xref: /netbsd-src/sys/dev/pci/sv.c (revision 8ac07aec990b9d2e483062509d0a9fa5b4f57cf2)
1 /*      $NetBSD: sv.c,v 1.38 2008/04/10 19:13:38 cegger Exp $ */
2 /*      $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
3 
4 /*
5  * Copyright (c) 1999 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Charles M. Hannum.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *        This product includes software developed by the NetBSD
22  *        Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1998 Constantine Paul Sapuntzakis
42  * All rights reserved
43  *
44  * Author: Constantine Paul Sapuntzakis (csapuntz@cvs.openbsd.org)
45  *
46  * Redistribution and use in source and binary forms, with or without
47  * modification, are permitted provided that the following conditions
48  * are met:
49  * 1. Redistributions of source code must retain the above copyright
50  *    notice, this list of conditions and the following disclaimer.
51  * 2. Redistributions in binary form must reproduce the above copyright
52  *    notice, this list of conditions and the following disclaimer in the
53  *    documentation and/or other materials provided with the distribution.
54  * 3. The author's name or those of the contributors may be used to
55  *    endorse or promote products derived from this software without
56  *    specific prior written permission.
57  *
58  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
59  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
60  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
61  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
62  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
63  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
64  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
65  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
66  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
67  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
68  * POSSIBILITY OF SUCH DAMAGE.
69  */
70 
71 /*
72  * S3 SonicVibes driver
73  *   Heavily based on the eap driver by Lennart Augustsson
74  */
75 
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.38 2008/04/10 19:13:38 cegger Exp $");
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/malloc.h>
83 #include <sys/device.h>
84 
85 #include <dev/pci/pcireg.h>
86 #include <dev/pci/pcivar.h>
87 #include <dev/pci/pcidevs.h>
88 
89 #include <sys/audioio.h>
90 #include <dev/audio_if.h>
91 #include <dev/mulaw.h>
92 #include <dev/auconv.h>
93 
94 #include <dev/ic/i8237reg.h>
95 #include <dev/pci/svreg.h>
96 #include <dev/pci/svvar.h>
97 
98 #include <sys/bus.h>
99 
100 /* XXX
101  * The SonicVibes DMA is broken and only works on 24-bit addresses.
102  * As long as bus_dmamem_alloc_range() is missing we use the ISA
103  * DMA tag on i386.
104  */
105 #if defined(i386)
106 #include "isa.h"
107 #if NISA > 0
108 #include <dev/isa/isavar.h>
109 #endif
110 #endif
111 
112 #ifdef AUDIO_DEBUG
113 #define DPRINTF(x)	if (svdebug) printf x
114 #define DPRINTFN(n,x)	if (svdebug>(n)) printf x
115 int	svdebug = 0;
116 #else
117 #define DPRINTF(x)
118 #define DPRINTFN(n,x)
119 #endif
120 
121 static int	sv_match(struct device *, struct cfdata *, void *);
122 static void	sv_attach(struct device *, struct device *, void *);
123 static int	sv_intr(void *);
124 
125 struct sv_dma {
126 	bus_dmamap_t map;
127 	void *addr;
128 	bus_dma_segment_t segs[1];
129 	int nsegs;
130 	size_t size;
131 	struct sv_dma *next;
132 };
133 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
134 #define KERNADDR(p) ((void *)((p)->addr))
135 
136 CFATTACH_DECL(sv, sizeof(struct sv_softc),
137     sv_match, sv_attach, NULL, NULL);
138 
139 static struct audio_device sv_device = {
140 	"S3 SonicVibes",
141 	"",
142 	"sv"
143 };
144 
145 #define ARRAY_SIZE(foo)  ((sizeof(foo)) / sizeof(foo[0]))
146 
147 static int	sv_allocmem(struct sv_softc *, size_t, size_t, int,
148 			    struct sv_dma *);
149 static int	sv_freemem(struct sv_softc *, struct sv_dma *);
150 
151 static void	sv_init_mixer(struct sv_softc *);
152 
153 static int	sv_open(void *, int);
154 static int	sv_query_encoding(void *, struct audio_encoding *);
155 static int	sv_set_params(void *, int, int, audio_params_t *,
156 			      audio_params_t *, stream_filter_list_t *,
157 			      stream_filter_list_t *);
158 static int	sv_round_blocksize(void *, int, int, const audio_params_t *);
159 static int	sv_trigger_output(void *, void *, void *, int, void (*)(void *),
160 				  void *, const audio_params_t *);
161 static int	sv_trigger_input(void *, void *, void *, int, void (*)(void *),
162 				 void *, const audio_params_t *);
163 static int	sv_halt_output(void *);
164 static int	sv_halt_input(void *);
165 static int	sv_getdev(void *, struct audio_device *);
166 static int	sv_mixer_set_port(void *, mixer_ctrl_t *);
167 static int	sv_mixer_get_port(void *, mixer_ctrl_t *);
168 static int	sv_query_devinfo(void *, mixer_devinfo_t *);
169 static void *	sv_malloc(void *, int, size_t, struct malloc_type *, int);
170 static void	sv_free(void *, void *, struct malloc_type *);
171 static size_t	sv_round_buffersize(void *, int, size_t);
172 static paddr_t	sv_mappage(void *, void *, off_t, int);
173 static int	sv_get_props(void *);
174 
175 #ifdef AUDIO_DEBUG
176 void    sv_dumpregs(struct sv_softc *sc);
177 #endif
178 
179 static const struct audio_hw_if sv_hw_if = {
180 	sv_open,
181 	NULL,			/* close */
182 	NULL,
183 	sv_query_encoding,
184 	sv_set_params,
185 	sv_round_blocksize,
186 	NULL,
187 	NULL,
188 	NULL,
189 	NULL,
190 	NULL,
191 	sv_halt_output,
192 	sv_halt_input,
193 	NULL,
194 	sv_getdev,
195 	NULL,
196 	sv_mixer_set_port,
197 	sv_mixer_get_port,
198 	sv_query_devinfo,
199 	sv_malloc,
200 	sv_free,
201 	sv_round_buffersize,
202 	sv_mappage,
203 	sv_get_props,
204 	sv_trigger_output,
205 	sv_trigger_input,
206 	NULL,
207 	NULL,
208 };
209 
210 #define SV_NFORMATS	4
211 static const struct audio_format sv_formats[SV_NFORMATS] = {
212 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
213 	 2, AUFMT_STEREO, 0, {2000, 48000}},
214 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
215 	 1, AUFMT_MONAURAL, 0, {2000, 48000}},
216 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
217 	 2, AUFMT_STEREO, 0, {2000, 48000}},
218 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
219 	 1, AUFMT_MONAURAL, 0, {2000, 48000}},
220 };
221 
222 
223 static void
224 sv_write(struct sv_softc *sc, uint8_t reg, uint8_t val)
225 {
226 
227 	DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
228 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
229 }
230 
231 static uint8_t
232 sv_read(struct sv_softc *sc, uint8_t reg)
233 {
234 	uint8_t val;
235 
236 	val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
237 	DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
238 	return val;
239 }
240 
241 static uint8_t
242 sv_read_indirect(struct sv_softc *sc, uint8_t reg)
243 {
244 	uint8_t val;
245 	int s;
246 
247 	s = splaudio();
248 	sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
249 	val = sv_read(sc, SV_CODEC_IDATA);
250 	splx(s);
251 	return val;
252 }
253 
254 static void
255 sv_write_indirect(struct sv_softc *sc, uint8_t reg, uint8_t val)
256 {
257 	uint8_t iaddr;
258 	int s;
259 
260 	iaddr = reg & SV_IADDR_MASK;
261 	s = splaudio();
262 	if (reg == SV_DMA_DATA_FORMAT)
263 		iaddr |= SV_IADDR_MCE;
264 
265 	sv_write(sc, SV_CODEC_IADDR, iaddr);
266 	sv_write(sc, SV_CODEC_IDATA, val);
267 	splx(s);
268 }
269 
270 static int
271 sv_match(struct device *parent, struct cfdata *match,
272     void *aux)
273 {
274 	struct pci_attach_args *pa;
275 
276 	pa = aux;
277 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
278 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
279 		return 1;
280 
281 	return 0;
282 }
283 
284 static pcireg_t pci_io_alloc_low, pci_io_alloc_high;
285 
286 static int
287 pci_alloc_io(pci_chipset_tag_t pc, pcitag_t pt, int pcioffs,
288     bus_space_tag_t iot, bus_size_t size, bus_size_t align,
289     bus_size_t bound, int flags, bus_space_handle_t *ioh)
290 {
291 	bus_addr_t addr;
292 	int error;
293 
294 	error = bus_space_alloc(iot, pci_io_alloc_low, pci_io_alloc_high,
295 				size, align, bound, flags, &addr, ioh);
296 	if (error)
297 		return error;
298 
299 	pci_conf_write(pc, pt, pcioffs, addr);
300 	return 0;
301 }
302 
303 /*
304  * Allocate IO addresses when all other configuration is done.
305  */
306 static void
307 sv_defer(struct device *self)
308 {
309 	struct sv_softc *sc;
310 	pci_chipset_tag_t pc;
311 	pcitag_t pt;
312 	pcireg_t dmaio;
313 
314 	sc = (struct sv_softc *)self;
315 	pc = sc->sc_pa.pa_pc;
316 	pt = sc->sc_pa.pa_tag;
317 	DPRINTF(("sv_defer: %p\n", sc));
318 
319 	/* XXX
320 	 * Get a reasonable default for the I/O range.
321 	 * Assume the range around SB_PORTBASE is valid on this PCI bus.
322 	 */
323 	pci_io_alloc_low = pci_conf_read(pc, pt, SV_SB_PORTBASE_SLOT);
324 	pci_io_alloc_high = pci_io_alloc_low + 0x1000;
325 
326 	if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
327 			  sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
328 			  0, &sc->sc_dmaa_ioh)) {
329 		printf("sv_attach: cannot allocate DMA A range\n");
330 		return;
331 	}
332 	dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
333 	DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
334 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
335 		       dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
336 
337 	if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
338 			  sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
339 			  0, &sc->sc_dmac_ioh)) {
340 		printf("sv_attach: cannot allocate DMA C range\n");
341 		return;
342 	}
343 	dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
344 	DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
345 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
346 		       dmaio | SV_DMA_CHANNEL_ENABLE);
347 
348 	sc->sc_dmaset = 1;
349 }
350 
351 static void
352 sv_attach(struct device *parent, struct device *self, void *aux)
353 {
354 	struct sv_softc *sc;
355 	struct pci_attach_args *pa;
356 	pci_chipset_tag_t pc;
357 	pcitag_t pt;
358 	pci_intr_handle_t ih;
359 	pcireg_t csr;
360 	char const *intrstr;
361 	uint8_t reg;
362 	struct audio_attach_args arg;
363 
364 	sc = (struct sv_softc *)self;
365 	pa = aux;
366 	pc = pa->pa_pc;
367 	pt = pa->pa_tag;
368 	printf ("\n");
369 
370 	/* Map I/O registers */
371 	if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
372 			   PCI_MAPREG_TYPE_IO, 0,
373 			   &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
374 		aprint_error_dev(&sc->sc_dev, "can't map enhanced i/o space\n");
375 		return;
376 	}
377 	if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
378 			   PCI_MAPREG_TYPE_IO, 0,
379 			   &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
380 		aprint_error_dev(&sc->sc_dev, "can't map FM i/o space\n");
381 		return;
382 	}
383 	if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
384 			   PCI_MAPREG_TYPE_IO, 0,
385 			   &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
386 		aprint_error_dev(&sc->sc_dev, "can't map MIDI i/o space\n");
387 		return;
388 	}
389 	DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
390 		 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
391 
392 #if defined(alpha)
393 	/* XXX Force allocation through the SGMAP. */
394 	sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
395 #elif defined(i386) && NISA > 0
396 /* XXX
397  * The SonicVibes DMA is broken and only works on 24-bit addresses.
398  * As long as bus_dmamem_alloc_range() is missing we use the ISA
399  * DMA tag on i386.
400  */
401 	sc->sc_dmatag = &isa_bus_dma_tag;
402 #else
403 	sc->sc_dmatag = pa->pa_dmat;
404 #endif
405 
406 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
407 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
408 
409 	/* Enable the device. */
410 	csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
411 	pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
412 		       csr | PCI_COMMAND_MASTER_ENABLE);
413 
414 	sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
415 	sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
416 
417 	/* initialize codec registers */
418 	reg = sv_read(sc, SV_CODEC_CONTROL);
419 	reg |= SV_CTL_RESET;
420 	sv_write(sc, SV_CODEC_CONTROL, reg);
421 	delay(50);
422 
423 	reg = sv_read(sc, SV_CODEC_CONTROL);
424 	reg &= ~SV_CTL_RESET;
425 	reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
426 
427 	/* This write clears the reset */
428 	sv_write(sc, SV_CODEC_CONTROL, reg);
429 	delay(50);
430 
431 	/* This write actually shoves the new values in */
432 	sv_write(sc, SV_CODEC_CONTROL, reg);
433 
434 	DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
435 
436 	/* Enable DMA interrupts */
437 	reg = sv_read(sc, SV_CODEC_INTMASK);
438 	reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
439 	reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
440 	sv_write(sc, SV_CODEC_INTMASK, reg);
441 
442 	sv_read(sc, SV_CODEC_STATUS);
443 
444 	/* Map and establish the interrupt. */
445 	if (pci_intr_map(pa, &ih)) {
446 		aprint_error_dev(&sc->sc_dev, "couldn't map interrupt\n");
447 		return;
448 	}
449 	intrstr = pci_intr_string(pc, ih);
450 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
451 	if (sc->sc_ih == NULL) {
452 		aprint_error_dev(&sc->sc_dev, "couldn't establish interrupt");
453 		if (intrstr != NULL)
454 			printf(" at %s", intrstr);
455 		printf("\n");
456 		return;
457 	}
458 	printf("%s: interrupting at %s\n", device_xname(&sc->sc_dev), intrstr);
459 	printf("%s: rev %d", device_xname(&sc->sc_dev),
460 	       sv_read_indirect(sc, SV_REVISION_LEVEL));
461 	if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
462 		printf(", reverb SRAM present");
463 	if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
464 		printf(", wavetable ROM present");
465 	printf("\n");
466 
467 	sv_init_mixer(sc);
468 
469 	audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
470 
471 	arg.type = AUDIODEV_TYPE_OPL;
472 	arg.hwif = 0;
473 	arg.hdl = 0;
474 	(void)config_found(&sc->sc_dev, &arg, audioprint);
475 
476 	sc->sc_pa = *pa;	/* for deferred setup */
477 	config_defer(self, sv_defer);
478 }
479 
480 #ifdef AUDIO_DEBUG
481 void
482 sv_dumpregs(struct sv_softc *sc)
483 {
484 	int idx;
485 
486 #if 0
487 	for (idx = 0; idx < 0x50; idx += 4)
488 		printf ("%02x = %x\n", idx,
489 			pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
490 #endif
491 
492 	for (idx = 0; idx < 6; idx++)
493 		printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
494 
495 	for (idx = 0; idx < 0x32; idx++)
496 		printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
497 
498 	for (idx = 0; idx < 0x10; idx++)
499 		printf ("DMA %02x = %02x\n", idx,
500 			bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
501 }
502 #endif
503 
504 static int
505 sv_intr(void *p)
506 {
507 	struct sv_softc *sc;
508 	uint8_t intr;
509 
510 	sc = p;
511 	intr = sv_read(sc, SV_CODEC_STATUS);
512 	DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
513 
514 	if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)))
515 		return 0;
516 
517 	if (intr & SV_INTSTATUS_DMAA) {
518 		if (sc->sc_pintr)
519 			sc->sc_pintr(sc->sc_parg);
520 	}
521 
522 	if (intr & SV_INTSTATUS_DMAC) {
523 		if (sc->sc_rintr)
524 			sc->sc_rintr(sc->sc_rarg);
525 	}
526 
527 	return 1;
528 }
529 
530 static int
531 sv_allocmem(struct sv_softc *sc, size_t size, size_t align,
532     int direction, struct sv_dma *p)
533 {
534 	int error;
535 
536 	p->size = size;
537 	error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
538 	    p->segs, ARRAY_SIZE(p->segs), &p->nsegs, BUS_DMA_NOWAIT);
539 	if (error)
540 		return error;
541 
542 	error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
543 	    &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
544 	if (error)
545 		goto free;
546 
547 	error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
548 	    0, BUS_DMA_NOWAIT, &p->map);
549 	if (error)
550 		goto unmap;
551 
552 	error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
553 	    BUS_DMA_NOWAIT | (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
554 	if (error)
555 		goto destroy;
556 	DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
557 	    (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
558 	return 0;
559 
560 destroy:
561 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
562 unmap:
563 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
564 free:
565 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
566 	return error;
567 }
568 
569 static int
570 sv_freemem(struct sv_softc *sc, struct sv_dma *p)
571 {
572 
573 	bus_dmamap_unload(sc->sc_dmatag, p->map);
574 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
575 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
576 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
577 	return 0;
578 }
579 
580 static int
581 sv_open(void *addr, int flags)
582 {
583 	struct sv_softc *sc;
584 
585 	sc = addr;
586 	DPRINTF(("sv_open\n"));
587 	if (!sc->sc_dmaset)
588 		return ENXIO;
589 
590 	return 0;
591 }
592 
593 static int
594 sv_query_encoding(void *addr, struct audio_encoding *fp)
595 {
596 
597 	switch (fp->index) {
598 	case 0:
599 		strcpy(fp->name, AudioEulinear);
600 		fp->encoding = AUDIO_ENCODING_ULINEAR;
601 		fp->precision = 8;
602 		fp->flags = 0;
603 		return 0;
604 	case 1:
605 		strcpy(fp->name, AudioEmulaw);
606 		fp->encoding = AUDIO_ENCODING_ULAW;
607 		fp->precision = 8;
608 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
609 		return 0;
610 	case 2:
611 		strcpy(fp->name, AudioEalaw);
612 		fp->encoding = AUDIO_ENCODING_ALAW;
613 		fp->precision = 8;
614 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
615 		return 0;
616 	case 3:
617 		strcpy(fp->name, AudioEslinear);
618 		fp->encoding = AUDIO_ENCODING_SLINEAR;
619 		fp->precision = 8;
620 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
621 		return 0;
622 	case 4:
623 		strcpy(fp->name, AudioEslinear_le);
624 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
625 		fp->precision = 16;
626 		fp->flags = 0;
627 		return 0;
628 	case 5:
629 		strcpy(fp->name, AudioEulinear_le);
630 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
631 		fp->precision = 16;
632 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
633 		return 0;
634 	case 6:
635 		strcpy(fp->name, AudioEslinear_be);
636 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
637 		fp->precision = 16;
638 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
639 		return 0;
640 	case 7:
641 		strcpy(fp->name, AudioEulinear_be);
642 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
643 		fp->precision = 16;
644 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
645 		return 0;
646 	default:
647 		return EINVAL;
648 	}
649 }
650 
651 static int
652 sv_set_params(void *addr, int setmode, int usemode, audio_params_t *play,
653     audio_params_t *rec, stream_filter_list_t *pfil, stream_filter_list_t *rfil)
654 {
655 	struct sv_softc *sc;
656 	audio_params_t *p;
657 	uint32_t val;
658 
659 	sc = addr;
660 	p = NULL;
661 	/*
662 	 * This device only has one clock, so make the sample rates match.
663 	 */
664 	if (play->sample_rate != rec->sample_rate &&
665 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
666 		if (setmode == AUMODE_PLAY) {
667 			rec->sample_rate = play->sample_rate;
668 			setmode |= AUMODE_RECORD;
669 		} else if (setmode == AUMODE_RECORD) {
670 			play->sample_rate = rec->sample_rate;
671 			setmode |= AUMODE_PLAY;
672 		} else
673 			return EINVAL;
674 	}
675 
676 	if (setmode & AUMODE_RECORD) {
677 		p = rec;
678 		if (auconv_set_converter(sv_formats, SV_NFORMATS,
679 					 AUMODE_RECORD, rec, FALSE, rfil) < 0)
680 			return EINVAL;
681 	}
682 	if (setmode & AUMODE_PLAY) {
683 		p = play;
684 		if (auconv_set_converter(sv_formats, SV_NFORMATS,
685 					 AUMODE_PLAY, play, FALSE, pfil) < 0)
686 			return EINVAL;
687 	}
688 
689 	if (p == NULL)
690 		return 0;
691 
692 	val = p->sample_rate * 65536 / 48000;
693 	/*
694 	 * If the sample rate is exactly 48 kHz, the fraction would overflow the
695 	 * register, so we have to bias it.  This causes a little clock drift.
696 	 * The drift is below normal crystal tolerance (.0001%), so although
697 	 * this seems a little silly, we can pretty much ignore it.
698 	 * (I tested the output speed with values of 1-20, just to be sure this
699 	 * register isn't *supposed* to have a bias.  It isn't.)
700 	 * - mycroft
701 	 */
702 	if (val > 65535)
703 		val = 65535;
704 
705 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
706 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
707 
708 #define F_REF 24576000
709 
710 #define ABS(x) (((x) < 0) ? (-x) : (x))
711 
712 	if (setmode & AUMODE_RECORD) {
713 		/* The ADC reference frequency (f_out) is 512 * sample rate */
714 
715 		/* f_out is dervied from the 24.576MHz crystal by three values:
716 		   M & N & R. The equation is as follows:
717 
718 		   f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
719 
720 		   with the constraint that:
721 
722 		   80 MHz < (m + 2) / (n + 2) * f_ref <= 150MHz
723 		   and n, m >= 1
724 		*/
725 
726 		int  goal_f_out;
727 		int  a, n, m, best_n, best_m, best_error;
728 		int  pll_sample;
729 		int  error;
730 
731 		goal_f_out = 512 * rec->sample_rate;
732 		best_n = 0;
733 		best_m = 0;
734 		best_error = 10000000;
735 		for (a = 0; a < 8; a++) {
736 			if ((goal_f_out * (1 << a)) >= 80000000)
737 				break;
738 		}
739 
740 		/* a != 8 because sample_rate >= 2000 */
741 
742 		for (n = 33; n > 2; n--) {
743 			m = (goal_f_out * n * (1 << a)) / F_REF;
744 			if ((m > 257) || (m < 3))
745 				continue;
746 
747 			pll_sample = (m * F_REF) / (n * (1 << a));
748 			pll_sample /= 512;
749 
750 			/* Threshold might be good here */
751 			error = pll_sample - rec->sample_rate;
752 			error = ABS(error);
753 
754 			if (error < best_error) {
755 				best_error = error;
756 				best_n = n;
757 				best_m = m;
758 				if (error == 0) break;
759 			}
760 		}
761 
762 		best_n -= 2;
763 		best_m -= 2;
764 
765 		sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
766 		sv_write_indirect(sc, SV_ADC_PLL_N,
767 				  best_n | (a << SV_PLL_R_SHIFT));
768 	}
769 
770 	return 0;
771 }
772 
773 static int
774 sv_round_blocksize(void *addr, int blk, int mode,
775     const audio_params_t *param)
776 {
777 
778 	return blk & -32;	/* keep good alignment */
779 }
780 
781 static int
782 sv_trigger_output(void *addr, void *start, void *end, int blksize,
783     void (*intr)(void *), void *arg, const audio_params_t *param)
784 {
785 	struct sv_softc *sc;
786 	struct sv_dma *p;
787 	uint8_t mode;
788 	int dma_count;
789 
790 	DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d "
791 	    "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
792 	sc = addr;
793 	sc->sc_pintr = intr;
794 	sc->sc_parg = arg;
795 
796 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
797 	mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
798 	if (param->precision == 16)
799 		mode |= SV_DMAA_FORMAT16;
800 	if (param->channels == 2)
801 		mode |= SV_DMAA_STEREO;
802 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
803 
804 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
805 		continue;
806 	if (p == NULL) {
807 		printf("sv_trigger_output: bad addr %p\n", start);
808 		return EINVAL;
809 	}
810 
811 	dma_count = ((char *)end - (char *)start) - 1;
812 	DPRINTF(("sv_trigger_output: DMA start loop input addr=%x cc=%d\n",
813 	    (int)DMAADDR(p), dma_count));
814 
815 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
816 			  DMAADDR(p));
817 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
818 			  dma_count);
819 	bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
820 			  DMA37MD_READ | DMA37MD_LOOP);
821 
822 	DPRINTF(("sv_trigger_output: current addr=%x\n",
823 	    bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
824 
825 	dma_count = blksize - 1;
826 
827 	sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
828 	sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
829 
830 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
831 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
832 
833 	return 0;
834 }
835 
836 static int
837 sv_trigger_input(void *addr, void *start, void *end, int blksize,
838     void (*intr)(void *), void *arg, const audio_params_t *param)
839 {
840 	struct sv_softc *sc;
841 	struct sv_dma *p;
842 	uint8_t mode;
843 	int dma_count;
844 
845 	DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d "
846 	    "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
847 	sc = addr;
848 	sc->sc_rintr = intr;
849 	sc->sc_rarg = arg;
850 
851 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
852 	mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
853 	if (param->precision == 16)
854 		mode |= SV_DMAC_FORMAT16;
855 	if (param->channels == 2)
856 		mode |= SV_DMAC_STEREO;
857 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
858 
859 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
860 		continue;
861 	if (!p) {
862 		printf("sv_trigger_input: bad addr %p\n", start);
863 		return EINVAL;
864 	}
865 
866 	dma_count = (((char *)end - (char *)start) >> 1) - 1;
867 	DPRINTF(("sv_trigger_input: DMA start loop input addr=%x cc=%d\n",
868 	    (int)DMAADDR(p), dma_count));
869 
870 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
871 			  DMAADDR(p));
872 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
873 			  dma_count);
874 	bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
875 			  DMA37MD_WRITE | DMA37MD_LOOP);
876 
877 	DPRINTF(("sv_trigger_input: current addr=%x\n",
878 	    bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
879 
880 	dma_count = (blksize >> 1) - 1;
881 
882 	sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
883 	sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
884 
885 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
886 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
887 
888 	return 0;
889 }
890 
891 static int
892 sv_halt_output(void *addr)
893 {
894 	struct sv_softc *sc;
895 	uint8_t mode;
896 
897 	DPRINTF(("sv: sv_halt_output\n"));
898 	sc = addr;
899 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
900 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
901 	sc->sc_pintr = 0;
902 
903 	return 0;
904 }
905 
906 static int
907 sv_halt_input(void *addr)
908 {
909 	struct sv_softc *sc;
910 	uint8_t mode;
911 
912 	DPRINTF(("sv: sv_halt_input\n"));
913 	sc = addr;
914 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
915 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
916 	sc->sc_rintr = 0;
917 
918 	return 0;
919 }
920 
921 static int
922 sv_getdev(void *addr, struct audio_device *retp)
923 {
924 
925 	*retp = sv_device;
926 	return 0;
927 }
928 
929 
930 /*
931  * Mixer related code is here
932  *
933  */
934 
935 #define SV_INPUT_CLASS 0
936 #define SV_OUTPUT_CLASS 1
937 #define SV_RECORD_CLASS 2
938 
939 #define SV_LAST_CLASS 2
940 
941 static const char *mixer_classes[] =
942 	{ AudioCinputs, AudioCoutputs, AudioCrecord };
943 
944 static const struct {
945 	uint8_t   l_port;
946 	uint8_t   r_port;
947 	uint8_t   mask;
948 	uint8_t   class;
949 	const char *audio;
950 } ports[] = {
951   { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
952     SV_INPUT_CLASS, "aux1" },
953   { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
954     SV_INPUT_CLASS, AudioNcd },
955   { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
956     SV_INPUT_CLASS, AudioNline },
957   { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
958   { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
959     SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
960   { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
961     SV_INPUT_CLASS, "aux2" },
962   { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
963     SV_INPUT_CLASS, AudioNdac },
964   { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
965     SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
966 };
967 
968 
969 static const struct {
970 	int idx;
971 	const char *name;
972 } record_sources[] = {
973 	{ SV_REC_CD, AudioNcd },
974 	{ SV_REC_DAC, AudioNdac },
975 	{ SV_REC_AUX2, "aux2" },
976 	{ SV_REC_LINE, AudioNline },
977 	{ SV_REC_AUX1, "aux1" },
978 	{ SV_REC_MIC, AudioNmicrophone },
979 	{ SV_REC_MIXER, AudioNmixerout }
980 };
981 
982 
983 #define SV_DEVICES_PER_PORT 2
984 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
985 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
986 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
987 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
988 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
989 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
990 
991 static int
992 sv_query_devinfo(void *addr, mixer_devinfo_t *dip)
993 {
994 	int i;
995 
996 	/* It's a class */
997 	if (dip->index <= SV_LAST_CLASS) {
998 		dip->type = AUDIO_MIXER_CLASS;
999 		dip->mixer_class = dip->index;
1000 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1001 		strcpy(dip->label.name, mixer_classes[dip->index]);
1002 		return 0;
1003 	}
1004 
1005 	if (dip->index >= SV_FIRST_MIXER &&
1006 	    dip->index <= SV_LAST_MIXER) {
1007 		int off, mute ,idx;
1008 
1009 		off = dip->index - SV_FIRST_MIXER;
1010 		mute = (off % SV_DEVICES_PER_PORT);
1011 		idx = off / SV_DEVICES_PER_PORT;
1012 		dip->mixer_class = ports[idx].class;
1013 		strcpy(dip->label.name, ports[idx].audio);
1014 
1015 		if (!mute) {
1016 			dip->type = AUDIO_MIXER_VALUE;
1017 			dip->prev = AUDIO_MIXER_LAST;
1018 			dip->next = dip->index + 1;
1019 
1020 			if (ports[idx].r_port != 0)
1021 				dip->un.v.num_channels = 2;
1022 			else
1023 				dip->un.v.num_channels = 1;
1024 
1025 			strcpy(dip->un.v.units.name, AudioNvolume);
1026 		} else {
1027 			dip->type = AUDIO_MIXER_ENUM;
1028 			dip->prev = dip->index - 1;
1029 			dip->next = AUDIO_MIXER_LAST;
1030 
1031 			strcpy(dip->label.name, AudioNmute);
1032 			dip->un.e.num_mem = 2;
1033 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
1034 			dip->un.e.member[0].ord = 0;
1035 			strcpy(dip->un.e.member[1].label.name, AudioNon);
1036 			dip->un.e.member[1].ord = 1;
1037 		}
1038 
1039 		return 0;
1040 	}
1041 
1042 	switch (dip->index) {
1043 	case SV_RECORD_SOURCE:
1044 		dip->mixer_class = SV_RECORD_CLASS;
1045 		dip->prev = AUDIO_MIXER_LAST;
1046 		dip->next = SV_RECORD_GAIN;
1047 		strcpy(dip->label.name, AudioNsource);
1048 		dip->type = AUDIO_MIXER_ENUM;
1049 
1050 		dip->un.e.num_mem = ARRAY_SIZE(record_sources);
1051 		for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
1052 			strcpy(dip->un.e.member[i].label.name,
1053 			       record_sources[i].name);
1054 			dip->un.e.member[i].ord = record_sources[i].idx;
1055 		}
1056 		return 0;
1057 
1058 	case SV_RECORD_GAIN:
1059 		dip->mixer_class = SV_RECORD_CLASS;
1060 		dip->prev = SV_RECORD_SOURCE;
1061 		dip->next = AUDIO_MIXER_LAST;
1062 		strcpy(dip->label.name, "gain");
1063 		dip->type = AUDIO_MIXER_VALUE;
1064 		dip->un.v.num_channels = 1;
1065 		strcpy(dip->un.v.units.name, AudioNvolume);
1066 		return 0;
1067 
1068 	case SV_MIC_BOOST:
1069 		dip->mixer_class = SV_RECORD_CLASS;
1070 		dip->prev = AUDIO_MIXER_LAST;
1071 		dip->next = AUDIO_MIXER_LAST;
1072 		strcpy(dip->label.name, "micboost");
1073 		goto on_off;
1074 
1075 	case SV_SRS_MODE:
1076 		dip->mixer_class = SV_OUTPUT_CLASS;
1077 		dip->prev = dip->next = AUDIO_MIXER_LAST;
1078 		strcpy(dip->label.name, AudioNspatial);
1079 
1080 	on_off:
1081 		dip->type = AUDIO_MIXER_ENUM;
1082 		dip->un.e.num_mem = 2;
1083 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1084 		dip->un.e.member[0].ord = 0;
1085 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1086 		dip->un.e.member[1].ord = 1;
1087 		return 0;
1088 	}
1089 
1090 	return ENXIO;
1091 }
1092 
1093 static int
1094 sv_mixer_set_port(void *addr, mixer_ctrl_t *cp)
1095 {
1096 	struct sv_softc *sc;
1097 	uint8_t reg;
1098 	int idx;
1099 
1100 	sc = addr;
1101 	if (cp->dev >= SV_FIRST_MIXER &&
1102 	    cp->dev <= SV_LAST_MIXER) {
1103 		int off, mute;
1104 
1105 		off = cp->dev - SV_FIRST_MIXER;
1106 		mute = (off % SV_DEVICES_PER_PORT);
1107 		idx = off / SV_DEVICES_PER_PORT;
1108 
1109 		if (mute) {
1110 			if (cp->type != AUDIO_MIXER_ENUM)
1111 				return EINVAL;
1112 
1113 			reg = sv_read_indirect(sc, ports[idx].l_port);
1114 			if (cp->un.ord)
1115 				reg |= SV_MUTE_BIT;
1116 			else
1117 				reg &= ~SV_MUTE_BIT;
1118 			sv_write_indirect(sc, ports[idx].l_port, reg);
1119 
1120 			if (ports[idx].r_port) {
1121 				reg = sv_read_indirect(sc, ports[idx].r_port);
1122 				if (cp->un.ord)
1123 					reg |= SV_MUTE_BIT;
1124 				else
1125 					reg &= ~SV_MUTE_BIT;
1126 				sv_write_indirect(sc, ports[idx].r_port, reg);
1127 			}
1128 		} else {
1129 			int  lval, rval;
1130 
1131 			if (cp->type != AUDIO_MIXER_VALUE)
1132 				return EINVAL;
1133 
1134 			if (cp->un.value.num_channels != 1 &&
1135 			    cp->un.value.num_channels != 2)
1136 				return (EINVAL);
1137 
1138 			if (ports[idx].r_port == 0) {
1139 				if (cp->un.value.num_channels != 1)
1140 					return (EINVAL);
1141 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1142 				rval = 0; /* shut up GCC */
1143 			} else {
1144 				if (cp->un.value.num_channels != 2)
1145 					return (EINVAL);
1146 
1147 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1148 				rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1149 			}
1150 
1151 
1152 			reg = sv_read_indirect(sc, ports[idx].l_port);
1153 			reg &= ~(ports[idx].mask);
1154 			lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
1155 				AUDIO_MAX_GAIN;
1156 			reg |= lval;
1157 			sv_write_indirect(sc, ports[idx].l_port, reg);
1158 
1159 			if (ports[idx].r_port != 0) {
1160 				reg = sv_read_indirect(sc, ports[idx].r_port);
1161 				reg &= ~(ports[idx].mask);
1162 
1163 				rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
1164 					AUDIO_MAX_GAIN;
1165 				reg |= rval;
1166 
1167 				sv_write_indirect(sc, ports[idx].r_port, reg);
1168 			}
1169 
1170 			sv_read_indirect(sc, ports[idx].l_port);
1171 		}
1172 
1173 		return 0;
1174 	}
1175 
1176 
1177 	switch (cp->dev) {
1178 	case SV_RECORD_SOURCE:
1179 		if (cp->type != AUDIO_MIXER_ENUM)
1180 			return EINVAL;
1181 
1182 		for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
1183 			if (record_sources[idx].idx == cp->un.ord)
1184 				goto found;
1185 		}
1186 
1187 		return EINVAL;
1188 
1189 	found:
1190 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1191 		reg &= ~SV_REC_SOURCE_MASK;
1192 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1193 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1194 
1195 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1196 		reg &= ~SV_REC_SOURCE_MASK;
1197 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1198 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1199 		return 0;
1200 
1201 	case SV_RECORD_GAIN:
1202 	{
1203 		int val;
1204 
1205 		if (cp->type != AUDIO_MIXER_VALUE)
1206 			return EINVAL;
1207 
1208 		if (cp->un.value.num_channels != 1)
1209 			return EINVAL;
1210 
1211 		val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]
1212 		    * SV_REC_GAIN_MASK) / AUDIO_MAX_GAIN;
1213 
1214 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1215 		reg &= ~SV_REC_GAIN_MASK;
1216 		reg |= val;
1217 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1218 
1219 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1220 		reg &= ~SV_REC_GAIN_MASK;
1221 		reg |= val;
1222 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1223 	}
1224 	return (0);
1225 
1226 	case SV_MIC_BOOST:
1227 		if (cp->type != AUDIO_MIXER_ENUM)
1228 			return EINVAL;
1229 
1230 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1231 		if (cp->un.ord) {
1232 			reg |= SV_MIC_BOOST_BIT;
1233 		} else {
1234 			reg &= ~SV_MIC_BOOST_BIT;
1235 		}
1236 
1237 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1238 		return 0;
1239 
1240 	case SV_SRS_MODE:
1241 		if (cp->type != AUDIO_MIXER_ENUM)
1242 			return EINVAL;
1243 
1244 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1245 		if (cp->un.ord) {
1246 			reg &= ~SV_SRS_SPACE_ONOFF;
1247 		} else {
1248 			reg |= SV_SRS_SPACE_ONOFF;
1249 		}
1250 
1251 		sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
1252 		return 0;
1253 	}
1254 
1255 	return EINVAL;
1256 }
1257 
1258 static int
1259 sv_mixer_get_port(void *addr, mixer_ctrl_t *cp)
1260 {
1261 	struct sv_softc *sc;
1262 	int val;
1263 	uint8_t reg;
1264 
1265 	sc = addr;
1266 	if (cp->dev >= SV_FIRST_MIXER &&
1267 	    cp->dev <= SV_LAST_MIXER) {
1268 		int off = cp->dev - SV_FIRST_MIXER;
1269 		int mute = (off % 2);
1270 		int idx = off / 2;
1271 
1272 		off = cp->dev - SV_FIRST_MIXER;
1273 		mute = (off % 2);
1274 		idx = off / 2;
1275 		if (mute) {
1276 			if (cp->type != AUDIO_MIXER_ENUM)
1277 				return EINVAL;
1278 
1279 			reg = sv_read_indirect(sc, ports[idx].l_port);
1280 			cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
1281 		} else {
1282 			if (cp->type != AUDIO_MIXER_VALUE)
1283 				return EINVAL;
1284 
1285 			if (cp->un.value.num_channels != 1 &&
1286 			    cp->un.value.num_channels != 2)
1287 				return EINVAL;
1288 
1289 			if ((ports[idx].r_port == 0 &&
1290 			     cp->un.value.num_channels != 1) ||
1291 			    (ports[idx].r_port != 0 &&
1292 			     cp->un.value.num_channels != 2))
1293 				return EINVAL;
1294 
1295 			reg = sv_read_indirect(sc, ports[idx].l_port);
1296 			reg &= ports[idx].mask;
1297 
1298 			val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1299 
1300 			if (ports[idx].r_port != 0) {
1301 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val;
1302 
1303 				reg = sv_read_indirect(sc, ports[idx].r_port);
1304 				reg &= ports[idx].mask;
1305 
1306 				val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN)
1307 				    / ports[idx].mask);
1308 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val;
1309 			} else
1310 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val;
1311 		}
1312 
1313 		return 0;
1314 	}
1315 
1316 	switch (cp->dev) {
1317 	case SV_RECORD_SOURCE:
1318 		if (cp->type != AUDIO_MIXER_ENUM)
1319 			return EINVAL;
1320 
1321 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1322 		cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
1323 
1324 		return 0;
1325 
1326 	case SV_RECORD_GAIN:
1327 		if (cp->type != AUDIO_MIXER_VALUE)
1328 			return EINVAL;
1329 		if (cp->un.value.num_channels != 1)
1330 			return EINVAL;
1331 
1332 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
1333 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1334 			(((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
1335 
1336 		return 0;
1337 
1338 	case SV_MIC_BOOST:
1339 		if (cp->type != AUDIO_MIXER_ENUM)
1340 			return EINVAL;
1341 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1342 		cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
1343 		return 0;
1344 
1345 	case SV_SRS_MODE:
1346 		if (cp->type != AUDIO_MIXER_ENUM)
1347 			return EINVAL;
1348 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1349 		cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
1350 		return 0;
1351 	}
1352 
1353 	return EINVAL;
1354 }
1355 
1356 static void
1357 sv_init_mixer(struct sv_softc *sc)
1358 {
1359 	mixer_ctrl_t cp;
1360 	int i;
1361 
1362 	cp.type = AUDIO_MIXER_ENUM;
1363 	cp.dev = SV_SRS_MODE;
1364 	cp.un.ord = 0;
1365 
1366 	sv_mixer_set_port(sc, &cp);
1367 
1368 	for (i = 0; i < ARRAY_SIZE(ports); i++) {
1369 		if (ports[i].audio == AudioNdac) {
1370 			cp.type = AUDIO_MIXER_ENUM;
1371 			cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
1372 			cp.un.ord = 0;
1373 			sv_mixer_set_port(sc, &cp);
1374 			break;
1375 		}
1376 	}
1377 }
1378 
1379 static void *
1380 sv_malloc(void *addr, int direction, size_t size,
1381     struct malloc_type *pool, int flags)
1382 {
1383 	struct sv_softc *sc;
1384 	struct sv_dma *p;
1385 	int error;
1386 
1387 	sc = addr;
1388 	p = malloc(sizeof(*p), pool, flags);
1389 	if (p == NULL)
1390 		return NULL;
1391 	error = sv_allocmem(sc, size, 16, direction, p);
1392 	if (error) {
1393 		free(p, pool);
1394 		return 0;
1395 	}
1396 	p->next = sc->sc_dmas;
1397 	sc->sc_dmas = p;
1398 	return KERNADDR(p);
1399 }
1400 
1401 static void
1402 sv_free(void *addr, void *ptr, struct malloc_type *pool)
1403 {
1404 	struct sv_softc *sc;
1405 	struct sv_dma **pp, *p;
1406 
1407 	sc = addr;
1408 	for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1409 		if (KERNADDR(p) == ptr) {
1410 			sv_freemem(sc, p);
1411 			*pp = p->next;
1412 			free(p, pool);
1413 			return;
1414 		}
1415 	}
1416 }
1417 
1418 static size_t
1419 sv_round_buffersize(void *addr, int direction, size_t size)
1420 {
1421 
1422 	return size;
1423 }
1424 
1425 static paddr_t
1426 sv_mappage(void *addr, void *mem, off_t off, int prot)
1427 {
1428 	struct sv_softc *sc;
1429 	struct sv_dma *p;
1430 
1431 	sc = addr;
1432 	if (off < 0)
1433 		return -1;
1434 	for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1435 		continue;
1436 	if (p == NULL)
1437 		return -1;
1438 	return bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1439 			       off, prot, BUS_DMA_WAITOK);
1440 }
1441 
1442 static int
1443 sv_get_props(void *addr)
1444 {
1445 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
1446 }
1447