,
288     bus_space_tag_t iot, bus_size_t size, bus_size_t align,
289     bus_size_t bound, int flags, bus_space_handle_t *ioh)
290 {
291 	bus_addr_t addr;
292 	int error;
293 
294 	error = bus_space_alloc(iot, pci_io_alloc_low, pci_io_alloc_high,
295 				size, align, bound, flags, &addr, ioh);
296 	if (error)
297 		return error;
298 
299 	pci_conf_write(pc, pt, pcioffs, addr);
300 	return 0;
301 }
302 
303 /*
304  * Allocate IO addresses when all other configuration is done.
305  */
306 static void
307 sv_defer(struct device *self)
308 {
309 	struct sv_softc *sc;
310 	pci_chipset_tag_t pc;
311 	pcitag_t pt;
312 	pcireg_t dmaio;
313 
314 	sc = (struct sv_softc *)self;
315 	pc = sc->sc_pa.pa_pc;
316 	pt = sc->sc_pa.pa_tag;
317 	DPRINTF(("sv_defer: %p\n", sc));
318 
319 	/* XXX
320 	 * Get a reasonable default for the I/O range.
321 	 * Assume the range around SB_PORTBASE is valid on this PCI bus.
322 	 */
323 	pci_io_alloc_low = pci_conf_read(pc, pt, SV_SB_PORTBASE_SLOT);
324 	pci_io_alloc_high = pci_io_alloc_low + 0x1000;
325 
326 	if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
327 			  sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
328 			  0, &sc->sc_dmaa_ioh)) {
329 		printf("sv_attach: cannot allocate DMA A range\n");
330 		return;
331 	}
332 	dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
333 	DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
334 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
335 		       dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
336 
337 	if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
338 			  sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
339 			  0, &sc->sc_dmac_ioh)) {
340 		printf("sv_attach: cannot allocate DMA C range\n");
341 		return;
342 	}
343 	dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
344 	DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
345 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
346 		       dmaio | SV_DMA_CHANNEL_ENABLE);
347 
348 	sc->sc_dmaset = 1;
349 }
350 
351 static void
352 sv_attach(struct device *parent, struct device *self, void *aux)
353 {
354 	struct sv_softc *sc;
355 	struct pci_attach_args *pa;
356 	pci_chipset_tag_t pc;
357 	pcitag_t pt;
358 	pci_intr_handle_t ih;
359 	pcireg_t csr;
360 	char const *intrstr;
361 	uint8_t reg;
362 	struct audio_attach_args arg;
363 
364 	sc = (struct sv_softc *)self;
365 	pa = aux;
366 	pc = pa->pa_pc;
367 	pt = pa->pa_tag;
368 	printf ("\n");
369 
370 	/* Map I/O registers */
371 	if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
372 			   PCI_MAPREG_TYPE_IO, 0,
373 			   &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
374 		printf("%s: can't map enhanced i/o space\n",
375 		       sc->sc_dev.dv_xname);
376 		return;
377 	}
378 	if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
379 			   PCI_MAPREG_TYPE_IO, 0,
380 			   &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
381 		printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname);
382 		return;
383 	}
384 	if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
385 			   PCI_MAPREG_TYPE_IO, 0,
386 			   &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
387 		printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname);
388 		return;
389 	}
390 	DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
391 		 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
392 
393 #if defined(alpha)
394 	/* XXX Force allocation through the SGMAP. */
395 	sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
396 #elif defined(i386) && NISA > 0
397 /* XXX
398  * The SonicVibes DMA is broken and only works on 24-bit addresses.
399  * As long as bus_dmamem_alloc_range() is missing we use the ISA
400  * DMA tag on i386.
401  */
402 	sc->sc_dmatag = &isa_bus_dma_tag;
403 #else
404 	sc->sc_dmatag = pa->pa_dmat;
405 #endif
406 
407 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
408 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
409 
410 	/* Enable the device. */
411 	csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
412 	pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
413 		       csr | PCI_COMMAND_MASTER_ENABLE);
414 
415 	sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
416 	sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
417 
418 	/* initialize codec registers */
419 	reg = sv_read(sc, SV_CODEC_CONTROL);
420 	reg |= SV_CTL_RESET;
421 	sv_write(sc, SV_CODEC_CONTROL, reg);
422 	delay(50);
423 
424 	reg = sv_read(sc, SV_CODEC_CONTROL);
425 	reg &= ~SV_CTL_RESET;
426 	reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
427 
428 	/* This write clears the reset */
429 	sv_write(sc, SV_CODEC_CONTROL, reg);
430 	delay(50);
431 
432 	/* This write actually shoves the new values in */
433 	sv_write(sc, SV_CODEC_CONTROL, reg);
434 
435 	DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
436 
437 	/* Enable DMA interrupts */
438 	reg = sv_read(sc, SV_CODEC_INTMASK);
439 	reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
440 	reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
441 	sv_write(sc, SV_CODEC_INTMASK, reg);
442 
443 	sv_read(sc, SV_CODEC_STATUS);
444 
445 	/* Map and establish the interrupt. */
446 	if (pci_intr_map(pa, &ih)) {
447 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
448 		return;
449 	}
450 	intrstr = pci_intr_string(pc, ih);
451 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
452 	if (sc->sc_ih == NULL) {
453 		printf("%s: couldn't establish interrupt",
454 		       sc->sc_dev.dv_xname);
455 		if (intrstr != NULL)
456 			printf(" at %s", intrstr);
457 		printf("\n");
458 		return;
459 	}
460 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
461 	printf("%s: rev %d", sc->sc_dev.dv_xname,
462 	       sv_read_indirect(sc, SV_REVISION_LEVEL));
463 	if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
464 		printf(", reverb SRAM present");
465 	if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
466 		printf(", wavetable ROM present");
467 	printf("\n");
468 
469 	sv_init_mixer(sc);
470 
471 	audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
472 
473 	arg.type = AUDIODEV_TYPE_OPL;
474 	arg.hwif = 0;
475 	arg.hdl = 0;
476 	(void)config_found(&sc->sc_dev, &arg, audioprint);
477 
478 	sc->sc_pa = *pa;	/* for deferred setup */
479 	config_defer(self, sv_defer);
480 }
481 
482 #ifdef AUDIO_DEBUG
483 void
484 sv_dumpregs(struct sv_softc *sc)
485 {
486 	int idx;
487 
488 #if 0
489 	for (idx = 0; idx < 0x50; idx += 4)
490 		printf ("%02x = %x\n", idx,
491 			pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
492 #endif
493 
494 	for (idx = 0; idx < 6; idx++)
495 		printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
496 
497 	for (idx = 0; idx < 0x32; idx++)
498 		printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
499 
500 	for (idx = 0; idx < 0x10; idx++)
501 		printf ("DMA %02x = %02x\n", idx,
502 			bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
503 }
504 #endif
505 
506 static int
507 sv_intr(void *p)
508 {
509 	struct sv_softc *sc;
510 	uint8_t intr;
511 
512 	sc = p;
513 	intr = sv_read(sc, SV_CODEC_STATUS);
514 	DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
515 
516 	if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)))
517 		return 0;
518 
519 	if (intr & SV_INTSTATUS_DMAA) {
520 		if (sc->sc_pintr)
521 			sc->sc_pintr(sc->sc_parg);
522 	}
523 
524 	if (intr & SV_INTSTATUS_DMAC) {
525 		if (sc->sc_rintr)
526 			sc->sc_rintr(sc->sc_rarg);
527 	}
528 
529 	return 1;
530 }
531 
532 static int
533 sv_allocmem(struct sv_softc *sc, size_t size, size_t align,
534     int direction, struct sv_dma *p)
535 {
536 	int error;
537 
538 	p->size = size;
539 	error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
540 	    p->segs, ARRAY_SIZE(p->segs), &p->nsegs, BUS_DMA_NOWAIT);
541 	if (error)
542 		return error;
543 
544 	error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
545 	    &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
546 	if (error)
547 		goto free;
548 
549 	error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
550 	    0, BUS_DMA_NOWAIT, &p->map);
551 	if (error)
552 		goto unmap;
553 
554 	error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
555 	    BUS_DMA_NOWAIT | (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
556 	if (error)
557 		goto destroy;
558 	DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
559 	    (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
560 	return 0;
561 
562 destroy:
563 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
564 unmap:
565 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
566 free:
567 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
568 	return error;
569 }
570 
571 static int
572 sv_freemem(struct sv_softc *sc, struct sv_dma *p)
573 {
574 
575 	bus_dmamap_unload(sc->sc_dmatag, p->map);
576 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
577 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
578 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
579 	return 0;
580 }
581 
582 static int
583 sv_open(void *addr, int flags)
584 {
585 	struct sv_softc *sc;
586 
587 	sc = addr;
588 	DPRINTF(("sv_open\n"));
589 	if (!sc->sc_dmaset)
590 		return ENXIO;
591 
592 	return 0;
593 }
594 
595 static int
596 sv_query_encoding(void *addr, struct audio_encoding *fp)
597 {
598 
599 	switch (fp->index) {
600 	case 0:
601 		strcpy(fp->name, AudioEulinear);
602 		fp->encoding = AUDIO_ENCODING_ULINEAR;
603 		fp->precision = 8;
604 		fp->flags = 0;
605 		return 0;
606 	case 1:
607 		strcpy(fp->name, AudioEmulaw);
608 		fp->encoding = AUDIO_ENCODING_ULAW;
609 		fp->precision = 8;
610 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
611 		return 0;
612 	case 2:
613 		strcpy(fp->name, AudioEalaw);
614 		fp->encoding = AUDIO_ENCODING_ALAW;
615 		fp->precision = 8;
616 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
617 		return 0;
618 	case 3:
619 		strcpy(fp->name, AudioEslinear);
620 		fp->encoding = AUDIO_ENCODING_SLINEAR;
621 		fp->precision = 8;
622 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
623 		return 0;
624 	case 4:
625 		strcpy(fp->name, AudioEslinear_le);
626 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
627 		fp->precision = 16;
628 		fp->flags = 0;
629 		return 0;
630 	case 5:
631 		strcpy(fp->name, AudioEulinear_le);
632 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
633 		fp->precision = 16;
634 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
635 		return 0;
636 	case 6:
637 		strcpy(fp->name, AudioEslinear_be);
638 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
639 		fp->precision = 16;
640 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
641 		return 0;
642 	case 7:
643 		strcpy(fp->name, AudioEulinear_be);
644 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
645 		fp->precision = 16;
646 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
647 		return 0;
648 	default:
649 		return EINVAL;
650 	}
651 }
652 
653 static int
654 sv_set_params(void *addr, int setmode, int usemode, audio_params_t *play,
655     audio_params_t *rec, stream_filter_list_t *pfil, stream_filter_list_t *rfil)
656 {
657 	struct sv_softc *sc;
658 	audio_params_t *p;
659 	uint32_t val;
660 
661 	sc = addr;
662 	p = NULL;
663 	/*
664 	 * This device only has one clock, so make the sample rates match.
665 	 */
666 	if (play->sample_rate != rec->sample_rate &&
667 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
668 		if (setmode == AUMODE_PLAY) {
669 			rec->sample_rate = play->sample_rate;
670 			setmode |= AUMODE_RECORD;
671 		} else if (setmode == AUMODE_RECORD) {
672 			play->sample_rate = rec->sample_rate;
673 			setmode |= AUMODE_PLAY;
674 		} else
675 			return EINVAL;
676 	}
677 
678 	if (setmode & AUMODE_RECORD) {
679 		p = rec;
680 		if (auconv_set_converter(sv_formats, SV_NFORMATS,
681 					 AUMODE_RECORD, rec, FALSE, rfil) < 0)
682 			return EINVAL;
683 	}
684 	if (setmode & AUMODE_PLAY) {
685 		p = play;
686 		if (auconv_set_converter(sv_formats, SV_NFORMATS,
687 					 AUMODE_PLAY, play, FALSE, pfil) < 0)
688 			return EINVAL;
689 	}
690 
691 	if (p == NULL)
692 		return 0;
693 
694 	val = p->sample_rate * 65536 / 48000;
695 	/*
696 	 * If the sample rate is exactly 48 kHz, the fraction would overflow the
697 	 * register, so we have to bias it.  This causes a little clock drift.
698 	 * The drift is below normal crystal tolerance (.0001%), so although
699 	 * this seems a little silly, we can pretty much ignore it.
700 	 * (I tested the output speed with values of 1-20, just to be sure this
701 	 * register isn't *supposed* to have a bias.  It isn't.)
702 	 * - mycroft
703 	 */
704 	if (val > 65535)
705 		val = 65535;
706 
707 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
708 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
709 
710 #define F_REF 24576000
711 
712 #define ABS(x) (((x) < 0) ? (-x) : (x))
713 
714 	if (setmode & AUMODE_RECORD) {
715 		/* The ADC reference frequency (f_out) is 512 * sample rate */
716 
717 		/* f_out is dervied from the 24.576MHz crystal by three values:
718 		   M & N & R. The equation is as follows:
719 
720 		   f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
721 
722 		   with the constraint that:
723 
724 		   80 MHz < (m + 2) / (n + 2) * f_ref <= 150MHz
725 		   and n, m >= 1
726 		*/
727 
728 		int  goal_f_out;
729 		int  a, n, m, best_n, best_m, best_error;
730 		int  pll_sample;
731 		int  error;
732 
733 		goal_f_out = 512 * rec->sample_rate;
734 		best_n = 0;
735 		best_m = 0;
736 		best_error = 10000000;
737 		for (a = 0; a < 8; a++) {
738 			if ((goal_f_out * (1 << a)) >= 80000000)
739 				break;
740 		}
741 
742 		/* a != 8 because sample_rate >= 2000 */
743 
744 		for (n = 33; n > 2; n--) {
745 			m = (goal_f_out * n * (1 << a)) / F_REF;
746 			if ((m > 257) || (m < 3))
747 				continue;
748 
749 			pll_sample = (m * F_REF) / (n * (1 << a));
750 			pll_sample /= 512;
751 
752 			/* Threshold might be good here */
753 			error = pll_sample - rec->sample_rate;
754 			error = ABS(error);
755 
756 			if (error < best_error) {
757 				best_error = error;
758 				best_n = n;
759 				best_m = m;
760 				if (error == 0) break;
761 			}
762 		}
763 
764 		best_n -= 2;
765 		best_m -= 2;
766 
767 		sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
768 		sv_write_indirect(sc, SV_ADC_PLL_N,
769 				  best_n | (a << SV_PLL_R_SHIFT));
770 	}
771 
772 	return 0;
773 }
774 
775 static int
776 sv_round_blocksize(void *addr, int blk, int mode,
777     const audio_params_t *param)
778 {
779 
780 	return blk & -32;	/* keep good alignment */
781 }
782 
783 static int
784 sv_trigger_output(void *addr, void *start, void *end, int blksize,
785     void (*intr)(void *), void *arg, const audio_params_t *param)
786 {
787 	struct sv_softc *sc;
788 	struct sv_dma *p;
789 	uint8_t mode;
790 	int dma_count;
791 
792 	DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d "
793 	    "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
794 	sc = addr;
795 	sc->sc_pintr = intr;
796 	sc->sc_parg = arg;
797 
798 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
799 	mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
800 	if (param->precision == 16)
801 		mode |= SV_DMAA_FORMAT16;
802 	if (param->channels == 2)
803 		mode |= SV_DMAA_STEREO;
804 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
805 
806 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
807 		continue;
808 	if (p == NULL) {
809 		printf("sv_trigger_output: bad addr %p\n", start);
810 		return EINVAL;
811 	}
812 
813 	dma_count = ((char *)end - (char *)start) - 1;
814 	DPRINTF(("sv_trigger_output: DMA start loop input addr=%x cc=%d\n",
815 	    (int)DMAADDR(p), dma_count));
816 
817 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
818 			  DMAADDR(p));
819 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
820 			  dma_count);
821 	bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
822 			  DMA37MD_READ | DMA37MD_LOOP);
823 
824 	DPRINTF(("sv_trigger_output: current addr=%x\n",
825 	    bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
826 
827 	dma_count = blksize - 1;
828 
829 	sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
830 	sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
831 
832 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
833 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
834 
835 	return 0;
836 }
837 
838 static int
839 sv_trigger_input(void *addr, void *start, void *end, int blksize,
840     void (*intr)(void *), void *arg, const audio_params_t *param)
841 {
842 	struct sv_softc *sc;
843 	struct sv_dma *p;
844 	uint8_t mode;
845 	int dma_count;
846 
847 	DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d "
848 	    "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
849 	sc = addr;
850 	sc->sc_rintr = intr;
851 	sc->sc_rarg = arg;
852 
853 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
854 	mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
855 	if (param->precision == 16)
856 		mode |= SV_DMAC_FORMAT16;
857 	if (param->channels == 2)
858 		mode |= SV_DMAC_STEREO;
859 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
860 
861 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
862 		continue;
863 	if (!p) {
864 		printf("sv_trigger_input: bad addr %p\n", start);
865 		return EINVAL;
866 	}
867 
868 	dma_count = (((char *)end - (char *)start) >> 1) - 1;
869 	DPRINTF(("sv_trigger_input: DMA start loop input addr=%x cc=%d\n",
870 	    (int)DMAADDR(p), dma_count));
871 
872 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
873 			  DMAADDR(p));
874 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
875 			  dma_count);
876 	bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
877 			  DMA37MD_WRITE | DMA37MD_LOOP);
878 
879 	DPRINTF(("sv_trigger_input: current addr=%x\n",
880 	    bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
881 
882 	dma_count = (blksize >> 1) - 1;
883 
884 	sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
885 	sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
886 
887 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
888 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
889 
890 	return 0;
891 }
892 
893 static int
894 sv_halt_output(void *addr)
895 {
896 	struct sv_softc *sc;
897 	uint8_t mode;
898 
899 	DPRINTF(("sv: sv_halt_output\n"));
900 	sc = addr;
901 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
902 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
903 	sc->sc_pintr = 0;
904 
905 	return 0;
906 }
907 
908 static int
909 sv_halt_input(void *addr)
910 {
911 	struct sv_softc *sc;
912 	uint8_t mode;
913 
914 	DPRINTF(("sv: sv_halt_input\n"));
915 	sc = addr;
916 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
917 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
918 	sc->sc_rintr = 0;
919 
920 	return 0;
921 }
922 
923 static int
924 sv_getdev(void *addr, struct audio_device *retp)
925 {
926 
927 	*retp = sv_device;
928 	return 0;
929 }
930 
931 
932 /*
933  * Mixer related code is here
934  *
935  */
936 
937 #define SV_INPUT_CLASS 0
938 #define SV_OUTPUT_CLASS 1
939 #define SV_RECORD_CLASS 2
940 
941 #define SV_LAST_CLASS 2
942 
943 static const char *mixer_classes[] =
944 	{ AudioCinputs, AudioCoutputs, AudioCrecord };
945 
946 static const struct {
947 	uint8_t   l_port;
948 	uint8_t   r_port;
949 	uint8_t   mask;
950 	uint8_t   class;
951 	const char *audio;
952 } ports[] = {
953   { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
954     SV_INPUT_CLASS, "aux1" },
955   { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
956     SV_INPUT_CLASS, AudioNcd },
957   { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
958     SV_INPUT_CLASS, AudioNline },
959   { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
960   { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
961     SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
962   { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
963     SV_INPUT_CLASS, "aux2" },
964   { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
965     SV_INPUT_CLASS, AudioNdac },
966   { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
967     SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
968 };
969 
970 
971 static const struct {
972 	int idx;
973 	const char *name;
974 } record_sources[] = {
975 	{ SV_REC_CD, AudioNcd },
976 	{ SV_REC_DAC, AudioNdac },
977 	{ SV_REC_AUX2, "aux2" },
978 	{ SV_REC_LINE, AudioNline },
979 	{ SV_REC_AUX1, "aux1" },
980 	{ SV_REC_MIC, AudioNmicrophone },
981 	{ SV_REC_MIXER, AudioNmixerout }
982 };
983 
984 
985 #define SV_DEVICES_PER_PORT 2
986 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
987 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
988 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
989 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
990 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
991 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
992 
993 static int
994 sv_query_devinfo(void *addr, mixer_devinfo_t *dip)
995 {
996 	int i;
997 
998 	/* It's a class */
999 	if (dip->index <= SV_LAST_CLASS) {
1000 		dip->type = AUDIO_MIXER_CLASS;
1001 		dip->mixer_class = dip->index;
1002 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1003 		strcpy(dip->label.name, mixer_classes[dip->index]);
1004 		return 0;
1005 	}
1006 
1007 	if (dip->index >= SV_FIRST_MIXER &&
1008 	    dip->index <= SV_LAST_MIXER) {
1009 		int off, mute ,idx;
1010 
1011 		off = dip->index - SV_FIRST_MIXER;
1012 		mute = (off % SV_DEVICES_PER_PORT);
1013 		idx = off / SV_DEVICES_PER_PORT;
1014 		dip->mixer_class = ports[idx].class;
1015 		strcpy(dip->label.name, ports[idx].audio);
1016 
1017 		if (!mute) {
1018 			dip->type = AUDIO_MIXER_VALUE;
1019 			dip->prev = AUDIO_MIXER_LAST;
1020 			dip->next = dip->index + 1;
1021 
1022 			if (ports[idx].r_port != 0)
1023 				dip->un.v.num_channels = 2;
1024 			else
1025 				dip->un.v.num_channels = 1;
1026 
1027 			strcpy(dip->un.v.units.name, AudioNvolume);
1028 		} else {
1029 			dip->type = AUDIO_MIXER_ENUM;
1030 			dip->prev = dip->index - 1;
1031 			dip->next = AUDIO_MIXER_LAST;
1032 
1033 			strcpy(dip->label.name, AudioNmute);
1034 			dip->un.e.num_mem = 2;
1035 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
1036 			dip->un.e.member[0].ord = 0;
1037 			strcpy(dip->un.e.member[1].label.name, AudioNon);
1038 			dip->un.e.member[1].ord = 1;
1039 		}
1040 
1041 		return 0;
1042 	}
1043 
1044 	switch (dip->index) {
1045 	case SV_RECORD_SOURCE:
1046 		dip->mixer_class = SV_RECORD_CLASS;
1047 		dip->prev = AUDIO_MIXER_LAST;
1048 		dip->next = SV_RECORD_GAIN;
1049 		strcpy(dip->label.name, AudioNsource);
1050 		dip->type = AUDIO_MIXER_ENUM;
1051 
1052 		dip->un.e.num_mem = ARRAY_SIZE(record_sources);
1053 		for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
1054 			strcpy(dip->un.e.member[i].label.name,
1055 			       record_sources[i].name);
1056 			dip->un.e.member[i].ord = record_sources[i].idx;
1057 		}
1058 		return 0;
1059 
1060 	case SV_RECORD_GAIN:
1061 		dip->mixer_class = SV_RECORD_CLASS;
1062 		dip->prev = SV_RECORD_SOURCE;
1063 		dip->next = AUDIO_MIXER_LAST;
1064 		strcpy(dip->label.name, "gain");
1065 		dip->type = AUDIO_MIXER_VALUE;
1066 		dip->un.v.num_channels = 1;
1067 		strcpy(dip->un.v.units.name, AudioNvolume);
1068 		return 0;
1069 
1070 	case SV_MIC_BOOST:
1071 		dip->mixer_class = SV_RECORD_CLASS;
1072 		dip->prev = AUDIO_MIXER_LAST;
1073 		dip->next = AUDIO_MIXER_LAST;
1074 		strcpy(dip->label.name, "micboost");
1075 		goto on_off;
1076 
1077 	case SV_SRS_MODE:
1078 		dip->mixer_class = SV_OUTPUT_CLASS;
1079 		dip->prev = dip->next = AUDIO_MIXER_LAST;
1080 		strcpy(dip->label.name, AudioNspatial);
1081 
1082 	on_off:
1083 		dip->type = AUDIO_MIXER_ENUM;
1084 		dip->un.e.num_mem = 2;
1085 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1086 		dip->un.e.member[0].ord = 0;
1087 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1088 		dip->un.e.member[1].ord = 1;
1089 		return 0;
1090 	}
1091 
1092 	return ENXIO;
1093 }
1094 
1095 static int
1096 sv_mixer_set_port(void *addr, mixer_ctrl_t *cp)
1097 {
1098 	struct sv_softc *sc;
1099 	uint8_t reg;
1100 	int idx;
1101 
1102 	sc = addr;
1103 	if (cp->dev >= SV_FIRST_MIXER &&
1104 	    cp->dev <= SV_LAST_MIXER) {
1105 		int off, mute;
1106 
1107 		off = cp->dev - SV_FIRST_MIXER;
1108 		mute = (off % SV_DEVICES_PER_PORT);
1109 		idx = off / SV_DEVICES_PER_PORT;
1110 
1111 		if (mute) {
1112 			if (cp->type != AUDIO_MIXER_ENUM)
1113 				return EINVAL;
1114 
1115 			reg = sv_read_indirect(sc, ports[idx].l_port);
1116 			if (cp->un.ord)
1117 				reg |= SV_MUTE_BIT;
1118 			else
1119 				reg &= ~SV_MUTE_BIT;
1120 			sv_write_indirect(sc, ports[idx].l_port, reg);
1121 
1122 			if (ports[idx].r_port) {
1123 				reg = sv_read_indirect(sc, ports[idx].r_port);
1124 				if (cp->un.ord)
1125 					reg |= SV_MUTE_BIT;
1126 				else
1127 					reg &= ~SV_MUTE_BIT;
1128 				sv_write_indirect(sc, ports[idx].r_port, reg);
1129 			}
1130 		} else {
1131 			int  lval, rval;
1132 
1133 			if (cp->type != AUDIO_MIXER_VALUE)
1134 				return EINVAL;
1135 
1136 			if (cp->un.value.num_channels != 1 &&
1137 			    cp->un.value.num_channels != 2)
1138 				return (EINVAL);
1139 
1140 			if (ports[idx].r_port == 0) {
1141 				if (cp->un.value.num_channels != 1)
1142 					return (EINVAL);
1143 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1144 				rval = 0; /* shut up GCC */
1145 			} else {
1146 				if (cp->un.value.num_channels != 2)
1147 					return (EINVAL);
1148 
1149 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1150 				rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1151 			}
1152 
1153 
1154 			reg = sv_read_indirect(sc, ports[idx].l_port);
1155 			reg &= ~(ports[idx].mask);
1156 			lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
1157 				AUDIO_MAX_GAIN;
1158 			reg |= lval;
1159 			sv_write_indirect(sc, ports[idx].l_port, reg);
1160 
1161 			if (ports[idx].r_port != 0) {
1162 				reg = sv_read_indirect(sc, ports[idx].r_port);
1163 				reg &= ~(ports[idx].mask);
1164 
1165 				rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
1166 					AUDIO_MAX_GAIN;
1167 				reg |= rval;
1168 
1169 				sv_write_indirect(sc, ports[idx].r_port, reg);
1170 			}
1171 
1172 			sv_read_indirect(sc, ports[idx].l_port);
1173 		}
1174 
1175 		return 0;
1176 	}
1177 
1178 
1179 	switch (cp->dev) {
1180 	case SV_RECORD_SOURCE:
1181 		if (cp->type != AUDIO_MIXER_ENUM)
1182 			return EINVAL;
1183 
1184 		for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
1185 			if (record_sources[idx].idx == cp->un.ord)
1186 				goto found;
1187 		}
1188 
1189 		return EINVAL;
1190 
1191 	found:
1192 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1193 		reg &= ~SV_REC_SOURCE_MASK;
1194 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1195 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1196 
1197 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1198 		reg &= ~SV_REC_SOURCE_MASK;
1199 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1200 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1201 		return 0;
1202 
1203 	case SV_RECORD_GAIN:
1204 	{
1205 		int val;
1206 
1207 		if (cp->type != AUDIO_MIXER_VALUE)
1208 			return EINVAL;
1209 
1210 		if (cp->un.value.num_channels != 1)
1211 			return EINVAL;
1212 
1213 		val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]
1214 		    * SV_REC_GAIN_MASK) / AUDIO_MAX_GAIN;
1215 
1216 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1217 		reg &= ~SV_REC_GAIN_MASK;
1218 		reg |= val;
1219 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1220 
1221 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1222 		reg &= ~SV_REC_GAIN_MASK;
1223 		reg |= val;
1224 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1225 	}
1226 	return (0);
1227 
1228 	case SV_MIC_BOOST:
1229 		if (cp->type != AUDIO_MIXER_ENUM)
1230 			return EINVAL;
1231 
1232 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1233 		if (cp->un.ord) {
1234 			reg |= SV_MIC_BOOST_BIT;
1235 		} else {
1236 			reg &= ~SV_MIC_BOOST_BIT;
1237 		}
1238 
1239 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1240 		return 0;
1241 
1242 	case SV_SRS_MODE:
1243 		if (cp->type != AUDIO_MIXER_ENUM)
1244 			return EINVAL;
1245 
1246 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1247 		if (cp->un.ord) {
1248 			reg &= ~SV_SRS_SPACE_ONOFF;
1249 		} else {
1250 			reg |= SV_SRS_SPACE_ONOFF;
1251 		}
1252 
1253 		sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
1254 		return 0;
1255 	}
1256 
1257 	return EINVAL;
1258 }
1259 
1260 static int
1261 sv_mixer_get_port(void *addr, mixer_ctrl_t *cp)
1262 {
1263 	struct sv_softc *sc;
1264 	int val;
1265 	uint8_t reg;
1266 
1267 	sc = addr;
1268 	if (cp->dev >= SV_FIRST_MIXER &&
1269 	    cp->dev <= SV_LAST_MIXER) {
1270 		int off = cp->dev - SV_FIRST_MIXER;
1271 		int mute = (off % 2);
1272 		int idx = off / 2;
1273 
1274 		off = cp->dev - SV_FIRST_MIXER;
1275 		mute = (off % 2);
1276 		idx = off / 2;
1277 		if (mute) {
1278 			if (cp->type != AUDIO_MIXER_ENUM)
1279 				return EINVAL;
1280 
1281 			reg = sv_read_indirect(sc, ports[idx].l_port);
1282 			cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
1283 		} else {
1284 			if (cp->type != AUDIO_MIXER_VALUE)
1285 				return EINVAL;
1286 
1287 			if (cp->un.value.num_channels != 1 &&
1288 			    cp->un.value.num_channels != 2)
1289 				return EINVAL;
1290 
1291 			if ((ports[idx].r_port == 0 &&
1292 			     cp->un.value.num_channels != 1) ||
1293 			    (ports[idx].r_port != 0 &&
1294 			     cp->un.value.num_channels != 2))
1295 				return EINVAL;
1296 
1297 			reg = sv_read_indirect(sc, ports[idx].l_port);
1298 			reg &= ports[idx].mask;
1299 
1300 			val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1301 
1302 			if (ports[idx].r_port != 0) {
1303 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val;
1304 
1305 				reg = sv_read_indirect(sc, ports[idx].r_port);
1306 				reg &= ports[idx].mask;
1307 
1308 				val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN)
1309 				    / ports[idx].mask);
1310 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val;
1311 			} else
1312 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val;
1313 		}
1314 
1315 		return 0;
1316 	}
1317 
1318 	switch (cp->dev) {
1319 	case SV_RECORD_SOURCE:
1320 		if (cp->type != AUDIO_MIXER_ENUM)
1321 			return EINVAL;
1322 
1323 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1324 		cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
1325 
1326 		return 0;
1327 
1328 	case SV_RECORD_GAIN:
1329 		if (cp->type != AUDIO_MIXER_VALUE)
1330 			return EINVAL;
1331 		if (cp->un.value.num_channels != 1)
1332 			return EINVAL;
1333 
1334 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
1335 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1336 			(((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
1337 
1338 		return 0;
1339 
1340 	case SV_MIC_BOOST:
1341 		if (cp->type != AUDIO_MIXER_ENUM)
1342 			return EINVAL;
1343 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1344 		cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
1345 		return 0;
1346 
1347 	case SV_SRS_MODE:
1348 		if (cp->type != AUDIO_MIXER_ENUM)
1349 			return EINVAL;
1350 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1351 		cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
1352 		return 0;
1353 	}
1354 
1355 	return EINVAL;
1356 }
1357 
1358 static void
1359 sv_init_mixer(struct sv_softc *sc)
1360 {
1361 	mixer_ctrl_t cp;
1362 	int i;
1363 
1364 	cp.type = AUDIO_MIXER_ENUM;
1365 	cp.dev = SV_SRS_MODE;
1366 	cp.un.ord = 0;
1367 
1368 	sv_mixer_set_port(sc, &cp);
1369 
1370 	for (i = 0; i < ARRAY_SIZE(ports); i++) {
1371 		if (ports[i].audio == AudioNdac) {
1372 			cp.type = AUDIO_MIXER_ENUM;
1373 			cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
1374 			cp.un.ord = 0;
1375 			sv_mixer_set_port(sc, &cp);
1376 			break;
1377 		}
1378 	}
1379 }
1380 
1381 static void *
1382 sv_malloc(void *addr, int direction, size_t size,
1383     struct malloc_type *pool, int flags)
1384 {
1385 	struct sv_softc *sc;
1386 	struct sv_dma *p;
1387 	int error;
1388 
1389 	sc = addr;
1390 	p = malloc(sizeof(*p), pool, flags);
1391 	if (p == NULL)
1392 		return NULL;
1393 	error = sv_allocmem(sc, size, 16, direction, p);
1394 	if (error) {
1395 		free(p, pool);
1396 		return 0;
1397 	}
1398 	p->next = sc->sc_dmas;
1399 	sc->sc_dmas = p;
1400 	return KERNADDR(p);
1401 }
1402 
1403 static void
1404 sv_free(void *addr, void *ptr, struct malloc_type *pool)
1405 {
1406 	struct sv_softc *sc;
1407 	struct sv_dma **pp, *p;
1408 
1409 	sc = addr;
1410 	for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1411 		if (KERNADDR(p) == ptr) {
1412 			sv_freemem(sc, p);
1413 			*pp = p->next;
1414 			free(p, pool);
1415 			return;
1416 		}
1417 	}
1418 }
1419 
1420 static size_t
1421 sv_round_buffersize(void *addr, int direction, size_t size)
1422 {
1423 
1424 	return size;
1425 }
1426 
1427 static paddr_t
1428 sv_mappage(void *addr, void *mem, off_t off, int prot)
1429 {
1430 	struct sv_softc *sc;
1431 	struct sv_dma *p;
1432 
1433 	sc = addr;
1434 	if (off < 0)
1435 		return -1;
1436 	for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1437 		continue;
1438 	if (p == NULL)
1439 		return -1;
1440 	return bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1441 			       off, prot, BUS_DMA_WAITOK);
1442 }
1443 
1444 static int
1445 sv_get_props(void *addr)
1446 {
1447 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
1448 }
1449