xref: /netbsd-src/sys/dev/pci/sv.c (revision 481fca6e59249d8ffcf24fef7cfbe7b131bfb080)
1 /*      $NetBSD: sv.c,v 1.11 2000/06/26 04:56:25 simonb Exp $ */
2 /*      $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
3 
4 /*
5  * Copyright (c) 1999 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Charles M. Hannum.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *        This product includes software developed by the NetBSD
22  *        Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1998 Constantine Paul Sapuntzakis
42  * All rights reserved
43  *
44  * Author: Constantine Paul Sapuntzakis (csapuntz@cvs.openbsd.org)
45  *
46  * Redistribution and use in source and binary forms, with or without
47  * modification, are permitted provided that the following conditions
48  * are met:
49  * 1. Redistributions of source code must retain the above copyright
50  *    notice, this list of conditions and the following disclaimer.
51  * 2. Redistributions in binary form must reproduce the above copyright
52  *    notice, this list of conditions and the following disclaimer in the
53  *    documentation and/or other materials provided with the distribution.
54  * 3. The author's name or those of the contributors may be used to
55  *    endorse or promote products derived from this software without
56  *    specific prior written permission.
57  *
58  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
59  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
60  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
61  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
62  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
63  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
64  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
65  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
66  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
67  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
68  * POSSIBILITY OF SUCH DAMAGE.
69  */
70 
71 /*
72  * S3 SonicVibes driver
73  *   Heavily based on the eap driver by Lennart Augustsson
74  */
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/malloc.h>
80 #include <sys/device.h>
81 
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 #include <dev/pci/pcidevs.h>
85 
86 #include <sys/audioio.h>
87 #include <dev/audio_if.h>
88 #include <dev/mulaw.h>
89 #include <dev/auconv.h>
90 
91 #include <dev/ic/i8237reg.h>
92 #include <dev/pci/svreg.h>
93 #include <dev/pci/svvar.h>
94 
95 #include <machine/bus.h>
96 
97 #ifdef AUDIO_DEBUG
98 #define DPRINTF(x)	if (svdebug) printf x
99 #define DPRINTFN(n,x)	if (svdebug>(n)) printf x
100 int	svdebug = 0;
101 #else
102 #define DPRINTF(x)
103 #define DPRINTFN(n,x)
104 #endif
105 
106 int	sv_match __P((struct device *, struct cfdata *, void *));
107 void	sv_attach __P((struct device *, struct device *, void *));
108 int	sv_intr __P((void *));
109 
110 struct sv_dma {
111 	bus_dmamap_t map;
112 	caddr_t addr;
113 	bus_dma_segment_t segs[1];
114 	int nsegs;
115 	size_t size;
116 	struct sv_dma *next;
117 };
118 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
119 #define KERNADDR(p) ((void *)((p)->addr))
120 
121 struct cfattach sv_ca = {
122 	sizeof(struct sv_softc), sv_match, sv_attach
123 };
124 
125 struct audio_device sv_device = {
126 	"S3 SonicVibes",
127 	"",
128 	"sv"
129 };
130 
131 #define ARRAY_SIZE(foo)  ((sizeof(foo)) / sizeof(foo[0]))
132 
133 int	sv_allocmem __P((struct sv_softc *, size_t, size_t, struct sv_dma *));
134 int	sv_freemem __P((struct sv_softc *, struct sv_dma *));
135 
136 int	sv_open __P((void *, int));
137 void	sv_close __P((void *));
138 int	sv_query_encoding __P((void *, struct audio_encoding *));
139 int	sv_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
140 int	sv_round_blocksize __P((void *, int));
141 int	sv_trigger_output __P((void *, void *, void *, int, void (*)(void *),
142 	    void *, struct audio_params *));
143 int	sv_trigger_input __P((void *, void *, void *, int, void (*)(void *),
144 	    void *, struct audio_params *));
145 int	sv_halt_output __P((void *));
146 int	sv_halt_input __P((void *));
147 int	sv_getdev __P((void *, struct audio_device *));
148 int	sv_mixer_set_port __P((void *, mixer_ctrl_t *));
149 int	sv_mixer_get_port __P((void *, mixer_ctrl_t *));
150 int	sv_query_devinfo __P((void *, mixer_devinfo_t *));
151 void   *sv_malloc __P((void *, int, size_t, int, int));
152 void	sv_free __P((void *, void *, int));
153 size_t	sv_round_buffersize __P((void *, int, size_t));
154 paddr_t	sv_mappage __P((void *, void *, off_t, int));
155 int	sv_get_props __P((void *));
156 
157 #ifdef AUDIO_DEBUG
158 void    sv_dumpregs __P((struct sv_softc *sc));
159 #endif
160 
161 struct audio_hw_if sv_hw_if = {
162 	sv_open,
163 	sv_close,
164 	NULL,
165 	sv_query_encoding,
166 	sv_set_params,
167 	sv_round_blocksize,
168 	NULL,
169 	NULL,
170 	NULL,
171 	NULL,
172 	NULL,
173 	sv_halt_output,
174 	sv_halt_input,
175 	NULL,
176 	sv_getdev,
177 	NULL,
178 	sv_mixer_set_port,
179 	sv_mixer_get_port,
180 	sv_query_devinfo,
181 	sv_malloc,
182 	sv_free,
183 	sv_round_buffersize,
184 	sv_mappage,
185 	sv_get_props,
186 	sv_trigger_output,
187 	sv_trigger_input,
188 };
189 
190 
191 static u_int8_t sv_read __P((struct sv_softc *, u_int8_t));
192 static u_int8_t sv_read_indirect __P((struct sv_softc *, u_int8_t));
193 static void sv_write __P((struct sv_softc *, u_int8_t, u_int8_t ));
194 static void sv_write_indirect __P((struct sv_softc *, u_int8_t, u_int8_t ));
195 static void sv_init_mixer __P((struct sv_softc *));
196 
197 static void sv_defer __P((struct device *self));
198 
199 static void
200 sv_write (sc, reg, val)
201 	struct sv_softc *sc;
202 	u_int8_t reg, val;
203 
204 {
205 	DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
206 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
207 }
208 
209 static u_int8_t
210 sv_read(sc, reg)
211 	struct sv_softc *sc;
212 	u_int8_t reg;
213 
214 {
215 	u_int8_t val;
216 
217 	val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
218 	DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
219 	return val;
220 }
221 
222 static u_int8_t
223 sv_read_indirect(sc, reg)
224 	struct sv_softc *sc;
225 	u_int8_t reg;
226 {
227 	u_int8_t val;
228 	int s = splaudio();
229 
230 	sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
231 	val = sv_read(sc, SV_CODEC_IDATA);
232 	splx(s);
233 	return (val);
234 }
235 
236 static void
237 sv_write_indirect(sc, reg, val)
238 	struct sv_softc *sc;
239 	u_int8_t reg, val;
240 {
241 	u_int8_t iaddr = reg & SV_IADDR_MASK;
242 	int s = splaudio();
243 
244 	if (reg == SV_DMA_DATA_FORMAT)
245 		iaddr |= SV_IADDR_MCE;
246 
247 	sv_write(sc, SV_CODEC_IADDR, iaddr);
248 	sv_write(sc, SV_CODEC_IDATA, val);
249 	splx(s);
250 }
251 
252 int
253 sv_match(parent, match, aux)
254 	struct device *parent;
255 	struct cfdata *match;
256 	void *aux;
257 {
258 	struct pci_attach_args *pa = aux;
259 
260 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
261 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
262 		return (1);
263 
264 	return (0);
265 }
266 
267 int pci_alloc_io __P((pci_chipset_tag_t pc, pcitag_t pt,
268 		      int pcioffs,
269 		      bus_space_tag_t iot, bus_size_t size,
270 		      bus_size_t align, bus_size_t bound, int flags,
271 		      bus_space_handle_t *ioh));
272 
273 #define PCI_IO_ALLOC_LOW 0xa000
274 #define PCI_IO_ALLOC_HIGH 0xb000
275 int
276 pci_alloc_io(pc, pt, pcioffs, iot, size, align, bound, flags, ioh)
277 	pci_chipset_tag_t pc;
278 	pcitag_t pt;
279 	int pcioffs;
280 	bus_space_tag_t iot;
281 	bus_size_t size;
282 	bus_size_t align;
283 	bus_size_t bound;
284 	int flags;
285 	bus_space_handle_t *ioh;
286 {
287 	bus_addr_t addr;
288 	int error;
289 
290 	error = bus_space_alloc(iot, PCI_IO_ALLOC_LOW, PCI_IO_ALLOC_HIGH,
291 				size, align, bound, flags, &addr, ioh);
292 	if (error)
293 		return(error);
294 
295 	pci_conf_write(pc, pt, pcioffs, addr);
296 	return (0);
297 }
298 
299 /*
300  * Allocate IO addresses when all other configuration is done.
301  */
302 void
303 sv_defer(self)
304 	struct device *self;
305 {
306 	struct sv_softc *sc = (struct sv_softc *)self;
307 	pci_chipset_tag_t pc = sc->sc_pa.pa_pc;
308 	pcitag_t pt = sc->sc_pa.pa_tag;
309 	pcireg_t dmaio;
310 
311 	DPRINTF(("sv_defer: %p\n", sc));
312 	if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
313 			  sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
314 			  0, &sc->sc_dmaa_ioh)) {
315 		printf("sv_attach: cannot allocate DMA A range\n");
316 		return;
317 	}
318 	dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
319 	DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
320 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
321 		       dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
322 
323 	if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
324 			  sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
325 			  0, &sc->sc_dmac_ioh)) {
326 		printf("sv_attach: cannot allocate DMA C range\n");
327 		return;
328 	}
329 	dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
330 	DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
331 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
332 		       dmaio | SV_DMA_CHANNEL_ENABLE);
333 
334 	sc->sc_dmaset = 1;
335 }
336 
337 void
338 sv_attach(parent, self, aux)
339 	struct device *parent, *self;
340 	void *aux;
341 {
342 	struct sv_softc *sc = (struct sv_softc *)self;
343 	struct pci_attach_args *pa = aux;
344 	pci_chipset_tag_t pc = pa->pa_pc;
345 	pcitag_t pt = pa->pa_tag;
346 	pci_intr_handle_t ih;
347 	pcireg_t csr;
348 	char const *intrstr;
349 	u_int8_t reg;
350 	struct audio_attach_args arg;
351 
352 	printf ("\n");
353 
354 	/* Map I/O registers */
355 	if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
356 			   PCI_MAPREG_TYPE_IO, 0,
357 			   &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
358 		printf("%s: can't map enhanced i/o space\n",
359 		       sc->sc_dev.dv_xname);
360 		return;
361 	}
362 	if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
363 			   PCI_MAPREG_TYPE_IO, 0,
364 			   &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
365 		printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname);
366 		return;
367 	}
368 	if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
369 			   PCI_MAPREG_TYPE_IO, 0,
370 			   &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
371 		printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname);
372 		return;
373 	}
374 	DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
375 		 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
376 
377 #ifdef alpha
378 	/* XXX Force allocation through the SGMAP. */
379 	sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
380 #else
381 	sc->sc_dmatag = pa->pa_dmat;
382 #endif
383 
384 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
385 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
386 
387 	/* Enable the device. */
388 	csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
389 	pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
390 		       csr | PCI_COMMAND_MASTER_ENABLE);
391 
392 	sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
393 	sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
394 
395 	/* initialize codec registers */
396 	reg = sv_read(sc, SV_CODEC_CONTROL);
397 	reg |= SV_CTL_RESET;
398 	sv_write(sc, SV_CODEC_CONTROL, reg);
399 	delay(50);
400 
401 	reg = sv_read(sc, SV_CODEC_CONTROL);
402 	reg &= ~SV_CTL_RESET;
403 	reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
404 
405 	/* This write clears the reset */
406 	sv_write(sc, SV_CODEC_CONTROL, reg);
407 	delay(50);
408 
409 	/* This write actually shoves the new values in */
410 	sv_write(sc, SV_CODEC_CONTROL, reg);
411 
412 	DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
413 
414 	/* Enable DMA interrupts */
415 	reg = sv_read(sc, SV_CODEC_INTMASK);
416 	reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
417 	reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
418 	sv_write(sc, SV_CODEC_INTMASK, reg);
419 
420 	sv_read(sc, SV_CODEC_STATUS);
421 
422 	/* Map and establish the interrupt. */
423 	if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
424 			 pa->pa_intrline, &ih)) {
425 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
426 		return;
427 	}
428 	intrstr = pci_intr_string(pc, ih);
429 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
430 	if (sc->sc_ih == NULL) {
431 		printf("%s: couldn't establish interrupt",
432 		       sc->sc_dev.dv_xname);
433 		if (intrstr != NULL)
434 			printf(" at %s", intrstr);
435 		printf("\n");
436 		return;
437 	}
438 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
439 	printf("%s: rev %d", sc->sc_dev.dv_xname,
440 	       sv_read_indirect(sc, SV_REVISION_LEVEL));
441 	if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
442 		printf(", reverb SRAM present");
443 	if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
444 		printf(", wavetable ROM present");
445 	printf("\n");
446 
447 	sv_init_mixer(sc);
448 
449 	audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
450 
451 	arg.type = AUDIODEV_TYPE_OPL;
452 	arg.hwif = 0;
453 	arg.hdl = 0;
454 	(void)config_found(&sc->sc_dev, &arg, audioprint);
455 
456 	sc->sc_pa = *pa;	/* for deferred setup */
457 	config_defer(self, sv_defer);
458 }
459 
460 #ifdef AUDIO_DEBUG
461 void
462 sv_dumpregs(sc)
463 	struct sv_softc *sc;
464 {
465 	int idx;
466 
467 #if 0
468 	for (idx = 0; idx < 0x50; idx += 4)
469 		printf ("%02x = %x\n", idx,
470 			pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
471 #endif
472 
473 	for (idx = 0; idx < 6; idx++)
474 		printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
475 
476 	for (idx = 0; idx < 0x32; idx++)
477 		printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
478 
479 	for (idx = 0; idx < 0x10; idx++)
480 		printf ("DMA %02x = %02x\n", idx,
481 			bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
482 }
483 #endif
484 
485 int
486 sv_intr(p)
487 	void *p;
488 {
489 	struct sv_softc *sc = p;
490 	u_int8_t intr;
491 
492 	intr = sv_read(sc, SV_CODEC_STATUS);
493 	DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
494 
495 	if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)))
496 		return (0);
497 
498 	if (intr & SV_INTSTATUS_DMAA) {
499 		if (sc->sc_pintr)
500 			sc->sc_pintr(sc->sc_parg);
501 	}
502 
503 	if (intr & SV_INTSTATUS_DMAC) {
504 		if (sc->sc_rintr)
505 			sc->sc_rintr(sc->sc_rarg);
506 	}
507 
508 	return (1);
509 }
510 
511 int
512 sv_allocmem(sc, size, align, p)
513 	struct sv_softc *sc;
514 	size_t size;
515 	size_t align;
516 	struct sv_dma *p;
517 {
518 	int error;
519 
520 	p->size = size;
521 	error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
522 				 p->segs, ARRAY_SIZE(p->segs),
523 				 &p->nsegs, BUS_DMA_NOWAIT);
524 	if (error)
525 		return (error);
526 
527 	error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
528 			       &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
529 	if (error)
530 		goto free;
531 
532 	error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
533 				  0, BUS_DMA_NOWAIT, &p->map);
534 	if (error)
535 		goto unmap;
536 
537 	error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
538 				BUS_DMA_NOWAIT);
539 	if (error)
540 		goto destroy;
541 	DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
542 	    (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
543 	return (0);
544 
545 destroy:
546 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
547 unmap:
548 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
549 free:
550 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
551 	return (error);
552 }
553 
554 int
555 sv_freemem(sc, p)
556 	struct sv_softc *sc;
557 	struct sv_dma *p;
558 {
559 	bus_dmamap_unload(sc->sc_dmatag, p->map);
560 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
561 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
562 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
563 	return (0);
564 }
565 
566 int
567 sv_open(addr, flags)
568 	void *addr;
569 	int flags;
570 {
571 	struct sv_softc *sc = addr;
572 
573 	DPRINTF(("sv_open\n"));
574 	if (!sc->sc_dmaset)
575 		return (ENXIO);
576 	sc->sc_pintr = 0;
577 	sc->sc_rintr = 0;
578 
579 	return (0);
580 }
581 
582 /*
583  * Close function is called at splaudio().
584  */
585 void
586 sv_close(addr)
587 	void *addr;
588 {
589 	struct sv_softc *sc = addr;
590 
591 	DPRINTF(("sv_close\n"));
592 	sv_halt_output(sc);
593 	sv_halt_input(sc);
594 
595 	sc->sc_pintr = 0;
596 	sc->sc_rintr = 0;
597 }
598 
599 int
600 sv_query_encoding(addr, fp)
601 	void *addr;
602 	struct audio_encoding *fp;
603 {
604 	switch (fp->index) {
605 	case 0:
606 		strcpy(fp->name, AudioEulinear);
607 		fp->encoding = AUDIO_ENCODING_ULINEAR;
608 		fp->precision = 8;
609 		fp->flags = 0;
610 		return (0);
611 	case 1:
612 		strcpy(fp->name, AudioEmulaw);
613 		fp->encoding = AUDIO_ENCODING_ULAW;
614 		fp->precision = 8;
615 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
616 		return (0);
617 	case 2:
618 		strcpy(fp->name, AudioEalaw);
619 		fp->encoding = AUDIO_ENCODING_ALAW;
620 		fp->precision = 8;
621 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
622 		return (0);
623 	case 3:
624 		strcpy(fp->name, AudioEslinear);
625 		fp->encoding = AUDIO_ENCODING_SLINEAR;
626 		fp->precision = 8;
627 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
628 		return (0);
629 	case 4:
630 		strcpy(fp->name, AudioEslinear_le);
631 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
632 		fp->precision = 16;
633 		fp->flags = 0;
634 		return (0);
635 	case 5:
636 		strcpy(fp->name, AudioEulinear_le);
637 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
638 		fp->precision = 16;
639 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
640 		return (0);
641 	case 6:
642 		strcpy(fp->name, AudioEslinear_be);
643 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
644 		fp->precision = 16;
645 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
646 		return (0);
647 	case 7:
648 		strcpy(fp->name, AudioEulinear_be);
649 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
650 		fp->precision = 16;
651 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
652 		return (0);
653 	default:
654 		return (EINVAL);
655 	}
656 }
657 
658 int
659 sv_set_params(addr, setmode, usemode, play, rec)
660 	void *addr;
661 	int setmode, usemode;
662 	struct audio_params *play, *rec;
663 {
664 	struct sv_softc *sc = addr;
665 	struct audio_params *p = NULL;
666 	int mode;
667 	u_int32_t val;
668 
669 	/*
670 	 * This device only has one clock, so make the sample rates match.
671 	 */
672 	if (play->sample_rate != rec->sample_rate &&
673 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
674 		if (setmode == AUMODE_PLAY) {
675 			rec->sample_rate = play->sample_rate;
676 			setmode |= AUMODE_RECORD;
677 		} else if (setmode == AUMODE_RECORD) {
678 			play->sample_rate = rec->sample_rate;
679 			setmode |= AUMODE_PLAY;
680 		} else
681 			return (EINVAL);
682 	}
683 
684 	for (mode = AUMODE_RECORD; mode != -1;
685 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
686 		if ((setmode & mode) == 0)
687 			continue;
688 
689 		p = mode == AUMODE_PLAY ? play : rec;
690 
691 		if (p->sample_rate < 2000 || p->sample_rate > 48000 ||
692 		    (p->precision != 8 && p->precision != 16) ||
693 		    (p->channels != 1 && p->channels != 2))
694 			return (EINVAL);
695 
696 		p->factor = 1;
697 		p->sw_code = 0;
698 		switch (p->encoding) {
699 		case AUDIO_ENCODING_SLINEAR_BE:
700 			if (p->precision == 16)
701 				p->sw_code = swap_bytes;
702 			else
703 				p->sw_code = change_sign8;
704 			break;
705 		case AUDIO_ENCODING_SLINEAR_LE:
706 			if (p->precision != 16)
707 				p->sw_code = change_sign8;
708 			break;
709 		case AUDIO_ENCODING_ULINEAR_BE:
710 			if (p->precision == 16) {
711 				if (mode == AUMODE_PLAY)
712 					p->sw_code = swap_bytes_change_sign16_le;
713 				else
714 					p->sw_code = change_sign16_swap_bytes_le;
715 			}
716 			break;
717 		case AUDIO_ENCODING_ULINEAR_LE:
718 			if (p->precision == 16)
719 				p->sw_code = change_sign16_le;
720 			break;
721 		case AUDIO_ENCODING_ULAW:
722 			if (mode == AUMODE_PLAY) {
723 				p->factor = 2;
724 				p->sw_code = mulaw_to_slinear16_le;
725 			} else
726 				p->sw_code = ulinear8_to_mulaw;
727 			break;
728 		case AUDIO_ENCODING_ALAW:
729 			if (mode == AUMODE_PLAY) {
730 				p->factor = 2;
731 				p->sw_code = alaw_to_slinear16_le;
732 			} else
733 				p->sw_code = ulinear8_to_alaw;
734 			break;
735 		default:
736 			return (EINVAL);
737 		}
738 	}
739 
740 	val = p->sample_rate * 65536 / 48000;
741 	/*
742 	 * If the sample rate is exactly 48KHz, the fraction would overflow the
743 	 * register, so we have to bias it.  This causes a little clock drift.
744 	 * The drift is below normal crystal tolerance (.0001%), so although
745 	 * this seems a little silly, we can pretty much ignore it.
746 	 * (I tested the output speed with values of 1-20, just to be sure this
747 	 * register isn't *supposed* to have a bias.  It isn't.)
748 	 * - mycroft
749 	 */
750 	if (val > 65535)
751 		val = 65535;
752 
753 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
754 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
755 
756 #define F_REF 24576000
757 
758 #define ABS(x) (((x) < 0) ? (-x) : (x))
759 
760 	if (setmode & AUMODE_RECORD) {
761 		/* The ADC reference frequency (f_out) is 512 * sample rate */
762 
763 		/* f_out is dervied from the 24.576MHZ crystal by three values:
764 		   M & N & R. The equation is as follows:
765 
766 		   f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
767 
768 		   with the constraint that:
769 
770 		   80 MhZ < (m + 2) / (n + 2) * f_ref <= 150Mhz
771 		   and n, m >= 1
772 		*/
773 
774 		int  goal_f_out = 512 * rec->sample_rate;
775 		int  a, n, m, best_n = 0, best_m = 0, best_error = 10000000;
776 		int  pll_sample;
777 		int  error;
778 
779 		for (a = 0; a < 8; a++) {
780 			if ((goal_f_out * (1 << a)) >= 80000000)
781 				break;
782 		}
783 
784 		/* a != 8 because sample_rate >= 2000 */
785 
786 		for (n = 33; n > 2; n--) {
787 			m = (goal_f_out * n * (1 << a)) / F_REF;
788 			if ((m > 257) || (m < 3))
789 				continue;
790 
791 			pll_sample = (m * F_REF) / (n * (1 << a));
792 			pll_sample /= 512;
793 
794 			/* Threshold might be good here */
795 			error = pll_sample - rec->sample_rate;
796 			error = ABS(error);
797 
798 			if (error < best_error) {
799 				best_error = error;
800 				best_n = n;
801 				best_m = m;
802 				if (error == 0) break;
803 			}
804 		}
805 
806 		best_n -= 2;
807 		best_m -= 2;
808 
809 		sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
810 		sv_write_indirect(sc, SV_ADC_PLL_N,
811 				  best_n | (a << SV_PLL_R_SHIFT));
812 	}
813 
814 	return (0);
815 }
816 
817 int
818 sv_round_blocksize(addr, blk)
819 	void *addr;
820 	int blk;
821 {
822 	return (blk & -32);	/* keep good alignment */
823 }
824 
825 int
826 sv_trigger_output(addr, start, end, blksize, intr, arg, param)
827 	void *addr;
828 	void *start, *end;
829 	int blksize;
830 	void (*intr) __P((void *));
831 	void *arg;
832 	struct audio_params *param;
833 {
834 	struct sv_softc *sc = addr;
835 	struct sv_dma *p;
836 	u_int8_t mode;
837 	int dma_count;
838 
839 	DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
840 	    addr, start, end, blksize, intr, arg));
841 	sc->sc_pintr = intr;
842 	sc->sc_parg = arg;
843 
844 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
845 	mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
846 	if (param->precision * param->factor == 16)
847 		mode |= SV_DMAA_FORMAT16;
848 	if (param->channels == 2)
849 		mode |= SV_DMAA_STEREO;
850 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
851 
852 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
853 		;
854 	if (!p) {
855 		printf("sv_trigger_output: bad addr %p\n", start);
856 		return (EINVAL);
857 	}
858 
859 	dma_count = ((char *)end - (char *)start) - 1;
860 	DPRINTF(("sv_trigger_output: dma start loop input addr=%x cc=%d\n",
861 	    (int)DMAADDR(p), dma_count));
862 
863 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
864 			  DMAADDR(p));
865 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
866 			  dma_count);
867 	bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
868 			  DMA37MD_READ | DMA37MD_LOOP);
869 
870 	DPRINTF(("sv_trigger_output: current addr=%x\n",
871 	    bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
872 
873 	dma_count = blksize - 1;
874 
875 	sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
876 	sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
877 
878 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
879 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
880 
881 	return (0);
882 }
883 
884 int
885 sv_trigger_input(addr, start, end, blksize, intr, arg, param)
886 	void *addr;
887 	void *start, *end;
888 	int blksize;
889 	void (*intr) __P((void *));
890 	void *arg;
891 	struct audio_params *param;
892 {
893 	struct sv_softc *sc = addr;
894 	struct sv_dma *p;
895 	u_int8_t mode;
896 	int dma_count;
897 
898 	DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
899 	    addr, start, end, blksize, intr, arg));
900 	sc->sc_rintr = intr;
901 	sc->sc_rarg = arg;
902 
903 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
904 	mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
905 	if (param->precision * param->factor == 16)
906 		mode |= SV_DMAC_FORMAT16;
907 	if (param->channels == 2)
908 		mode |= SV_DMAC_STEREO;
909 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
910 
911 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
912 		;
913 	if (!p) {
914 		printf("sv_trigger_input: bad addr %p\n", start);
915 		return (EINVAL);
916 	}
917 
918 	dma_count = (((char *)end - (char *)start) >> 1) - 1;
919 	DPRINTF(("sv_trigger_input: dma start loop input addr=%x cc=%d\n",
920 	    (int)DMAADDR(p), dma_count));
921 
922 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
923 			  DMAADDR(p));
924 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
925 			  dma_count);
926 	bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
927 			  DMA37MD_WRITE | DMA37MD_LOOP);
928 
929 	DPRINTF(("sv_trigger_input: current addr=%x\n",
930 	    bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
931 
932 	dma_count = (blksize >> 1) - 1;
933 
934 	sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
935 	sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
936 
937 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
938 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
939 
940 	return (0);
941 }
942 
943 int
944 sv_halt_output(addr)
945 	void *addr;
946 {
947 	struct sv_softc *sc = addr;
948 	u_int8_t mode;
949 
950 	DPRINTF(("sv: sv_halt_output\n"));
951 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
952 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
953 
954 	return (0);
955 }
956 
957 int
958 sv_halt_input(addr)
959 	void *addr;
960 {
961 	struct sv_softc *sc = addr;
962 	u_int8_t mode;
963 
964 	DPRINTF(("sv: sv_halt_input\n"));
965 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
966 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
967 
968 	return (0);
969 }
970 
971 int
972 sv_getdev(addr, retp)
973 	void *addr;
974 	struct audio_device *retp;
975 {
976 	*retp = sv_device;
977 	return (0);
978 }
979 
980 
981 /*
982  * Mixer related code is here
983  *
984  */
985 
986 #define SV_INPUT_CLASS 0
987 #define SV_OUTPUT_CLASS 1
988 #define SV_RECORD_CLASS 2
989 
990 #define SV_LAST_CLASS 2
991 
992 static const char *mixer_classes[] =
993 	{ AudioCinputs, AudioCoutputs, AudioCrecord };
994 
995 static const struct {
996 	u_int8_t   l_port;
997 	u_int8_t   r_port;
998 	u_int8_t   mask;
999 	u_int8_t   class;
1000 	const char *audio;
1001 } ports[] = {
1002   { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
1003     SV_INPUT_CLASS, "aux1" },
1004   { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
1005     SV_INPUT_CLASS, AudioNcd },
1006   { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
1007     SV_INPUT_CLASS, AudioNline },
1008   { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
1009   { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
1010     SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
1011   { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
1012     SV_INPUT_CLASS, "aux2" },
1013   { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
1014     SV_INPUT_CLASS, AudioNdac },
1015   { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
1016     SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
1017 };
1018 
1019 
1020 static const struct {
1021 	int idx;
1022 	const char *name;
1023 } record_sources[] = {
1024 	{ SV_REC_CD, AudioNcd },
1025 	{ SV_REC_DAC, AudioNdac },
1026 	{ SV_REC_AUX2, "aux2" },
1027 	{ SV_REC_LINE, AudioNline },
1028 	{ SV_REC_AUX1, "aux1" },
1029 	{ SV_REC_MIC, AudioNmicrophone },
1030 	{ SV_REC_MIXER, AudioNmixerout }
1031 };
1032 
1033 
1034 #define SV_DEVICES_PER_PORT 2
1035 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
1036 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
1037 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
1038 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
1039 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
1040 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
1041 
1042 int
1043 sv_query_devinfo(addr, dip)
1044 	void *addr;
1045 	mixer_devinfo_t *dip;
1046 {
1047 	int i;
1048 
1049 	/* It's a class */
1050 	if (dip->index <= SV_LAST_CLASS) {
1051 		dip->type = AUDIO_MIXER_CLASS;
1052 		dip->mixer_class = dip->index;
1053 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1054 		strcpy(dip->label.name,
1055 		       mixer_classes[dip->index]);
1056 		return (0);
1057 	}
1058 
1059 	if (dip->index >= SV_FIRST_MIXER &&
1060 	    dip->index <= SV_LAST_MIXER) {
1061 		int off = dip->index - SV_FIRST_MIXER;
1062 		int mute = (off % SV_DEVICES_PER_PORT);
1063 		int idx = off / SV_DEVICES_PER_PORT;
1064 
1065 		dip->mixer_class = ports[idx].class;
1066 		strcpy(dip->label.name, ports[idx].audio);
1067 
1068 		if (!mute) {
1069 			dip->type = AUDIO_MIXER_VALUE;
1070 			dip->prev = AUDIO_MIXER_LAST;
1071 			dip->next = dip->index + 1;
1072 
1073 			if (ports[idx].r_port != 0)
1074 				dip->un.v.num_channels = 2;
1075 			else
1076 				dip->un.v.num_channels = 1;
1077 
1078 			strcpy(dip->un.v.units.name, AudioNvolume);
1079 		} else {
1080 			dip->type = AUDIO_MIXER_ENUM;
1081 			dip->prev = dip->index - 1;
1082 			dip->next = AUDIO_MIXER_LAST;
1083 
1084 			strcpy(dip->label.name, AudioNmute);
1085 			dip->un.e.num_mem = 2;
1086 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
1087 			dip->un.e.member[0].ord = 0;
1088 			strcpy(dip->un.e.member[1].label.name, AudioNon);
1089 			dip->un.e.member[1].ord = 1;
1090 		}
1091 
1092 		return (0);
1093 	}
1094 
1095 	switch (dip->index) {
1096 	case SV_RECORD_SOURCE:
1097 		dip->mixer_class = SV_RECORD_CLASS;
1098 		dip->prev = AUDIO_MIXER_LAST;
1099 		dip->next = SV_RECORD_GAIN;
1100 		strcpy(dip->label.name, AudioNsource);
1101 		dip->type = AUDIO_MIXER_ENUM;
1102 
1103 		dip->un.e.num_mem = ARRAY_SIZE(record_sources);
1104 		for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
1105 			strcpy(dip->un.e.member[i].label.name,
1106 			       record_sources[i].name);
1107 			dip->un.e.member[i].ord = record_sources[i].idx;
1108 		}
1109 		return (0);
1110 
1111 	case SV_RECORD_GAIN:
1112 		dip->mixer_class = SV_RECORD_CLASS;
1113 		dip->prev = SV_RECORD_SOURCE;
1114 		dip->next = AUDIO_MIXER_LAST;
1115 		strcpy(dip->label.name, "gain");
1116 		dip->type = AUDIO_MIXER_VALUE;
1117 		dip->un.v.num_channels = 1;
1118 		strcpy(dip->un.v.units.name, AudioNvolume);
1119 		return (0);
1120 
1121 	case SV_MIC_BOOST:
1122 		dip->mixer_class = SV_RECORD_CLASS;
1123 		dip->prev = AUDIO_MIXER_LAST;
1124 		dip->next = AUDIO_MIXER_LAST;
1125 		strcpy(dip->label.name, "micboost");
1126 		goto on_off;
1127 
1128 	case SV_SRS_MODE:
1129 		dip->mixer_class = SV_OUTPUT_CLASS;
1130 		dip->prev = dip->next = AUDIO_MIXER_LAST;
1131 		strcpy(dip->label.name, AudioNspatial);
1132 
1133 	on_off:
1134 		dip->type = AUDIO_MIXER_ENUM;
1135 		dip->un.e.num_mem = 2;
1136 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1137 		dip->un.e.member[0].ord = 0;
1138 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1139 		dip->un.e.member[1].ord = 1;
1140 		return (0);
1141 	}
1142 
1143 	return (ENXIO);
1144 }
1145 
1146 int
1147 sv_mixer_set_port(addr, cp)
1148 	void *addr;
1149 	mixer_ctrl_t *cp;
1150 {
1151 	struct sv_softc *sc = addr;
1152 	u_int8_t reg;
1153 	int idx;
1154 
1155 	if (cp->dev >= SV_FIRST_MIXER &&
1156 	    cp->dev <= SV_LAST_MIXER) {
1157 		int off = cp->dev - SV_FIRST_MIXER;
1158 		int mute = (off % SV_DEVICES_PER_PORT);
1159 		idx = off / SV_DEVICES_PER_PORT;
1160 
1161 		if (mute) {
1162 			if (cp->type != AUDIO_MIXER_ENUM)
1163 				return (EINVAL);
1164 
1165 			reg = sv_read_indirect(sc, ports[idx].l_port);
1166 			if (cp->un.ord)
1167 				reg |= SV_MUTE_BIT;
1168 			else
1169 				reg &= ~SV_MUTE_BIT;
1170 			sv_write_indirect(sc, ports[idx].l_port, reg);
1171 
1172 			if (ports[idx].r_port) {
1173 				reg = sv_read_indirect(sc, ports[idx].r_port);
1174 				if (cp->un.ord)
1175 					reg |= SV_MUTE_BIT;
1176 				else
1177 					reg &= ~SV_MUTE_BIT;
1178 				sv_write_indirect(sc, ports[idx].r_port, reg);
1179 			}
1180 		} else {
1181 			int  lval, rval;
1182 
1183 			if (cp->type != AUDIO_MIXER_VALUE)
1184 				return (EINVAL);
1185 
1186 			if (cp->un.value.num_channels != 1 &&
1187 			    cp->un.value.num_channels != 2)
1188 				return (EINVAL);
1189 
1190 			if (ports[idx].r_port == 0) {
1191 				if (cp->un.value.num_channels != 1)
1192 					return (EINVAL);
1193 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1194 				rval = 0; /* shut up GCC */
1195 			} else {
1196 				if (cp->un.value.num_channels != 2)
1197 					return (EINVAL);
1198 
1199 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1200 				rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1201       }
1202 
1203 
1204 			reg = sv_read_indirect(sc, ports[idx].l_port);
1205 			reg &= ~(ports[idx].mask);
1206 			lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
1207 				AUDIO_MAX_GAIN;
1208 			reg |= lval;
1209 			sv_write_indirect(sc, ports[idx].l_port, reg);
1210 
1211 			if (ports[idx].r_port != 0) {
1212 				reg = sv_read_indirect(sc, ports[idx].r_port);
1213 				reg &= ~(ports[idx].mask);
1214 
1215 				rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
1216 					AUDIO_MAX_GAIN;
1217 				reg |= rval;
1218 
1219 				sv_write_indirect(sc, ports[idx].r_port, reg);
1220 			}
1221 
1222 			sv_read_indirect(sc, ports[idx].l_port);
1223 		}
1224 
1225 		return (0);
1226 	}
1227 
1228 
1229 	switch (cp->dev) {
1230 	case SV_RECORD_SOURCE:
1231 		if (cp->type != AUDIO_MIXER_ENUM)
1232 			return (EINVAL);
1233 
1234 		for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
1235 			if (record_sources[idx].idx == cp->un.ord)
1236 				goto found;
1237 		}
1238 
1239 		return (EINVAL);
1240 
1241 	found:
1242 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1243 		reg &= ~SV_REC_SOURCE_MASK;
1244 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1245 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1246 
1247 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1248 		reg &= ~SV_REC_SOURCE_MASK;
1249 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1250 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1251 		return (0);
1252 
1253 	case SV_RECORD_GAIN:
1254 	{
1255 		int val;
1256 
1257 		if (cp->type != AUDIO_MIXER_VALUE)
1258 			return (EINVAL);
1259 
1260 		if (cp->un.value.num_channels != 1)
1261 			return (EINVAL);
1262 
1263 		val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] * SV_REC_GAIN_MASK)
1264 			/ AUDIO_MAX_GAIN;
1265 
1266 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1267 		reg &= ~SV_REC_GAIN_MASK;
1268 		reg |= val;
1269 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1270 
1271 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1272 		reg &= ~SV_REC_GAIN_MASK;
1273 		reg |= val;
1274 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1275 	}
1276 	return (0);
1277 
1278 	case SV_MIC_BOOST:
1279 		if (cp->type != AUDIO_MIXER_ENUM)
1280 			return (EINVAL);
1281 
1282 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1283 		if (cp->un.ord) {
1284 			reg |= SV_MIC_BOOST_BIT;
1285 		} else {
1286 			reg &= ~SV_MIC_BOOST_BIT;
1287 		}
1288 
1289 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1290 		return (0);
1291 
1292 	case SV_SRS_MODE:
1293 		if (cp->type != AUDIO_MIXER_ENUM)
1294 			return (EINVAL);
1295 
1296 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1297 		if (cp->un.ord) {
1298 			reg &= ~SV_SRS_SPACE_ONOFF;
1299 		} else {
1300 			reg |= SV_SRS_SPACE_ONOFF;
1301 		}
1302 
1303 		sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
1304 		return (0);
1305 	}
1306 
1307 	return (EINVAL);
1308 }
1309 
1310 int
1311 sv_mixer_get_port(addr, cp)
1312 	void *addr;
1313 	mixer_ctrl_t *cp;
1314 {
1315 	struct sv_softc *sc = addr;
1316 	int val;
1317 	u_int8_t reg;
1318 
1319 	if (cp->dev >= SV_FIRST_MIXER &&
1320 	    cp->dev <= SV_LAST_MIXER) {
1321 		int off = cp->dev - SV_FIRST_MIXER;
1322 		int mute = (off % 2);
1323 		int idx = off / 2;
1324 
1325 		if (mute) {
1326 			if (cp->type != AUDIO_MIXER_ENUM)
1327 				return (EINVAL);
1328 
1329 			reg = sv_read_indirect(sc, ports[idx].l_port);
1330 			cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
1331 		} else {
1332 			if (cp->type != AUDIO_MIXER_VALUE)
1333 				return (EINVAL);
1334 
1335 			if (cp->un.value.num_channels != 1 &&
1336 			    cp->un.value.num_channels != 2)
1337 				return (EINVAL);
1338 
1339 			if ((ports[idx].r_port == 0 &&
1340 			     cp->un.value.num_channels != 1) ||
1341 			    (ports[idx].r_port != 0 &&
1342 			     cp->un.value.num_channels != 2))
1343 				return (EINVAL);
1344 
1345 			reg = sv_read_indirect(sc, ports[idx].l_port);
1346 			reg &= ports[idx].mask;
1347 
1348 			val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1349 
1350 			if (ports[idx].r_port != 0) {
1351 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val;
1352 
1353 				reg = sv_read_indirect(sc, ports[idx].r_port);
1354 				reg &= ports[idx].mask;
1355 
1356 				val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1357 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val;
1358 			} else
1359 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val;
1360 		}
1361 
1362 		return (0);
1363   }
1364 
1365 	switch (cp->dev) {
1366 	case SV_RECORD_SOURCE:
1367 		if (cp->type != AUDIO_MIXER_ENUM)
1368 			return (EINVAL);
1369 
1370 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1371 		cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
1372 
1373 		return (0);
1374 
1375 	case SV_RECORD_GAIN:
1376 		if (cp->type != AUDIO_MIXER_VALUE)
1377 			return (EINVAL);
1378 		if (cp->un.value.num_channels != 1)
1379 			return (EINVAL);
1380 
1381 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
1382 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1383 			(((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
1384 
1385 		return (0);
1386 
1387 	case SV_MIC_BOOST:
1388 		if (cp->type != AUDIO_MIXER_ENUM)
1389 			return (EINVAL);
1390 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1391 		cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
1392 		return (0);
1393 
1394 
1395 	case SV_SRS_MODE:
1396 		if (cp->type != AUDIO_MIXER_ENUM)
1397 			return (EINVAL);
1398 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1399 		cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
1400 		return (0);
1401 	}
1402 
1403 	return (EINVAL);
1404 }
1405 
1406 
1407 static void
1408 sv_init_mixer(sc)
1409 	struct sv_softc *sc;
1410 {
1411 	mixer_ctrl_t cp;
1412 	int i;
1413 
1414 	cp.type = AUDIO_MIXER_ENUM;
1415 	cp.dev = SV_SRS_MODE;
1416 	cp.un.ord = 0;
1417 
1418 	sv_mixer_set_port(sc, &cp);
1419 
1420 	for (i = 0; i < ARRAY_SIZE(ports); i++) {
1421 		if (ports[i].audio == AudioNdac) {
1422 			cp.type = AUDIO_MIXER_ENUM;
1423 			cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
1424 			cp.un.ord = 0;
1425 			sv_mixer_set_port(sc, &cp);
1426 			break;
1427 		}
1428 	}
1429 }
1430 
1431 void *
1432 sv_malloc(addr, direction, size, pool, flags)
1433 	void *addr;
1434 	int direction;
1435 	size_t size;
1436 	int pool, flags;
1437 {
1438 	struct sv_softc *sc = addr;
1439 	struct sv_dma *p;
1440 	int error;
1441 
1442 	p = malloc(sizeof(*p), pool, flags);
1443 	if (!p)
1444 		return (0);
1445 	error = sv_allocmem(sc, size, 16, p);
1446 	if (error) {
1447 		free(p, pool);
1448 		return (0);
1449 	}
1450 	p->next = sc->sc_dmas;
1451 	sc->sc_dmas = p;
1452 	return (KERNADDR(p));
1453 }
1454 
1455 void
1456 sv_free(addr, ptr, pool)
1457 	void *addr;
1458 	void *ptr;
1459 	int pool;
1460 {
1461 	struct sv_softc *sc = addr;
1462 	struct sv_dma **pp, *p;
1463 
1464 	for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1465 		if (KERNADDR(p) == ptr) {
1466 			sv_freemem(sc, p);
1467 			*pp = p->next;
1468 			free(p, pool);
1469 			return;
1470 		}
1471 	}
1472 }
1473 
1474 size_t
1475 sv_round_buffersize(addr, direction, size)
1476 	void *addr;
1477 	int direction;
1478 	size_t size;
1479 {
1480 	return (size);
1481 }
1482 
1483 paddr_t
1484 sv_mappage(addr, mem, off, prot)
1485 	void *addr;
1486 	void *mem;
1487 	off_t off;
1488 	int prot;
1489 {
1490 	struct sv_softc *sc = addr;
1491 	struct sv_dma *p;
1492 
1493 	if (off < 0)
1494 		return (-1);
1495 	for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1496 		;
1497 	if (!p)
1498 		return (-1);
1499 	return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1500 				off, prot, BUS_DMA_WAITOK));
1501 }
1502 
1503 int
1504 sv_get_props(addr)
1505 	void *addr;
1506 {
1507 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
1508 }
1509