1 /* $NetBSD: sv.c,v 1.14 2001/10/03 00:04:52 augustss Exp $ */ 2 /* $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */ 3 4 /* 5 * Copyright (c) 1999 The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Charles M. Hannum. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * Copyright (c) 1998 Constantine Paul Sapuntzakis 42 * All rights reserved 43 * 44 * Author: Constantine Paul Sapuntzakis (csapuntz@cvs.openbsd.org) 45 * 46 * Redistribution and use in source and binary forms, with or without 47 * modification, are permitted provided that the following conditions 48 * are met: 49 * 1. Redistributions of source code must retain the above copyright 50 * notice, this list of conditions and the following disclaimer. 51 * 2. Redistributions in binary form must reproduce the above copyright 52 * notice, this list of conditions and the following disclaimer in the 53 * documentation and/or other materials provided with the distribution. 54 * 3. The author's name or those of the contributors may be used to 55 * endorse or promote products derived from this software without 56 * specific prior written permission. 57 * 58 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS 59 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 60 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 61 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 68 * POSSIBILITY OF SUCH DAMAGE. 69 */ 70 71 /* 72 * S3 SonicVibes driver 73 * Heavily based on the eap driver by Lennart Augustsson 74 */ 75 76 #include <sys/param.h> 77 #include <sys/systm.h> 78 #include <sys/kernel.h> 79 #include <sys/malloc.h> 80 #include <sys/device.h> 81 82 #include <dev/pci/pcireg.h> 83 #include <dev/pci/pcivar.h> 84 #include <dev/pci/pcidevs.h> 85 86 #include <sys/audioio.h> 87 #include <dev/audio_if.h> 88 #include <dev/mulaw.h> 89 #include <dev/auconv.h> 90 91 #include <dev/ic/i8237reg.h> 92 #include <dev/pci/svreg.h> 93 #include <dev/pci/svvar.h> 94 95 #include <machine/bus.h> 96 97 #ifdef AUDIO_DEBUG 98 #define DPRINTF(x) if (svdebug) printf x 99 #define DPRINTFN(n,x) if (svdebug>(n)) printf x 100 int svdebug = 0; 101 #else 102 #define DPRINTF(x) 103 #define DPRINTFN(n,x) 104 #endif 105 106 int sv_match __P((struct device *, struct cfdata *, void *)); 107 void sv_attach __P((struct device *, struct device *, void *)); 108 int sv_intr __P((void *)); 109 110 struct sv_dma { 111 bus_dmamap_t map; 112 caddr_t addr; 113 bus_dma_segment_t segs[1]; 114 int nsegs; 115 size_t size; 116 struct sv_dma *next; 117 }; 118 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr) 119 #define KERNADDR(p) ((void *)((p)->addr)) 120 121 struct cfattach sv_ca = { 122 sizeof(struct sv_softc), sv_match, sv_attach 123 }; 124 125 struct audio_device sv_device = { 126 "S3 SonicVibes", 127 "", 128 "sv" 129 }; 130 131 #define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0])) 132 133 int sv_allocmem __P((struct sv_softc *, size_t, size_t, int, struct sv_dma *)); 134 int sv_freemem __P((struct sv_softc *, struct sv_dma *)); 135 136 int sv_open __P((void *, int)); 137 void sv_close __P((void *)); 138 int sv_query_encoding __P((void *, struct audio_encoding *)); 139 int sv_set_params __P((void *, int, int, struct audio_params *, struct audio_params *)); 140 int sv_round_blocksize __P((void *, int)); 141 int sv_trigger_output __P((void *, void *, void *, int, void (*)(void *), 142 void *, struct audio_params *)); 143 int sv_trigger_input __P((void *, void *, void *, int, void (*)(void *), 144 void *, struct audio_params *)); 145 int sv_halt_output __P((void *)); 146 int sv_halt_input __P((void *)); 147 int sv_getdev __P((void *, struct audio_device *)); 148 int sv_mixer_set_port __P((void *, mixer_ctrl_t *)); 149 int sv_mixer_get_port __P((void *, mixer_ctrl_t *)); 150 int sv_query_devinfo __P((void *, mixer_devinfo_t *)); 151 void *sv_malloc __P((void *, int, size_t, int, int)); 152 void sv_free __P((void *, void *, int)); 153 size_t sv_round_buffersize __P((void *, int, size_t)); 154 paddr_t sv_mappage __P((void *, void *, off_t, int)); 155 int sv_get_props __P((void *)); 156 157 #ifdef AUDIO_DEBUG 158 void sv_dumpregs __P((struct sv_softc *sc)); 159 #endif 160 161 struct audio_hw_if sv_hw_if = { 162 sv_open, 163 sv_close, 164 NULL, 165 sv_query_encoding, 166 sv_set_params, 167 sv_round_blocksize, 168 NULL, 169 NULL, 170 NULL, 171 NULL, 172 NULL, 173 sv_halt_output, 174 sv_halt_input, 175 NULL, 176 sv_getdev, 177 NULL, 178 sv_mixer_set_port, 179 sv_mixer_get_port, 180 sv_query_devinfo, 181 sv_malloc, 182 sv_free, 183 sv_round_buffersize, 184 sv_mappage, 185 sv_get_props, 186 sv_trigger_output, 187 sv_trigger_input, 188 NULL, 189 }; 190 191 192 static u_int8_t sv_read __P((struct sv_softc *, u_int8_t)); 193 static u_int8_t sv_read_indirect __P((struct sv_softc *, u_int8_t)); 194 static void sv_write __P((struct sv_softc *, u_int8_t, u_int8_t )); 195 static void sv_write_indirect __P((struct sv_softc *, u_int8_t, u_int8_t )); 196 static void sv_init_mixer __P((struct sv_softc *)); 197 198 static void sv_defer __P((struct device *self)); 199 200 static void 201 sv_write (sc, reg, val) 202 struct sv_softc *sc; 203 u_int8_t reg, val; 204 205 { 206 DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val)); 207 bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val); 208 } 209 210 static u_int8_t 211 sv_read(sc, reg) 212 struct sv_softc *sc; 213 u_int8_t reg; 214 215 { 216 u_int8_t val; 217 218 val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg); 219 DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val)); 220 return val; 221 } 222 223 static u_int8_t 224 sv_read_indirect(sc, reg) 225 struct sv_softc *sc; 226 u_int8_t reg; 227 { 228 u_int8_t val; 229 int s = splaudio(); 230 231 sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK); 232 val = sv_read(sc, SV_CODEC_IDATA); 233 splx(s); 234 return (val); 235 } 236 237 static void 238 sv_write_indirect(sc, reg, val) 239 struct sv_softc *sc; 240 u_int8_t reg, val; 241 { 242 u_int8_t iaddr = reg & SV_IADDR_MASK; 243 int s = splaudio(); 244 245 if (reg == SV_DMA_DATA_FORMAT) 246 iaddr |= SV_IADDR_MCE; 247 248 sv_write(sc, SV_CODEC_IADDR, iaddr); 249 sv_write(sc, SV_CODEC_IDATA, val); 250 splx(s); 251 } 252 253 int 254 sv_match(parent, match, aux) 255 struct device *parent; 256 struct cfdata *match; 257 void *aux; 258 { 259 struct pci_attach_args *pa = aux; 260 261 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 && 262 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES) 263 return (1); 264 265 return (0); 266 } 267 268 int pci_alloc_io __P((pci_chipset_tag_t pc, pcitag_t pt, 269 int pcioffs, 270 bus_space_tag_t iot, bus_size_t size, 271 bus_size_t align, bus_size_t bound, int flags, 272 bus_space_handle_t *ioh)); 273 274 #define PCI_IO_ALLOC_LOW 0xa000 275 #define PCI_IO_ALLOC_HIGH 0xb000 276 int 277 pci_alloc_io(pc, pt, pcioffs, iot, size, align, bound, flags, ioh) 278 pci_chipset_tag_t pc; 279 pcitag_t pt; 280 int pcioffs; 281 bus_space_tag_t iot; 282 bus_size_t size; 283 bus_size_t align; 284 bus_size_t bound; 285 int flags; 286 bus_space_handle_t *ioh; 287 { 288 bus_addr_t addr; 289 int error; 290 291 error = bus_space_alloc(iot, PCI_IO_ALLOC_LOW, PCI_IO_ALLOC_HIGH, 292 size, align, bound, flags, &addr, ioh); 293 if (error) 294 return(error); 295 296 pci_conf_write(pc, pt, pcioffs, addr); 297 return (0); 298 } 299 300 /* 301 * Allocate IO addresses when all other configuration is done. 302 */ 303 void 304 sv_defer(self) 305 struct device *self; 306 { 307 struct sv_softc *sc = (struct sv_softc *)self; 308 pci_chipset_tag_t pc = sc->sc_pa.pa_pc; 309 pcitag_t pt = sc->sc_pa.pa_tag; 310 pcireg_t dmaio; 311 312 DPRINTF(("sv_defer: %p\n", sc)); 313 if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF, 314 sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0, 315 0, &sc->sc_dmaa_ioh)) { 316 printf("sv_attach: cannot allocate DMA A range\n"); 317 return; 318 } 319 dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF); 320 DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio)); 321 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, 322 dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR); 323 324 if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF, 325 sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0, 326 0, &sc->sc_dmac_ioh)) { 327 printf("sv_attach: cannot allocate DMA C range\n"); 328 return; 329 } 330 dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF); 331 DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio)); 332 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 333 dmaio | SV_DMA_CHANNEL_ENABLE); 334 335 sc->sc_dmaset = 1; 336 } 337 338 void 339 sv_attach(parent, self, aux) 340 struct device *parent, *self; 341 void *aux; 342 { 343 struct sv_softc *sc = (struct sv_softc *)self; 344 struct pci_attach_args *pa = aux; 345 pci_chipset_tag_t pc = pa->pa_pc; 346 pcitag_t pt = pa->pa_tag; 347 pci_intr_handle_t ih; 348 pcireg_t csr; 349 char const *intrstr; 350 u_int8_t reg; 351 struct audio_attach_args arg; 352 353 printf ("\n"); 354 355 /* Map I/O registers */ 356 if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT, 357 PCI_MAPREG_TYPE_IO, 0, 358 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) { 359 printf("%s: can't map enhanced i/o space\n", 360 sc->sc_dev.dv_xname); 361 return; 362 } 363 if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT, 364 PCI_MAPREG_TYPE_IO, 0, 365 &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) { 366 printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname); 367 return; 368 } 369 if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT, 370 PCI_MAPREG_TYPE_IO, 0, 371 &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) { 372 printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname); 373 return; 374 } 375 DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n", 376 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh)); 377 378 #ifdef alpha 379 /* XXX Force allocation through the SGMAP. */ 380 sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA); 381 #else 382 sc->sc_dmatag = pa->pa_dmat; 383 #endif 384 385 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR); 386 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0); 387 388 /* Enable the device. */ 389 csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG); 390 pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG, 391 csr | PCI_COMMAND_MASTER_ENABLE); 392 393 sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0); 394 sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0); 395 396 /* initialize codec registers */ 397 reg = sv_read(sc, SV_CODEC_CONTROL); 398 reg |= SV_CTL_RESET; 399 sv_write(sc, SV_CODEC_CONTROL, reg); 400 delay(50); 401 402 reg = sv_read(sc, SV_CODEC_CONTROL); 403 reg &= ~SV_CTL_RESET; 404 reg |= SV_CTL_INTA | SV_CTL_ENHANCED; 405 406 /* This write clears the reset */ 407 sv_write(sc, SV_CODEC_CONTROL, reg); 408 delay(50); 409 410 /* This write actually shoves the new values in */ 411 sv_write(sc, SV_CODEC_CONTROL, reg); 412 413 DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL))); 414 415 /* Enable DMA interrupts */ 416 reg = sv_read(sc, SV_CODEC_INTMASK); 417 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC); 418 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI; 419 sv_write(sc, SV_CODEC_INTMASK, reg); 420 421 sv_read(sc, SV_CODEC_STATUS); 422 423 /* Map and establish the interrupt. */ 424 if (pci_intr_map(pa, &ih)) { 425 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname); 426 return; 427 } 428 intrstr = pci_intr_string(pc, ih); 429 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc); 430 if (sc->sc_ih == NULL) { 431 printf("%s: couldn't establish interrupt", 432 sc->sc_dev.dv_xname); 433 if (intrstr != NULL) 434 printf(" at %s", intrstr); 435 printf("\n"); 436 return; 437 } 438 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); 439 printf("%s: rev %d", sc->sc_dev.dv_xname, 440 sv_read_indirect(sc, SV_REVISION_LEVEL)); 441 if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1) 442 printf(", reverb SRAM present"); 443 if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0)) 444 printf(", wavetable ROM present"); 445 printf("\n"); 446 447 sv_init_mixer(sc); 448 449 audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev); 450 451 arg.type = AUDIODEV_TYPE_OPL; 452 arg.hwif = 0; 453 arg.hdl = 0; 454 (void)config_found(&sc->sc_dev, &arg, audioprint); 455 456 sc->sc_pa = *pa; /* for deferred setup */ 457 config_defer(self, sv_defer); 458 } 459 460 #ifdef AUDIO_DEBUG 461 void 462 sv_dumpregs(sc) 463 struct sv_softc *sc; 464 { 465 int idx; 466 467 #if 0 468 for (idx = 0; idx < 0x50; idx += 4) 469 printf ("%02x = %x\n", idx, 470 pci_conf_read(pa->pa_pc, pa->pa_tag, idx)); 471 #endif 472 473 for (idx = 0; idx < 6; idx++) 474 printf ("REG %02x = %02x\n", idx, sv_read(sc, idx)); 475 476 for (idx = 0; idx < 0x32; idx++) 477 printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx)); 478 479 for (idx = 0; idx < 0x10; idx++) 480 printf ("DMA %02x = %02x\n", idx, 481 bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx)); 482 } 483 #endif 484 485 int 486 sv_intr(p) 487 void *p; 488 { 489 struct sv_softc *sc = p; 490 u_int8_t intr; 491 492 intr = sv_read(sc, SV_CODEC_STATUS); 493 DPRINTFN(5,("sv_intr: intr=0x%x\n", intr)); 494 495 if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC))) 496 return (0); 497 498 if (intr & SV_INTSTATUS_DMAA) { 499 if (sc->sc_pintr) 500 sc->sc_pintr(sc->sc_parg); 501 } 502 503 if (intr & SV_INTSTATUS_DMAC) { 504 if (sc->sc_rintr) 505 sc->sc_rintr(sc->sc_rarg); 506 } 507 508 return (1); 509 } 510 511 int 512 sv_allocmem(sc, size, align, direction, p) 513 struct sv_softc *sc; 514 size_t size; 515 size_t align; 516 int direction; 517 struct sv_dma *p; 518 { 519 int error; 520 521 p->size = size; 522 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0, 523 p->segs, ARRAY_SIZE(p->segs), 524 &p->nsegs, BUS_DMA_NOWAIT); 525 if (error) 526 return (error); 527 528 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size, 529 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT); 530 if (error) 531 goto free; 532 533 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size, 534 0, BUS_DMA_NOWAIT, &p->map); 535 if (error) 536 goto unmap; 537 538 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL, 539 BUS_DMA_NOWAIT | 540 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE); 541 if (error) 542 goto destroy; 543 DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n", 544 (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p))); 545 return (0); 546 547 destroy: 548 bus_dmamap_destroy(sc->sc_dmatag, p->map); 549 unmap: 550 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); 551 free: 552 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); 553 return (error); 554 } 555 556 int 557 sv_freemem(sc, p) 558 struct sv_softc *sc; 559 struct sv_dma *p; 560 { 561 bus_dmamap_unload(sc->sc_dmatag, p->map); 562 bus_dmamap_destroy(sc->sc_dmatag, p->map); 563 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); 564 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); 565 return (0); 566 } 567 568 int 569 sv_open(addr, flags) 570 void *addr; 571 int flags; 572 { 573 struct sv_softc *sc = addr; 574 575 DPRINTF(("sv_open\n")); 576 if (!sc->sc_dmaset) 577 return (ENXIO); 578 sc->sc_pintr = 0; 579 sc->sc_rintr = 0; 580 581 return (0); 582 } 583 584 /* 585 * Close function is called at splaudio(). 586 */ 587 void 588 sv_close(addr) 589 void *addr; 590 { 591 struct sv_softc *sc = addr; 592 593 DPRINTF(("sv_close\n")); 594 sv_halt_output(sc); 595 sv_halt_input(sc); 596 597 sc->sc_pintr = 0; 598 sc->sc_rintr = 0; 599 } 600 601 int 602 sv_query_encoding(addr, fp) 603 void *addr; 604 struct audio_encoding *fp; 605 { 606 switch (fp->index) { 607 case 0: 608 strcpy(fp->name, AudioEulinear); 609 fp->encoding = AUDIO_ENCODING_ULINEAR; 610 fp->precision = 8; 611 fp->flags = 0; 612 return (0); 613 case 1: 614 strcpy(fp->name, AudioEmulaw); 615 fp->encoding = AUDIO_ENCODING_ULAW; 616 fp->precision = 8; 617 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 618 return (0); 619 case 2: 620 strcpy(fp->name, AudioEalaw); 621 fp->encoding = AUDIO_ENCODING_ALAW; 622 fp->precision = 8; 623 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 624 return (0); 625 case 3: 626 strcpy(fp->name, AudioEslinear); 627 fp->encoding = AUDIO_ENCODING_SLINEAR; 628 fp->precision = 8; 629 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 630 return (0); 631 case 4: 632 strcpy(fp->name, AudioEslinear_le); 633 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 634 fp->precision = 16; 635 fp->flags = 0; 636 return (0); 637 case 5: 638 strcpy(fp->name, AudioEulinear_le); 639 fp->encoding = AUDIO_ENCODING_ULINEAR_LE; 640 fp->precision = 16; 641 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 642 return (0); 643 case 6: 644 strcpy(fp->name, AudioEslinear_be); 645 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 646 fp->precision = 16; 647 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 648 return (0); 649 case 7: 650 strcpy(fp->name, AudioEulinear_be); 651 fp->encoding = AUDIO_ENCODING_ULINEAR_BE; 652 fp->precision = 16; 653 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 654 return (0); 655 default: 656 return (EINVAL); 657 } 658 } 659 660 int 661 sv_set_params(addr, setmode, usemode, play, rec) 662 void *addr; 663 int setmode, usemode; 664 struct audio_params *play, *rec; 665 { 666 struct sv_softc *sc = addr; 667 struct audio_params *p = NULL; 668 int mode; 669 u_int32_t val; 670 671 /* 672 * This device only has one clock, so make the sample rates match. 673 */ 674 if (play->sample_rate != rec->sample_rate && 675 usemode == (AUMODE_PLAY | AUMODE_RECORD)) { 676 if (setmode == AUMODE_PLAY) { 677 rec->sample_rate = play->sample_rate; 678 setmode |= AUMODE_RECORD; 679 } else if (setmode == AUMODE_RECORD) { 680 play->sample_rate = rec->sample_rate; 681 setmode |= AUMODE_PLAY; 682 } else 683 return (EINVAL); 684 } 685 686 for (mode = AUMODE_RECORD; mode != -1; 687 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { 688 if ((setmode & mode) == 0) 689 continue; 690 691 p = mode == AUMODE_PLAY ? play : rec; 692 693 if (p->sample_rate < 2000 || p->sample_rate > 48000 || 694 (p->precision != 8 && p->precision != 16) || 695 (p->channels != 1 && p->channels != 2)) 696 return (EINVAL); 697 698 p->factor = 1; 699 p->sw_code = 0; 700 switch (p->encoding) { 701 case AUDIO_ENCODING_SLINEAR_BE: 702 if (p->precision == 16) 703 p->sw_code = swap_bytes; 704 else 705 p->sw_code = change_sign8; 706 break; 707 case AUDIO_ENCODING_SLINEAR_LE: 708 if (p->precision != 16) 709 p->sw_code = change_sign8; 710 break; 711 case AUDIO_ENCODING_ULINEAR_BE: 712 if (p->precision == 16) { 713 if (mode == AUMODE_PLAY) 714 p->sw_code = swap_bytes_change_sign16_le; 715 else 716 p->sw_code = change_sign16_swap_bytes_le; 717 } 718 break; 719 case AUDIO_ENCODING_ULINEAR_LE: 720 if (p->precision == 16) 721 p->sw_code = change_sign16_le; 722 break; 723 case AUDIO_ENCODING_ULAW: 724 if (mode == AUMODE_PLAY) { 725 p->factor = 2; 726 p->sw_code = mulaw_to_slinear16_le; 727 } else 728 p->sw_code = ulinear8_to_mulaw; 729 break; 730 case AUDIO_ENCODING_ALAW: 731 if (mode == AUMODE_PLAY) { 732 p->factor = 2; 733 p->sw_code = alaw_to_slinear16_le; 734 } else 735 p->sw_code = ulinear8_to_alaw; 736 break; 737 default: 738 return (EINVAL); 739 } 740 } 741 742 val = p->sample_rate * 65536 / 48000; 743 /* 744 * If the sample rate is exactly 48KHz, the fraction would overflow the 745 * register, so we have to bias it. This causes a little clock drift. 746 * The drift is below normal crystal tolerance (.0001%), so although 747 * this seems a little silly, we can pretty much ignore it. 748 * (I tested the output speed with values of 1-20, just to be sure this 749 * register isn't *supposed* to have a bias. It isn't.) 750 * - mycroft 751 */ 752 if (val > 65535) 753 val = 65535; 754 755 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff); 756 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8); 757 758 #define F_REF 24576000 759 760 #define ABS(x) (((x) < 0) ? (-x) : (x)) 761 762 if (setmode & AUMODE_RECORD) { 763 /* The ADC reference frequency (f_out) is 512 * sample rate */ 764 765 /* f_out is dervied from the 24.576MHZ crystal by three values: 766 M & N & R. The equation is as follows: 767 768 f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a)) 769 770 with the constraint that: 771 772 80 MhZ < (m + 2) / (n + 2) * f_ref <= 150Mhz 773 and n, m >= 1 774 */ 775 776 int goal_f_out = 512 * rec->sample_rate; 777 int a, n, m, best_n = 0, best_m = 0, best_error = 10000000; 778 int pll_sample; 779 int error; 780 781 for (a = 0; a < 8; a++) { 782 if ((goal_f_out * (1 << a)) >= 80000000) 783 break; 784 } 785 786 /* a != 8 because sample_rate >= 2000 */ 787 788 for (n = 33; n > 2; n--) { 789 m = (goal_f_out * n * (1 << a)) / F_REF; 790 if ((m > 257) || (m < 3)) 791 continue; 792 793 pll_sample = (m * F_REF) / (n * (1 << a)); 794 pll_sample /= 512; 795 796 /* Threshold might be good here */ 797 error = pll_sample - rec->sample_rate; 798 error = ABS(error); 799 800 if (error < best_error) { 801 best_error = error; 802 best_n = n; 803 best_m = m; 804 if (error == 0) break; 805 } 806 } 807 808 best_n -= 2; 809 best_m -= 2; 810 811 sv_write_indirect(sc, SV_ADC_PLL_M, best_m); 812 sv_write_indirect(sc, SV_ADC_PLL_N, 813 best_n | (a << SV_PLL_R_SHIFT)); 814 } 815 816 return (0); 817 } 818 819 int 820 sv_round_blocksize(addr, blk) 821 void *addr; 822 int blk; 823 { 824 return (blk & -32); /* keep good alignment */ 825 } 826 827 int 828 sv_trigger_output(addr, start, end, blksize, intr, arg, param) 829 void *addr; 830 void *start, *end; 831 int blksize; 832 void (*intr) __P((void *)); 833 void *arg; 834 struct audio_params *param; 835 { 836 struct sv_softc *sc = addr; 837 struct sv_dma *p; 838 u_int8_t mode; 839 int dma_count; 840 841 DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n", 842 addr, start, end, blksize, intr, arg)); 843 sc->sc_pintr = intr; 844 sc->sc_parg = arg; 845 846 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT); 847 mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO); 848 if (param->precision * param->factor == 16) 849 mode |= SV_DMAA_FORMAT16; 850 if (param->channels == 2) 851 mode |= SV_DMAA_STEREO; 852 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode); 853 854 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next) 855 ; 856 if (!p) { 857 printf("sv_trigger_output: bad addr %p\n", start); 858 return (EINVAL); 859 } 860 861 dma_count = ((char *)end - (char *)start) - 1; 862 DPRINTF(("sv_trigger_output: dma start loop input addr=%x cc=%d\n", 863 (int)DMAADDR(p), dma_count)); 864 865 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0, 866 DMAADDR(p)); 867 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0, 868 dma_count); 869 bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE, 870 DMA37MD_READ | DMA37MD_LOOP); 871 872 DPRINTF(("sv_trigger_output: current addr=%x\n", 873 bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0))); 874 875 dma_count = blksize - 1; 876 877 sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8); 878 sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF); 879 880 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 881 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE); 882 883 return (0); 884 } 885 886 int 887 sv_trigger_input(addr, start, end, blksize, intr, arg, param) 888 void *addr; 889 void *start, *end; 890 int blksize; 891 void (*intr) __P((void *)); 892 void *arg; 893 struct audio_params *param; 894 { 895 struct sv_softc *sc = addr; 896 struct sv_dma *p; 897 u_int8_t mode; 898 int dma_count; 899 900 DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n", 901 addr, start, end, blksize, intr, arg)); 902 sc->sc_rintr = intr; 903 sc->sc_rarg = arg; 904 905 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT); 906 mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO); 907 if (param->precision * param->factor == 16) 908 mode |= SV_DMAC_FORMAT16; 909 if (param->channels == 2) 910 mode |= SV_DMAC_STEREO; 911 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode); 912 913 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next) 914 ; 915 if (!p) { 916 printf("sv_trigger_input: bad addr %p\n", start); 917 return (EINVAL); 918 } 919 920 dma_count = (((char *)end - (char *)start) >> 1) - 1; 921 DPRINTF(("sv_trigger_input: dma start loop input addr=%x cc=%d\n", 922 (int)DMAADDR(p), dma_count)); 923 924 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0, 925 DMAADDR(p)); 926 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0, 927 dma_count); 928 bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE, 929 DMA37MD_WRITE | DMA37MD_LOOP); 930 931 DPRINTF(("sv_trigger_input: current addr=%x\n", 932 bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0))); 933 934 dma_count = (blksize >> 1) - 1; 935 936 sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8); 937 sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF); 938 939 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 940 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE); 941 942 return (0); 943 } 944 945 int 946 sv_halt_output(addr) 947 void *addr; 948 { 949 struct sv_softc *sc = addr; 950 u_int8_t mode; 951 952 DPRINTF(("sv: sv_halt_output\n")); 953 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 954 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE); 955 956 return (0); 957 } 958 959 int 960 sv_halt_input(addr) 961 void *addr; 962 { 963 struct sv_softc *sc = addr; 964 u_int8_t mode; 965 966 DPRINTF(("sv: sv_halt_input\n")); 967 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 968 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE); 969 970 return (0); 971 } 972 973 int 974 sv_getdev(addr, retp) 975 void *addr; 976 struct audio_device *retp; 977 { 978 *retp = sv_device; 979 return (0); 980 } 981 982 983 /* 984 * Mixer related code is here 985 * 986 */ 987 988 #define SV_INPUT_CLASS 0 989 #define SV_OUTPUT_CLASS 1 990 #define SV_RECORD_CLASS 2 991 992 #define SV_LAST_CLASS 2 993 994 static const char *mixer_classes[] = 995 { AudioCinputs, AudioCoutputs, AudioCrecord }; 996 997 static const struct { 998 u_int8_t l_port; 999 u_int8_t r_port; 1000 u_int8_t mask; 1001 u_int8_t class; 1002 const char *audio; 1003 } ports[] = { 1004 { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK, 1005 SV_INPUT_CLASS, "aux1" }, 1006 { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK, 1007 SV_INPUT_CLASS, AudioNcd }, 1008 { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK, 1009 SV_INPUT_CLASS, AudioNline }, 1010 { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone }, 1011 { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL, 1012 SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth }, 1013 { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK, 1014 SV_INPUT_CLASS, "aux2" }, 1015 { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK, 1016 SV_INPUT_CLASS, AudioNdac }, 1017 { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL, 1018 SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster } 1019 }; 1020 1021 1022 static const struct { 1023 int idx; 1024 const char *name; 1025 } record_sources[] = { 1026 { SV_REC_CD, AudioNcd }, 1027 { SV_REC_DAC, AudioNdac }, 1028 { SV_REC_AUX2, "aux2" }, 1029 { SV_REC_LINE, AudioNline }, 1030 { SV_REC_AUX1, "aux1" }, 1031 { SV_REC_MIC, AudioNmicrophone }, 1032 { SV_REC_MIXER, AudioNmixerout } 1033 }; 1034 1035 1036 #define SV_DEVICES_PER_PORT 2 1037 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1) 1038 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS) 1039 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1) 1040 #define SV_MIC_BOOST (SV_LAST_MIXER + 2) 1041 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3) 1042 #define SV_SRS_MODE (SV_LAST_MIXER + 4) 1043 1044 int 1045 sv_query_devinfo(addr, dip) 1046 void *addr; 1047 mixer_devinfo_t *dip; 1048 { 1049 int i; 1050 1051 /* It's a class */ 1052 if (dip->index <= SV_LAST_CLASS) { 1053 dip->type = AUDIO_MIXER_CLASS; 1054 dip->mixer_class = dip->index; 1055 dip->next = dip->prev = AUDIO_MIXER_LAST; 1056 strcpy(dip->label.name, 1057 mixer_classes[dip->index]); 1058 return (0); 1059 } 1060 1061 if (dip->index >= SV_FIRST_MIXER && 1062 dip->index <= SV_LAST_MIXER) { 1063 int off = dip->index - SV_FIRST_MIXER; 1064 int mute = (off % SV_DEVICES_PER_PORT); 1065 int idx = off / SV_DEVICES_PER_PORT; 1066 1067 dip->mixer_class = ports[idx].class; 1068 strcpy(dip->label.name, ports[idx].audio); 1069 1070 if (!mute) { 1071 dip->type = AUDIO_MIXER_VALUE; 1072 dip->prev = AUDIO_MIXER_LAST; 1073 dip->next = dip->index + 1; 1074 1075 if (ports[idx].r_port != 0) 1076 dip->un.v.num_channels = 2; 1077 else 1078 dip->un.v.num_channels = 1; 1079 1080 strcpy(dip->un.v.units.name, AudioNvolume); 1081 } else { 1082 dip->type = AUDIO_MIXER_ENUM; 1083 dip->prev = dip->index - 1; 1084 dip->next = AUDIO_MIXER_LAST; 1085 1086 strcpy(dip->label.name, AudioNmute); 1087 dip->un.e.num_mem = 2; 1088 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1089 dip->un.e.member[0].ord = 0; 1090 strcpy(dip->un.e.member[1].label.name, AudioNon); 1091 dip->un.e.member[1].ord = 1; 1092 } 1093 1094 return (0); 1095 } 1096 1097 switch (dip->index) { 1098 case SV_RECORD_SOURCE: 1099 dip->mixer_class = SV_RECORD_CLASS; 1100 dip->prev = AUDIO_MIXER_LAST; 1101 dip->next = SV_RECORD_GAIN; 1102 strcpy(dip->label.name, AudioNsource); 1103 dip->type = AUDIO_MIXER_ENUM; 1104 1105 dip->un.e.num_mem = ARRAY_SIZE(record_sources); 1106 for (i = 0; i < ARRAY_SIZE(record_sources); i++) { 1107 strcpy(dip->un.e.member[i].label.name, 1108 record_sources[i].name); 1109 dip->un.e.member[i].ord = record_sources[i].idx; 1110 } 1111 return (0); 1112 1113 case SV_RECORD_GAIN: 1114 dip->mixer_class = SV_RECORD_CLASS; 1115 dip->prev = SV_RECORD_SOURCE; 1116 dip->next = AUDIO_MIXER_LAST; 1117 strcpy(dip->label.name, "gain"); 1118 dip->type = AUDIO_MIXER_VALUE; 1119 dip->un.v.num_channels = 1; 1120 strcpy(dip->un.v.units.name, AudioNvolume); 1121 return (0); 1122 1123 case SV_MIC_BOOST: 1124 dip->mixer_class = SV_RECORD_CLASS; 1125 dip->prev = AUDIO_MIXER_LAST; 1126 dip->next = AUDIO_MIXER_LAST; 1127 strcpy(dip->label.name, "micboost"); 1128 goto on_off; 1129 1130 case SV_SRS_MODE: 1131 dip->mixer_class = SV_OUTPUT_CLASS; 1132 dip->prev = dip->next = AUDIO_MIXER_LAST; 1133 strcpy(dip->label.name, AudioNspatial); 1134 1135 on_off: 1136 dip->type = AUDIO_MIXER_ENUM; 1137 dip->un.e.num_mem = 2; 1138 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1139 dip->un.e.member[0].ord = 0; 1140 strcpy(dip->un.e.member[1].label.name, AudioNon); 1141 dip->un.e.member[1].ord = 1; 1142 return (0); 1143 } 1144 1145 return (ENXIO); 1146 } 1147 1148 int 1149 sv_mixer_set_port(addr, cp) 1150 void *addr; 1151 mixer_ctrl_t *cp; 1152 { 1153 struct sv_softc *sc = addr; 1154 u_int8_t reg; 1155 int idx; 1156 1157 if (cp->dev >= SV_FIRST_MIXER && 1158 cp->dev <= SV_LAST_MIXER) { 1159 int off = cp->dev - SV_FIRST_MIXER; 1160 int mute = (off % SV_DEVICES_PER_PORT); 1161 idx = off / SV_DEVICES_PER_PORT; 1162 1163 if (mute) { 1164 if (cp->type != AUDIO_MIXER_ENUM) 1165 return (EINVAL); 1166 1167 reg = sv_read_indirect(sc, ports[idx].l_port); 1168 if (cp->un.ord) 1169 reg |= SV_MUTE_BIT; 1170 else 1171 reg &= ~SV_MUTE_BIT; 1172 sv_write_indirect(sc, ports[idx].l_port, reg); 1173 1174 if (ports[idx].r_port) { 1175 reg = sv_read_indirect(sc, ports[idx].r_port); 1176 if (cp->un.ord) 1177 reg |= SV_MUTE_BIT; 1178 else 1179 reg &= ~SV_MUTE_BIT; 1180 sv_write_indirect(sc, ports[idx].r_port, reg); 1181 } 1182 } else { 1183 int lval, rval; 1184 1185 if (cp->type != AUDIO_MIXER_VALUE) 1186 return (EINVAL); 1187 1188 if (cp->un.value.num_channels != 1 && 1189 cp->un.value.num_channels != 2) 1190 return (EINVAL); 1191 1192 if (ports[idx].r_port == 0) { 1193 if (cp->un.value.num_channels != 1) 1194 return (EINVAL); 1195 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; 1196 rval = 0; /* shut up GCC */ 1197 } else { 1198 if (cp->un.value.num_channels != 2) 1199 return (EINVAL); 1200 1201 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]; 1202 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]; 1203 } 1204 1205 1206 reg = sv_read_indirect(sc, ports[idx].l_port); 1207 reg &= ~(ports[idx].mask); 1208 lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask / 1209 AUDIO_MAX_GAIN; 1210 reg |= lval; 1211 sv_write_indirect(sc, ports[idx].l_port, reg); 1212 1213 if (ports[idx].r_port != 0) { 1214 reg = sv_read_indirect(sc, ports[idx].r_port); 1215 reg &= ~(ports[idx].mask); 1216 1217 rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask / 1218 AUDIO_MAX_GAIN; 1219 reg |= rval; 1220 1221 sv_write_indirect(sc, ports[idx].r_port, reg); 1222 } 1223 1224 sv_read_indirect(sc, ports[idx].l_port); 1225 } 1226 1227 return (0); 1228 } 1229 1230 1231 switch (cp->dev) { 1232 case SV_RECORD_SOURCE: 1233 if (cp->type != AUDIO_MIXER_ENUM) 1234 return (EINVAL); 1235 1236 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) { 1237 if (record_sources[idx].idx == cp->un.ord) 1238 goto found; 1239 } 1240 1241 return (EINVAL); 1242 1243 found: 1244 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1245 reg &= ~SV_REC_SOURCE_MASK; 1246 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK); 1247 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1248 1249 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL); 1250 reg &= ~SV_REC_SOURCE_MASK; 1251 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK); 1252 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg); 1253 return (0); 1254 1255 case SV_RECORD_GAIN: 1256 { 1257 int val; 1258 1259 if (cp->type != AUDIO_MIXER_VALUE) 1260 return (EINVAL); 1261 1262 if (cp->un.value.num_channels != 1) 1263 return (EINVAL); 1264 1265 val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] * SV_REC_GAIN_MASK) 1266 / AUDIO_MAX_GAIN; 1267 1268 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1269 reg &= ~SV_REC_GAIN_MASK; 1270 reg |= val; 1271 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1272 1273 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL); 1274 reg &= ~SV_REC_GAIN_MASK; 1275 reg |= val; 1276 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg); 1277 } 1278 return (0); 1279 1280 case SV_MIC_BOOST: 1281 if (cp->type != AUDIO_MIXER_ENUM) 1282 return (EINVAL); 1283 1284 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1285 if (cp->un.ord) { 1286 reg |= SV_MIC_BOOST_BIT; 1287 } else { 1288 reg &= ~SV_MIC_BOOST_BIT; 1289 } 1290 1291 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1292 return (0); 1293 1294 case SV_SRS_MODE: 1295 if (cp->type != AUDIO_MIXER_ENUM) 1296 return (EINVAL); 1297 1298 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL); 1299 if (cp->un.ord) { 1300 reg &= ~SV_SRS_SPACE_ONOFF; 1301 } else { 1302 reg |= SV_SRS_SPACE_ONOFF; 1303 } 1304 1305 sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg); 1306 return (0); 1307 } 1308 1309 return (EINVAL); 1310 } 1311 1312 int 1313 sv_mixer_get_port(addr, cp) 1314 void *addr; 1315 mixer_ctrl_t *cp; 1316 { 1317 struct sv_softc *sc = addr; 1318 int val; 1319 u_int8_t reg; 1320 1321 if (cp->dev >= SV_FIRST_MIXER && 1322 cp->dev <= SV_LAST_MIXER) { 1323 int off = cp->dev - SV_FIRST_MIXER; 1324 int mute = (off % 2); 1325 int idx = off / 2; 1326 1327 if (mute) { 1328 if (cp->type != AUDIO_MIXER_ENUM) 1329 return (EINVAL); 1330 1331 reg = sv_read_indirect(sc, ports[idx].l_port); 1332 cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0); 1333 } else { 1334 if (cp->type != AUDIO_MIXER_VALUE) 1335 return (EINVAL); 1336 1337 if (cp->un.value.num_channels != 1 && 1338 cp->un.value.num_channels != 2) 1339 return (EINVAL); 1340 1341 if ((ports[idx].r_port == 0 && 1342 cp->un.value.num_channels != 1) || 1343 (ports[idx].r_port != 0 && 1344 cp->un.value.num_channels != 2)) 1345 return (EINVAL); 1346 1347 reg = sv_read_indirect(sc, ports[idx].l_port); 1348 reg &= ports[idx].mask; 1349 1350 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask); 1351 1352 if (ports[idx].r_port != 0) { 1353 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val; 1354 1355 reg = sv_read_indirect(sc, ports[idx].r_port); 1356 reg &= ports[idx].mask; 1357 1358 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask); 1359 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val; 1360 } else 1361 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val; 1362 } 1363 1364 return (0); 1365 } 1366 1367 switch (cp->dev) { 1368 case SV_RECORD_SOURCE: 1369 if (cp->type != AUDIO_MIXER_ENUM) 1370 return (EINVAL); 1371 1372 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1373 cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT); 1374 1375 return (0); 1376 1377 case SV_RECORD_GAIN: 1378 if (cp->type != AUDIO_MIXER_VALUE) 1379 return (EINVAL); 1380 if (cp->un.value.num_channels != 1) 1381 return (EINVAL); 1382 1383 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK; 1384 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1385 (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK; 1386 1387 return (0); 1388 1389 case SV_MIC_BOOST: 1390 if (cp->type != AUDIO_MIXER_ENUM) 1391 return (EINVAL); 1392 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1393 cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0); 1394 return (0); 1395 1396 1397 case SV_SRS_MODE: 1398 if (cp->type != AUDIO_MIXER_ENUM) 1399 return (EINVAL); 1400 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL); 1401 cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1); 1402 return (0); 1403 } 1404 1405 return (EINVAL); 1406 } 1407 1408 1409 static void 1410 sv_init_mixer(sc) 1411 struct sv_softc *sc; 1412 { 1413 mixer_ctrl_t cp; 1414 int i; 1415 1416 cp.type = AUDIO_MIXER_ENUM; 1417 cp.dev = SV_SRS_MODE; 1418 cp.un.ord = 0; 1419 1420 sv_mixer_set_port(sc, &cp); 1421 1422 for (i = 0; i < ARRAY_SIZE(ports); i++) { 1423 if (ports[i].audio == AudioNdac) { 1424 cp.type = AUDIO_MIXER_ENUM; 1425 cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1; 1426 cp.un.ord = 0; 1427 sv_mixer_set_port(sc, &cp); 1428 break; 1429 } 1430 } 1431 } 1432 1433 void * 1434 sv_malloc(addr, direction, size, pool, flags) 1435 void *addr; 1436 int direction; 1437 size_t size; 1438 int pool, flags; 1439 { 1440 struct sv_softc *sc = addr; 1441 struct sv_dma *p; 1442 int error; 1443 1444 p = malloc(sizeof(*p), pool, flags); 1445 if (!p) 1446 return (0); 1447 error = sv_allocmem(sc, size, 16, direction, p); 1448 if (error) { 1449 free(p, pool); 1450 return (0); 1451 } 1452 p->next = sc->sc_dmas; 1453 sc->sc_dmas = p; 1454 return (KERNADDR(p)); 1455 } 1456 1457 void 1458 sv_free(addr, ptr, pool) 1459 void *addr; 1460 void *ptr; 1461 int pool; 1462 { 1463 struct sv_softc *sc = addr; 1464 struct sv_dma **pp, *p; 1465 1466 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) { 1467 if (KERNADDR(p) == ptr) { 1468 sv_freemem(sc, p); 1469 *pp = p->next; 1470 free(p, pool); 1471 return; 1472 } 1473 } 1474 } 1475 1476 size_t 1477 sv_round_buffersize(addr, direction, size) 1478 void *addr; 1479 int direction; 1480 size_t size; 1481 { 1482 return (size); 1483 } 1484 1485 paddr_t 1486 sv_mappage(addr, mem, off, prot) 1487 void *addr; 1488 void *mem; 1489 off_t off; 1490 int prot; 1491 { 1492 struct sv_softc *sc = addr; 1493 struct sv_dma *p; 1494 1495 if (off < 0) 1496 return (-1); 1497 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next) 1498 ; 1499 if (!p) 1500 return (-1); 1501 return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs, 1502 off, prot, BUS_DMA_WAITOK)); 1503 } 1504 1505 int 1506 sv_get_props(addr) 1507 void *addr; 1508 { 1509 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX); 1510 } 1511