xref: /netbsd-src/sys/dev/pci/sv.c (revision 37b34d511dea595d3ba03a661cf3b775038ea5f8)
1 /*      $NetBSD: sv.c,v 1.18 2002/10/02 16:51:55 thorpej Exp $ */
2 /*      $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
3 
4 /*
5  * Copyright (c) 1999 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Charles M. Hannum.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *        This product includes software developed by the NetBSD
22  *        Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1998 Constantine Paul Sapuntzakis
42  * All rights reserved
43  *
44  * Author: Constantine Paul Sapuntzakis (csapuntz@cvs.openbsd.org)
45  *
46  * Redistribution and use in source and binary forms, with or without
47  * modification, are permitted provided that the following conditions
48  * are met:
49  * 1. Redistributions of source code must retain the above copyright
50  *    notice, this list of conditions and the following disclaimer.
51  * 2. Redistributions in binary form must reproduce the above copyright
52  *    notice, this list of conditions and the following disclaimer in the
53  *    documentation and/or other materials provided with the distribution.
54  * 3. The author's name or those of the contributors may be used to
55  *    endorse or promote products derived from this software without
56  *    specific prior written permission.
57  *
58  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
59  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
60  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
61  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
62  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
63  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
64  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
65  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
66  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
67  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
68  * POSSIBILITY OF SUCH DAMAGE.
69  */
70 
71 /*
72  * S3 SonicVibes driver
73  *   Heavily based on the eap driver by Lennart Augustsson
74  */
75 
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.18 2002/10/02 16:51:55 thorpej Exp $");
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/malloc.h>
83 #include <sys/device.h>
84 
85 #include <dev/pci/pcireg.h>
86 #include <dev/pci/pcivar.h>
87 #include <dev/pci/pcidevs.h>
88 
89 #include <sys/audioio.h>
90 #include <dev/audio_if.h>
91 #include <dev/mulaw.h>
92 #include <dev/auconv.h>
93 
94 #include <dev/ic/i8237reg.h>
95 #include <dev/pci/svreg.h>
96 #include <dev/pci/svvar.h>
97 
98 #include <machine/bus.h>
99 
100 #ifdef AUDIO_DEBUG
101 #define DPRINTF(x)	if (svdebug) printf x
102 #define DPRINTFN(n,x)	if (svdebug>(n)) printf x
103 int	svdebug = 0;
104 #else
105 #define DPRINTF(x)
106 #define DPRINTFN(n,x)
107 #endif
108 
109 int	sv_match __P((struct device *, struct cfdata *, void *));
110 void	sv_attach __P((struct device *, struct device *, void *));
111 int	sv_intr __P((void *));
112 
113 struct sv_dma {
114 	bus_dmamap_t map;
115 	caddr_t addr;
116 	bus_dma_segment_t segs[1];
117 	int nsegs;
118 	size_t size;
119 	struct sv_dma *next;
120 };
121 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
122 #define KERNADDR(p) ((void *)((p)->addr))
123 
124 CFATTACH_DECL(sv, sizeof(struct sv_softc),
125     sv_match, sv_attach, NULL, NULL);
126 
127 struct audio_device sv_device = {
128 	"S3 SonicVibes",
129 	"",
130 	"sv"
131 };
132 
133 #define ARRAY_SIZE(foo)  ((sizeof(foo)) / sizeof(foo[0]))
134 
135 int	sv_allocmem __P((struct sv_softc *, size_t, size_t, int, struct sv_dma *));
136 int	sv_freemem __P((struct sv_softc *, struct sv_dma *));
137 
138 int	sv_open __P((void *, int));
139 void	sv_close __P((void *));
140 int	sv_query_encoding __P((void *, struct audio_encoding *));
141 int	sv_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
142 int	sv_round_blocksize __P((void *, int));
143 int	sv_trigger_output __P((void *, void *, void *, int, void (*)(void *),
144 	    void *, struct audio_params *));
145 int	sv_trigger_input __P((void *, void *, void *, int, void (*)(void *),
146 	    void *, struct audio_params *));
147 int	sv_halt_output __P((void *));
148 int	sv_halt_input __P((void *));
149 int	sv_getdev __P((void *, struct audio_device *));
150 int	sv_mixer_set_port __P((void *, mixer_ctrl_t *));
151 int	sv_mixer_get_port __P((void *, mixer_ctrl_t *));
152 int	sv_query_devinfo __P((void *, mixer_devinfo_t *));
153 void   *sv_malloc __P((void *, int, size_t, int, int));
154 void	sv_free __P((void *, void *, int));
155 size_t	sv_round_buffersize __P((void *, int, size_t));
156 paddr_t	sv_mappage __P((void *, void *, off_t, int));
157 int	sv_get_props __P((void *));
158 
159 #ifdef AUDIO_DEBUG
160 void    sv_dumpregs __P((struct sv_softc *sc));
161 #endif
162 
163 struct audio_hw_if sv_hw_if = {
164 	sv_open,
165 	sv_close,
166 	NULL,
167 	sv_query_encoding,
168 	sv_set_params,
169 	sv_round_blocksize,
170 	NULL,
171 	NULL,
172 	NULL,
173 	NULL,
174 	NULL,
175 	sv_halt_output,
176 	sv_halt_input,
177 	NULL,
178 	sv_getdev,
179 	NULL,
180 	sv_mixer_set_port,
181 	sv_mixer_get_port,
182 	sv_query_devinfo,
183 	sv_malloc,
184 	sv_free,
185 	sv_round_buffersize,
186 	sv_mappage,
187 	sv_get_props,
188 	sv_trigger_output,
189 	sv_trigger_input,
190 	NULL,
191 };
192 
193 
194 static u_int8_t sv_read __P((struct sv_softc *, u_int8_t));
195 static u_int8_t sv_read_indirect __P((struct sv_softc *, u_int8_t));
196 static void sv_write __P((struct sv_softc *, u_int8_t, u_int8_t ));
197 static void sv_write_indirect __P((struct sv_softc *, u_int8_t, u_int8_t ));
198 static void sv_init_mixer __P((struct sv_softc *));
199 
200 static void sv_defer __P((struct device *self));
201 
202 static void
203 sv_write (sc, reg, val)
204 	struct sv_softc *sc;
205 	u_int8_t reg, val;
206 
207 {
208 	DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
209 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
210 }
211 
212 static u_int8_t
213 sv_read(sc, reg)
214 	struct sv_softc *sc;
215 	u_int8_t reg;
216 
217 {
218 	u_int8_t val;
219 
220 	val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
221 	DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
222 	return val;
223 }
224 
225 static u_int8_t
226 sv_read_indirect(sc, reg)
227 	struct sv_softc *sc;
228 	u_int8_t reg;
229 {
230 	u_int8_t val;
231 	int s = splaudio();
232 
233 	sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
234 	val = sv_read(sc, SV_CODEC_IDATA);
235 	splx(s);
236 	return (val);
237 }
238 
239 static void
240 sv_write_indirect(sc, reg, val)
241 	struct sv_softc *sc;
242 	u_int8_t reg, val;
243 {
244 	u_int8_t iaddr = reg & SV_IADDR_MASK;
245 	int s = splaudio();
246 
247 	if (reg == SV_DMA_DATA_FORMAT)
248 		iaddr |= SV_IADDR_MCE;
249 
250 	sv_write(sc, SV_CODEC_IADDR, iaddr);
251 	sv_write(sc, SV_CODEC_IDATA, val);
252 	splx(s);
253 }
254 
255 int
256 sv_match(parent, match, aux)
257 	struct device *parent;
258 	struct cfdata *match;
259 	void *aux;
260 {
261 	struct pci_attach_args *pa = aux;
262 
263 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
264 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
265 		return (1);
266 
267 	return (0);
268 }
269 
270 int pci_alloc_io __P((pci_chipset_tag_t pc, pcitag_t pt,
271 		      int pcioffs,
272 		      bus_space_tag_t iot, bus_size_t size,
273 		      bus_size_t align, bus_size_t bound, int flags,
274 		      bus_space_handle_t *ioh));
275 
276 #define PCI_IO_ALLOC_LOW 0xa000
277 #define PCI_IO_ALLOC_HIGH 0xb000
278 int
279 pci_alloc_io(pc, pt, pcioffs, iot, size, align, bound, flags, ioh)
280 	pci_chipset_tag_t pc;
281 	pcitag_t pt;
282 	int pcioffs;
283 	bus_space_tag_t iot;
284 	bus_size_t size;
285 	bus_size_t align;
286 	bus_size_t bound;
287 	int flags;
288 	bus_space_handle_t *ioh;
289 {
290 	bus_addr_t addr;
291 	int error;
292 
293 	error = bus_space_alloc(iot, PCI_IO_ALLOC_LOW, PCI_IO_ALLOC_HIGH,
294 				size, align, bound, flags, &addr, ioh);
295 	if (error)
296 		return(error);
297 
298 	pci_conf_write(pc, pt, pcioffs, addr);
299 	return (0);
300 }
301 
302 /*
303  * Allocate IO addresses when all other configuration is done.
304  */
305 void
306 sv_defer(self)
307 	struct device *self;
308 {
309 	struct sv_softc *sc = (struct sv_softc *)self;
310 	pci_chipset_tag_t pc = sc->sc_pa.pa_pc;
311 	pcitag_t pt = sc->sc_pa.pa_tag;
312 	pcireg_t dmaio;
313 
314 	DPRINTF(("sv_defer: %p\n", sc));
315 	if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
316 			  sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
317 			  0, &sc->sc_dmaa_ioh)) {
318 		printf("sv_attach: cannot allocate DMA A range\n");
319 		return;
320 	}
321 	dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
322 	DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
323 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
324 		       dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
325 
326 	if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
327 			  sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
328 			  0, &sc->sc_dmac_ioh)) {
329 		printf("sv_attach: cannot allocate DMA C range\n");
330 		return;
331 	}
332 	dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
333 	DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
334 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
335 		       dmaio | SV_DMA_CHANNEL_ENABLE);
336 
337 	sc->sc_dmaset = 1;
338 }
339 
340 void
341 sv_attach(parent, self, aux)
342 	struct device *parent, *self;
343 	void *aux;
344 {
345 	struct sv_softc *sc = (struct sv_softc *)self;
346 	struct pci_attach_args *pa = aux;
347 	pci_chipset_tag_t pc = pa->pa_pc;
348 	pcitag_t pt = pa->pa_tag;
349 	pci_intr_handle_t ih;
350 	pcireg_t csr;
351 	char const *intrstr;
352 	u_int8_t reg;
353 	struct audio_attach_args arg;
354 
355 	printf ("\n");
356 
357 	/* Map I/O registers */
358 	if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
359 			   PCI_MAPREG_TYPE_IO, 0,
360 			   &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
361 		printf("%s: can't map enhanced i/o space\n",
362 		       sc->sc_dev.dv_xname);
363 		return;
364 	}
365 	if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
366 			   PCI_MAPREG_TYPE_IO, 0,
367 			   &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
368 		printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname);
369 		return;
370 	}
371 	if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
372 			   PCI_MAPREG_TYPE_IO, 0,
373 			   &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
374 		printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname);
375 		return;
376 	}
377 	DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
378 		 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
379 
380 #ifdef alpha
381 	/* XXX Force allocation through the SGMAP. */
382 	sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
383 #else
384 	sc->sc_dmatag = pa->pa_dmat;
385 #endif
386 
387 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
388 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
389 
390 	/* Enable the device. */
391 	csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
392 	pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
393 		       csr | PCI_COMMAND_MASTER_ENABLE);
394 
395 	sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
396 	sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
397 
398 	/* initialize codec registers */
399 	reg = sv_read(sc, SV_CODEC_CONTROL);
400 	reg |= SV_CTL_RESET;
401 	sv_write(sc, SV_CODEC_CONTROL, reg);
402 	delay(50);
403 
404 	reg = sv_read(sc, SV_CODEC_CONTROL);
405 	reg &= ~SV_CTL_RESET;
406 	reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
407 
408 	/* This write clears the reset */
409 	sv_write(sc, SV_CODEC_CONTROL, reg);
410 	delay(50);
411 
412 	/* This write actually shoves the new values in */
413 	sv_write(sc, SV_CODEC_CONTROL, reg);
414 
415 	DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
416 
417 	/* Enable DMA interrupts */
418 	reg = sv_read(sc, SV_CODEC_INTMASK);
419 	reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
420 	reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
421 	sv_write(sc, SV_CODEC_INTMASK, reg);
422 
423 	sv_read(sc, SV_CODEC_STATUS);
424 
425 	/* Map and establish the interrupt. */
426 	if (pci_intr_map(pa, &ih)) {
427 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
428 		return;
429 	}
430 	intrstr = pci_intr_string(pc, ih);
431 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
432 	if (sc->sc_ih == NULL) {
433 		printf("%s: couldn't establish interrupt",
434 		       sc->sc_dev.dv_xname);
435 		if (intrstr != NULL)
436 			printf(" at %s", intrstr);
437 		printf("\n");
438 		return;
439 	}
440 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
441 	printf("%s: rev %d", sc->sc_dev.dv_xname,
442 	       sv_read_indirect(sc, SV_REVISION_LEVEL));
443 	if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
444 		printf(", reverb SRAM present");
445 	if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
446 		printf(", wavetable ROM present");
447 	printf("\n");
448 
449 	sv_init_mixer(sc);
450 
451 	audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
452 
453 	arg.type = AUDIODEV_TYPE_OPL;
454 	arg.hwif = 0;
455 	arg.hdl = 0;
456 	(void)config_found(&sc->sc_dev, &arg, audioprint);
457 
458 	sc->sc_pa = *pa;	/* for deferred setup */
459 	config_defer(self, sv_defer);
460 }
461 
462 #ifdef AUDIO_DEBUG
463 void
464 sv_dumpregs(sc)
465 	struct sv_softc *sc;
466 {
467 	int idx;
468 
469 #if 0
470 	for (idx = 0; idx < 0x50; idx += 4)
471 		printf ("%02x = %x\n", idx,
472 			pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
473 #endif
474 
475 	for (idx = 0; idx < 6; idx++)
476 		printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
477 
478 	for (idx = 0; idx < 0x32; idx++)
479 		printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
480 
481 	for (idx = 0; idx < 0x10; idx++)
482 		printf ("DMA %02x = %02x\n", idx,
483 			bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
484 }
485 #endif
486 
487 int
488 sv_intr(p)
489 	void *p;
490 {
491 	struct sv_softc *sc = p;
492 	u_int8_t intr;
493 
494 	intr = sv_read(sc, SV_CODEC_STATUS);
495 	DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
496 
497 	if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)))
498 		return (0);
499 
500 	if (intr & SV_INTSTATUS_DMAA) {
501 		if (sc->sc_pintr)
502 			sc->sc_pintr(sc->sc_parg);
503 	}
504 
505 	if (intr & SV_INTSTATUS_DMAC) {
506 		if (sc->sc_rintr)
507 			sc->sc_rintr(sc->sc_rarg);
508 	}
509 
510 	return (1);
511 }
512 
513 int
514 sv_allocmem(sc, size, align, direction, p)
515 	struct sv_softc *sc;
516 	size_t size;
517 	size_t align;
518 	int direction;
519 	struct sv_dma *p;
520 {
521 	int error;
522 
523 	p->size = size;
524 	error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
525 				 p->segs, ARRAY_SIZE(p->segs),
526 				 &p->nsegs, BUS_DMA_NOWAIT);
527 	if (error)
528 		return (error);
529 
530 	error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
531 			       &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
532 	if (error)
533 		goto free;
534 
535 	error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
536 				  0, BUS_DMA_NOWAIT, &p->map);
537 	if (error)
538 		goto unmap;
539 
540 	error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
541 				BUS_DMA_NOWAIT |
542                                 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
543 	if (error)
544 		goto destroy;
545 	DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
546 	    (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
547 	return (0);
548 
549 destroy:
550 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
551 unmap:
552 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
553 free:
554 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
555 	return (error);
556 }
557 
558 int
559 sv_freemem(sc, p)
560 	struct sv_softc *sc;
561 	struct sv_dma *p;
562 {
563 	bus_dmamap_unload(sc->sc_dmatag, p->map);
564 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
565 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
566 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
567 	return (0);
568 }
569 
570 int
571 sv_open(addr, flags)
572 	void *addr;
573 	int flags;
574 {
575 	struct sv_softc *sc = addr;
576 
577 	DPRINTF(("sv_open\n"));
578 	if (!sc->sc_dmaset)
579 		return (ENXIO);
580 	sc->sc_pintr = 0;
581 	sc->sc_rintr = 0;
582 
583 	return (0);
584 }
585 
586 /*
587  * Close function is called at splaudio().
588  */
589 void
590 sv_close(addr)
591 	void *addr;
592 {
593 	struct sv_softc *sc = addr;
594 
595 	DPRINTF(("sv_close\n"));
596 	sv_halt_output(sc);
597 	sv_halt_input(sc);
598 
599 	sc->sc_pintr = 0;
600 	sc->sc_rintr = 0;
601 }
602 
603 int
604 sv_query_encoding(addr, fp)
605 	void *addr;
606 	struct audio_encoding *fp;
607 {
608 	switch (fp->index) {
609 	case 0:
610 		strcpy(fp->name, AudioEulinear);
611 		fp->encoding = AUDIO_ENCODING_ULINEAR;
612 		fp->precision = 8;
613 		fp->flags = 0;
614 		return (0);
615 	case 1:
616 		strcpy(fp->name, AudioEmulaw);
617 		fp->encoding = AUDIO_ENCODING_ULAW;
618 		fp->precision = 8;
619 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
620 		return (0);
621 	case 2:
622 		strcpy(fp->name, AudioEalaw);
623 		fp->encoding = AUDIO_ENCODING_ALAW;
624 		fp->precision = 8;
625 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
626 		return (0);
627 	case 3:
628 		strcpy(fp->name, AudioEslinear);
629 		fp->encoding = AUDIO_ENCODING_SLINEAR;
630 		fp->precision = 8;
631 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
632 		return (0);
633 	case 4:
634 		strcpy(fp->name, AudioEslinear_le);
635 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
636 		fp->precision = 16;
637 		fp->flags = 0;
638 		return (0);
639 	case 5:
640 		strcpy(fp->name, AudioEulinear_le);
641 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
642 		fp->precision = 16;
643 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
644 		return (0);
645 	case 6:
646 		strcpy(fp->name, AudioEslinear_be);
647 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
648 		fp->precision = 16;
649 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
650 		return (0);
651 	case 7:
652 		strcpy(fp->name, AudioEulinear_be);
653 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
654 		fp->precision = 16;
655 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
656 		return (0);
657 	default:
658 		return (EINVAL);
659 	}
660 }
661 
662 int
663 sv_set_params(addr, setmode, usemode, play, rec)
664 	void *addr;
665 	int setmode, usemode;
666 	struct audio_params *play, *rec;
667 {
668 	struct sv_softc *sc = addr;
669 	struct audio_params *p = NULL;
670 	int mode;
671 	u_int32_t val;
672 
673 	/*
674 	 * This device only has one clock, so make the sample rates match.
675 	 */
676 	if (play->sample_rate != rec->sample_rate &&
677 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
678 		if (setmode == AUMODE_PLAY) {
679 			rec->sample_rate = play->sample_rate;
680 			setmode |= AUMODE_RECORD;
681 		} else if (setmode == AUMODE_RECORD) {
682 			play->sample_rate = rec->sample_rate;
683 			setmode |= AUMODE_PLAY;
684 		} else
685 			return (EINVAL);
686 	}
687 
688 	for (mode = AUMODE_RECORD; mode != -1;
689 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
690 		if ((setmode & mode) == 0)
691 			continue;
692 
693 		p = mode == AUMODE_PLAY ? play : rec;
694 
695 		if (p->sample_rate < 2000 || p->sample_rate > 48000 ||
696 		    (p->precision != 8 && p->precision != 16) ||
697 		    (p->channels != 1 && p->channels != 2))
698 			return (EINVAL);
699 
700 		p->factor = 1;
701 		p->sw_code = 0;
702 		switch (p->encoding) {
703 		case AUDIO_ENCODING_SLINEAR_BE:
704 			if (p->precision == 16)
705 				p->sw_code = swap_bytes;
706 			else
707 				p->sw_code = change_sign8;
708 			break;
709 		case AUDIO_ENCODING_SLINEAR_LE:
710 			if (p->precision != 16)
711 				p->sw_code = change_sign8;
712 			break;
713 		case AUDIO_ENCODING_ULINEAR_BE:
714 			if (p->precision == 16) {
715 				if (mode == AUMODE_PLAY)
716 					p->sw_code = swap_bytes_change_sign16_le;
717 				else
718 					p->sw_code = change_sign16_swap_bytes_le;
719 			}
720 			break;
721 		case AUDIO_ENCODING_ULINEAR_LE:
722 			if (p->precision == 16)
723 				p->sw_code = change_sign16_le;
724 			break;
725 		case AUDIO_ENCODING_ULAW:
726 			if (mode == AUMODE_PLAY) {
727 				p->factor = 2;
728 				p->sw_code = mulaw_to_slinear16_le;
729 			} else
730 				p->sw_code = ulinear8_to_mulaw;
731 			break;
732 		case AUDIO_ENCODING_ALAW:
733 			if (mode == AUMODE_PLAY) {
734 				p->factor = 2;
735 				p->sw_code = alaw_to_slinear16_le;
736 			} else
737 				p->sw_code = ulinear8_to_alaw;
738 			break;
739 		default:
740 			return (EINVAL);
741 		}
742 	}
743 
744 	val = p->sample_rate * 65536 / 48000;
745 	/*
746 	 * If the sample rate is exactly 48KHz, the fraction would overflow the
747 	 * register, so we have to bias it.  This causes a little clock drift.
748 	 * The drift is below normal crystal tolerance (.0001%), so although
749 	 * this seems a little silly, we can pretty much ignore it.
750 	 * (I tested the output speed with values of 1-20, just to be sure this
751 	 * register isn't *supposed* to have a bias.  It isn't.)
752 	 * - mycroft
753 	 */
754 	if (val > 65535)
755 		val = 65535;
756 
757 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
758 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
759 
760 #define F_REF 24576000
761 
762 #define ABS(x) (((x) < 0) ? (-x) : (x))
763 
764 	if (setmode & AUMODE_RECORD) {
765 		/* The ADC reference frequency (f_out) is 512 * sample rate */
766 
767 		/* f_out is dervied from the 24.576MHZ crystal by three values:
768 		   M & N & R. The equation is as follows:
769 
770 		   f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
771 
772 		   with the constraint that:
773 
774 		   80 MhZ < (m + 2) / (n + 2) * f_ref <= 150Mhz
775 		   and n, m >= 1
776 		*/
777 
778 		int  goal_f_out = 512 * rec->sample_rate;
779 		int  a, n, m, best_n = 0, best_m = 0, best_error = 10000000;
780 		int  pll_sample;
781 		int  error;
782 
783 		for (a = 0; a < 8; a++) {
784 			if ((goal_f_out * (1 << a)) >= 80000000)
785 				break;
786 		}
787 
788 		/* a != 8 because sample_rate >= 2000 */
789 
790 		for (n = 33; n > 2; n--) {
791 			m = (goal_f_out * n * (1 << a)) / F_REF;
792 			if ((m > 257) || (m < 3))
793 				continue;
794 
795 			pll_sample = (m * F_REF) / (n * (1 << a));
796 			pll_sample /= 512;
797 
798 			/* Threshold might be good here */
799 			error = pll_sample - rec->sample_rate;
800 			error = ABS(error);
801 
802 			if (error < best_error) {
803 				best_error = error;
804 				best_n = n;
805 				best_m = m;
806 				if (error == 0) break;
807 			}
808 		}
809 
810 		best_n -= 2;
811 		best_m -= 2;
812 
813 		sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
814 		sv_write_indirect(sc, SV_ADC_PLL_N,
815 				  best_n | (a << SV_PLL_R_SHIFT));
816 	}
817 
818 	return (0);
819 }
820 
821 int
822 sv_round_blocksize(addr, blk)
823 	void *addr;
824 	int blk;
825 {
826 	return (blk & -32);	/* keep good alignment */
827 }
828 
829 int
830 sv_trigger_output(addr, start, end, blksize, intr, arg, param)
831 	void *addr;
832 	void *start, *end;
833 	int blksize;
834 	void (*intr) __P((void *));
835 	void *arg;
836 	struct audio_params *param;
837 {
838 	struct sv_softc *sc = addr;
839 	struct sv_dma *p;
840 	u_int8_t mode;
841 	int dma_count;
842 
843 	DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
844 	    addr, start, end, blksize, intr, arg));
845 	sc->sc_pintr = intr;
846 	sc->sc_parg = arg;
847 
848 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
849 	mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
850 	if (param->precision * param->factor == 16)
851 		mode |= SV_DMAA_FORMAT16;
852 	if (param->channels == 2)
853 		mode |= SV_DMAA_STEREO;
854 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
855 
856 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
857 		;
858 	if (!p) {
859 		printf("sv_trigger_output: bad addr %p\n", start);
860 		return (EINVAL);
861 	}
862 
863 	dma_count = ((char *)end - (char *)start) - 1;
864 	DPRINTF(("sv_trigger_output: dma start loop input addr=%x cc=%d\n",
865 	    (int)DMAADDR(p), dma_count));
866 
867 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
868 			  DMAADDR(p));
869 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
870 			  dma_count);
871 	bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
872 			  DMA37MD_READ | DMA37MD_LOOP);
873 
874 	DPRINTF(("sv_trigger_output: current addr=%x\n",
875 	    bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
876 
877 	dma_count = blksize - 1;
878 
879 	sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
880 	sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
881 
882 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
883 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
884 
885 	return (0);
886 }
887 
888 int
889 sv_trigger_input(addr, start, end, blksize, intr, arg, param)
890 	void *addr;
891 	void *start, *end;
892 	int blksize;
893 	void (*intr) __P((void *));
894 	void *arg;
895 	struct audio_params *param;
896 {
897 	struct sv_softc *sc = addr;
898 	struct sv_dma *p;
899 	u_int8_t mode;
900 	int dma_count;
901 
902 	DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
903 	    addr, start, end, blksize, intr, arg));
904 	sc->sc_rintr = intr;
905 	sc->sc_rarg = arg;
906 
907 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
908 	mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
909 	if (param->precision * param->factor == 16)
910 		mode |= SV_DMAC_FORMAT16;
911 	if (param->channels == 2)
912 		mode |= SV_DMAC_STEREO;
913 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
914 
915 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
916 		;
917 	if (!p) {
918 		printf("sv_trigger_input: bad addr %p\n", start);
919 		return (EINVAL);
920 	}
921 
922 	dma_count = (((char *)end - (char *)start) >> 1) - 1;
923 	DPRINTF(("sv_trigger_input: dma start loop input addr=%x cc=%d\n",
924 	    (int)DMAADDR(p), dma_count));
925 
926 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
927 			  DMAADDR(p));
928 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
929 			  dma_count);
930 	bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
931 			  DMA37MD_WRITE | DMA37MD_LOOP);
932 
933 	DPRINTF(("sv_trigger_input: current addr=%x\n",
934 	    bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
935 
936 	dma_count = (blksize >> 1) - 1;
937 
938 	sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
939 	sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
940 
941 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
942 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
943 
944 	return (0);
945 }
946 
947 int
948 sv_halt_output(addr)
949 	void *addr;
950 {
951 	struct sv_softc *sc = addr;
952 	u_int8_t mode;
953 
954 	DPRINTF(("sv: sv_halt_output\n"));
955 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
956 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
957 
958 	return (0);
959 }
960 
961 int
962 sv_halt_input(addr)
963 	void *addr;
964 {
965 	struct sv_softc *sc = addr;
966 	u_int8_t mode;
967 
968 	DPRINTF(("sv: sv_halt_input\n"));
969 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
970 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
971 
972 	return (0);
973 }
974 
975 int
976 sv_getdev(addr, retp)
977 	void *addr;
978 	struct audio_device *retp;
979 {
980 	*retp = sv_device;
981 	return (0);
982 }
983 
984 
985 /*
986  * Mixer related code is here
987  *
988  */
989 
990 #define SV_INPUT_CLASS 0
991 #define SV_OUTPUT_CLASS 1
992 #define SV_RECORD_CLASS 2
993 
994 #define SV_LAST_CLASS 2
995 
996 static const char *mixer_classes[] =
997 	{ AudioCinputs, AudioCoutputs, AudioCrecord };
998 
999 static const struct {
1000 	u_int8_t   l_port;
1001 	u_int8_t   r_port;
1002 	u_int8_t   mask;
1003 	u_int8_t   class;
1004 	const char *audio;
1005 } ports[] = {
1006   { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
1007     SV_INPUT_CLASS, "aux1" },
1008   { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
1009     SV_INPUT_CLASS, AudioNcd },
1010   { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
1011     SV_INPUT_CLASS, AudioNline },
1012   { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
1013   { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
1014     SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
1015   { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
1016     SV_INPUT_CLASS, "aux2" },
1017   { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
1018     SV_INPUT_CLASS, AudioNdac },
1019   { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
1020     SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
1021 };
1022 
1023 
1024 static const struct {
1025 	int idx;
1026 	const char *name;
1027 } record_sources[] = {
1028 	{ SV_REC_CD, AudioNcd },
1029 	{ SV_REC_DAC, AudioNdac },
1030 	{ SV_REC_AUX2, "aux2" },
1031 	{ SV_REC_LINE, AudioNline },
1032 	{ SV_REC_AUX1, "aux1" },
1033 	{ SV_REC_MIC, AudioNmicrophone },
1034 	{ SV_REC_MIXER, AudioNmixerout }
1035 };
1036 
1037 
1038 #define SV_DEVICES_PER_PORT 2
1039 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
1040 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
1041 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
1042 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
1043 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
1044 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
1045 
1046 int
1047 sv_query_devinfo(addr, dip)
1048 	void *addr;
1049 	mixer_devinfo_t *dip;
1050 {
1051 	int i;
1052 
1053 	/* It's a class */
1054 	if (dip->index <= SV_LAST_CLASS) {
1055 		dip->type = AUDIO_MIXER_CLASS;
1056 		dip->mixer_class = dip->index;
1057 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1058 		strcpy(dip->label.name,
1059 		       mixer_classes[dip->index]);
1060 		return (0);
1061 	}
1062 
1063 	if (dip->index >= SV_FIRST_MIXER &&
1064 	    dip->index <= SV_LAST_MIXER) {
1065 		int off = dip->index - SV_FIRST_MIXER;
1066 		int mute = (off % SV_DEVICES_PER_PORT);
1067 		int idx = off / SV_DEVICES_PER_PORT;
1068 
1069 		dip->mixer_class = ports[idx].class;
1070 		strcpy(dip->label.name, ports[idx].audio);
1071 
1072 		if (!mute) {
1073 			dip->type = AUDIO_MIXER_VALUE;
1074 			dip->prev = AUDIO_MIXER_LAST;
1075 			dip->next = dip->index + 1;
1076 
1077 			if (ports[idx].r_port != 0)
1078 				dip->un.v.num_channels = 2;
1079 			else
1080 				dip->un.v.num_channels = 1;
1081 
1082 			strcpy(dip->un.v.units.name, AudioNvolume);
1083 		} else {
1084 			dip->type = AUDIO_MIXER_ENUM;
1085 			dip->prev = dip->index - 1;
1086 			dip->next = AUDIO_MIXER_LAST;
1087 
1088 			strcpy(dip->label.name, AudioNmute);
1089 			dip->un.e.num_mem = 2;
1090 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
1091 			dip->un.e.member[0].ord = 0;
1092 			strcpy(dip->un.e.member[1].label.name, AudioNon);
1093 			dip->un.e.member[1].ord = 1;
1094 		}
1095 
1096 		return (0);
1097 	}
1098 
1099 	switch (dip->index) {
1100 	case SV_RECORD_SOURCE:
1101 		dip->mixer_class = SV_RECORD_CLASS;
1102 		dip->prev = AUDIO_MIXER_LAST;
1103 		dip->next = SV_RECORD_GAIN;
1104 		strcpy(dip->label.name, AudioNsource);
1105 		dip->type = AUDIO_MIXER_ENUM;
1106 
1107 		dip->un.e.num_mem = ARRAY_SIZE(record_sources);
1108 		for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
1109 			strcpy(dip->un.e.member[i].label.name,
1110 			       record_sources[i].name);
1111 			dip->un.e.member[i].ord = record_sources[i].idx;
1112 		}
1113 		return (0);
1114 
1115 	case SV_RECORD_GAIN:
1116 		dip->mixer_class = SV_RECORD_CLASS;
1117 		dip->prev = SV_RECORD_SOURCE;
1118 		dip->next = AUDIO_MIXER_LAST;
1119 		strcpy(dip->label.name, "gain");
1120 		dip->type = AUDIO_MIXER_VALUE;
1121 		dip->un.v.num_channels = 1;
1122 		strcpy(dip->un.v.units.name, AudioNvolume);
1123 		return (0);
1124 
1125 	case SV_MIC_BOOST:
1126 		dip->mixer_class = SV_RECORD_CLASS;
1127 		dip->prev = AUDIO_MIXER_LAST;
1128 		dip->next = AUDIO_MIXER_LAST;
1129 		strcpy(dip->label.name, "micboost");
1130 		goto on_off;
1131 
1132 	case SV_SRS_MODE:
1133 		dip->mixer_class = SV_OUTPUT_CLASS;
1134 		dip->prev = dip->next = AUDIO_MIXER_LAST;
1135 		strcpy(dip->label.name, AudioNspatial);
1136 
1137 	on_off:
1138 		dip->type = AUDIO_MIXER_ENUM;
1139 		dip->un.e.num_mem = 2;
1140 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1141 		dip->un.e.member[0].ord = 0;
1142 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1143 		dip->un.e.member[1].ord = 1;
1144 		return (0);
1145 	}
1146 
1147 	return (ENXIO);
1148 }
1149 
1150 int
1151 sv_mixer_set_port(addr, cp)
1152 	void *addr;
1153 	mixer_ctrl_t *cp;
1154 {
1155 	struct sv_softc *sc = addr;
1156 	u_int8_t reg;
1157 	int idx;
1158 
1159 	if (cp->dev >= SV_FIRST_MIXER &&
1160 	    cp->dev <= SV_LAST_MIXER) {
1161 		int off = cp->dev - SV_FIRST_MIXER;
1162 		int mute = (off % SV_DEVICES_PER_PORT);
1163 		idx = off / SV_DEVICES_PER_PORT;
1164 
1165 		if (mute) {
1166 			if (cp->type != AUDIO_MIXER_ENUM)
1167 				return (EINVAL);
1168 
1169 			reg = sv_read_indirect(sc, ports[idx].l_port);
1170 			if (cp->un.ord)
1171 				reg |= SV_MUTE_BIT;
1172 			else
1173 				reg &= ~SV_MUTE_BIT;
1174 			sv_write_indirect(sc, ports[idx].l_port, reg);
1175 
1176 			if (ports[idx].r_port) {
1177 				reg = sv_read_indirect(sc, ports[idx].r_port);
1178 				if (cp->un.ord)
1179 					reg |= SV_MUTE_BIT;
1180 				else
1181 					reg &= ~SV_MUTE_BIT;
1182 				sv_write_indirect(sc, ports[idx].r_port, reg);
1183 			}
1184 		} else {
1185 			int  lval, rval;
1186 
1187 			if (cp->type != AUDIO_MIXER_VALUE)
1188 				return (EINVAL);
1189 
1190 			if (cp->un.value.num_channels != 1 &&
1191 			    cp->un.value.num_channels != 2)
1192 				return (EINVAL);
1193 
1194 			if (ports[idx].r_port == 0) {
1195 				if (cp->un.value.num_channels != 1)
1196 					return (EINVAL);
1197 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1198 				rval = 0; /* shut up GCC */
1199 			} else {
1200 				if (cp->un.value.num_channels != 2)
1201 					return (EINVAL);
1202 
1203 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1204 				rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1205       }
1206 
1207 
1208 			reg = sv_read_indirect(sc, ports[idx].l_port);
1209 			reg &= ~(ports[idx].mask);
1210 			lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
1211 				AUDIO_MAX_GAIN;
1212 			reg |= lval;
1213 			sv_write_indirect(sc, ports[idx].l_port, reg);
1214 
1215 			if (ports[idx].r_port != 0) {
1216 				reg = sv_read_indirect(sc, ports[idx].r_port);
1217 				reg &= ~(ports[idx].mask);
1218 
1219 				rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
1220 					AUDIO_MAX_GAIN;
1221 				reg |= rval;
1222 
1223 				sv_write_indirect(sc, ports[idx].r_port, reg);
1224 			}
1225 
1226 			sv_read_indirect(sc, ports[idx].l_port);
1227 		}
1228 
1229 		return (0);
1230 	}
1231 
1232 
1233 	switch (cp->dev) {
1234 	case SV_RECORD_SOURCE:
1235 		if (cp->type != AUDIO_MIXER_ENUM)
1236 			return (EINVAL);
1237 
1238 		for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
1239 			if (record_sources[idx].idx == cp->un.ord)
1240 				goto found;
1241 		}
1242 
1243 		return (EINVAL);
1244 
1245 	found:
1246 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1247 		reg &= ~SV_REC_SOURCE_MASK;
1248 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1249 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1250 
1251 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1252 		reg &= ~SV_REC_SOURCE_MASK;
1253 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1254 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1255 		return (0);
1256 
1257 	case SV_RECORD_GAIN:
1258 	{
1259 		int val;
1260 
1261 		if (cp->type != AUDIO_MIXER_VALUE)
1262 			return (EINVAL);
1263 
1264 		if (cp->un.value.num_channels != 1)
1265 			return (EINVAL);
1266 
1267 		val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] * SV_REC_GAIN_MASK)
1268 			/ AUDIO_MAX_GAIN;
1269 
1270 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1271 		reg &= ~SV_REC_GAIN_MASK;
1272 		reg |= val;
1273 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1274 
1275 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1276 		reg &= ~SV_REC_GAIN_MASK;
1277 		reg |= val;
1278 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1279 	}
1280 	return (0);
1281 
1282 	case SV_MIC_BOOST:
1283 		if (cp->type != AUDIO_MIXER_ENUM)
1284 			return (EINVAL);
1285 
1286 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1287 		if (cp->un.ord) {
1288 			reg |= SV_MIC_BOOST_BIT;
1289 		} else {
1290 			reg &= ~SV_MIC_BOOST_BIT;
1291 		}
1292 
1293 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1294 		return (0);
1295 
1296 	case SV_SRS_MODE:
1297 		if (cp->type != AUDIO_MIXER_ENUM)
1298 			return (EINVAL);
1299 
1300 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1301 		if (cp->un.ord) {
1302 			reg &= ~SV_SRS_SPACE_ONOFF;
1303 		} else {
1304 			reg |= SV_SRS_SPACE_ONOFF;
1305 		}
1306 
1307 		sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
1308 		return (0);
1309 	}
1310 
1311 	return (EINVAL);
1312 }
1313 
1314 int
1315 sv_mixer_get_port(addr, cp)
1316 	void *addr;
1317 	mixer_ctrl_t *cp;
1318 {
1319 	struct sv_softc *sc = addr;
1320 	int val;
1321 	u_int8_t reg;
1322 
1323 	if (cp->dev >= SV_FIRST_MIXER &&
1324 	    cp->dev <= SV_LAST_MIXER) {
1325 		int off = cp->dev - SV_FIRST_MIXER;
1326 		int mute = (off % 2);
1327 		int idx = off / 2;
1328 
1329 		if (mute) {
1330 			if (cp->type != AUDIO_MIXER_ENUM)
1331 				return (EINVAL);
1332 
1333 			reg = sv_read_indirect(sc, ports[idx].l_port);
1334 			cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
1335 		} else {
1336 			if (cp->type != AUDIO_MIXER_VALUE)
1337 				return (EINVAL);
1338 
1339 			if (cp->un.value.num_channels != 1 &&
1340 			    cp->un.value.num_channels != 2)
1341 				return (EINVAL);
1342 
1343 			if ((ports[idx].r_port == 0 &&
1344 			     cp->un.value.num_channels != 1) ||
1345 			    (ports[idx].r_port != 0 &&
1346 			     cp->un.value.num_channels != 2))
1347 				return (EINVAL);
1348 
1349 			reg = sv_read_indirect(sc, ports[idx].l_port);
1350 			reg &= ports[idx].mask;
1351 
1352 			val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1353 
1354 			if (ports[idx].r_port != 0) {
1355 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val;
1356 
1357 				reg = sv_read_indirect(sc, ports[idx].r_port);
1358 				reg &= ports[idx].mask;
1359 
1360 				val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1361 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val;
1362 			} else
1363 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val;
1364 		}
1365 
1366 		return (0);
1367   }
1368 
1369 	switch (cp->dev) {
1370 	case SV_RECORD_SOURCE:
1371 		if (cp->type != AUDIO_MIXER_ENUM)
1372 			return (EINVAL);
1373 
1374 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1375 		cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
1376 
1377 		return (0);
1378 
1379 	case SV_RECORD_GAIN:
1380 		if (cp->type != AUDIO_MIXER_VALUE)
1381 			return (EINVAL);
1382 		if (cp->un.value.num_channels != 1)
1383 			return (EINVAL);
1384 
1385 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
1386 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1387 			(((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
1388 
1389 		return (0);
1390 
1391 	case SV_MIC_BOOST:
1392 		if (cp->type != AUDIO_MIXER_ENUM)
1393 			return (EINVAL);
1394 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1395 		cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
1396 		return (0);
1397 
1398 
1399 	case SV_SRS_MODE:
1400 		if (cp->type != AUDIO_MIXER_ENUM)
1401 			return (EINVAL);
1402 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1403 		cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
1404 		return (0);
1405 	}
1406 
1407 	return (EINVAL);
1408 }
1409 
1410 
1411 static void
1412 sv_init_mixer(sc)
1413 	struct sv_softc *sc;
1414 {
1415 	mixer_ctrl_t cp;
1416 	int i;
1417 
1418 	cp.type = AUDIO_MIXER_ENUM;
1419 	cp.dev = SV_SRS_MODE;
1420 	cp.un.ord = 0;
1421 
1422 	sv_mixer_set_port(sc, &cp);
1423 
1424 	for (i = 0; i < ARRAY_SIZE(ports); i++) {
1425 		if (ports[i].audio == AudioNdac) {
1426 			cp.type = AUDIO_MIXER_ENUM;
1427 			cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
1428 			cp.un.ord = 0;
1429 			sv_mixer_set_port(sc, &cp);
1430 			break;
1431 		}
1432 	}
1433 }
1434 
1435 void *
1436 sv_malloc(addr, direction, size, pool, flags)
1437 	void *addr;
1438 	int direction;
1439 	size_t size;
1440 	int pool, flags;
1441 {
1442 	struct sv_softc *sc = addr;
1443 	struct sv_dma *p;
1444 	int error;
1445 
1446 	p = malloc(sizeof(*p), pool, flags);
1447 	if (!p)
1448 		return (0);
1449 	error = sv_allocmem(sc, size, 16, direction, p);
1450 	if (error) {
1451 		free(p, pool);
1452 		return (0);
1453 	}
1454 	p->next = sc->sc_dmas;
1455 	sc->sc_dmas = p;
1456 	return (KERNADDR(p));
1457 }
1458 
1459 void
1460 sv_free(addr, ptr, pool)
1461 	void *addr;
1462 	void *ptr;
1463 	int pool;
1464 {
1465 	struct sv_softc *sc = addr;
1466 	struct sv_dma **pp, *p;
1467 
1468 	for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1469 		if (KERNADDR(p) == ptr) {
1470 			sv_freemem(sc, p);
1471 			*pp = p->next;
1472 			free(p, pool);
1473 			return;
1474 		}
1475 	}
1476 }
1477 
1478 size_t
1479 sv_round_buffersize(addr, direction, size)
1480 	void *addr;
1481 	int direction;
1482 	size_t size;
1483 {
1484 	return (size);
1485 }
1486 
1487 paddr_t
1488 sv_mappage(addr, mem, off, prot)
1489 	void *addr;
1490 	void *mem;
1491 	off_t off;
1492 	int prot;
1493 {
1494 	struct sv_softc *sc = addr;
1495 	struct sv_dma *p;
1496 
1497 	if (off < 0)
1498 		return (-1);
1499 	for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1500 		;
1501 	if (!p)
1502 		return (-1);
1503 	return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1504 				off, prot, BUS_DMA_WAITOK));
1505 }
1506 
1507 int
1508 sv_get_props(addr)
1509 	void *addr;
1510 {
1511 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
1512 }
1513