xref: /netbsd-src/sys/dev/pci/sv.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*      $NetBSD: sv.c,v 1.25 2004/10/29 12:57:18 yamt Exp $ */
2 /*      $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
3 
4 /*
5  * Copyright (c) 1999 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Charles M. Hannum.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *        This product includes software developed by the NetBSD
22  *        Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1998 Constantine Paul Sapuntzakis
42  * All rights reserved
43  *
44  * Author: Constantine Paul Sapuntzakis (csapuntz@cvs.openbsd.org)
45  *
46  * Redistribution and use in source and binary forms, with or without
47  * modification, are permitted provided that the following conditions
48  * are met:
49  * 1. Redistributions of source code must retain the above copyright
50  *    notice, this list of conditions and the following disclaimer.
51  * 2. Redistributions in binary form must reproduce the above copyright
52  *    notice, this list of conditions and the following disclaimer in the
53  *    documentation and/or other materials provided with the distribution.
54  * 3. The author's name or those of the contributors may be used to
55  *    endorse or promote products derived from this software without
56  *    specific prior written permission.
57  *
58  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
59  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
60  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
61  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
62  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
63  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
64  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
65  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
66  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
67  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
68  * POSSIBILITY OF SUCH DAMAGE.
69  */
70 
71 /*
72  * S3 SonicVibes driver
73  *   Heavily based on the eap driver by Lennart Augustsson
74  */
75 
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.25 2004/10/29 12:57:18 yamt Exp $");
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/malloc.h>
83 #include <sys/device.h>
84 
85 #include <dev/pci/pcireg.h>
86 #include <dev/pci/pcivar.h>
87 #include <dev/pci/pcidevs.h>
88 
89 #include <sys/audioio.h>
90 #include <dev/audio_if.h>
91 #include <dev/mulaw.h>
92 #include <dev/auconv.h>
93 
94 #include <dev/ic/i8237reg.h>
95 #include <dev/pci/svreg.h>
96 #include <dev/pci/svvar.h>
97 
98 #include <machine/bus.h>
99 
100 /* XXX
101  * The SonicVibes DMA is broken and only works on 24-bit addresses.
102  * As long as bus_dmamem_alloc_range() is missing we use the ISA
103  * DMA tag on i386.
104  */
105 #if defined(i386)
106 #include "isa.h"
107 #if NISA > 0
108 #include <dev/isa/isavar.h>
109 #endif
110 #endif
111 
112 #ifdef AUDIO_DEBUG
113 #define DPRINTF(x)	if (svdebug) printf x
114 #define DPRINTFN(n,x)	if (svdebug>(n)) printf x
115 int	svdebug = 0;
116 #else
117 #define DPRINTF(x)
118 #define DPRINTFN(n,x)
119 #endif
120 
121 int	sv_match __P((struct device *, struct cfdata *, void *));
122 void	sv_attach __P((struct device *, struct device *, void *));
123 int	sv_intr __P((void *));
124 
125 struct sv_dma {
126 	bus_dmamap_t map;
127 	caddr_t addr;
128 	bus_dma_segment_t segs[1];
129 	int nsegs;
130 	size_t size;
131 	struct sv_dma *next;
132 };
133 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
134 #define KERNADDR(p) ((void *)((p)->addr))
135 
136 CFATTACH_DECL(sv, sizeof(struct sv_softc),
137     sv_match, sv_attach, NULL, NULL);
138 
139 struct audio_device sv_device = {
140 	"S3 SonicVibes",
141 	"",
142 	"sv"
143 };
144 
145 #define ARRAY_SIZE(foo)  ((sizeof(foo)) / sizeof(foo[0]))
146 
147 int	sv_allocmem __P((struct sv_softc *, size_t, size_t, int, struct sv_dma *));
148 int	sv_freemem __P((struct sv_softc *, struct sv_dma *));
149 
150 int	sv_open __P((void *, int));
151 void	sv_close __P((void *));
152 int	sv_query_encoding __P((void *, struct audio_encoding *));
153 int	sv_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
154 int	sv_round_blocksize __P((void *, int));
155 int	sv_trigger_output __P((void *, void *, void *, int, void (*)(void *),
156 	    void *, struct audio_params *));
157 int	sv_trigger_input __P((void *, void *, void *, int, void (*)(void *),
158 	    void *, struct audio_params *));
159 int	sv_halt_output __P((void *));
160 int	sv_halt_input __P((void *));
161 int	sv_getdev __P((void *, struct audio_device *));
162 int	sv_mixer_set_port __P((void *, mixer_ctrl_t *));
163 int	sv_mixer_get_port __P((void *, mixer_ctrl_t *));
164 int	sv_query_devinfo __P((void *, mixer_devinfo_t *));
165 void   *sv_malloc __P((void *, int, size_t, struct malloc_type *, int));
166 void	sv_free __P((void *, void *, struct malloc_type *));
167 size_t	sv_round_buffersize __P((void *, int, size_t));
168 paddr_t	sv_mappage __P((void *, void *, off_t, int));
169 int	sv_get_props __P((void *));
170 
171 #ifdef AUDIO_DEBUG
172 void    sv_dumpregs __P((struct sv_softc *sc));
173 #endif
174 
175 const struct audio_hw_if sv_hw_if = {
176 	sv_open,
177 	sv_close,
178 	NULL,
179 	sv_query_encoding,
180 	sv_set_params,
181 	sv_round_blocksize,
182 	NULL,
183 	NULL,
184 	NULL,
185 	NULL,
186 	NULL,
187 	sv_halt_output,
188 	sv_halt_input,
189 	NULL,
190 	sv_getdev,
191 	NULL,
192 	sv_mixer_set_port,
193 	sv_mixer_get_port,
194 	sv_query_devinfo,
195 	sv_malloc,
196 	sv_free,
197 	sv_round_buffersize,
198 	sv_mappage,
199 	sv_get_props,
200 	sv_trigger_output,
201 	sv_trigger_input,
202 	NULL,
203 };
204 
205 
206 static u_int8_t sv_read __P((struct sv_softc *, u_int8_t));
207 static u_int8_t sv_read_indirect __P((struct sv_softc *, u_int8_t));
208 static void sv_write __P((struct sv_softc *, u_int8_t, u_int8_t ));
209 static void sv_write_indirect __P((struct sv_softc *, u_int8_t, u_int8_t ));
210 static void sv_init_mixer __P((struct sv_softc *));
211 
212 static void sv_defer __P((struct device *self));
213 
214 static void
215 sv_write (sc, reg, val)
216 	struct sv_softc *sc;
217 	u_int8_t reg, val;
218 
219 {
220 	DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
221 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
222 }
223 
224 static u_int8_t
225 sv_read(sc, reg)
226 	struct sv_softc *sc;
227 	u_int8_t reg;
228 
229 {
230 	u_int8_t val;
231 
232 	val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
233 	DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
234 	return val;
235 }
236 
237 static u_int8_t
238 sv_read_indirect(sc, reg)
239 	struct sv_softc *sc;
240 	u_int8_t reg;
241 {
242 	u_int8_t val;
243 	int s = splaudio();
244 
245 	sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
246 	val = sv_read(sc, SV_CODEC_IDATA);
247 	splx(s);
248 	return (val);
249 }
250 
251 static void
252 sv_write_indirect(sc, reg, val)
253 	struct sv_softc *sc;
254 	u_int8_t reg, val;
255 {
256 	u_int8_t iaddr = reg & SV_IADDR_MASK;
257 	int s = splaudio();
258 
259 	if (reg == SV_DMA_DATA_FORMAT)
260 		iaddr |= SV_IADDR_MCE;
261 
262 	sv_write(sc, SV_CODEC_IADDR, iaddr);
263 	sv_write(sc, SV_CODEC_IDATA, val);
264 	splx(s);
265 }
266 
267 int
268 sv_match(parent, match, aux)
269 	struct device *parent;
270 	struct cfdata *match;
271 	void *aux;
272 {
273 	struct pci_attach_args *pa = aux;
274 
275 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
276 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
277 		return (1);
278 
279 	return (0);
280 }
281 
282 int pci_alloc_io __P((pci_chipset_tag_t pc, pcitag_t pt,
283 		      int pcioffs,
284 		      bus_space_tag_t iot, bus_size_t size,
285 		      bus_size_t align, bus_size_t bound, int flags,
286 		      bus_space_handle_t *ioh));
287 
288 static pcireg_t pci_io_alloc_low, pci_io_alloc_high;
289 
290 int
291 pci_alloc_io(pc, pt, pcioffs, iot, size, align, bound, flags, ioh)
292 	pci_chipset_tag_t pc;
293 	pcitag_t pt;
294 	int pcioffs;
295 	bus_space_tag_t iot;
296 	bus_size_t size;
297 	bus_size_t align;
298 	bus_size_t bound;
299 	int flags;
300 	bus_space_handle_t *ioh;
301 {
302 	bus_addr_t addr;
303 	int error;
304 
305 	error = bus_space_alloc(iot, pci_io_alloc_low, pci_io_alloc_high,
306 				size, align, bound, flags, &addr, ioh);
307 	if (error)
308 		return(error);
309 
310 	pci_conf_write(pc, pt, pcioffs, addr);
311 	return (0);
312 }
313 
314 /*
315  * Allocate IO addresses when all other configuration is done.
316  */
317 void
318 sv_defer(self)
319 	struct device *self;
320 {
321 	struct sv_softc *sc = (struct sv_softc *)self;
322 	pci_chipset_tag_t pc = sc->sc_pa.pa_pc;
323 	pcitag_t pt = sc->sc_pa.pa_tag;
324 	pcireg_t dmaio;
325 
326 	DPRINTF(("sv_defer: %p\n", sc));
327 
328 	/* XXX
329 	 * Get a reasonable default for the I/O range.
330 	 * Assume the range around SB_PORTBASE is valid on this PCI bus.
331 	 */
332 	pci_io_alloc_low = pci_conf_read(pc, pt, SV_SB_PORTBASE_SLOT);
333 	pci_io_alloc_high = pci_io_alloc_low + 0x1000;
334 
335 	if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
336 			  sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
337 			  0, &sc->sc_dmaa_ioh)) {
338 		printf("sv_attach: cannot allocate DMA A range\n");
339 		return;
340 	}
341 	dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
342 	DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
343 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
344 		       dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
345 
346 	if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
347 			  sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
348 			  0, &sc->sc_dmac_ioh)) {
349 		printf("sv_attach: cannot allocate DMA C range\n");
350 		return;
351 	}
352 	dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
353 	DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
354 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
355 		       dmaio | SV_DMA_CHANNEL_ENABLE);
356 
357 	sc->sc_dmaset = 1;
358 }
359 
360 void
361 sv_attach(parent, self, aux)
362 	struct device *parent, *self;
363 	void *aux;
364 {
365 	struct sv_softc *sc = (struct sv_softc *)self;
366 	struct pci_attach_args *pa = aux;
367 	pci_chipset_tag_t pc = pa->pa_pc;
368 	pcitag_t pt = pa->pa_tag;
369 	pci_intr_handle_t ih;
370 	pcireg_t csr;
371 	char const *intrstr;
372 	u_int8_t reg;
373 	struct audio_attach_args arg;
374 
375 	printf ("\n");
376 
377 	/* Map I/O registers */
378 	if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
379 			   PCI_MAPREG_TYPE_IO, 0,
380 			   &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
381 		printf("%s: can't map enhanced i/o space\n",
382 		       sc->sc_dev.dv_xname);
383 		return;
384 	}
385 	if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
386 			   PCI_MAPREG_TYPE_IO, 0,
387 			   &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
388 		printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname);
389 		return;
390 	}
391 	if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
392 			   PCI_MAPREG_TYPE_IO, 0,
393 			   &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
394 		printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname);
395 		return;
396 	}
397 	DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
398 		 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
399 
400 #if defined(alpha)
401 	/* XXX Force allocation through the SGMAP. */
402 	sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
403 #elif defined(i386) && NISA > 0
404 /* XXX
405  * The SonicVibes DMA is broken and only works on 24-bit addresses.
406  * As long as bus_dmamem_alloc_range() is missing we use the ISA
407  * DMA tag on i386.
408  */
409 	sc->sc_dmatag = &isa_bus_dma_tag;
410 #else
411 	sc->sc_dmatag = pa->pa_dmat;
412 #endif
413 
414 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
415 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
416 
417 	/* Enable the device. */
418 	csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
419 	pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
420 		       csr | PCI_COMMAND_MASTER_ENABLE);
421 
422 	sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
423 	sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
424 
425 	/* initialize codec registers */
426 	reg = sv_read(sc, SV_CODEC_CONTROL);
427 	reg |= SV_CTL_RESET;
428 	sv_write(sc, SV_CODEC_CONTROL, reg);
429 	delay(50);
430 
431 	reg = sv_read(sc, SV_CODEC_CONTROL);
432 	reg &= ~SV_CTL_RESET;
433 	reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
434 
435 	/* This write clears the reset */
436 	sv_write(sc, SV_CODEC_CONTROL, reg);
437 	delay(50);
438 
439 	/* This write actually shoves the new values in */
440 	sv_write(sc, SV_CODEC_CONTROL, reg);
441 
442 	DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
443 
444 	/* Enable DMA interrupts */
445 	reg = sv_read(sc, SV_CODEC_INTMASK);
446 	reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
447 	reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
448 	sv_write(sc, SV_CODEC_INTMASK, reg);
449 
450 	sv_read(sc, SV_CODEC_STATUS);
451 
452 	/* Map and establish the interrupt. */
453 	if (pci_intr_map(pa, &ih)) {
454 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
455 		return;
456 	}
457 	intrstr = pci_intr_string(pc, ih);
458 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
459 	if (sc->sc_ih == NULL) {
460 		printf("%s: couldn't establish interrupt",
461 		       sc->sc_dev.dv_xname);
462 		if (intrstr != NULL)
463 			printf(" at %s", intrstr);
464 		printf("\n");
465 		return;
466 	}
467 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
468 	printf("%s: rev %d", sc->sc_dev.dv_xname,
469 	       sv_read_indirect(sc, SV_REVISION_LEVEL));
470 	if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
471 		printf(", reverb SRAM present");
472 	if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
473 		printf(", wavetable ROM present");
474 	printf("\n");
475 
476 	sv_init_mixer(sc);
477 
478 	audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
479 
480 	arg.type = AUDIODEV_TYPE_OPL;
481 	arg.hwif = 0;
482 	arg.hdl = 0;
483 	(void)config_found(&sc->sc_dev, &arg, audioprint);
484 
485 	sc->sc_pa = *pa;	/* for deferred setup */
486 	config_defer(self, sv_defer);
487 }
488 
489 #ifdef AUDIO_DEBUG
490 void
491 sv_dumpregs(sc)
492 	struct sv_softc *sc;
493 {
494 	int idx;
495 
496 #if 0
497 	for (idx = 0; idx < 0x50; idx += 4)
498 		printf ("%02x = %x\n", idx,
499 			pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
500 #endif
501 
502 	for (idx = 0; idx < 6; idx++)
503 		printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
504 
505 	for (idx = 0; idx < 0x32; idx++)
506 		printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
507 
508 	for (idx = 0; idx < 0x10; idx++)
509 		printf ("DMA %02x = %02x\n", idx,
510 			bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
511 }
512 #endif
513 
514 int
515 sv_intr(p)
516 	void *p;
517 {
518 	struct sv_softc *sc = p;
519 	u_int8_t intr;
520 
521 	intr = sv_read(sc, SV_CODEC_STATUS);
522 	DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
523 
524 	if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)))
525 		return (0);
526 
527 	if (intr & SV_INTSTATUS_DMAA) {
528 		if (sc->sc_pintr)
529 			sc->sc_pintr(sc->sc_parg);
530 	}
531 
532 	if (intr & SV_INTSTATUS_DMAC) {
533 		if (sc->sc_rintr)
534 			sc->sc_rintr(sc->sc_rarg);
535 	}
536 
537 	return (1);
538 }
539 
540 int
541 sv_allocmem(sc, size, align, direction, p)
542 	struct sv_softc *sc;
543 	size_t size;
544 	size_t align;
545 	int direction;
546 	struct sv_dma *p;
547 {
548 	int error;
549 
550 	p->size = size;
551 	error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
552 				 p->segs, ARRAY_SIZE(p->segs),
553 				 &p->nsegs, BUS_DMA_NOWAIT);
554 	if (error)
555 		return (error);
556 
557 	error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
558 			       &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
559 	if (error)
560 		goto free;
561 
562 	error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
563 				  0, BUS_DMA_NOWAIT, &p->map);
564 	if (error)
565 		goto unmap;
566 
567 	error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
568 				BUS_DMA_NOWAIT |
569                                 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
570 	if (error)
571 		goto destroy;
572 	DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
573 	    (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
574 	return (0);
575 
576 destroy:
577 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
578 unmap:
579 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
580 free:
581 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
582 	return (error);
583 }
584 
585 int
586 sv_freemem(sc, p)
587 	struct sv_softc *sc;
588 	struct sv_dma *p;
589 {
590 	bus_dmamap_unload(sc->sc_dmatag, p->map);
591 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
592 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
593 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
594 	return (0);
595 }
596 
597 int
598 sv_open(addr, flags)
599 	void *addr;
600 	int flags;
601 {
602 	struct sv_softc *sc = addr;
603 
604 	DPRINTF(("sv_open\n"));
605 	if (!sc->sc_dmaset)
606 		return (ENXIO);
607 
608 	return (0);
609 }
610 
611 /*
612  * Close function is called at splaudio().
613  */
614 void
615 sv_close(addr)
616 	void *addr;
617 {
618 }
619 
620 int
621 sv_query_encoding(addr, fp)
622 	void *addr;
623 	struct audio_encoding *fp;
624 {
625 	switch (fp->index) {
626 	case 0:
627 		strcpy(fp->name, AudioEulinear);
628 		fp->encoding = AUDIO_ENCODING_ULINEAR;
629 		fp->precision = 8;
630 		fp->flags = 0;
631 		return (0);
632 	case 1:
633 		strcpy(fp->name, AudioEmulaw);
634 		fp->encoding = AUDIO_ENCODING_ULAW;
635 		fp->precision = 8;
636 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
637 		return (0);
638 	case 2:
639 		strcpy(fp->name, AudioEalaw);
640 		fp->encoding = AUDIO_ENCODING_ALAW;
641 		fp->precision = 8;
642 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
643 		return (0);
644 	case 3:
645 		strcpy(fp->name, AudioEslinear);
646 		fp->encoding = AUDIO_ENCODING_SLINEAR;
647 		fp->precision = 8;
648 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
649 		return (0);
650 	case 4:
651 		strcpy(fp->name, AudioEslinear_le);
652 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
653 		fp->precision = 16;
654 		fp->flags = 0;
655 		return (0);
656 	case 5:
657 		strcpy(fp->name, AudioEulinear_le);
658 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
659 		fp->precision = 16;
660 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
661 		return (0);
662 	case 6:
663 		strcpy(fp->name, AudioEslinear_be);
664 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
665 		fp->precision = 16;
666 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
667 		return (0);
668 	case 7:
669 		strcpy(fp->name, AudioEulinear_be);
670 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
671 		fp->precision = 16;
672 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
673 		return (0);
674 	default:
675 		return (EINVAL);
676 	}
677 }
678 
679 int
680 sv_set_params(addr, setmode, usemode, play, rec)
681 	void *addr;
682 	int setmode, usemode;
683 	struct audio_params *play, *rec;
684 {
685 	struct sv_softc *sc = addr;
686 	struct audio_params *p = NULL;
687 	int mode;
688 	u_int32_t val;
689 
690 	/*
691 	 * This device only has one clock, so make the sample rates match.
692 	 */
693 	if (play->sample_rate != rec->sample_rate &&
694 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
695 		if (setmode == AUMODE_PLAY) {
696 			rec->sample_rate = play->sample_rate;
697 			setmode |= AUMODE_RECORD;
698 		} else if (setmode == AUMODE_RECORD) {
699 			play->sample_rate = rec->sample_rate;
700 			setmode |= AUMODE_PLAY;
701 		} else
702 			return (EINVAL);
703 	}
704 
705 	for (mode = AUMODE_RECORD; mode != -1;
706 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
707 		if ((setmode & mode) == 0)
708 			continue;
709 
710 		p = mode == AUMODE_PLAY ? play : rec;
711 
712 		if (p->sample_rate < 2000 || p->sample_rate > 48000 ||
713 		    (p->precision != 8 && p->precision != 16) ||
714 		    (p->channels != 1 && p->channels != 2))
715 			return (EINVAL);
716 
717 		p->factor = 1;
718 		p->sw_code = 0;
719 		switch (p->encoding) {
720 		case AUDIO_ENCODING_SLINEAR_BE:
721 			if (p->precision == 16)
722 				p->sw_code = swap_bytes;
723 			else
724 				p->sw_code = change_sign8;
725 			break;
726 		case AUDIO_ENCODING_SLINEAR_LE:
727 			if (p->precision != 16)
728 				p->sw_code = change_sign8;
729 			break;
730 		case AUDIO_ENCODING_ULINEAR_BE:
731 			if (p->precision == 16) {
732 				if (mode == AUMODE_PLAY)
733 					p->sw_code = swap_bytes_change_sign16_le;
734 				else
735 					p->sw_code = change_sign16_swap_bytes_le;
736 			}
737 			break;
738 		case AUDIO_ENCODING_ULINEAR_LE:
739 			if (p->precision == 16)
740 				p->sw_code = change_sign16_le;
741 			break;
742 		case AUDIO_ENCODING_ULAW:
743 			if (mode == AUMODE_PLAY) {
744 				p->factor = 2;
745 				p->sw_code = mulaw_to_slinear16_le;
746 			} else
747 				p->sw_code = ulinear8_to_mulaw;
748 			break;
749 		case AUDIO_ENCODING_ALAW:
750 			if (mode == AUMODE_PLAY) {
751 				p->factor = 2;
752 				p->sw_code = alaw_to_slinear16_le;
753 			} else
754 				p->sw_code = ulinear8_to_alaw;
755 			break;
756 		default:
757 			return (EINVAL);
758 		}
759 	}
760 
761 	val = p->sample_rate * 65536 / 48000;
762 	/*
763 	 * If the sample rate is exactly 48KHz, the fraction would overflow the
764 	 * register, so we have to bias it.  This causes a little clock drift.
765 	 * The drift is below normal crystal tolerance (.0001%), so although
766 	 * this seems a little silly, we can pretty much ignore it.
767 	 * (I tested the output speed with values of 1-20, just to be sure this
768 	 * register isn't *supposed* to have a bias.  It isn't.)
769 	 * - mycroft
770 	 */
771 	if (val > 65535)
772 		val = 65535;
773 
774 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
775 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
776 
777 #define F_REF 24576000
778 
779 #define ABS(x) (((x) < 0) ? (-x) : (x))
780 
781 	if (setmode & AUMODE_RECORD) {
782 		/* The ADC reference frequency (f_out) is 512 * sample rate */
783 
784 		/* f_out is dervied from the 24.576MHz crystal by three values:
785 		   M & N & R. The equation is as follows:
786 
787 		   f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
788 
789 		   with the constraint that:
790 
791 		   80 MHz < (m + 2) / (n + 2) * f_ref <= 150MHz
792 		   and n, m >= 1
793 		*/
794 
795 		int  goal_f_out = 512 * rec->sample_rate;
796 		int  a, n, m, best_n = 0, best_m = 0, best_error = 10000000;
797 		int  pll_sample;
798 		int  error;
799 
800 		for (a = 0; a < 8; a++) {
801 			if ((goal_f_out * (1 << a)) >= 80000000)
802 				break;
803 		}
804 
805 		/* a != 8 because sample_rate >= 2000 */
806 
807 		for (n = 33; n > 2; n--) {
808 			m = (goal_f_out * n * (1 << a)) / F_REF;
809 			if ((m > 257) || (m < 3))
810 				continue;
811 
812 			pll_sample = (m * F_REF) / (n * (1 << a));
813 			pll_sample /= 512;
814 
815 			/* Threshold might be good here */
816 			error = pll_sample - rec->sample_rate;
817 			error = ABS(error);
818 
819 			if (error < best_error) {
820 				best_error = error;
821 				best_n = n;
822 				best_m = m;
823 				if (error == 0) break;
824 			}
825 		}
826 
827 		best_n -= 2;
828 		best_m -= 2;
829 
830 		sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
831 		sv_write_indirect(sc, SV_ADC_PLL_N,
832 				  best_n | (a << SV_PLL_R_SHIFT));
833 	}
834 
835 	return (0);
836 }
837 
838 int
839 sv_round_blocksize(addr, blk)
840 	void *addr;
841 	int blk;
842 {
843 	return (blk & -32);	/* keep good alignment */
844 }
845 
846 int
847 sv_trigger_output(addr, start, end, blksize, intr, arg, param)
848 	void *addr;
849 	void *start, *end;
850 	int blksize;
851 	void (*intr) __P((void *));
852 	void *arg;
853 	struct audio_params *param;
854 {
855 	struct sv_softc *sc = addr;
856 	struct sv_dma *p;
857 	u_int8_t mode;
858 	int dma_count;
859 
860 	DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
861 	    addr, start, end, blksize, intr, arg));
862 	sc->sc_pintr = intr;
863 	sc->sc_parg = arg;
864 
865 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
866 	mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
867 	if (param->precision * param->factor == 16)
868 		mode |= SV_DMAA_FORMAT16;
869 	if (param->channels == 2)
870 		mode |= SV_DMAA_STEREO;
871 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
872 
873 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
874 		;
875 	if (!p) {
876 		printf("sv_trigger_output: bad addr %p\n", start);
877 		return (EINVAL);
878 	}
879 
880 	dma_count = ((char *)end - (char *)start) - 1;
881 	DPRINTF(("sv_trigger_output: DMA start loop input addr=%x cc=%d\n",
882 	    (int)DMAADDR(p), dma_count));
883 
884 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
885 			  DMAADDR(p));
886 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
887 			  dma_count);
888 	bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
889 			  DMA37MD_READ | DMA37MD_LOOP);
890 
891 	DPRINTF(("sv_trigger_output: current addr=%x\n",
892 	    bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
893 
894 	dma_count = blksize - 1;
895 
896 	sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
897 	sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
898 
899 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
900 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
901 
902 	return (0);
903 }
904 
905 int
906 sv_trigger_input(addr, start, end, blksize, intr, arg, param)
907 	void *addr;
908 	void *start, *end;
909 	int blksize;
910 	void (*intr) __P((void *));
911 	void *arg;
912 	struct audio_params *param;
913 {
914 	struct sv_softc *sc = addr;
915 	struct sv_dma *p;
916 	u_int8_t mode;
917 	int dma_count;
918 
919 	DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
920 	    addr, start, end, blksize, intr, arg));
921 	sc->sc_rintr = intr;
922 	sc->sc_rarg = arg;
923 
924 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
925 	mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
926 	if (param->precision * param->factor == 16)
927 		mode |= SV_DMAC_FORMAT16;
928 	if (param->channels == 2)
929 		mode |= SV_DMAC_STEREO;
930 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
931 
932 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
933 		;
934 	if (!p) {
935 		printf("sv_trigger_input: bad addr %p\n", start);
936 		return (EINVAL);
937 	}
938 
939 	dma_count = (((char *)end - (char *)start) >> 1) - 1;
940 	DPRINTF(("sv_trigger_input: DMA start loop input addr=%x cc=%d\n",
941 	    (int)DMAADDR(p), dma_count));
942 
943 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
944 			  DMAADDR(p));
945 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
946 			  dma_count);
947 	bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
948 			  DMA37MD_WRITE | DMA37MD_LOOP);
949 
950 	DPRINTF(("sv_trigger_input: current addr=%x\n",
951 	    bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
952 
953 	dma_count = (blksize >> 1) - 1;
954 
955 	sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
956 	sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
957 
958 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
959 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
960 
961 	return (0);
962 }
963 
964 int
965 sv_halt_output(addr)
966 	void *addr;
967 {
968 	struct sv_softc *sc = addr;
969 	u_int8_t mode;
970 
971 	DPRINTF(("sv: sv_halt_output\n"));
972 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
973 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
974 	sc->sc_pintr = 0;
975 
976 	return (0);
977 }
978 
979 int
980 sv_halt_input(addr)
981 	void *addr;
982 {
983 	struct sv_softc *sc = addr;
984 	u_int8_t mode;
985 
986 	DPRINTF(("sv: sv_halt_input\n"));
987 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
988 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
989 	sc->sc_rintr = 0;
990 
991 	return (0);
992 }
993 
994 int
995 sv_getdev(addr, retp)
996 	void *addr;
997 	struct audio_device *retp;
998 {
999 	*retp = sv_device;
1000 	return (0);
1001 }
1002 
1003 
1004 /*
1005  * Mixer related code is here
1006  *
1007  */
1008 
1009 #define SV_INPUT_CLASS 0
1010 #define SV_OUTPUT_CLASS 1
1011 #define SV_RECORD_CLASS 2
1012 
1013 #define SV_LAST_CLASS 2
1014 
1015 static const char *mixer_classes[] =
1016 	{ AudioCinputs, AudioCoutputs, AudioCrecord };
1017 
1018 static const struct {
1019 	u_int8_t   l_port;
1020 	u_int8_t   r_port;
1021 	u_int8_t   mask;
1022 	u_int8_t   class;
1023 	const char *audio;
1024 } ports[] = {
1025   { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
1026     SV_INPUT_CLASS, "aux1" },
1027   { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
1028     SV_INPUT_CLASS, AudioNcd },
1029   { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
1030     SV_INPUT_CLASS, AudioNline },
1031   { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
1032   { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
1033     SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
1034   { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
1035     SV_INPUT_CLASS, "aux2" },
1036   { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
1037     SV_INPUT_CLASS, AudioNdac },
1038   { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
1039     SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
1040 };
1041 
1042 
1043 static const struct {
1044 	int idx;
1045 	const char *name;
1046 } record_sources[] = {
1047 	{ SV_REC_CD, AudioNcd },
1048 	{ SV_REC_DAC, AudioNdac },
1049 	{ SV_REC_AUX2, "aux2" },
1050 	{ SV_REC_LINE, AudioNline },
1051 	{ SV_REC_AUX1, "aux1" },
1052 	{ SV_REC_MIC, AudioNmicrophone },
1053 	{ SV_REC_MIXER, AudioNmixerout }
1054 };
1055 
1056 
1057 #define SV_DEVICES_PER_PORT 2
1058 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
1059 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
1060 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
1061 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
1062 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
1063 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
1064 
1065 int
1066 sv_query_devinfo(addr, dip)
1067 	void *addr;
1068 	mixer_devinfo_t *dip;
1069 {
1070 	int i;
1071 
1072 	/* It's a class */
1073 	if (dip->index <= SV_LAST_CLASS) {
1074 		dip->type = AUDIO_MIXER_CLASS;
1075 		dip->mixer_class = dip->index;
1076 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1077 		strcpy(dip->label.name,
1078 		       mixer_classes[dip->index]);
1079 		return (0);
1080 	}
1081 
1082 	if (dip->index >= SV_FIRST_MIXER &&
1083 	    dip->index <= SV_LAST_MIXER) {
1084 		int off = dip->index - SV_FIRST_MIXER;
1085 		int mute = (off % SV_DEVICES_PER_PORT);
1086 		int idx = off / SV_DEVICES_PER_PORT;
1087 
1088 		dip->mixer_class = ports[idx].class;
1089 		strcpy(dip->label.name, ports[idx].audio);
1090 
1091 		if (!mute) {
1092 			dip->type = AUDIO_MIXER_VALUE;
1093 			dip->prev = AUDIO_MIXER_LAST;
1094 			dip->next = dip->index + 1;
1095 
1096 			if (ports[idx].r_port != 0)
1097 				dip->un.v.num_channels = 2;
1098 			else
1099 				dip->un.v.num_channels = 1;
1100 
1101 			strcpy(dip->un.v.units.name, AudioNvolume);
1102 		} else {
1103 			dip->type = AUDIO_MIXER_ENUM;
1104 			dip->prev = dip->index - 1;
1105 			dip->next = AUDIO_MIXER_LAST;
1106 
1107 			strcpy(dip->label.name, AudioNmute);
1108 			dip->un.e.num_mem = 2;
1109 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
1110 			dip->un.e.member[0].ord = 0;
1111 			strcpy(dip->un.e.member[1].label.name, AudioNon);
1112 			dip->un.e.member[1].ord = 1;
1113 		}
1114 
1115 		return (0);
1116 	}
1117 
1118 	switch (dip->index) {
1119 	case SV_RECORD_SOURCE:
1120 		dip->mixer_class = SV_RECORD_CLASS;
1121 		dip->prev = AUDIO_MIXER_LAST;
1122 		dip->next = SV_RECORD_GAIN;
1123 		strcpy(dip->label.name, AudioNsource);
1124 		dip->type = AUDIO_MIXER_ENUM;
1125 
1126 		dip->un.e.num_mem = ARRAY_SIZE(record_sources);
1127 		for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
1128 			strcpy(dip->un.e.member[i].label.name,
1129 			       record_sources[i].name);
1130 			dip->un.e.member[i].ord = record_sources[i].idx;
1131 		}
1132 		return (0);
1133 
1134 	case SV_RECORD_GAIN:
1135 		dip->mixer_class = SV_RECORD_CLASS;
1136 		dip->prev = SV_RECORD_SOURCE;
1137 		dip->next = AUDIO_MIXER_LAST;
1138 		strcpy(dip->label.name, "gain");
1139 		dip->type = AUDIO_MIXER_VALUE;
1140 		dip->un.v.num_channels = 1;
1141 		strcpy(dip->un.v.units.name, AudioNvolume);
1142 		return (0);
1143 
1144 	case SV_MIC_BOOST:
1145 		dip->mixer_class = SV_RECORD_CLASS;
1146 		dip->prev = AUDIO_MIXER_LAST;
1147 		dip->next = AUDIO_MIXER_LAST;
1148 		strcpy(dip->label.name, "micboost");
1149 		goto on_off;
1150 
1151 	case SV_SRS_MODE:
1152 		dip->mixer_class = SV_OUTPUT_CLASS;
1153 		dip->prev = dip->next = AUDIO_MIXER_LAST;
1154 		strcpy(dip->label.name, AudioNspatial);
1155 
1156 	on_off:
1157 		dip->type = AUDIO_MIXER_ENUM;
1158 		dip->un.e.num_mem = 2;
1159 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1160 		dip->un.e.member[0].ord = 0;
1161 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1162 		dip->un.e.member[1].ord = 1;
1163 		return (0);
1164 	}
1165 
1166 	return (ENXIO);
1167 }
1168 
1169 int
1170 sv_mixer_set_port(addr, cp)
1171 	void *addr;
1172 	mixer_ctrl_t *cp;
1173 {
1174 	struct sv_softc *sc = addr;
1175 	u_int8_t reg;
1176 	int idx;
1177 
1178 	if (cp->dev >= SV_FIRST_MIXER &&
1179 	    cp->dev <= SV_LAST_MIXER) {
1180 		int off = cp->dev - SV_FIRST_MIXER;
1181 		int mute = (off % SV_DEVICES_PER_PORT);
1182 		idx = off / SV_DEVICES_PER_PORT;
1183 
1184 		if (mute) {
1185 			if (cp->type != AUDIO_MIXER_ENUM)
1186 				return (EINVAL);
1187 
1188 			reg = sv_read_indirect(sc, ports[idx].l_port);
1189 			if (cp->un.ord)
1190 				reg |= SV_MUTE_BIT;
1191 			else
1192 				reg &= ~SV_MUTE_BIT;
1193 			sv_write_indirect(sc, ports[idx].l_port, reg);
1194 
1195 			if (ports[idx].r_port) {
1196 				reg = sv_read_indirect(sc, ports[idx].r_port);
1197 				if (cp->un.ord)
1198 					reg |= SV_MUTE_BIT;
1199 				else
1200 					reg &= ~SV_MUTE_BIT;
1201 				sv_write_indirect(sc, ports[idx].r_port, reg);
1202 			}
1203 		} else {
1204 			int  lval, rval;
1205 
1206 			if (cp->type != AUDIO_MIXER_VALUE)
1207 				return (EINVAL);
1208 
1209 			if (cp->un.value.num_channels != 1 &&
1210 			    cp->un.value.num_channels != 2)
1211 				return (EINVAL);
1212 
1213 			if (ports[idx].r_port == 0) {
1214 				if (cp->un.value.num_channels != 1)
1215 					return (EINVAL);
1216 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1217 				rval = 0; /* shut up GCC */
1218 			} else {
1219 				if (cp->un.value.num_channels != 2)
1220 					return (EINVAL);
1221 
1222 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1223 				rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1224       }
1225 
1226 
1227 			reg = sv_read_indirect(sc, ports[idx].l_port);
1228 			reg &= ~(ports[idx].mask);
1229 			lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
1230 				AUDIO_MAX_GAIN;
1231 			reg |= lval;
1232 			sv_write_indirect(sc, ports[idx].l_port, reg);
1233 
1234 			if (ports[idx].r_port != 0) {
1235 				reg = sv_read_indirect(sc, ports[idx].r_port);
1236 				reg &= ~(ports[idx].mask);
1237 
1238 				rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
1239 					AUDIO_MAX_GAIN;
1240 				reg |= rval;
1241 
1242 				sv_write_indirect(sc, ports[idx].r_port, reg);
1243 			}
1244 
1245 			sv_read_indirect(sc, ports[idx].l_port);
1246 		}
1247 
1248 		return (0);
1249 	}
1250 
1251 
1252 	switch (cp->dev) {
1253 	case SV_RECORD_SOURCE:
1254 		if (cp->type != AUDIO_MIXER_ENUM)
1255 			return (EINVAL);
1256 
1257 		for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
1258 			if (record_sources[idx].idx == cp->un.ord)
1259 				goto found;
1260 		}
1261 
1262 		return (EINVAL);
1263 
1264 	found:
1265 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1266 		reg &= ~SV_REC_SOURCE_MASK;
1267 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1268 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1269 
1270 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1271 		reg &= ~SV_REC_SOURCE_MASK;
1272 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1273 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1274 		return (0);
1275 
1276 	case SV_RECORD_GAIN:
1277 	{
1278 		int val;
1279 
1280 		if (cp->type != AUDIO_MIXER_VALUE)
1281 			return (EINVAL);
1282 
1283 		if (cp->un.value.num_channels != 1)
1284 			return (EINVAL);
1285 
1286 		val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] * SV_REC_GAIN_MASK)
1287 			/ AUDIO_MAX_GAIN;
1288 
1289 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1290 		reg &= ~SV_REC_GAIN_MASK;
1291 		reg |= val;
1292 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1293 
1294 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1295 		reg &= ~SV_REC_GAIN_MASK;
1296 		reg |= val;
1297 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1298 	}
1299 	return (0);
1300 
1301 	case SV_MIC_BOOST:
1302 		if (cp->type != AUDIO_MIXER_ENUM)
1303 			return (EINVAL);
1304 
1305 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1306 		if (cp->un.ord) {
1307 			reg |= SV_MIC_BOOST_BIT;
1308 		} else {
1309 			reg &= ~SV_MIC_BOOST_BIT;
1310 		}
1311 
1312 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1313 		return (0);
1314 
1315 	case SV_SRS_MODE:
1316 		if (cp->type != AUDIO_MIXER_ENUM)
1317 			return (EINVAL);
1318 
1319 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1320 		if (cp->un.ord) {
1321 			reg &= ~SV_SRS_SPACE_ONOFF;
1322 		} else {
1323 			reg |= SV_SRS_SPACE_ONOFF;
1324 		}
1325 
1326 		sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
1327 		return (0);
1328 	}
1329 
1330 	return (EINVAL);
1331 }
1332 
1333 int
1334 sv_mixer_get_port(addr, cp)
1335 	void *addr;
1336 	mixer_ctrl_t *cp;
1337 {
1338 	struct sv_softc *sc = addr;
1339 	int val;
1340 	u_int8_t reg;
1341 
1342 	if (cp->dev >= SV_FIRST_MIXER &&
1343 	    cp->dev <= SV_LAST_MIXER) {
1344 		int off = cp->dev - SV_FIRST_MIXER;
1345 		int mute = (off % 2);
1346 		int idx = off / 2;
1347 
1348 		if (mute) {
1349 			if (cp->type != AUDIO_MIXER_ENUM)
1350 				return (EINVAL);
1351 
1352 			reg = sv_read_indirect(sc, ports[idx].l_port);
1353 			cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
1354 		} else {
1355 			if (cp->type != AUDIO_MIXER_VALUE)
1356 				return (EINVAL);
1357 
1358 			if (cp->un.value.num_channels != 1 &&
1359 			    cp->un.value.num_channels != 2)
1360 				return (EINVAL);
1361 
1362 			if ((ports[idx].r_port == 0 &&
1363 			     cp->un.value.num_channels != 1) ||
1364 			    (ports[idx].r_port != 0 &&
1365 			     cp->un.value.num_channels != 2))
1366 				return (EINVAL);
1367 
1368 			reg = sv_read_indirect(sc, ports[idx].l_port);
1369 			reg &= ports[idx].mask;
1370 
1371 			val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1372 
1373 			if (ports[idx].r_port != 0) {
1374 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val;
1375 
1376 				reg = sv_read_indirect(sc, ports[idx].r_port);
1377 				reg &= ports[idx].mask;
1378 
1379 				val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1380 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val;
1381 			} else
1382 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val;
1383 		}
1384 
1385 		return (0);
1386   }
1387 
1388 	switch (cp->dev) {
1389 	case SV_RECORD_SOURCE:
1390 		if (cp->type != AUDIO_MIXER_ENUM)
1391 			return (EINVAL);
1392 
1393 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1394 		cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
1395 
1396 		return (0);
1397 
1398 	case SV_RECORD_GAIN:
1399 		if (cp->type != AUDIO_MIXER_VALUE)
1400 			return (EINVAL);
1401 		if (cp->un.value.num_channels != 1)
1402 			return (EINVAL);
1403 
1404 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
1405 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1406 			(((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
1407 
1408 		return (0);
1409 
1410 	case SV_MIC_BOOST:
1411 		if (cp->type != AUDIO_MIXER_ENUM)
1412 			return (EINVAL);
1413 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1414 		cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
1415 		return (0);
1416 
1417 
1418 	case SV_SRS_MODE:
1419 		if (cp->type != AUDIO_MIXER_ENUM)
1420 			return (EINVAL);
1421 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1422 		cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
1423 		return (0);
1424 	}
1425 
1426 	return (EINVAL);
1427 }
1428 
1429 
1430 static void
1431 sv_init_mixer(sc)
1432 	struct sv_softc *sc;
1433 {
1434 	mixer_ctrl_t cp;
1435 	int i;
1436 
1437 	cp.type = AUDIO_MIXER_ENUM;
1438 	cp.dev = SV_SRS_MODE;
1439 	cp.un.ord = 0;
1440 
1441 	sv_mixer_set_port(sc, &cp);
1442 
1443 	for (i = 0; i < ARRAY_SIZE(ports); i++) {
1444 		if (ports[i].audio == AudioNdac) {
1445 			cp.type = AUDIO_MIXER_ENUM;
1446 			cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
1447 			cp.un.ord = 0;
1448 			sv_mixer_set_port(sc, &cp);
1449 			break;
1450 		}
1451 	}
1452 }
1453 
1454 void *
1455 sv_malloc(addr, direction, size, pool, flags)
1456 	void *addr;
1457 	int direction;
1458 	size_t size;
1459 	struct malloc_type *pool;
1460 	int flags;
1461 {
1462 	struct sv_softc *sc = addr;
1463 	struct sv_dma *p;
1464 	int error;
1465 
1466 	p = malloc(sizeof(*p), pool, flags);
1467 	if (!p)
1468 		return (0);
1469 	error = sv_allocmem(sc, size, 16, direction, p);
1470 	if (error) {
1471 		free(p, pool);
1472 		return (0);
1473 	}
1474 	p->next = sc->sc_dmas;
1475 	sc->sc_dmas = p;
1476 	return (KERNADDR(p));
1477 }
1478 
1479 void
1480 sv_free(addr, ptr, pool)
1481 	void *addr;
1482 	void *ptr;
1483 	struct malloc_type *pool;
1484 {
1485 	struct sv_softc *sc = addr;
1486 	struct sv_dma **pp, *p;
1487 
1488 	for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1489 		if (KERNADDR(p) == ptr) {
1490 			sv_freemem(sc, p);
1491 			*pp = p->next;
1492 			free(p, pool);
1493 			return;
1494 		}
1495 	}
1496 }
1497 
1498 size_t
1499 sv_round_buffersize(addr, direction, size)
1500 	void *addr;
1501 	int direction;
1502 	size_t size;
1503 {
1504 	return (size);
1505 }
1506 
1507 paddr_t
1508 sv_mappage(addr, mem, off, prot)
1509 	void *addr;
1510 	void *mem;
1511 	off_t off;
1512 	int prot;
1513 {
1514 	struct sv_softc *sc = addr;
1515 	struct sv_dma *p;
1516 
1517 	if (off < 0)
1518 		return (-1);
1519 	for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1520 		;
1521 	if (!p)
1522 		return (-1);
1523 	return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1524 				off, prot, BUS_DMA_WAITOK));
1525 }
1526 
1527 int
1528 sv_get_props(addr)
1529 	void *addr;
1530 {
1531 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
1532 }
1533