1 /* $NetBSD: sv.c,v 1.13 2001/07/19 17:47:18 kleink Exp $ */ 2 /* $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */ 3 4 /* 5 * Copyright (c) 1999 The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Charles M. Hannum. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * Copyright (c) 1998 Constantine Paul Sapuntzakis 42 * All rights reserved 43 * 44 * Author: Constantine Paul Sapuntzakis (csapuntz@cvs.openbsd.org) 45 * 46 * Redistribution and use in source and binary forms, with or without 47 * modification, are permitted provided that the following conditions 48 * are met: 49 * 1. Redistributions of source code must retain the above copyright 50 * notice, this list of conditions and the following disclaimer. 51 * 2. Redistributions in binary form must reproduce the above copyright 52 * notice, this list of conditions and the following disclaimer in the 53 * documentation and/or other materials provided with the distribution. 54 * 3. The author's name or those of the contributors may be used to 55 * endorse or promote products derived from this software without 56 * specific prior written permission. 57 * 58 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS 59 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 60 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 61 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 68 * POSSIBILITY OF SUCH DAMAGE. 69 */ 70 71 /* 72 * S3 SonicVibes driver 73 * Heavily based on the eap driver by Lennart Augustsson 74 */ 75 76 #include <sys/param.h> 77 #include <sys/systm.h> 78 #include <sys/kernel.h> 79 #include <sys/malloc.h> 80 #include <sys/device.h> 81 82 #include <dev/pci/pcireg.h> 83 #include <dev/pci/pcivar.h> 84 #include <dev/pci/pcidevs.h> 85 86 #include <sys/audioio.h> 87 #include <dev/audio_if.h> 88 #include <dev/mulaw.h> 89 #include <dev/auconv.h> 90 91 #include <dev/ic/i8237reg.h> 92 #include <dev/pci/svreg.h> 93 #include <dev/pci/svvar.h> 94 95 #include <machine/bus.h> 96 97 #ifdef AUDIO_DEBUG 98 #define DPRINTF(x) if (svdebug) printf x 99 #define DPRINTFN(n,x) if (svdebug>(n)) printf x 100 int svdebug = 0; 101 #else 102 #define DPRINTF(x) 103 #define DPRINTFN(n,x) 104 #endif 105 106 int sv_match __P((struct device *, struct cfdata *, void *)); 107 void sv_attach __P((struct device *, struct device *, void *)); 108 int sv_intr __P((void *)); 109 110 struct sv_dma { 111 bus_dmamap_t map; 112 caddr_t addr; 113 bus_dma_segment_t segs[1]; 114 int nsegs; 115 size_t size; 116 struct sv_dma *next; 117 }; 118 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr) 119 #define KERNADDR(p) ((void *)((p)->addr)) 120 121 struct cfattach sv_ca = { 122 sizeof(struct sv_softc), sv_match, sv_attach 123 }; 124 125 struct audio_device sv_device = { 126 "S3 SonicVibes", 127 "", 128 "sv" 129 }; 130 131 #define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0])) 132 133 int sv_allocmem __P((struct sv_softc *, size_t, size_t, int, struct sv_dma *)); 134 int sv_freemem __P((struct sv_softc *, struct sv_dma *)); 135 136 int sv_open __P((void *, int)); 137 void sv_close __P((void *)); 138 int sv_query_encoding __P((void *, struct audio_encoding *)); 139 int sv_set_params __P((void *, int, int, struct audio_params *, struct audio_params *)); 140 int sv_round_blocksize __P((void *, int)); 141 int sv_trigger_output __P((void *, void *, void *, int, void (*)(void *), 142 void *, struct audio_params *)); 143 int sv_trigger_input __P((void *, void *, void *, int, void (*)(void *), 144 void *, struct audio_params *)); 145 int sv_halt_output __P((void *)); 146 int sv_halt_input __P((void *)); 147 int sv_getdev __P((void *, struct audio_device *)); 148 int sv_mixer_set_port __P((void *, mixer_ctrl_t *)); 149 int sv_mixer_get_port __P((void *, mixer_ctrl_t *)); 150 int sv_query_devinfo __P((void *, mixer_devinfo_t *)); 151 void *sv_malloc __P((void *, int, size_t, int, int)); 152 void sv_free __P((void *, void *, int)); 153 size_t sv_round_buffersize __P((void *, int, size_t)); 154 paddr_t sv_mappage __P((void *, void *, off_t, int)); 155 int sv_get_props __P((void *)); 156 157 #ifdef AUDIO_DEBUG 158 void sv_dumpregs __P((struct sv_softc *sc)); 159 #endif 160 161 struct audio_hw_if sv_hw_if = { 162 sv_open, 163 sv_close, 164 NULL, 165 sv_query_encoding, 166 sv_set_params, 167 sv_round_blocksize, 168 NULL, 169 NULL, 170 NULL, 171 NULL, 172 NULL, 173 sv_halt_output, 174 sv_halt_input, 175 NULL, 176 sv_getdev, 177 NULL, 178 sv_mixer_set_port, 179 sv_mixer_get_port, 180 sv_query_devinfo, 181 sv_malloc, 182 sv_free, 183 sv_round_buffersize, 184 sv_mappage, 185 sv_get_props, 186 sv_trigger_output, 187 sv_trigger_input, 188 }; 189 190 191 static u_int8_t sv_read __P((struct sv_softc *, u_int8_t)); 192 static u_int8_t sv_read_indirect __P((struct sv_softc *, u_int8_t)); 193 static void sv_write __P((struct sv_softc *, u_int8_t, u_int8_t )); 194 static void sv_write_indirect __P((struct sv_softc *, u_int8_t, u_int8_t )); 195 static void sv_init_mixer __P((struct sv_softc *)); 196 197 static void sv_defer __P((struct device *self)); 198 199 static void 200 sv_write (sc, reg, val) 201 struct sv_softc *sc; 202 u_int8_t reg, val; 203 204 { 205 DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val)); 206 bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val); 207 } 208 209 static u_int8_t 210 sv_read(sc, reg) 211 struct sv_softc *sc; 212 u_int8_t reg; 213 214 { 215 u_int8_t val; 216 217 val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg); 218 DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val)); 219 return val; 220 } 221 222 static u_int8_t 223 sv_read_indirect(sc, reg) 224 struct sv_softc *sc; 225 u_int8_t reg; 226 { 227 u_int8_t val; 228 int s = splaudio(); 229 230 sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK); 231 val = sv_read(sc, SV_CODEC_IDATA); 232 splx(s); 233 return (val); 234 } 235 236 static void 237 sv_write_indirect(sc, reg, val) 238 struct sv_softc *sc; 239 u_int8_t reg, val; 240 { 241 u_int8_t iaddr = reg & SV_IADDR_MASK; 242 int s = splaudio(); 243 244 if (reg == SV_DMA_DATA_FORMAT) 245 iaddr |= SV_IADDR_MCE; 246 247 sv_write(sc, SV_CODEC_IADDR, iaddr); 248 sv_write(sc, SV_CODEC_IDATA, val); 249 splx(s); 250 } 251 252 int 253 sv_match(parent, match, aux) 254 struct device *parent; 255 struct cfdata *match; 256 void *aux; 257 { 258 struct pci_attach_args *pa = aux; 259 260 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 && 261 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES) 262 return (1); 263 264 return (0); 265 } 266 267 int pci_alloc_io __P((pci_chipset_tag_t pc, pcitag_t pt, 268 int pcioffs, 269 bus_space_tag_t iot, bus_size_t size, 270 bus_size_t align, bus_size_t bound, int flags, 271 bus_space_handle_t *ioh)); 272 273 #define PCI_IO_ALLOC_LOW 0xa000 274 #define PCI_IO_ALLOC_HIGH 0xb000 275 int 276 pci_alloc_io(pc, pt, pcioffs, iot, size, align, bound, flags, ioh) 277 pci_chipset_tag_t pc; 278 pcitag_t pt; 279 int pcioffs; 280 bus_space_tag_t iot; 281 bus_size_t size; 282 bus_size_t align; 283 bus_size_t bound; 284 int flags; 285 bus_space_handle_t *ioh; 286 { 287 bus_addr_t addr; 288 int error; 289 290 error = bus_space_alloc(iot, PCI_IO_ALLOC_LOW, PCI_IO_ALLOC_HIGH, 291 size, align, bound, flags, &addr, ioh); 292 if (error) 293 return(error); 294 295 pci_conf_write(pc, pt, pcioffs, addr); 296 return (0); 297 } 298 299 /* 300 * Allocate IO addresses when all other configuration is done. 301 */ 302 void 303 sv_defer(self) 304 struct device *self; 305 { 306 struct sv_softc *sc = (struct sv_softc *)self; 307 pci_chipset_tag_t pc = sc->sc_pa.pa_pc; 308 pcitag_t pt = sc->sc_pa.pa_tag; 309 pcireg_t dmaio; 310 311 DPRINTF(("sv_defer: %p\n", sc)); 312 if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF, 313 sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0, 314 0, &sc->sc_dmaa_ioh)) { 315 printf("sv_attach: cannot allocate DMA A range\n"); 316 return; 317 } 318 dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF); 319 DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio)); 320 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, 321 dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR); 322 323 if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF, 324 sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0, 325 0, &sc->sc_dmac_ioh)) { 326 printf("sv_attach: cannot allocate DMA C range\n"); 327 return; 328 } 329 dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF); 330 DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio)); 331 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 332 dmaio | SV_DMA_CHANNEL_ENABLE); 333 334 sc->sc_dmaset = 1; 335 } 336 337 void 338 sv_attach(parent, self, aux) 339 struct device *parent, *self; 340 void *aux; 341 { 342 struct sv_softc *sc = (struct sv_softc *)self; 343 struct pci_attach_args *pa = aux; 344 pci_chipset_tag_t pc = pa->pa_pc; 345 pcitag_t pt = pa->pa_tag; 346 pci_intr_handle_t ih; 347 pcireg_t csr; 348 char const *intrstr; 349 u_int8_t reg; 350 struct audio_attach_args arg; 351 352 printf ("\n"); 353 354 /* Map I/O registers */ 355 if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT, 356 PCI_MAPREG_TYPE_IO, 0, 357 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) { 358 printf("%s: can't map enhanced i/o space\n", 359 sc->sc_dev.dv_xname); 360 return; 361 } 362 if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT, 363 PCI_MAPREG_TYPE_IO, 0, 364 &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) { 365 printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname); 366 return; 367 } 368 if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT, 369 PCI_MAPREG_TYPE_IO, 0, 370 &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) { 371 printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname); 372 return; 373 } 374 DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n", 375 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh)); 376 377 #ifdef alpha 378 /* XXX Force allocation through the SGMAP. */ 379 sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA); 380 #else 381 sc->sc_dmatag = pa->pa_dmat; 382 #endif 383 384 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR); 385 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0); 386 387 /* Enable the device. */ 388 csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG); 389 pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG, 390 csr | PCI_COMMAND_MASTER_ENABLE); 391 392 sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0); 393 sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0); 394 395 /* initialize codec registers */ 396 reg = sv_read(sc, SV_CODEC_CONTROL); 397 reg |= SV_CTL_RESET; 398 sv_write(sc, SV_CODEC_CONTROL, reg); 399 delay(50); 400 401 reg = sv_read(sc, SV_CODEC_CONTROL); 402 reg &= ~SV_CTL_RESET; 403 reg |= SV_CTL_INTA | SV_CTL_ENHANCED; 404 405 /* This write clears the reset */ 406 sv_write(sc, SV_CODEC_CONTROL, reg); 407 delay(50); 408 409 /* This write actually shoves the new values in */ 410 sv_write(sc, SV_CODEC_CONTROL, reg); 411 412 DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL))); 413 414 /* Enable DMA interrupts */ 415 reg = sv_read(sc, SV_CODEC_INTMASK); 416 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC); 417 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI; 418 sv_write(sc, SV_CODEC_INTMASK, reg); 419 420 sv_read(sc, SV_CODEC_STATUS); 421 422 /* Map and establish the interrupt. */ 423 if (pci_intr_map(pa, &ih)) { 424 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname); 425 return; 426 } 427 intrstr = pci_intr_string(pc, ih); 428 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc); 429 if (sc->sc_ih == NULL) { 430 printf("%s: couldn't establish interrupt", 431 sc->sc_dev.dv_xname); 432 if (intrstr != NULL) 433 printf(" at %s", intrstr); 434 printf("\n"); 435 return; 436 } 437 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); 438 printf("%s: rev %d", sc->sc_dev.dv_xname, 439 sv_read_indirect(sc, SV_REVISION_LEVEL)); 440 if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1) 441 printf(", reverb SRAM present"); 442 if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0)) 443 printf(", wavetable ROM present"); 444 printf("\n"); 445 446 sv_init_mixer(sc); 447 448 audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev); 449 450 arg.type = AUDIODEV_TYPE_OPL; 451 arg.hwif = 0; 452 arg.hdl = 0; 453 (void)config_found(&sc->sc_dev, &arg, audioprint); 454 455 sc->sc_pa = *pa; /* for deferred setup */ 456 config_defer(self, sv_defer); 457 } 458 459 #ifdef AUDIO_DEBUG 460 void 461 sv_dumpregs(sc) 462 struct sv_softc *sc; 463 { 464 int idx; 465 466 #if 0 467 for (idx = 0; idx < 0x50; idx += 4) 468 printf ("%02x = %x\n", idx, 469 pci_conf_read(pa->pa_pc, pa->pa_tag, idx)); 470 #endif 471 472 for (idx = 0; idx < 6; idx++) 473 printf ("REG %02x = %02x\n", idx, sv_read(sc, idx)); 474 475 for (idx = 0; idx < 0x32; idx++) 476 printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx)); 477 478 for (idx = 0; idx < 0x10; idx++) 479 printf ("DMA %02x = %02x\n", idx, 480 bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx)); 481 } 482 #endif 483 484 int 485 sv_intr(p) 486 void *p; 487 { 488 struct sv_softc *sc = p; 489 u_int8_t intr; 490 491 intr = sv_read(sc, SV_CODEC_STATUS); 492 DPRINTFN(5,("sv_intr: intr=0x%x\n", intr)); 493 494 if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC))) 495 return (0); 496 497 if (intr & SV_INTSTATUS_DMAA) { 498 if (sc->sc_pintr) 499 sc->sc_pintr(sc->sc_parg); 500 } 501 502 if (intr & SV_INTSTATUS_DMAC) { 503 if (sc->sc_rintr) 504 sc->sc_rintr(sc->sc_rarg); 505 } 506 507 return (1); 508 } 509 510 int 511 sv_allocmem(sc, size, align, direction, p) 512 struct sv_softc *sc; 513 size_t size; 514 size_t align; 515 int direction; 516 struct sv_dma *p; 517 { 518 int error; 519 520 p->size = size; 521 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0, 522 p->segs, ARRAY_SIZE(p->segs), 523 &p->nsegs, BUS_DMA_NOWAIT); 524 if (error) 525 return (error); 526 527 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size, 528 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT); 529 if (error) 530 goto free; 531 532 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size, 533 0, BUS_DMA_NOWAIT, &p->map); 534 if (error) 535 goto unmap; 536 537 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL, 538 BUS_DMA_NOWAIT | 539 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE); 540 if (error) 541 goto destroy; 542 DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n", 543 (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p))); 544 return (0); 545 546 destroy: 547 bus_dmamap_destroy(sc->sc_dmatag, p->map); 548 unmap: 549 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); 550 free: 551 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); 552 return (error); 553 } 554 555 int 556 sv_freemem(sc, p) 557 struct sv_softc *sc; 558 struct sv_dma *p; 559 { 560 bus_dmamap_unload(sc->sc_dmatag, p->map); 561 bus_dmamap_destroy(sc->sc_dmatag, p->map); 562 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); 563 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); 564 return (0); 565 } 566 567 int 568 sv_open(addr, flags) 569 void *addr; 570 int flags; 571 { 572 struct sv_softc *sc = addr; 573 574 DPRINTF(("sv_open\n")); 575 if (!sc->sc_dmaset) 576 return (ENXIO); 577 sc->sc_pintr = 0; 578 sc->sc_rintr = 0; 579 580 return (0); 581 } 582 583 /* 584 * Close function is called at splaudio(). 585 */ 586 void 587 sv_close(addr) 588 void *addr; 589 { 590 struct sv_softc *sc = addr; 591 592 DPRINTF(("sv_close\n")); 593 sv_halt_output(sc); 594 sv_halt_input(sc); 595 596 sc->sc_pintr = 0; 597 sc->sc_rintr = 0; 598 } 599 600 int 601 sv_query_encoding(addr, fp) 602 void *addr; 603 struct audio_encoding *fp; 604 { 605 switch (fp->index) { 606 case 0: 607 strcpy(fp->name, AudioEulinear); 608 fp->encoding = AUDIO_ENCODING_ULINEAR; 609 fp->precision = 8; 610 fp->flags = 0; 611 return (0); 612 case 1: 613 strcpy(fp->name, AudioEmulaw); 614 fp->encoding = AUDIO_ENCODING_ULAW; 615 fp->precision = 8; 616 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 617 return (0); 618 case 2: 619 strcpy(fp->name, AudioEalaw); 620 fp->encoding = AUDIO_ENCODING_ALAW; 621 fp->precision = 8; 622 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 623 return (0); 624 case 3: 625 strcpy(fp->name, AudioEslinear); 626 fp->encoding = AUDIO_ENCODING_SLINEAR; 627 fp->precision = 8; 628 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 629 return (0); 630 case 4: 631 strcpy(fp->name, AudioEslinear_le); 632 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 633 fp->precision = 16; 634 fp->flags = 0; 635 return (0); 636 case 5: 637 strcpy(fp->name, AudioEulinear_le); 638 fp->encoding = AUDIO_ENCODING_ULINEAR_LE; 639 fp->precision = 16; 640 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 641 return (0); 642 case 6: 643 strcpy(fp->name, AudioEslinear_be); 644 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 645 fp->precision = 16; 646 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 647 return (0); 648 case 7: 649 strcpy(fp->name, AudioEulinear_be); 650 fp->encoding = AUDIO_ENCODING_ULINEAR_BE; 651 fp->precision = 16; 652 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 653 return (0); 654 default: 655 return (EINVAL); 656 } 657 } 658 659 int 660 sv_set_params(addr, setmode, usemode, play, rec) 661 void *addr; 662 int setmode, usemode; 663 struct audio_params *play, *rec; 664 { 665 struct sv_softc *sc = addr; 666 struct audio_params *p = NULL; 667 int mode; 668 u_int32_t val; 669 670 /* 671 * This device only has one clock, so make the sample rates match. 672 */ 673 if (play->sample_rate != rec->sample_rate && 674 usemode == (AUMODE_PLAY | AUMODE_RECORD)) { 675 if (setmode == AUMODE_PLAY) { 676 rec->sample_rate = play->sample_rate; 677 setmode |= AUMODE_RECORD; 678 } else if (setmode == AUMODE_RECORD) { 679 play->sample_rate = rec->sample_rate; 680 setmode |= AUMODE_PLAY; 681 } else 682 return (EINVAL); 683 } 684 685 for (mode = AUMODE_RECORD; mode != -1; 686 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { 687 if ((setmode & mode) == 0) 688 continue; 689 690 p = mode == AUMODE_PLAY ? play : rec; 691 692 if (p->sample_rate < 2000 || p->sample_rate > 48000 || 693 (p->precision != 8 && p->precision != 16) || 694 (p->channels != 1 && p->channels != 2)) 695 return (EINVAL); 696 697 p->factor = 1; 698 p->sw_code = 0; 699 switch (p->encoding) { 700 case AUDIO_ENCODING_SLINEAR_BE: 701 if (p->precision == 16) 702 p->sw_code = swap_bytes; 703 else 704 p->sw_code = change_sign8; 705 break; 706 case AUDIO_ENCODING_SLINEAR_LE: 707 if (p->precision != 16) 708 p->sw_code = change_sign8; 709 break; 710 case AUDIO_ENCODING_ULINEAR_BE: 711 if (p->precision == 16) { 712 if (mode == AUMODE_PLAY) 713 p->sw_code = swap_bytes_change_sign16_le; 714 else 715 p->sw_code = change_sign16_swap_bytes_le; 716 } 717 break; 718 case AUDIO_ENCODING_ULINEAR_LE: 719 if (p->precision == 16) 720 p->sw_code = change_sign16_le; 721 break; 722 case AUDIO_ENCODING_ULAW: 723 if (mode == AUMODE_PLAY) { 724 p->factor = 2; 725 p->sw_code = mulaw_to_slinear16_le; 726 } else 727 p->sw_code = ulinear8_to_mulaw; 728 break; 729 case AUDIO_ENCODING_ALAW: 730 if (mode == AUMODE_PLAY) { 731 p->factor = 2; 732 p->sw_code = alaw_to_slinear16_le; 733 } else 734 p->sw_code = ulinear8_to_alaw; 735 break; 736 default: 737 return (EINVAL); 738 } 739 } 740 741 val = p->sample_rate * 65536 / 48000; 742 /* 743 * If the sample rate is exactly 48KHz, the fraction would overflow the 744 * register, so we have to bias it. This causes a little clock drift. 745 * The drift is below normal crystal tolerance (.0001%), so although 746 * this seems a little silly, we can pretty much ignore it. 747 * (I tested the output speed with values of 1-20, just to be sure this 748 * register isn't *supposed* to have a bias. It isn't.) 749 * - mycroft 750 */ 751 if (val > 65535) 752 val = 65535; 753 754 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff); 755 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8); 756 757 #define F_REF 24576000 758 759 #define ABS(x) (((x) < 0) ? (-x) : (x)) 760 761 if (setmode & AUMODE_RECORD) { 762 /* The ADC reference frequency (f_out) is 512 * sample rate */ 763 764 /* f_out is dervied from the 24.576MHZ crystal by three values: 765 M & N & R. The equation is as follows: 766 767 f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a)) 768 769 with the constraint that: 770 771 80 MhZ < (m + 2) / (n + 2) * f_ref <= 150Mhz 772 and n, m >= 1 773 */ 774 775 int goal_f_out = 512 * rec->sample_rate; 776 int a, n, m, best_n = 0, best_m = 0, best_error = 10000000; 777 int pll_sample; 778 int error; 779 780 for (a = 0; a < 8; a++) { 781 if ((goal_f_out * (1 << a)) >= 80000000) 782 break; 783 } 784 785 /* a != 8 because sample_rate >= 2000 */ 786 787 for (n = 33; n > 2; n--) { 788 m = (goal_f_out * n * (1 << a)) / F_REF; 789 if ((m > 257) || (m < 3)) 790 continue; 791 792 pll_sample = (m * F_REF) / (n * (1 << a)); 793 pll_sample /= 512; 794 795 /* Threshold might be good here */ 796 error = pll_sample - rec->sample_rate; 797 error = ABS(error); 798 799 if (error < best_error) { 800 best_error = error; 801 best_n = n; 802 best_m = m; 803 if (error == 0) break; 804 } 805 } 806 807 best_n -= 2; 808 best_m -= 2; 809 810 sv_write_indirect(sc, SV_ADC_PLL_M, best_m); 811 sv_write_indirect(sc, SV_ADC_PLL_N, 812 best_n | (a << SV_PLL_R_SHIFT)); 813 } 814 815 return (0); 816 } 817 818 int 819 sv_round_blocksize(addr, blk) 820 void *addr; 821 int blk; 822 { 823 return (blk & -32); /* keep good alignment */ 824 } 825 826 int 827 sv_trigger_output(addr, start, end, blksize, intr, arg, param) 828 void *addr; 829 void *start, *end; 830 int blksize; 831 void (*intr) __P((void *)); 832 void *arg; 833 struct audio_params *param; 834 { 835 struct sv_softc *sc = addr; 836 struct sv_dma *p; 837 u_int8_t mode; 838 int dma_count; 839 840 DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n", 841 addr, start, end, blksize, intr, arg)); 842 sc->sc_pintr = intr; 843 sc->sc_parg = arg; 844 845 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT); 846 mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO); 847 if (param->precision * param->factor == 16) 848 mode |= SV_DMAA_FORMAT16; 849 if (param->channels == 2) 850 mode |= SV_DMAA_STEREO; 851 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode); 852 853 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next) 854 ; 855 if (!p) { 856 printf("sv_trigger_output: bad addr %p\n", start); 857 return (EINVAL); 858 } 859 860 dma_count = ((char *)end - (char *)start) - 1; 861 DPRINTF(("sv_trigger_output: dma start loop input addr=%x cc=%d\n", 862 (int)DMAADDR(p), dma_count)); 863 864 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0, 865 DMAADDR(p)); 866 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0, 867 dma_count); 868 bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE, 869 DMA37MD_READ | DMA37MD_LOOP); 870 871 DPRINTF(("sv_trigger_output: current addr=%x\n", 872 bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0))); 873 874 dma_count = blksize - 1; 875 876 sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8); 877 sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF); 878 879 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 880 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE); 881 882 return (0); 883 } 884 885 int 886 sv_trigger_input(addr, start, end, blksize, intr, arg, param) 887 void *addr; 888 void *start, *end; 889 int blksize; 890 void (*intr) __P((void *)); 891 void *arg; 892 struct audio_params *param; 893 { 894 struct sv_softc *sc = addr; 895 struct sv_dma *p; 896 u_int8_t mode; 897 int dma_count; 898 899 DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n", 900 addr, start, end, blksize, intr, arg)); 901 sc->sc_rintr = intr; 902 sc->sc_rarg = arg; 903 904 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT); 905 mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO); 906 if (param->precision * param->factor == 16) 907 mode |= SV_DMAC_FORMAT16; 908 if (param->channels == 2) 909 mode |= SV_DMAC_STEREO; 910 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode); 911 912 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next) 913 ; 914 if (!p) { 915 printf("sv_trigger_input: bad addr %p\n", start); 916 return (EINVAL); 917 } 918 919 dma_count = (((char *)end - (char *)start) >> 1) - 1; 920 DPRINTF(("sv_trigger_input: dma start loop input addr=%x cc=%d\n", 921 (int)DMAADDR(p), dma_count)); 922 923 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0, 924 DMAADDR(p)); 925 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0, 926 dma_count); 927 bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE, 928 DMA37MD_WRITE | DMA37MD_LOOP); 929 930 DPRINTF(("sv_trigger_input: current addr=%x\n", 931 bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0))); 932 933 dma_count = (blksize >> 1) - 1; 934 935 sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8); 936 sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF); 937 938 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 939 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE); 940 941 return (0); 942 } 943 944 int 945 sv_halt_output(addr) 946 void *addr; 947 { 948 struct sv_softc *sc = addr; 949 u_int8_t mode; 950 951 DPRINTF(("sv: sv_halt_output\n")); 952 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 953 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE); 954 955 return (0); 956 } 957 958 int 959 sv_halt_input(addr) 960 void *addr; 961 { 962 struct sv_softc *sc = addr; 963 u_int8_t mode; 964 965 DPRINTF(("sv: sv_halt_input\n")); 966 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE); 967 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE); 968 969 return (0); 970 } 971 972 int 973 sv_getdev(addr, retp) 974 void *addr; 975 struct audio_device *retp; 976 { 977 *retp = sv_device; 978 return (0); 979 } 980 981 982 /* 983 * Mixer related code is here 984 * 985 */ 986 987 #define SV_INPUT_CLASS 0 988 #define SV_OUTPUT_CLASS 1 989 #define SV_RECORD_CLASS 2 990 991 #define SV_LAST_CLASS 2 992 993 static const char *mixer_classes[] = 994 { AudioCinputs, AudioCoutputs, AudioCrecord }; 995 996 static const struct { 997 u_int8_t l_port; 998 u_int8_t r_port; 999 u_int8_t mask; 1000 u_int8_t class; 1001 const char *audio; 1002 } ports[] = { 1003 { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK, 1004 SV_INPUT_CLASS, "aux1" }, 1005 { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK, 1006 SV_INPUT_CLASS, AudioNcd }, 1007 { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK, 1008 SV_INPUT_CLASS, AudioNline }, 1009 { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone }, 1010 { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL, 1011 SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth }, 1012 { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK, 1013 SV_INPUT_CLASS, "aux2" }, 1014 { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK, 1015 SV_INPUT_CLASS, AudioNdac }, 1016 { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL, 1017 SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster } 1018 }; 1019 1020 1021 static const struct { 1022 int idx; 1023 const char *name; 1024 } record_sources[] = { 1025 { SV_REC_CD, AudioNcd }, 1026 { SV_REC_DAC, AudioNdac }, 1027 { SV_REC_AUX2, "aux2" }, 1028 { SV_REC_LINE, AudioNline }, 1029 { SV_REC_AUX1, "aux1" }, 1030 { SV_REC_MIC, AudioNmicrophone }, 1031 { SV_REC_MIXER, AudioNmixerout } 1032 }; 1033 1034 1035 #define SV_DEVICES_PER_PORT 2 1036 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1) 1037 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS) 1038 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1) 1039 #define SV_MIC_BOOST (SV_LAST_MIXER + 2) 1040 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3) 1041 #define SV_SRS_MODE (SV_LAST_MIXER + 4) 1042 1043 int 1044 sv_query_devinfo(addr, dip) 1045 void *addr; 1046 mixer_devinfo_t *dip; 1047 { 1048 int i; 1049 1050 /* It's a class */ 1051 if (dip->index <= SV_LAST_CLASS) { 1052 dip->type = AUDIO_MIXER_CLASS; 1053 dip->mixer_class = dip->index; 1054 dip->next = dip->prev = AUDIO_MIXER_LAST; 1055 strcpy(dip->label.name, 1056 mixer_classes[dip->index]); 1057 return (0); 1058 } 1059 1060 if (dip->index >= SV_FIRST_MIXER && 1061 dip->index <= SV_LAST_MIXER) { 1062 int off = dip->index - SV_FIRST_MIXER; 1063 int mute = (off % SV_DEVICES_PER_PORT); 1064 int idx = off / SV_DEVICES_PER_PORT; 1065 1066 dip->mixer_class = ports[idx].class; 1067 strcpy(dip->label.name, ports[idx].audio); 1068 1069 if (!mute) { 1070 dip->type = AUDIO_MIXER_VALUE; 1071 dip->prev = AUDIO_MIXER_LAST; 1072 dip->next = dip->index + 1; 1073 1074 if (ports[idx].r_port != 0) 1075 dip->un.v.num_channels = 2; 1076 else 1077 dip->un.v.num_channels = 1; 1078 1079 strcpy(dip->un.v.units.name, AudioNvolume); 1080 } else { 1081 dip->type = AUDIO_MIXER_ENUM; 1082 dip->prev = dip->index - 1; 1083 dip->next = AUDIO_MIXER_LAST; 1084 1085 strcpy(dip->label.name, AudioNmute); 1086 dip->un.e.num_mem = 2; 1087 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1088 dip->un.e.member[0].ord = 0; 1089 strcpy(dip->un.e.member[1].label.name, AudioNon); 1090 dip->un.e.member[1].ord = 1; 1091 } 1092 1093 return (0); 1094 } 1095 1096 switch (dip->index) { 1097 case SV_RECORD_SOURCE: 1098 dip->mixer_class = SV_RECORD_CLASS; 1099 dip->prev = AUDIO_MIXER_LAST; 1100 dip->next = SV_RECORD_GAIN; 1101 strcpy(dip->label.name, AudioNsource); 1102 dip->type = AUDIO_MIXER_ENUM; 1103 1104 dip->un.e.num_mem = ARRAY_SIZE(record_sources); 1105 for (i = 0; i < ARRAY_SIZE(record_sources); i++) { 1106 strcpy(dip->un.e.member[i].label.name, 1107 record_sources[i].name); 1108 dip->un.e.member[i].ord = record_sources[i].idx; 1109 } 1110 return (0); 1111 1112 case SV_RECORD_GAIN: 1113 dip->mixer_class = SV_RECORD_CLASS; 1114 dip->prev = SV_RECORD_SOURCE; 1115 dip->next = AUDIO_MIXER_LAST; 1116 strcpy(dip->label.name, "gain"); 1117 dip->type = AUDIO_MIXER_VALUE; 1118 dip->un.v.num_channels = 1; 1119 strcpy(dip->un.v.units.name, AudioNvolume); 1120 return (0); 1121 1122 case SV_MIC_BOOST: 1123 dip->mixer_class = SV_RECORD_CLASS; 1124 dip->prev = AUDIO_MIXER_LAST; 1125 dip->next = AUDIO_MIXER_LAST; 1126 strcpy(dip->label.name, "micboost"); 1127 goto on_off; 1128 1129 case SV_SRS_MODE: 1130 dip->mixer_class = SV_OUTPUT_CLASS; 1131 dip->prev = dip->next = AUDIO_MIXER_LAST; 1132 strcpy(dip->label.name, AudioNspatial); 1133 1134 on_off: 1135 dip->type = AUDIO_MIXER_ENUM; 1136 dip->un.e.num_mem = 2; 1137 strcpy(dip->un.e.member[0].label.name, AudioNoff); 1138 dip->un.e.member[0].ord = 0; 1139 strcpy(dip->un.e.member[1].label.name, AudioNon); 1140 dip->un.e.member[1].ord = 1; 1141 return (0); 1142 } 1143 1144 return (ENXIO); 1145 } 1146 1147 int 1148 sv_mixer_set_port(addr, cp) 1149 void *addr; 1150 mixer_ctrl_t *cp; 1151 { 1152 struct sv_softc *sc = addr; 1153 u_int8_t reg; 1154 int idx; 1155 1156 if (cp->dev >= SV_FIRST_MIXER && 1157 cp->dev <= SV_LAST_MIXER) { 1158 int off = cp->dev - SV_FIRST_MIXER; 1159 int mute = (off % SV_DEVICES_PER_PORT); 1160 idx = off / SV_DEVICES_PER_PORT; 1161 1162 if (mute) { 1163 if (cp->type != AUDIO_MIXER_ENUM) 1164 return (EINVAL); 1165 1166 reg = sv_read_indirect(sc, ports[idx].l_port); 1167 if (cp->un.ord) 1168 reg |= SV_MUTE_BIT; 1169 else 1170 reg &= ~SV_MUTE_BIT; 1171 sv_write_indirect(sc, ports[idx].l_port, reg); 1172 1173 if (ports[idx].r_port) { 1174 reg = sv_read_indirect(sc, ports[idx].r_port); 1175 if (cp->un.ord) 1176 reg |= SV_MUTE_BIT; 1177 else 1178 reg &= ~SV_MUTE_BIT; 1179 sv_write_indirect(sc, ports[idx].r_port, reg); 1180 } 1181 } else { 1182 int lval, rval; 1183 1184 if (cp->type != AUDIO_MIXER_VALUE) 1185 return (EINVAL); 1186 1187 if (cp->un.value.num_channels != 1 && 1188 cp->un.value.num_channels != 2) 1189 return (EINVAL); 1190 1191 if (ports[idx].r_port == 0) { 1192 if (cp->un.value.num_channels != 1) 1193 return (EINVAL); 1194 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; 1195 rval = 0; /* shut up GCC */ 1196 } else { 1197 if (cp->un.value.num_channels != 2) 1198 return (EINVAL); 1199 1200 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]; 1201 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]; 1202 } 1203 1204 1205 reg = sv_read_indirect(sc, ports[idx].l_port); 1206 reg &= ~(ports[idx].mask); 1207 lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask / 1208 AUDIO_MAX_GAIN; 1209 reg |= lval; 1210 sv_write_indirect(sc, ports[idx].l_port, reg); 1211 1212 if (ports[idx].r_port != 0) { 1213 reg = sv_read_indirect(sc, ports[idx].r_port); 1214 reg &= ~(ports[idx].mask); 1215 1216 rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask / 1217 AUDIO_MAX_GAIN; 1218 reg |= rval; 1219 1220 sv_write_indirect(sc, ports[idx].r_port, reg); 1221 } 1222 1223 sv_read_indirect(sc, ports[idx].l_port); 1224 } 1225 1226 return (0); 1227 } 1228 1229 1230 switch (cp->dev) { 1231 case SV_RECORD_SOURCE: 1232 if (cp->type != AUDIO_MIXER_ENUM) 1233 return (EINVAL); 1234 1235 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) { 1236 if (record_sources[idx].idx == cp->un.ord) 1237 goto found; 1238 } 1239 1240 return (EINVAL); 1241 1242 found: 1243 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1244 reg &= ~SV_REC_SOURCE_MASK; 1245 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK); 1246 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1247 1248 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL); 1249 reg &= ~SV_REC_SOURCE_MASK; 1250 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK); 1251 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg); 1252 return (0); 1253 1254 case SV_RECORD_GAIN: 1255 { 1256 int val; 1257 1258 if (cp->type != AUDIO_MIXER_VALUE) 1259 return (EINVAL); 1260 1261 if (cp->un.value.num_channels != 1) 1262 return (EINVAL); 1263 1264 val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] * SV_REC_GAIN_MASK) 1265 / AUDIO_MAX_GAIN; 1266 1267 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1268 reg &= ~SV_REC_GAIN_MASK; 1269 reg |= val; 1270 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1271 1272 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL); 1273 reg &= ~SV_REC_GAIN_MASK; 1274 reg |= val; 1275 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg); 1276 } 1277 return (0); 1278 1279 case SV_MIC_BOOST: 1280 if (cp->type != AUDIO_MIXER_ENUM) 1281 return (EINVAL); 1282 1283 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1284 if (cp->un.ord) { 1285 reg |= SV_MIC_BOOST_BIT; 1286 } else { 1287 reg &= ~SV_MIC_BOOST_BIT; 1288 } 1289 1290 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg); 1291 return (0); 1292 1293 case SV_SRS_MODE: 1294 if (cp->type != AUDIO_MIXER_ENUM) 1295 return (EINVAL); 1296 1297 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL); 1298 if (cp->un.ord) { 1299 reg &= ~SV_SRS_SPACE_ONOFF; 1300 } else { 1301 reg |= SV_SRS_SPACE_ONOFF; 1302 } 1303 1304 sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg); 1305 return (0); 1306 } 1307 1308 return (EINVAL); 1309 } 1310 1311 int 1312 sv_mixer_get_port(addr, cp) 1313 void *addr; 1314 mixer_ctrl_t *cp; 1315 { 1316 struct sv_softc *sc = addr; 1317 int val; 1318 u_int8_t reg; 1319 1320 if (cp->dev >= SV_FIRST_MIXER && 1321 cp->dev <= SV_LAST_MIXER) { 1322 int off = cp->dev - SV_FIRST_MIXER; 1323 int mute = (off % 2); 1324 int idx = off / 2; 1325 1326 if (mute) { 1327 if (cp->type != AUDIO_MIXER_ENUM) 1328 return (EINVAL); 1329 1330 reg = sv_read_indirect(sc, ports[idx].l_port); 1331 cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0); 1332 } else { 1333 if (cp->type != AUDIO_MIXER_VALUE) 1334 return (EINVAL); 1335 1336 if (cp->un.value.num_channels != 1 && 1337 cp->un.value.num_channels != 2) 1338 return (EINVAL); 1339 1340 if ((ports[idx].r_port == 0 && 1341 cp->un.value.num_channels != 1) || 1342 (ports[idx].r_port != 0 && 1343 cp->un.value.num_channels != 2)) 1344 return (EINVAL); 1345 1346 reg = sv_read_indirect(sc, ports[idx].l_port); 1347 reg &= ports[idx].mask; 1348 1349 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask); 1350 1351 if (ports[idx].r_port != 0) { 1352 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val; 1353 1354 reg = sv_read_indirect(sc, ports[idx].r_port); 1355 reg &= ports[idx].mask; 1356 1357 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask); 1358 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val; 1359 } else 1360 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val; 1361 } 1362 1363 return (0); 1364 } 1365 1366 switch (cp->dev) { 1367 case SV_RECORD_SOURCE: 1368 if (cp->type != AUDIO_MIXER_ENUM) 1369 return (EINVAL); 1370 1371 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1372 cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT); 1373 1374 return (0); 1375 1376 case SV_RECORD_GAIN: 1377 if (cp->type != AUDIO_MIXER_VALUE) 1378 return (EINVAL); 1379 if (cp->un.value.num_channels != 1) 1380 return (EINVAL); 1381 1382 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK; 1383 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1384 (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK; 1385 1386 return (0); 1387 1388 case SV_MIC_BOOST: 1389 if (cp->type != AUDIO_MIXER_ENUM) 1390 return (EINVAL); 1391 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL); 1392 cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0); 1393 return (0); 1394 1395 1396 case SV_SRS_MODE: 1397 if (cp->type != AUDIO_MIXER_ENUM) 1398 return (EINVAL); 1399 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL); 1400 cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1); 1401 return (0); 1402 } 1403 1404 return (EINVAL); 1405 } 1406 1407 1408 static void 1409 sv_init_mixer(sc) 1410 struct sv_softc *sc; 1411 { 1412 mixer_ctrl_t cp; 1413 int i; 1414 1415 cp.type = AUDIO_MIXER_ENUM; 1416 cp.dev = SV_SRS_MODE; 1417 cp.un.ord = 0; 1418 1419 sv_mixer_set_port(sc, &cp); 1420 1421 for (i = 0; i < ARRAY_SIZE(ports); i++) { 1422 if (ports[i].audio == AudioNdac) { 1423 cp.type = AUDIO_MIXER_ENUM; 1424 cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1; 1425 cp.un.ord = 0; 1426 sv_mixer_set_port(sc, &cp); 1427 break; 1428 } 1429 } 1430 } 1431 1432 void * 1433 sv_malloc(addr, direction, size, pool, flags) 1434 void *addr; 1435 int direction; 1436 size_t size; 1437 int pool, flags; 1438 { 1439 struct sv_softc *sc = addr; 1440 struct sv_dma *p; 1441 int error; 1442 1443 p = malloc(sizeof(*p), pool, flags); 1444 if (!p) 1445 return (0); 1446 error = sv_allocmem(sc, size, 16, direction, p); 1447 if (error) { 1448 free(p, pool); 1449 return (0); 1450 } 1451 p->next = sc->sc_dmas; 1452 sc->sc_dmas = p; 1453 return (KERNADDR(p)); 1454 } 1455 1456 void 1457 sv_free(addr, ptr, pool) 1458 void *addr; 1459 void *ptr; 1460 int pool; 1461 { 1462 struct sv_softc *sc = addr; 1463 struct sv_dma **pp, *p; 1464 1465 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) { 1466 if (KERNADDR(p) == ptr) { 1467 sv_freemem(sc, p); 1468 *pp = p->next; 1469 free(p, pool); 1470 return; 1471 } 1472 } 1473 } 1474 1475 size_t 1476 sv_round_buffersize(addr, direction, size) 1477 void *addr; 1478 int direction; 1479 size_t size; 1480 { 1481 return (size); 1482 } 1483 1484 paddr_t 1485 sv_mappage(addr, mem, off, prot) 1486 void *addr; 1487 void *mem; 1488 off_t off; 1489 int prot; 1490 { 1491 struct sv_softc *sc = addr; 1492 struct sv_dma *p; 1493 1494 if (off < 0) 1495 return (-1); 1496 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next) 1497 ; 1498 if (!p) 1499 return (-1); 1500 return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs, 1501 off, prot, BUS_DMA_WAITOK)); 1502 } 1503 1504 int 1505 sv_get_props(addr) 1506 void *addr; 1507 { 1508 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX); 1509 } 1510