xref: /netbsd-src/sys/dev/pci/sv.c (revision 8a8f936f250a330d54f8a24ed0e92aadf9743a7b)
1 /*      $NetBSD: sv.c,v 1.14 2001/10/03 00:04:52 augustss Exp $ */
2 /*      $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
3 
4 /*
5  * Copyright (c) 1999 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Charles M. Hannum.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *        This product includes software developed by the NetBSD
22  *        Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1998 Constantine Paul Sapuntzakis
42  * All rights reserved
43  *
44  * Author: Constantine Paul Sapuntzakis (csapuntz@cvs.openbsd.org)
45  *
46  * Redistribution and use in source and binary forms, with or without
47  * modification, are permitted provided that the following conditions
48  * are met:
49  * 1. Redistributions of source code must retain the above copyright
50  *    notice, this list of conditions and the following disclaimer.
51  * 2. Redistributions in binary form must reproduce the above copyright
52  *    notice, this list of conditions and the following disclaimer in the
53  *    documentation and/or other materials provided with the distribution.
54  * 3. The author's name or those of the contributors may be used to
55  *    endorse or promote products derived from this software without
56  *    specific prior written permission.
57  *
58  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
59  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
60  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
61  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
62  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
63  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
64  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
65  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
66  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
67  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
68  * POSSIBILITY OF SUCH DAMAGE.
69  */
70 
71 /*
72  * S3 SonicVibes driver
73  *   Heavily based on the eap driver by Lennart Augustsson
74  */
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/malloc.h>
80 #include <sys/device.h>
81 
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 #include <dev/pci/pcidevs.h>
85 
86 #include <sys/audioio.h>
87 #include <dev/audio_if.h>
88 #include <dev/mulaw.h>
89 #include <dev/auconv.h>
90 
91 #include <dev/ic/i8237reg.h>
92 #include <dev/pci/svreg.h>
93 #include <dev/pci/svvar.h>
94 
95 #include <machine/bus.h>
96 
97 #ifdef AUDIO_DEBUG
98 #define DPRINTF(x)	if (svdebug) printf x
99 #define DPRINTFN(n,x)	if (svdebug>(n)) printf x
100 int	svdebug = 0;
101 #else
102 #define DPRINTF(x)
103 #define DPRINTFN(n,x)
104 #endif
105 
106 int	sv_match __P((struct device *, struct cfdata *, void *));
107 void	sv_attach __P((struct device *, struct device *, void *));
108 int	sv_intr __P((void *));
109 
110 struct sv_dma {
111 	bus_dmamap_t map;
112 	caddr_t addr;
113 	bus_dma_segment_t segs[1];
114 	int nsegs;
115 	size_t size;
116 	struct sv_dma *next;
117 };
118 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
119 #define KERNADDR(p) ((void *)((p)->addr))
120 
121 struct cfattach sv_ca = {
122 	sizeof(struct sv_softc), sv_match, sv_attach
123 };
124 
125 struct audio_device sv_device = {
126 	"S3 SonicVibes",
127 	"",
128 	"sv"
129 };
130 
131 #define ARRAY_SIZE(foo)  ((sizeof(foo)) / sizeof(foo[0]))
132 
133 int	sv_allocmem __P((struct sv_softc *, size_t, size_t, int, struct sv_dma *));
134 int	sv_freemem __P((struct sv_softc *, struct sv_dma *));
135 
136 int	sv_open __P((void *, int));
137 void	sv_close __P((void *));
138 int	sv_query_encoding __P((void *, struct audio_encoding *));
139 int	sv_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
140 int	sv_round_blocksize __P((void *, int));
141 int	sv_trigger_output __P((void *, void *, void *, int, void (*)(void *),
142 	    void *, struct audio_params *));
143 int	sv_trigger_input __P((void *, void *, void *, int, void (*)(void *),
144 	    void *, struct audio_params *));
145 int	sv_halt_output __P((void *));
146 int	sv_halt_input __P((void *));
147 int	sv_getdev __P((void *, struct audio_device *));
148 int	sv_mixer_set_port __P((void *, mixer_ctrl_t *));
149 int	sv_mixer_get_port __P((void *, mixer_ctrl_t *));
150 int	sv_query_devinfo __P((void *, mixer_devinfo_t *));
151 void   *sv_malloc __P((void *, int, size_t, int, int));
152 void	sv_free __P((void *, void *, int));
153 size_t	sv_round_buffersize __P((void *, int, size_t));
154 paddr_t	sv_mappage __P((void *, void *, off_t, int));
155 int	sv_get_props __P((void *));
156 
157 #ifdef AUDIO_DEBUG
158 void    sv_dumpregs __P((struct sv_softc *sc));
159 #endif
160 
161 struct audio_hw_if sv_hw_if = {
162 	sv_open,
163 	sv_close,
164 	NULL,
165 	sv_query_encoding,
166 	sv_set_params,
167 	sv_round_blocksize,
168 	NULL,
169 	NULL,
170 	NULL,
171 	NULL,
172 	NULL,
173 	sv_halt_output,
174 	sv_halt_input,
175 	NULL,
176 	sv_getdev,
177 	NULL,
178 	sv_mixer_set_port,
179 	sv_mixer_get_port,
180 	sv_query_devinfo,
181 	sv_malloc,
182 	sv_free,
183 	sv_round_buffersize,
184 	sv_mappage,
185 	sv_get_props,
186 	sv_trigger_output,
187 	sv_trigger_input,
188 	NULL,
189 };
190 
191 
192 static u_int8_t sv_read __P((struct sv_softc *, u_int8_t));
193 static u_int8_t sv_read_indirect __P((struct sv_softc *, u_int8_t));
194 static void sv_write __P((struct sv_softc *, u_int8_t, u_int8_t ));
195 static void sv_write_indirect __P((struct sv_softc *, u_int8_t, u_int8_t ));
196 static void sv_init_mixer __P((struct sv_softc *));
197 
198 static void sv_defer __P((struct device *self));
199 
200 static void
201 sv_write (sc, reg, val)
202 	struct sv_softc *sc;
203 	u_int8_t reg, val;
204 
205 {
206 	DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
207 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
208 }
209 
210 static u_int8_t
211 sv_read(sc, reg)
212 	struct sv_softc *sc;
213 	u_int8_t reg;
214 
215 {
216 	u_int8_t val;
217 
218 	val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
219 	DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
220 	return val;
221 }
222 
223 static u_int8_t
224 sv_read_indirect(sc, reg)
225 	struct sv_softc *sc;
226 	u_int8_t reg;
227 {
228 	u_int8_t val;
229 	int s = splaudio();
230 
231 	sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
232 	val = sv_read(sc, SV_CODEC_IDATA);
233 	splx(s);
234 	return (val);
235 }
236 
237 static void
238 sv_write_indirect(sc, reg, val)
239 	struct sv_softc *sc;
240 	u_int8_t reg, val;
241 {
242 	u_int8_t iaddr = reg & SV_IADDR_MASK;
243 	int s = splaudio();
244 
245 	if (reg == SV_DMA_DATA_FORMAT)
246 		iaddr |= SV_IADDR_MCE;
247 
248 	sv_write(sc, SV_CODEC_IADDR, iaddr);
249 	sv_write(sc, SV_CODEC_IDATA, val);
250 	splx(s);
251 }
252 
253 int
254 sv_match(parent, match, aux)
255 	struct device *parent;
256 	struct cfdata *match;
257 	void *aux;
258 {
259 	struct pci_attach_args *pa = aux;
260 
261 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
262 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
263 		return (1);
264 
265 	return (0);
266 }
267 
268 int pci_alloc_io __P((pci_chipset_tag_t pc, pcitag_t pt,
269 		      int pcioffs,
270 		      bus_space_tag_t iot, bus_size_t size,
271 		      bus_size_t align, bus_size_t bound, int flags,
272 		      bus_space_handle_t *ioh));
273 
274 #define PCI_IO_ALLOC_LOW 0xa000
275 #define PCI_IO_ALLOC_HIGH 0xb000
276 int
277 pci_alloc_io(pc, pt, pcioffs, iot, size, align, bound, flags, ioh)
278 	pci_chipset_tag_t pc;
279 	pcitag_t pt;
280 	int pcioffs;
281 	bus_space_tag_t iot;
282 	bus_size_t size;
283 	bus_size_t align;
284 	bus_size_t bound;
285 	int flags;
286 	bus_space_handle_t *ioh;
287 {
288 	bus_addr_t addr;
289 	int error;
290 
291 	error = bus_space_alloc(iot, PCI_IO_ALLOC_LOW, PCI_IO_ALLOC_HIGH,
292 				size, align, bound, flags, &addr, ioh);
293 	if (error)
294 		return(error);
295 
296 	pci_conf_write(pc, pt, pcioffs, addr);
297 	return (0);
298 }
299 
300 /*
301  * Allocate IO addresses when all other configuration is done.
302  */
303 void
304 sv_defer(self)
305 	struct device *self;
306 {
307 	struct sv_softc *sc = (struct sv_softc *)self;
308 	pci_chipset_tag_t pc = sc->sc_pa.pa_pc;
309 	pcitag_t pt = sc->sc_pa.pa_tag;
310 	pcireg_t dmaio;
311 
312 	DPRINTF(("sv_defer: %p\n", sc));
313 	if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
314 			  sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
315 			  0, &sc->sc_dmaa_ioh)) {
316 		printf("sv_attach: cannot allocate DMA A range\n");
317 		return;
318 	}
319 	dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
320 	DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
321 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
322 		       dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
323 
324 	if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
325 			  sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
326 			  0, &sc->sc_dmac_ioh)) {
327 		printf("sv_attach: cannot allocate DMA C range\n");
328 		return;
329 	}
330 	dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
331 	DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
332 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
333 		       dmaio | SV_DMA_CHANNEL_ENABLE);
334 
335 	sc->sc_dmaset = 1;
336 }
337 
338 void
339 sv_attach(parent, self, aux)
340 	struct device *parent, *self;
341 	void *aux;
342 {
343 	struct sv_softc *sc = (struct sv_softc *)self;
344 	struct pci_attach_args *pa = aux;
345 	pci_chipset_tag_t pc = pa->pa_pc;
346 	pcitag_t pt = pa->pa_tag;
347 	pci_intr_handle_t ih;
348 	pcireg_t csr;
349 	char const *intrstr;
350 	u_int8_t reg;
351 	struct audio_attach_args arg;
352 
353 	printf ("\n");
354 
355 	/* Map I/O registers */
356 	if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
357 			   PCI_MAPREG_TYPE_IO, 0,
358 			   &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
359 		printf("%s: can't map enhanced i/o space\n",
360 		       sc->sc_dev.dv_xname);
361 		return;
362 	}
363 	if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
364 			   PCI_MAPREG_TYPE_IO, 0,
365 			   &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
366 		printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname);
367 		return;
368 	}
369 	if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
370 			   PCI_MAPREG_TYPE_IO, 0,
371 			   &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
372 		printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname);
373 		return;
374 	}
375 	DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
376 		 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
377 
378 #ifdef alpha
379 	/* XXX Force allocation through the SGMAP. */
380 	sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
381 #else
382 	sc->sc_dmatag = pa->pa_dmat;
383 #endif
384 
385 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
386 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
387 
388 	/* Enable the device. */
389 	csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
390 	pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
391 		       csr | PCI_COMMAND_MASTER_ENABLE);
392 
393 	sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
394 	sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
395 
396 	/* initialize codec registers */
397 	reg = sv_read(sc, SV_CODEC_CONTROL);
398 	reg |= SV_CTL_RESET;
399 	sv_write(sc, SV_CODEC_CONTROL, reg);
400 	delay(50);
401 
402 	reg = sv_read(sc, SV_CODEC_CONTROL);
403 	reg &= ~SV_CTL_RESET;
404 	reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
405 
406 	/* This write clears the reset */
407 	sv_write(sc, SV_CODEC_CONTROL, reg);
408 	delay(50);
409 
410 	/* This write actually shoves the new values in */
411 	sv_write(sc, SV_CODEC_CONTROL, reg);
412 
413 	DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
414 
415 	/* Enable DMA interrupts */
416 	reg = sv_read(sc, SV_CODEC_INTMASK);
417 	reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
418 	reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
419 	sv_write(sc, SV_CODEC_INTMASK, reg);
420 
421 	sv_read(sc, SV_CODEC_STATUS);
422 
423 	/* Map and establish the interrupt. */
424 	if (pci_intr_map(pa, &ih)) {
425 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
426 		return;
427 	}
428 	intrstr = pci_intr_string(pc, ih);
429 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
430 	if (sc->sc_ih == NULL) {
431 		printf("%s: couldn't establish interrupt",
432 		       sc->sc_dev.dv_xname);
433 		if (intrstr != NULL)
434 			printf(" at %s", intrstr);
435 		printf("\n");
436 		return;
437 	}
438 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
439 	printf("%s: rev %d", sc->sc_dev.dv_xname,
440 	       sv_read_indirect(sc, SV_REVISION_LEVEL));
441 	if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
442 		printf(", reverb SRAM present");
443 	if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
444 		printf(", wavetable ROM present");
445 	printf("\n");
446 
447 	sv_init_mixer(sc);
448 
449 	audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
450 
451 	arg.type = AUDIODEV_TYPE_OPL;
452 	arg.hwif = 0;
453 	arg.hdl = 0;
454 	(void)config_found(&sc->sc_dev, &arg, audioprint);
455 
456 	sc->sc_pa = *pa;	/* for deferred setup */
457 	config_defer(self, sv_defer);
458 }
459 
460 #ifdef AUDIO_DEBUG
461 void
462 sv_dumpregs(sc)
463 	struct sv_softc *sc;
464 {
465 	int idx;
466 
467 #if 0
468 	for (idx = 0; idx < 0x50; idx += 4)
469 		printf ("%02x = %x\n", idx,
470 			pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
471 #endif
472 
473 	for (idx = 0; idx < 6; idx++)
474 		printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
475 
476 	for (idx = 0; idx < 0x32; idx++)
477 		printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
478 
479 	for (idx = 0; idx < 0x10; idx++)
480 		printf ("DMA %02x = %02x\n", idx,
481 			bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
482 }
483 #endif
484 
485 int
486 sv_intr(p)
487 	void *p;
488 {
489 	struct sv_softc *sc = p;
490 	u_int8_t intr;
491 
492 	intr = sv_read(sc, SV_CODEC_STATUS);
493 	DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
494 
495 	if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)))
496 		return (0);
497 
498 	if (intr & SV_INTSTATUS_DMAA) {
499 		if (sc->sc_pintr)
500 			sc->sc_pintr(sc->sc_parg);
501 	}
502 
503 	if (intr & SV_INTSTATUS_DMAC) {
504 		if (sc->sc_rintr)
505 			sc->sc_rintr(sc->sc_rarg);
506 	}
507 
508 	return (1);
509 }
510 
511 int
512 sv_allocmem(sc, size, align, direction, p)
513 	struct sv_softc *sc;
514 	size_t size;
515 	size_t align;
516 	int direction;
517 	struct sv_dma *p;
518 {
519 	int error;
520 
521 	p->size = size;
522 	error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
523 				 p->segs, ARRAY_SIZE(p->segs),
524 				 &p->nsegs, BUS_DMA_NOWAIT);
525 	if (error)
526 		return (error);
527 
528 	error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
529 			       &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
530 	if (error)
531 		goto free;
532 
533 	error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
534 				  0, BUS_DMA_NOWAIT, &p->map);
535 	if (error)
536 		goto unmap;
537 
538 	error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
539 				BUS_DMA_NOWAIT |
540                                 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
541 	if (error)
542 		goto destroy;
543 	DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
544 	    (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
545 	return (0);
546 
547 destroy:
548 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
549 unmap:
550 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
551 free:
552 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
553 	return (error);
554 }
555 
556 int
557 sv_freemem(sc, p)
558 	struct sv_softc *sc;
559 	struct sv_dma *p;
560 {
561 	bus_dmamap_unload(sc->sc_dmatag, p->map);
562 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
563 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
564 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
565 	return (0);
566 }
567 
568 int
569 sv_open(addr, flags)
570 	void *addr;
571 	int flags;
572 {
573 	struct sv_softc *sc = addr;
574 
575 	DPRINTF(("sv_open\n"));
576 	if (!sc->sc_dmaset)
577 		return (ENXIO);
578 	sc->sc_pintr = 0;
579 	sc->sc_rintr = 0;
580 
581 	return (0);
582 }
583 
584 /*
585  * Close function is called at splaudio().
586  */
587 void
588 sv_close(addr)
589 	void *addr;
590 {
591 	struct sv_softc *sc = addr;
592 
593 	DPRINTF(("sv_close\n"));
594 	sv_halt_output(sc);
595 	sv_halt_input(sc);
596 
597 	sc->sc_pintr = 0;
598 	sc->sc_rintr = 0;
599 }
600 
601 int
602 sv_query_encoding(addr, fp)
603 	void *addr;
604 	struct audio_encoding *fp;
605 {
606 	switch (fp->index) {
607 	case 0:
608 		strcpy(fp->name, AudioEulinear);
609 		fp->encoding = AUDIO_ENCODING_ULINEAR;
610 		fp->precision = 8;
611 		fp->flags = 0;
612 		return (0);
613 	case 1:
614 		strcpy(fp->name, AudioEmulaw);
615 		fp->encoding = AUDIO_ENCODING_ULAW;
616 		fp->precision = 8;
617 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
618 		return (0);
619 	case 2:
620 		strcpy(fp->name, AudioEalaw);
621 		fp->encoding = AUDIO_ENCODING_ALAW;
622 		fp->precision = 8;
623 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
624 		return (0);
625 	case 3:
626 		strcpy(fp->name, AudioEslinear);
627 		fp->encoding = AUDIO_ENCODING_SLINEAR;
628 		fp->precision = 8;
629 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
630 		return (0);
631 	case 4:
632 		strcpy(fp->name, AudioEslinear_le);
633 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
634 		fp->precision = 16;
635 		fp->flags = 0;
636 		return (0);
637 	case 5:
638 		strcpy(fp->name, AudioEulinear_le);
639 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
640 		fp->precision = 16;
641 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
642 		return (0);
643 	case 6:
644 		strcpy(fp->name, AudioEslinear_be);
645 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
646 		fp->precision = 16;
647 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
648 		return (0);
649 	case 7:
650 		strcpy(fp->name, AudioEulinear_be);
651 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
652 		fp->precision = 16;
653 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
654 		return (0);
655 	default:
656 		return (EINVAL);
657 	}
658 }
659 
660 int
661 sv_set_params(addr, setmode, usemode, play, rec)
662 	void *addr;
663 	int setmode, usemode;
664 	struct audio_params *play, *rec;
665 {
666 	struct sv_softc *sc = addr;
667 	struct audio_params *p = NULL;
668 	int mode;
669 	u_int32_t val;
670 
671 	/*
672 	 * This device only has one clock, so make the sample rates match.
673 	 */
674 	if (play->sample_rate != rec->sample_rate &&
675 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
676 		if (setmode == AUMODE_PLAY) {
677 			rec->sample_rate = play->sample_rate;
678 			setmode |= AUMODE_RECORD;
679 		} else if (setmode == AUMODE_RECORD) {
680 			play->sample_rate = rec->sample_rate;
681 			setmode |= AUMODE_PLAY;
682 		} else
683 			return (EINVAL);
684 	}
685 
686 	for (mode = AUMODE_RECORD; mode != -1;
687 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
688 		if ((setmode & mode) == 0)
689 			continue;
690 
691 		p = mode == AUMODE_PLAY ? play : rec;
692 
693 		if (p->sample_rate < 2000 || p->sample_rate > 48000 ||
694 		    (p->precision != 8 && p->precision != 16) ||
695 		    (p->channels != 1 && p->channels != 2))
696 			return (EINVAL);
697 
698 		p->factor = 1;
699 		p->sw_code = 0;
700 		switch (p->encoding) {
701 		case AUDIO_ENCODING_SLINEAR_BE:
702 			if (p->precision == 16)
703 				p->sw_code = swap_bytes;
704 			else
705 				p->sw_code = change_sign8;
706 			break;
707 		case AUDIO_ENCODING_SLINEAR_LE:
708 			if (p->precision != 16)
709 				p->sw_code = change_sign8;
710 			break;
711 		case AUDIO_ENCODING_ULINEAR_BE:
712 			if (p->precision == 16) {
713 				if (mode == AUMODE_PLAY)
714 					p->sw_code = swap_bytes_change_sign16_le;
715 				else
716 					p->sw_code = change_sign16_swap_bytes_le;
717 			}
718 			break;
719 		case AUDIO_ENCODING_ULINEAR_LE:
720 			if (p->precision == 16)
721 				p->sw_code = change_sign16_le;
722 			break;
723 		case AUDIO_ENCODING_ULAW:
724 			if (mode == AUMODE_PLAY) {
725 				p->factor = 2;
726 				p->sw_code = mulaw_to_slinear16_le;
727 			} else
728 				p->sw_code = ulinear8_to_mulaw;
729 			break;
730 		case AUDIO_ENCODING_ALAW:
731 			if (mode == AUMODE_PLAY) {
732 				p->factor = 2;
733 				p->sw_code = alaw_to_slinear16_le;
734 			} else
735 				p->sw_code = ulinear8_to_alaw;
736 			break;
737 		default:
738 			return (EINVAL);
739 		}
740 	}
741 
742 	val = p->sample_rate * 65536 / 48000;
743 	/*
744 	 * If the sample rate is exactly 48KHz, the fraction would overflow the
745 	 * register, so we have to bias it.  This causes a little clock drift.
746 	 * The drift is below normal crystal tolerance (.0001%), so although
747 	 * this seems a little silly, we can pretty much ignore it.
748 	 * (I tested the output speed with values of 1-20, just to be sure this
749 	 * register isn't *supposed* to have a bias.  It isn't.)
750 	 * - mycroft
751 	 */
752 	if (val > 65535)
753 		val = 65535;
754 
755 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
756 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
757 
758 #define F_REF 24576000
759 
760 #define ABS(x) (((x) < 0) ? (-x) : (x))
761 
762 	if (setmode & AUMODE_RECORD) {
763 		/* The ADC reference frequency (f_out) is 512 * sample rate */
764 
765 		/* f_out is dervied from the 24.576MHZ crystal by three values:
766 		   M & N & R. The equation is as follows:
767 
768 		   f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
769 
770 		   with the constraint that:
771 
772 		   80 MhZ < (m + 2) / (n + 2) * f_ref <= 150Mhz
773 		   and n, m >= 1
774 		*/
775 
776 		int  goal_f_out = 512 * rec->sample_rate;
777 		int  a, n, m, best_n = 0, best_m = 0, best_error = 10000000;
778 		int  pll_sample;
779 		int  error;
780 
781 		for (a = 0; a < 8; a++) {
782 			if ((goal_f_out * (1 << a)) >= 80000000)
783 				break;
784 		}
785 
786 		/* a != 8 because sample_rate >= 2000 */
787 
788 		for (n = 33; n > 2; n--) {
789 			m = (goal_f_out * n * (1 << a)) / F_REF;
790 			if ((m > 257) || (m < 3))
791 				continue;
792 
793 			pll_sample = (m * F_REF) / (n * (1 << a));
794 			pll_sample /= 512;
795 
796 			/* Threshold might be good here */
797 			error = pll_sample - rec->sample_rate;
798 			error = ABS(error);
799 
800 			if (error < best_error) {
801 				best_error = error;
802 				best_n = n;
803 				best_m = m;
804 				if (error == 0) break;
805 			}
806 		}
807 
808 		best_n -= 2;
809 		best_m -= 2;
810 
811 		sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
812 		sv_write_indirect(sc, SV_ADC_PLL_N,
813 				  best_n | (a << SV_PLL_R_SHIFT));
814 	}
815 
816 	return (0);
817 }
818 
819 int
820 sv_round_blocksize(addr, blk)
821 	void *addr;
822 	int blk;
823 {
824 	return (blk & -32);	/* keep good alignment */
825 }
826 
827 int
828 sv_trigger_output(addr, start, end, blksize, intr, arg, param)
829 	void *addr;
830 	void *start, *end;
831 	int blksize;
832 	void (*intr) __P((void *));
833 	void *arg;
834 	struct audio_params *param;
835 {
836 	struct sv_softc *sc = addr;
837 	struct sv_dma *p;
838 	u_int8_t mode;
839 	int dma_count;
840 
841 	DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
842 	    addr, start, end, blksize, intr, arg));
843 	sc->sc_pintr = intr;
844 	sc->sc_parg = arg;
845 
846 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
847 	mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
848 	if (param->precision * param->factor == 16)
849 		mode |= SV_DMAA_FORMAT16;
850 	if (param->channels == 2)
851 		mode |= SV_DMAA_STEREO;
852 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
853 
854 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
855 		;
856 	if (!p) {
857 		printf("sv_trigger_output: bad addr %p\n", start);
858 		return (EINVAL);
859 	}
860 
861 	dma_count = ((char *)end - (char *)start) - 1;
862 	DPRINTF(("sv_trigger_output: dma start loop input addr=%x cc=%d\n",
863 	    (int)DMAADDR(p), dma_count));
864 
865 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
866 			  DMAADDR(p));
867 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
868 			  dma_count);
869 	bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
870 			  DMA37MD_READ | DMA37MD_LOOP);
871 
872 	DPRINTF(("sv_trigger_output: current addr=%x\n",
873 	    bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
874 
875 	dma_count = blksize - 1;
876 
877 	sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
878 	sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
879 
880 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
881 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
882 
883 	return (0);
884 }
885 
886 int
887 sv_trigger_input(addr, start, end, blksize, intr, arg, param)
888 	void *addr;
889 	void *start, *end;
890 	int blksize;
891 	void (*intr) __P((void *));
892 	void *arg;
893 	struct audio_params *param;
894 {
895 	struct sv_softc *sc = addr;
896 	struct sv_dma *p;
897 	u_int8_t mode;
898 	int dma_count;
899 
900 	DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
901 	    addr, start, end, blksize, intr, arg));
902 	sc->sc_rintr = intr;
903 	sc->sc_rarg = arg;
904 
905 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
906 	mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
907 	if (param->precision * param->factor == 16)
908 		mode |= SV_DMAC_FORMAT16;
909 	if (param->channels == 2)
910 		mode |= SV_DMAC_STEREO;
911 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
912 
913 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
914 		;
915 	if (!p) {
916 		printf("sv_trigger_input: bad addr %p\n", start);
917 		return (EINVAL);
918 	}
919 
920 	dma_count = (((char *)end - (char *)start) >> 1) - 1;
921 	DPRINTF(("sv_trigger_input: dma start loop input addr=%x cc=%d\n",
922 	    (int)DMAADDR(p), dma_count));
923 
924 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
925 			  DMAADDR(p));
926 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
927 			  dma_count);
928 	bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
929 			  DMA37MD_WRITE | DMA37MD_LOOP);
930 
931 	DPRINTF(("sv_trigger_input: current addr=%x\n",
932 	    bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
933 
934 	dma_count = (blksize >> 1) - 1;
935 
936 	sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
937 	sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
938 
939 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
940 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
941 
942 	return (0);
943 }
944 
945 int
946 sv_halt_output(addr)
947 	void *addr;
948 {
949 	struct sv_softc *sc = addr;
950 	u_int8_t mode;
951 
952 	DPRINTF(("sv: sv_halt_output\n"));
953 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
954 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
955 
956 	return (0);
957 }
958 
959 int
960 sv_halt_input(addr)
961 	void *addr;
962 {
963 	struct sv_softc *sc = addr;
964 	u_int8_t mode;
965 
966 	DPRINTF(("sv: sv_halt_input\n"));
967 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
968 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
969 
970 	return (0);
971 }
972 
973 int
974 sv_getdev(addr, retp)
975 	void *addr;
976 	struct audio_device *retp;
977 {
978 	*retp = sv_device;
979 	return (0);
980 }
981 
982 
983 /*
984  * Mixer related code is here
985  *
986  */
987 
988 #define SV_INPUT_CLASS 0
989 #define SV_OUTPUT_CLASS 1
990 #define SV_RECORD_CLASS 2
991 
992 #define SV_LAST_CLASS 2
993 
994 static const char *mixer_classes[] =
995 	{ AudioCinputs, AudioCoutputs, AudioCrecord };
996 
997 static const struct {
998 	u_int8_t   l_port;
999 	u_int8_t   r_port;
1000 	u_int8_t   mask;
1001 	u_int8_t   class;
1002 	const char *audio;
1003 } ports[] = {
1004   { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
1005     SV_INPUT_CLASS, "aux1" },
1006   { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
1007     SV_INPUT_CLASS, AudioNcd },
1008   { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
1009     SV_INPUT_CLASS, AudioNline },
1010   { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
1011   { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
1012     SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
1013   { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
1014     SV_INPUT_CLASS, "aux2" },
1015   { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
1016     SV_INPUT_CLASS, AudioNdac },
1017   { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
1018     SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
1019 };
1020 
1021 
1022 static const struct {
1023 	int idx;
1024 	const char *name;
1025 } record_sources[] = {
1026 	{ SV_REC_CD, AudioNcd },
1027 	{ SV_REC_DAC, AudioNdac },
1028 	{ SV_REC_AUX2, "aux2" },
1029 	{ SV_REC_LINE, AudioNline },
1030 	{ SV_REC_AUX1, "aux1" },
1031 	{ SV_REC_MIC, AudioNmicrophone },
1032 	{ SV_REC_MIXER, AudioNmixerout }
1033 };
1034 
1035 
1036 #define SV_DEVICES_PER_PORT 2
1037 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
1038 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
1039 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
1040 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
1041 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
1042 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
1043 
1044 int
1045 sv_query_devinfo(addr, dip)
1046 	void *addr;
1047 	mixer_devinfo_t *dip;
1048 {
1049 	int i;
1050 
1051 	/* It's a class */
1052 	if (dip->index <= SV_LAST_CLASS) {
1053 		dip->type = AUDIO_MIXER_CLASS;
1054 		dip->mixer_class = dip->index;
1055 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1056 		strcpy(dip->label.name,
1057 		       mixer_classes[dip->index]);
1058 		return (0);
1059 	}
1060 
1061 	if (dip->index >= SV_FIRST_MIXER &&
1062 	    dip->index <= SV_LAST_MIXER) {
1063 		int off = dip->index - SV_FIRST_MIXER;
1064 		int mute = (off % SV_DEVICES_PER_PORT);
1065 		int idx = off / SV_DEVICES_PER_PORT;
1066 
1067 		dip->mixer_class = ports[idx].class;
1068 		strcpy(dip->label.name, ports[idx].audio);
1069 
1070 		if (!mute) {
1071 			dip->type = AUDIO_MIXER_VALUE;
1072 			dip->prev = AUDIO_MIXER_LAST;
1073 			dip->next = dip->index + 1;
1074 
1075 			if (ports[idx].r_port != 0)
1076 				dip->un.v.num_channels = 2;
1077 			else
1078 				dip->un.v.num_channels = 1;
1079 
1080 			strcpy(dip->un.v.units.name, AudioNvolume);
1081 		} else {
1082 			dip->type = AUDIO_MIXER_ENUM;
1083 			dip->prev = dip->index - 1;
1084 			dip->next = AUDIO_MIXER_LAST;
1085 
1086 			strcpy(dip->label.name, AudioNmute);
1087 			dip->un.e.num_mem = 2;
1088 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
1089 			dip->un.e.member[0].ord = 0;
1090 			strcpy(dip->un.e.member[1].label.name, AudioNon);
1091 			dip->un.e.member[1].ord = 1;
1092 		}
1093 
1094 		return (0);
1095 	}
1096 
1097 	switch (dip->index) {
1098 	case SV_RECORD_SOURCE:
1099 		dip->mixer_class = SV_RECORD_CLASS;
1100 		dip->prev = AUDIO_MIXER_LAST;
1101 		dip->next = SV_RECORD_GAIN;
1102 		strcpy(dip->label.name, AudioNsource);
1103 		dip->type = AUDIO_MIXER_ENUM;
1104 
1105 		dip->un.e.num_mem = ARRAY_SIZE(record_sources);
1106 		for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
1107 			strcpy(dip->un.e.member[i].label.name,
1108 			       record_sources[i].name);
1109 			dip->un.e.member[i].ord = record_sources[i].idx;
1110 		}
1111 		return (0);
1112 
1113 	case SV_RECORD_GAIN:
1114 		dip->mixer_class = SV_RECORD_CLASS;
1115 		dip->prev = SV_RECORD_SOURCE;
1116 		dip->next = AUDIO_MIXER_LAST;
1117 		strcpy(dip->label.name, "gain");
1118 		dip->type = AUDIO_MIXER_VALUE;
1119 		dip->un.v.num_channels = 1;
1120 		strcpy(dip->un.v.units.name, AudioNvolume);
1121 		return (0);
1122 
1123 	case SV_MIC_BOOST:
1124 		dip->mixer_class = SV_RECORD_CLASS;
1125 		dip->prev = AUDIO_MIXER_LAST;
1126 		dip->next = AUDIO_MIXER_LAST;
1127 		strcpy(dip->label.name, "micboost");
1128 		goto on_off;
1129 
1130 	case SV_SRS_MODE:
1131 		dip->mixer_class = SV_OUTPUT_CLASS;
1132 		dip->prev = dip->next = AUDIO_MIXER_LAST;
1133 		strcpy(dip->label.name, AudioNspatial);
1134 
1135 	on_off:
1136 		dip->type = AUDIO_MIXER_ENUM;
1137 		dip->un.e.num_mem = 2;
1138 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1139 		dip->un.e.member[0].ord = 0;
1140 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1141 		dip->un.e.member[1].ord = 1;
1142 		return (0);
1143 	}
1144 
1145 	return (ENXIO);
1146 }
1147 
1148 int
1149 sv_mixer_set_port(addr, cp)
1150 	void *addr;
1151 	mixer_ctrl_t *cp;
1152 {
1153 	struct sv_softc *sc = addr;
1154 	u_int8_t reg;
1155 	int idx;
1156 
1157 	if (cp->dev >= SV_FIRST_MIXER &&
1158 	    cp->dev <= SV_LAST_MIXER) {
1159 		int off = cp->dev - SV_FIRST_MIXER;
1160 		int mute = (off % SV_DEVICES_PER_PORT);
1161 		idx = off / SV_DEVICES_PER_PORT;
1162 
1163 		if (mute) {
1164 			if (cp->type != AUDIO_MIXER_ENUM)
1165 				return (EINVAL);
1166 
1167 			reg = sv_read_indirect(sc, ports[idx].l_port);
1168 			if (cp->un.ord)
1169 				reg |= SV_MUTE_BIT;
1170 			else
1171 				reg &= ~SV_MUTE_BIT;
1172 			sv_write_indirect(sc, ports[idx].l_port, reg);
1173 
1174 			if (ports[idx].r_port) {
1175 				reg = sv_read_indirect(sc, ports[idx].r_port);
1176 				if (cp->un.ord)
1177 					reg |= SV_MUTE_BIT;
1178 				else
1179 					reg &= ~SV_MUTE_BIT;
1180 				sv_write_indirect(sc, ports[idx].r_port, reg);
1181 			}
1182 		} else {
1183 			int  lval, rval;
1184 
1185 			if (cp->type != AUDIO_MIXER_VALUE)
1186 				return (EINVAL);
1187 
1188 			if (cp->un.value.num_channels != 1 &&
1189 			    cp->un.value.num_channels != 2)
1190 				return (EINVAL);
1191 
1192 			if (ports[idx].r_port == 0) {
1193 				if (cp->un.value.num_channels != 1)
1194 					return (EINVAL);
1195 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1196 				rval = 0; /* shut up GCC */
1197 			} else {
1198 				if (cp->un.value.num_channels != 2)
1199 					return (EINVAL);
1200 
1201 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1202 				rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1203       }
1204 
1205 
1206 			reg = sv_read_indirect(sc, ports[idx].l_port);
1207 			reg &= ~(ports[idx].mask);
1208 			lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
1209 				AUDIO_MAX_GAIN;
1210 			reg |= lval;
1211 			sv_write_indirect(sc, ports[idx].l_port, reg);
1212 
1213 			if (ports[idx].r_port != 0) {
1214 				reg = sv_read_indirect(sc, ports[idx].r_port);
1215 				reg &= ~(ports[idx].mask);
1216 
1217 				rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
1218 					AUDIO_MAX_GAIN;
1219 				reg |= rval;
1220 
1221 				sv_write_indirect(sc, ports[idx].r_port, reg);
1222 			}
1223 
1224 			sv_read_indirect(sc, ports[idx].l_port);
1225 		}
1226 
1227 		return (0);
1228 	}
1229 
1230 
1231 	switch (cp->dev) {
1232 	case SV_RECORD_SOURCE:
1233 		if (cp->type != AUDIO_MIXER_ENUM)
1234 			return (EINVAL);
1235 
1236 		for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
1237 			if (record_sources[idx].idx == cp->un.ord)
1238 				goto found;
1239 		}
1240 
1241 		return (EINVAL);
1242 
1243 	found:
1244 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1245 		reg &= ~SV_REC_SOURCE_MASK;
1246 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1247 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1248 
1249 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1250 		reg &= ~SV_REC_SOURCE_MASK;
1251 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1252 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1253 		return (0);
1254 
1255 	case SV_RECORD_GAIN:
1256 	{
1257 		int val;
1258 
1259 		if (cp->type != AUDIO_MIXER_VALUE)
1260 			return (EINVAL);
1261 
1262 		if (cp->un.value.num_channels != 1)
1263 			return (EINVAL);
1264 
1265 		val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] * SV_REC_GAIN_MASK)
1266 			/ AUDIO_MAX_GAIN;
1267 
1268 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1269 		reg &= ~SV_REC_GAIN_MASK;
1270 		reg |= val;
1271 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1272 
1273 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1274 		reg &= ~SV_REC_GAIN_MASK;
1275 		reg |= val;
1276 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1277 	}
1278 	return (0);
1279 
1280 	case SV_MIC_BOOST:
1281 		if (cp->type != AUDIO_MIXER_ENUM)
1282 			return (EINVAL);
1283 
1284 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1285 		if (cp->un.ord) {
1286 			reg |= SV_MIC_BOOST_BIT;
1287 		} else {
1288 			reg &= ~SV_MIC_BOOST_BIT;
1289 		}
1290 
1291 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1292 		return (0);
1293 
1294 	case SV_SRS_MODE:
1295 		if (cp->type != AUDIO_MIXER_ENUM)
1296 			return (EINVAL);
1297 
1298 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1299 		if (cp->un.ord) {
1300 			reg &= ~SV_SRS_SPACE_ONOFF;
1301 		} else {
1302 			reg |= SV_SRS_SPACE_ONOFF;
1303 		}
1304 
1305 		sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
1306 		return (0);
1307 	}
1308 
1309 	return (EINVAL);
1310 }
1311 
1312 int
1313 sv_mixer_get_port(addr, cp)
1314 	void *addr;
1315 	mixer_ctrl_t *cp;
1316 {
1317 	struct sv_softc *sc = addr;
1318 	int val;
1319 	u_int8_t reg;
1320 
1321 	if (cp->dev >= SV_FIRST_MIXER &&
1322 	    cp->dev <= SV_LAST_MIXER) {
1323 		int off = cp->dev - SV_FIRST_MIXER;
1324 		int mute = (off % 2);
1325 		int idx = off / 2;
1326 
1327 		if (mute) {
1328 			if (cp->type != AUDIO_MIXER_ENUM)
1329 				return (EINVAL);
1330 
1331 			reg = sv_read_indirect(sc, ports[idx].l_port);
1332 			cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
1333 		} else {
1334 			if (cp->type != AUDIO_MIXER_VALUE)
1335 				return (EINVAL);
1336 
1337 			if (cp->un.value.num_channels != 1 &&
1338 			    cp->un.value.num_channels != 2)
1339 				return (EINVAL);
1340 
1341 			if ((ports[idx].r_port == 0 &&
1342 			     cp->un.value.num_channels != 1) ||
1343 			    (ports[idx].r_port != 0 &&
1344 			     cp->un.value.num_channels != 2))
1345 				return (EINVAL);
1346 
1347 			reg = sv_read_indirect(sc, ports[idx].l_port);
1348 			reg &= ports[idx].mask;
1349 
1350 			val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1351 
1352 			if (ports[idx].r_port != 0) {
1353 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val;
1354 
1355 				reg = sv_read_indirect(sc, ports[idx].r_port);
1356 				reg &= ports[idx].mask;
1357 
1358 				val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1359 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val;
1360 			} else
1361 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val;
1362 		}
1363 
1364 		return (0);
1365   }
1366 
1367 	switch (cp->dev) {
1368 	case SV_RECORD_SOURCE:
1369 		if (cp->type != AUDIO_MIXER_ENUM)
1370 			return (EINVAL);
1371 
1372 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1373 		cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
1374 
1375 		return (0);
1376 
1377 	case SV_RECORD_GAIN:
1378 		if (cp->type != AUDIO_MIXER_VALUE)
1379 			return (EINVAL);
1380 		if (cp->un.value.num_channels != 1)
1381 			return (EINVAL);
1382 
1383 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
1384 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1385 			(((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
1386 
1387 		return (0);
1388 
1389 	case SV_MIC_BOOST:
1390 		if (cp->type != AUDIO_MIXER_ENUM)
1391 			return (EINVAL);
1392 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1393 		cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
1394 		return (0);
1395 
1396 
1397 	case SV_SRS_MODE:
1398 		if (cp->type != AUDIO_MIXER_ENUM)
1399 			return (EINVAL);
1400 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1401 		cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
1402 		return (0);
1403 	}
1404 
1405 	return (EINVAL);
1406 }
1407 
1408 
1409 static void
1410 sv_init_mixer(sc)
1411 	struct sv_softc *sc;
1412 {
1413 	mixer_ctrl_t cp;
1414 	int i;
1415 
1416 	cp.type = AUDIO_MIXER_ENUM;
1417 	cp.dev = SV_SRS_MODE;
1418 	cp.un.ord = 0;
1419 
1420 	sv_mixer_set_port(sc, &cp);
1421 
1422 	for (i = 0; i < ARRAY_SIZE(ports); i++) {
1423 		if (ports[i].audio == AudioNdac) {
1424 			cp.type = AUDIO_MIXER_ENUM;
1425 			cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
1426 			cp.un.ord = 0;
1427 			sv_mixer_set_port(sc, &cp);
1428 			break;
1429 		}
1430 	}
1431 }
1432 
1433 void *
1434 sv_malloc(addr, direction, size, pool, flags)
1435 	void *addr;
1436 	int direction;
1437 	size_t size;
1438 	int pool, flags;
1439 {
1440 	struct sv_softc *sc = addr;
1441 	struct sv_dma *p;
1442 	int error;
1443 
1444 	p = malloc(sizeof(*p), pool, flags);
1445 	if (!p)
1446 		return (0);
1447 	error = sv_allocmem(sc, size, 16, direction, p);
1448 	if (error) {
1449 		free(p, pool);
1450 		return (0);
1451 	}
1452 	p->next = sc->sc_dmas;
1453 	sc->sc_dmas = p;
1454 	return (KERNADDR(p));
1455 }
1456 
1457 void
1458 sv_free(addr, ptr, pool)
1459 	void *addr;
1460 	void *ptr;
1461 	int pool;
1462 {
1463 	struct sv_softc *sc = addr;
1464 	struct sv_dma **pp, *p;
1465 
1466 	for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1467 		if (KERNADDR(p) == ptr) {
1468 			sv_freemem(sc, p);
1469 			*pp = p->next;
1470 			free(p, pool);
1471 			return;
1472 		}
1473 	}
1474 }
1475 
1476 size_t
1477 sv_round_buffersize(addr, direction, size)
1478 	void *addr;
1479 	int direction;
1480 	size_t size;
1481 {
1482 	return (size);
1483 }
1484 
1485 paddr_t
1486 sv_mappage(addr, mem, off, prot)
1487 	void *addr;
1488 	void *mem;
1489 	off_t off;
1490 	int prot;
1491 {
1492 	struct sv_softc *sc = addr;
1493 	struct sv_dma *p;
1494 
1495 	if (off < 0)
1496 		return (-1);
1497 	for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1498 		;
1499 	if (!p)
1500 		return (-1);
1501 	return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1502 				off, prot, BUS_DMA_WAITOK));
1503 }
1504 
1505 int
1506 sv_get_props(addr)
1507 	void *addr;
1508 {
1509 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
1510 }
1511